Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 26 listopada 2025 15:22
  • Data zakończenia: 26 listopada 2025 15:44

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie narzędzie w laboratorium jest wykorzystywane do rozdrabniania małych ilości substancji stałych?

A. krystalizator ze szpatułką metalową
B. moździerz z tłuczkiem
C. zlewka z bagietką
D. parownica z łyżeczką porcelanową
Moździerz z tłuczkiem jest podstawowym narzędziem wykorzystywanym w laboratoriach do rozdrabniania substancji stałych, zwłaszcza tych, które są w postaci proszku lub granulek. Umożliwia on precyzyjne mielenie materiałów, co jest kluczowe w wielu procesach chemicznych. Dzięki swojej budowie, moździerz zapewnia stabilność oraz kontrolę nad stopniem rozdrobnienia. Przykładem zastosowania moździerza z tłuczkiem może być przygotowanie prób do analizy chemicznej, gdzie konieczne jest uzyskanie jednolitej konsystencji substancji. Ponadto, standardy laboratoryjne, takie jak ISO 9001, podkreślają znaczenie wysokiej jakości przygotowania próbek, co czyni moździerz z tłuczkiem narzędziem niezbędnym dla zachowania spójności i dokładności w badaniach. W praktyce, moździerze mogą być wykonane z różnych materiałów, takich jak porcelana, granit czy stal nierdzewna, co pozwala na dostosowanie ich do specyficznych wymagań chemicznych i fizycznych substancji, z którymi pracujemy. Odpowiedni dobór narzędzi do rozdrabniania substancji stałych jest kluczowy, aby uniknąć kontaminacji i zachować integralność chemiczną przygotowywanych prób.

Pytanie 2

Podczas przewozu próbek wody, które mają być badane pod kątem właściwości fizykochemicznych, zaleca się, aby te próbki były

A. ogrzane do temperatury 25°C
B. schłodzone do temperatury 2-5°C
C. schłodzone do temperatury 6-10°C
D. ogrzane do temperatury 15°C
Ogrzewanie próbek wody do temperatury 25°C, 15°C lub ich schłodzenie do 6-10°C jest nieodpowiednie w kontekście transportu próbek przeznaczonych do badań fizykochemicznych. Ogrzewanie może prowadzić do przyspieszenia reakcji chemicznych oraz procesów biologicznych, co w konsekwencji wpłynie na zmiany w składzie chemicznym próbki. Na przykład, wzrost temperatury może zwiększyć aktywność mikroorganizmów, co prowadzi do rozkładu substancji organicznych i zmiany parametrów jakości. Z kolei schłodzenie próbek do wyższej temperatury, jak 6-10°C, również nie jest wystarczające dla całościowego zatrzymania procesów degradacyjnych, które w niższych temperaturach są minimalizowane. W laboratoriach i instytucjach zajmujących się analizą wody, standardy, takie jak te ustalone przez EPA i ISO, nakładają obowiązek utrzymania próbek w ściśle określonym zakresie temperatur, aby zapewnić ich stabilność. Błędne podejście do warunków transportu może prowadzić do zafałszowanych wyników oraz utraty wiarygodności analiz, co ma istotne znaczenie w kontekście ochrony środowiska oraz zdrowia publicznego.

Pytanie 3

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. chemiczne
B. dla człowieka
C. fizyczne
D. dla środowiska
Odpowiedź "dla człowieka" jest prawidłowa, ponieważ etykiety substancji chemicznych zawierają zwroty H (H-phrases), które odnoszą się do zagrożeń, jakie dany związek chemiczny może stanowić dla zdrowia ludzi. Na przykład, oznaczenie H3 mówi o tym, że substancja może być szkodliwa w przypadku wdychania, połknięcia lub kontaktu ze skórą. W praktyce, znajomość tych oznaczeń jest kluczowa dla pracowników w laboratorach, przemysłach chemicznych oraz w obszarach zajmujących się transportem substancji chemicznych. Dlatego w ramach BHP oraz oceny ryzyka, pracownicy powinni być odpowiednio przeszkoleni w zakresie interpretacji tych etykiet oraz stosowania odpowiednich środków ochrony osobistej. Standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) wyznaczają wytyczne dotyczące klasyfikacji zagrożeń, co pozwala na skuteczniejsze zarządzanie bezpieczeństwem w miejscu pracy.

Pytanie 4

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64
A. 2,50 cm3
B. 2,52 cm3
C. 2,15 cm3
D. 2,13 cm3
Aby zrozumieć, dlaczego proponowane odpowiedzi są błędne, warto przyjrzeć się fundamentom przygotowywania roztworów chemicznych. W przypadku tego pytania, istnieje ryzyko mylenia pojęć związanych z rozcieńczeniem i molowością. Wiele osób może pomylić objętość roztworu potrzebną do uzyskania określonej molowości z ilością substancji chemicznej, co prowadzi do niewłaściwych obliczeń. Ponadto, pomijanie faktu, że roztwór 36% HCl ma inną gęstość i stężenie mólowe, może skutkować nieprawidłowymi wynikami. Często zdarza się również, że przy obliczeniach nie uwzględnia się jednostek, co prowadzi do błędnych wyników. Użytkownicy mogą także zapominać o tym, że w przypadku roztworów silnych kwasów, takich jak HCl, ważne jest, aby dokładnie znać ich właściwości i zachowanie w różnych stężeniach. Obliczenia powinny bazować na dokładnych danych o stężeniu roztworu, co jest kluczowe w chemii analitycznej. W praktyce, niezrozumienie tych zasad może prowadzić do błędów w eksperymentach laboratoryjnych i niewłaściwego przygotowania roztworów, co może mieć poważne konsekwencje w badaniach chemicznych i przemysłowych. Dlatego tak ważne jest, aby stosować się do dobrych praktyk i standardów przy wykonywaniu obliczeń chemicznych.

Pytanie 5

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
B. Pocieranie miejsca kontaktu papierowym ręcznikiem
C. Zaklejenie miejsca plastrem
D. Posypanie miejsca solą kuchenną
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 6

Która część małej partii materiału jest najczęściej pobierana w celu przygotowania próbki ogólnej?

A. 0,001%
B. 0,1%
C. 0,01%
D. 1%
Odpowiedź 0,1% jest poprawna, ponieważ w praktyce laboratoryjnej oraz w wielu branżach, takich jak przemysł farmaceutyczny czy chemiczny, stosuje się tę wartość jako standard dla pobierania próbki ogólnej z dużej partii materiału. Zgodnie z wytycznymi dotyczącymi pobierania próbek, takimi jak normy ISO, wartość ta zapewnia reprezentatywność próbki przy jednoczesnym minimalizowaniu odpadów materiałowych. Przykładowo, w procesie kontroli jakości materiałów sypkich, pobranie 0,1% materiału pozwala na dokładne oszacowanie właściwości całej partii, co jest kluczowe dla zapewnienia jej zgodności z wymaganiami. W praktyce, odpowiednia wielkość próbki wpływa na wiarygodność analiz chemicznych i fizycznych, a tym samym na bezpieczeństwo i efektywność procesów produkcyjnych. Używając tej wartości, laboratoria mogą także efektywnie monitorować zmiany w jakości surowców oraz gotowych produktów.

Pytanie 7

W celu przygotowania 100 cm3 roztworu mianowanego, jaką kolbę należy zastosować?

A. miarową o pojemności 0,1 dm3
B. stożkową o pojemności 100 cm3
C. miarową o pojemności 10 cm3
D. stożkową o pojemności 0,1 dm3
Wybór kolby miarowej 0,1 dm³ (czyli 100 cm³) to dobry ruch. Przygotowując roztwór mianowany, ważne jest, żeby robić to w naczyniu, które zapewnia dokładne pomiary objętości. Kolby miarowe są super dokładne i to ma duże znaczenie w chemii. Nawet małe błędy w objętości mogą namieszać wyniki analizy. Na przykład, jeśli przygotowujesz roztwór standardowy do miareczkowania, kolba miarowa będzie niezbędna. Pamiętaj, że każda kolba powinna być używana zgodnie z jej pojemnością, co sprawia, że wyniki są bardziej rzetelne i powtarzalne. W laboratoriach chemicznych dokładność pomiaru to klucz, więc dobrze jest wiedzieć, jaką kolbę wybrać, żeby wszystko wyszło zgodnie z planem.

Pytanie 8

Sód powinien być przechowywany

A. w szczelnie zamkniętym pojemniku pod warstwą chloroformu
B. w pojemniku z dowolnym zamknięciem pod warstwą chloroformu
C. w szczelnie zamkniętym pojemniku pod warstwą nafty
D. w pojemniku z dowolnym zamknięciem pod warstwą nafty
Sód jest metalem alkalicznym, który jest bardzo reaktywny, szczególnie w obecności wilgoci i powietrza. Dlatego kluczowe jest jego przechowywanie w odpowiednich warunkach. Odpowiedź, że sód powinien być przechowywany w szczelnie zamkniętym pojemniku pod warstwą nafty, jest poprawna, ponieważ nafta działa jako skuteczna bariera ochronna. Ogranicza dostęp powietrza i wilgoci, co zapobiega niepożądanym reakcjom chemicznym. W praktyce, wiele laboratoriów oraz zakładów przemysłowych stosuje naftę lub inne oleje mineralne w celu bezpiecznego magazynowania sodu, co jest zgodne z zaleceniami standardów bezpieczeństwa chemicznego. Przechowywanie w szczelnym pojemniku również minimalizuje ryzyko przypadkowego kontaktu z innymi substancjami chemicznymi, co jest istotne z punktu widzenia BHP. Zastosowanie odpowiednich praktyk w zakresie przechowywania substancji chemicznych, takich jak sód, jest nie tylko kwestią ochrony zdrowia, ale także przestrzegania norm i regulacji w zakresie ochrony środowiska.

Pytanie 9

Aby otrzymać 200 g roztworu siarczanu(VI) sodu o stężeniu 12%, należy wykorzystać

(Na – 23 g/mol; S – 32 g/mol; H – 1 g/mol; O – 16 g/mol)

A. 68,5 g Na2SO4·10H2O i 131,5 g H2O
B. 54,4 g Na2SO4·10H2O i 145,6 g H2O
C. 22,4 g Na2SO4·10H2O i 177,6 g H2O
D. 56,6 g Na2SO4·10H2O i 143,4 g H2O
Wiele osób ma problem z takimi obliczeniami, co może prowadzić do błędnych odpowiedzi. Często zdarza się, że mylą się w rozumieniu, że 12% to nie masa siarczanu(VI) sodu, tylko masa całego roztworu. Niektóre odpowiedzi, które podają inne masy Na2SO4·10H2O, mogą wynikać z nieprawidłowych wyliczeń lub błędnych założeń co do stężeń. Ważne, żeby pamiętać, że masa molowa Na2SO4·10H2O jest 322 g/mol – to bardzo ważne w tych kalkulacjach. Wiesz, czasem mały błąd przy liczeniu może zrujnować wyniki, więc warto być uważnym i nie spieszyć się. Z mojego doświadczenia, to proste rzeczy, a jednak łatwo je przeoczyć. Dlatego zrozumienie jak przygotować roztwór i umiejętność przeliczania mas molowych to klucz do sukcesu w naszej pracy laboratoryjnej.

Pytanie 10

Jak nazywa się proces, w którym następuje wytrącenie ciała stałego z przesyconego roztworu w wyniku spadku temperatury?

A. krystalizacja
B. sedymentacja
C. odparowanie
D. dekantacja
Krystalizacja to proces, w którym substancja stała wydziela się z roztworu, gdy jego stężenie przekracza punkt nasycenia, co może być wynikiem obniżenia temperatury lub odparowania rozpuszczalnika. W praktycznych zastosowaniach, krystalizacja jest kluczowa w przemysłach chemicznym i farmaceutycznym, gdzie czystość i jakość produktu końcowego są niezwykle istotne. Dobrze przeprowadzony proces krystalizacji pozwala na uzyskanie czystych kryształów, które można łatwo oddzielić od roztworu, co jest zgodne z najlepszymi praktykami w zakresie kontroli jakości. Dodatkowo, krystalizacja może być stosowana w technologii separacji i oczyszczania związków chemicznych, gdzie proces ten jest wykorzystywany do wyodrębniania substancji aktywnych z surowców naturalnych. Warto również zauważyć, że krystalizacja jest częścią wielu procesów naturalnych i technologicznych, takich jak formowanie lodu w przyrodzie czy produkcja cukru z soku buraczanego.

Pytanie 11

Roztwór amoniaku o stężeniu 25% nie powinien być trzymany

A. w pobliżu otwartego ognia.
B. pod sprawnie działającym wyciągiem.
C. z dala od źródeł ciepła i promieni słonecznych.
D. w butelce z ciemnego szkła.
Przechowywanie roztworu amoniaku o stężeniu 25% w butelce z ciemnego szkła może wydawać się bezpieczne, jednak nie jest to odpowiednia praktyka. Ciemne szkło zazwyczaj stosuje się do ochrony substancji przed działaniem światła, co jest istotne dla substancji wrażliwych na fotodegradację. W przypadku amoniaku, jego stabilność chemiczna nie jest bezpośrednio zagrożona przez światło, a kluczowym czynnikiem w jego przechowywaniu jest unikanie wysokiej temperatury i otwartego ognia. Użycie jasnego szkła w odpowiednich pojemnikach chemicznych może być bezpieczne, o ile pojemnik jest dostosowany do przechowywania materiałów niebezpiecznych. Z kolei przechowywanie amoniaku pod sprawnie działającym wyciągiem może poprawić bezpieczeństwo, ale nie eliminuje zagrożeń związanych z jego zapłonem, jeżeli znajduje się on w pobliżu źródła ognia. Przechowywanie substancji chemicznych powinno opierać się na analizie ryzyka, w której należy uwzględnić właściwości chemiczne substancji. Dodatkowo, brak oddalenia amoniaku od źródeł ciepła i promieni słonecznych może prowadzić do zwiększenia ciśnienia wewnętrznego pojemnika oraz parowania amoniaku, co stwarza dodatkowe zagrożenia. Dlatego należy stosować się do norm i regulacji dotyczących przechowywania substancji chemicznych, takich jak NFPA (National Fire Protection Association) oraz zalecenia dotyczące BHP, aby zapewnić bezpieczeństwo w laboratoriach oraz zminimalizować ryzyko wypadków.

Pytanie 12

Rozpuszczalnik stosowany w procesie krystalizacji powinien

A. być substancją łatwopalną
B. doskonale rozpuszczać zanieczyszczenia lub w niewielkim stopniu
C. rozpuszczać zanieczyszczenia w przeciętnym zakresie
D. wchodzić w reakcję z substancją krystalizowaną
Rozpuszczalnik używany do krystalizacji odgrywa kluczową rolę w procesie uzyskiwania czystych kryształów substancji chemicznych. Poprawna odpowiedź, dotycząca rozpuszczania zanieczyszczeń bardzo dobrze lub w nieznacznym stopniu, jest istotna, ponieważ umożliwia selektywne wydobycie pożądanej substancji. W idealnym scenariuszu, rozpuszczalnik powinien dobrze rozpuszczać czystą substancję, pozwalając na jej krystalizację podczas schładzania lub odparowania. Na przykład, podczas krystalizacji soli, rozpuszczalniki takie jak woda są wykorzystywane, ponieważ dobrze rozpuszczają NaCl, ale nie rozpuszczają innych zanieczyszczeń, jak np. siarczany. W praktyce, techniki jak recrystalizacja często wykorzystują różne temperatury i stężenia, aby maksymalizować czystość finalnego produktu. Zgodnie z dobrą praktyką laboratoryjną, wybór odpowiedniego rozpuszczalnika i jego właściwości fizykochemiczne mają istotny wpływ na efektywność procesu krystalizacji, dlatego ważne jest, aby stosować właściwe metody analizy przed wyborem rozpuszczalnika.

Pytanie 13

Skalę wzorców do oznaczenia barwy przygotowano w cylindrach Nesslera o pojemności 100 cm3. Barwa oznaczona w tabeli jako X wynosi

Skala wzorców do barwy
Ilość wzorcowego roztworu podstawowego cm3 (c=500 mg Pt/dm3)01,02,03,0
Barwa w stopniach
mg Pt/dm3
05X15
A. 7
B. 5,5
C. 20
D. 10
Wybór odpowiedzi 10 mg Pt/dm³ jest poprawny, ponieważ oparty jest na założeniach dotyczących liniowej skali wzorców stosowanej do oznaczania barwy. Dla 1,0 cm³ roztworu podstawowego wartość wynosi 5 mg Pt/dm³. Zgodnie z zasadami chemii analitycznej, jeśli zwiększamy objętość roztworu podstawowego, to również proporcjonalnie wzrasta stężenie substancji, co jest zgodne z zasadą zachowania masy. W tym przypadku, dla 2,0 cm³ roztworu podstawowego, barwa będzie podwójna, co prowadzi do uzyskania wartości 10 mg Pt/dm³. Tego rodzaju podejście jest powszechnie stosowane w laboratoriach analitycznych, gdzie precyzyjne oznaczanie stężeń ma kluczowe znaczenie dla wiarygodności wyników. Zastosowanie tej metody w praktyce jest istotne dla analizy chemicznej w różnych dziedzinach, takich jak badania środowiskowe czy kontrola jakości w przemyśle chemicznym.

Pytanie 14

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol
A. 0,05 g stałego NaOH.
B. 2,50 g stałego NaOH.
C. 25,0 g stałego NaOH.
D. 2,00 g stałego NaOH.
Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu (NaOH), konieczne jest zrozumienie podstawowych zasad obliczania masy substancji chemicznych. W przypadku NaOH, jego masa molowa wynosi 40 g/mol. Przygotowując roztwór o stężeniu 0,2 mola w 250 cm3, obliczamy ilość moli, co daje nam 0,05 mola NaOH (0,2 mol/l * 0,25 l). Następnie, aby obliczyć potrzebną masę, stosujemy wzór: masa = liczba moli * masa molowa. Czyli, 0,05 mola * 40 g/mol = 2 g NaOH. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma dużą wagę. Używając tej wiedzy, można z sukcesem przygotowywać różnorodne roztwory, co jest istotne w wielu dziedzinach nauki i przemysłu, takich jak chemia analityczna, synergia materiałów czy wytwarzanie farmaceutyków. Zrozumienie tych podstawowych zasad pozwoli na bardziej efektywne i bezpieczne przeprowadzanie eksperymentów chemicznych.

Pytanie 15

Roztwory, które wykorzystuje się do kalibracji pehametrów, to

A. kwasowe
B. buforowe
C. zasadowe
D. kalibracyjne
Wybór zasadowych lub kwasowych roztworów jako opcji kalibracyjnych jest błędny, ponieważ nie mają one zdolności do stabilizowania wartości pH. Roztwory zasadowe mogą podnieść pH w próbce, co prowadzi do fałszywych odczytów, a roztwory kwasowe mogą je obniżyć, co również zniekształca wyniki. Kalibracja pehametru polega na wprowadzeniu znanych wartości pH, co nie jest możliwe przy użyciu roztworów, które zmieniają pH w trakcie pomiaru. Używanie roztworów kalibracyjnych, choć brzmi sensownie, jest mylące, ponieważ kalibracyjne odnoszą się do roztworów buforowych, które są właściwymi substancjami do kalibracji pehametrów. Zrozumienie, dlaczego nie można stosować zasadowych lub kwasowych roztworów, wymaga znajomości mechanizmu działania buforów, które działają na zasadzie równowagi chemicznej, co nie jest typowe dla roztworów o skrajnych wartościach pH. Typowym błędem myślowym jest mylenie pojęć kalibracji, pomiaru i stabilizacji pH. Użycie niewłaściwych substancji w tym kontekście może prowadzić do poważnych konsekwencji w analizach chemicznych, gdzie precyzyjne wartości są kluczowe dla uzyskania wiarygodnych wyników. W kontekście standardów laboratoryjnych, przestrzeganie zasad dotyczących kalibracji pehametrów jest podstawą zapewnienia jakości w badaniach analitycznych.

Pytanie 16

Resztki szkła, osadników czy inne odpady stałe powstałe w laboratorium analitycznym powinny być umieszczone

A. w szklanych słoikach z plastikowym wieczkiem
B. w kartonowych opakowaniach
C. w pojemnikach na odpady komunalne
D. w workach z polietylenu i oznaczyć zawartość
Umieszczanie odpadow w kartonowych pudłach może wydawać się praktycznym rozwiązaniem, jednak nie spełnia to wymogów bezpieczeństwa. Kartonowe opakowania nie są odporne na działanie substancji chemicznych, które mogą być obecne w laboratoriach, co stwarza ryzyko ich uszkodzenia i uwolnienia niebezpiecznych substancji. Ponadto, odpady tego typu powinny być odpowiednio oznaczone i zabezpieczone w sposób uniemożliwiający przypadkowe ich otwarcie. Wrzucanie odpadów do pojemników na odpady komunalne jest również niewłaściwe, ponieważ może prowadzić do zanieczyszczenia innych odpadów oraz stworzyć zagrożenie w procesie ich przetwarzania. Worki z polietylenu mogą być lepszym rozwiązaniem, ale konieczne jest ich odpowiednie oznakowanie, aby upewnić się, że odpady są prawidłowo zidentyfikowane. W przypadku użycia szklanych słoików z plastikową nakrętką, ryzyko pęknięcia szkła w trakcie transportu i składowania może prowadzić do poważnych wypadków. Dlatego kluczowe jest, aby odpady z laboratorium były składowane zgodnie z jasno określonymi normami i procedurami, które zapewnią bezpieczeństwo i skuteczne zarządzanie tymi materiałami.

Pytanie 17

Aby oszacować czystość MgCO3, poddano prażeniu próbkę o wadze 5 g tej soli aż do osiągnięcia stałej masy. W trakcie prażenia zachodzi reakcja:
MgCO3 → MgO + CO2 Całkowity ubytek masy wyniósł 2,38 g.
(Masy molowe reagentów to: MgCO3 – 84 g/mol, MgO – 40 g/mol, CO2 – 44 g/mol) Jaką czystość miała próbka węglanu magnezu?

A. bliżej nieokreśloną masę domieszek
B. około 50% czystej substancji
C. 90,7% czystej substancji
D. 100% czystej substancji
Analizując inne odpowiedzi, istotne jest zrozumienie, dlaczego niektóre z nich są błędne. Wskazanie, że węglan magnezu zawiera około 50% czystej substancji, jest nieuzasadnione, gdyż nie uwzględnia rzeczywistego ubytku masy podczas prażenia. Przykładowo, pominięcie obliczeń ilości powstałego CO<sub>2</sub> prowadzi do znacznego zaniżenia jakości próbki. Z kolei stwierdzenie, że węglan magnezu zawiera 100% czystej substancji, jest nierealistyczne, ponieważ każda próbka chemiczna może zawierać zanieczyszczenia, a proces prażenia ujawnia ich obecność. Kolejna odpowiedź, mówiąca o bliżej nieokreślonej masie domieszek, sugeruje brak analizy ilościowej, co jest fundamentalnym błędem w chemii analitycznej. W praktyce laboratorium chemicznego, każda analiza powinna opierać się na solidnych obliczeniach i znajomości reakcji chemicznych. Często, błędy myślowe prowadzące do takich odpowiedzi wynikają z ignorowania relacji mas molowych oraz z podstawowych zasad stoichiometrii. Zrozumienie tych reguł jest kluczowe dla poprawnego przeprowadzania analiz chemicznych, co wpływa na jakość wyników oraz ich interpretację. Znajomość standardów analitycznych i dobrych praktyk w chemii pozwala uniknąć takich nieścisłości.

Pytanie 18

Odczynnik chemiczny, w którym zawartość domieszek wynosi od 1 do 10%, jest nazywany odczynnikiem

A. czysty do analizy
B. techniczny
C. spektralnie czysty
D. czysty
Odczynnik chemiczny oznaczany jako "techniczny" jest substancją, w której domieszki stanowią od 1 do 10% całkowitej masy. To definiuje jego szersze zastosowanie w przemyśle, ponieważ odczynniki techniczne często nie są wymagane do wysokiej czystości, ale muszą spełniać określone normy jakościowe. Na przykład, w laboratoriach chemicznych odczynniki techniczne mogą być stosowane w procesach, gdzie nie jest konieczne użycie substancji czystych do analizy. Często wykorzystywane są w syntezach chemicznych, produkcji farb, lakierów czy w kosmetykach. Zgodnie z normą ISO 9001, przedsiębiorstwa muszą dążyć do stosowania odpowiednich standardów jakości, co obejmuje również stosowanie odczynników technicznych, które muszą być odpowiednio oznakowane oraz dokumentowane. Dzięki temu można zapewnić ich właściwe użycie w procesach produkcyjnych oraz badawczych, co podkreśla znaczenie znajomości właściwych klas substancji chemicznych.

Pytanie 19

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. zmierzenie gęstości tego roztworu.
B. miareczkowanie innym roztworem, który nie jest mianowany.
C. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
D. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 20

Między wodorotlenkiem baru a chlorkiem amonu dochodzi do spontanicznej reakcji, która powoduje silne schłodzenie mieszaniny oraz wydobycie się charakterystycznego zapachu amoniaku.
Ba(OH)2(s) + 2 NH4Cl(s) → BaCl2(aq) + 2 H2O(c) + 2 NH3(g) Wskaź, które sformułowanie właściwie wyjaśnia to zjawisko.
nieodwracalnie jej równowagę.

A. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie soli przesuwa nieodwracalnie jej równowagę
B. Reakcja zachodzi spontanicznie, ponieważ jest egzotermiczna
C. Reakcja zachodzi spontanicznie, ponieważ jest endotermiczna
D. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie gazu przesuwa
Sformułowania, które sugerują, że reakcja jest egzotermiczna, są mylne. Ekspansja gazu, która występuje w wyniku wydzielania amoniaku, jest kluczowym czynnikiem w analizie tej reakcji. Egzotermiczność oznacza, że reakcja wydziela ciepło, co w tym przypadku nie ma miejsca. Ponadto, twierdzenie o nieodwracalności reakcji związanej z wydzieleniem soli jest również nieprecyzyjne – chociaż reakcja prowadzi do powstania soli, kluczową rolę odgrywa wydzielanie gazu, a nie samej soli. W przypadku reakcji endotermicznych, często występują mylne przekonania, że jedynie wydzielanie ciepła może być oznaką reakcji spontanicznej. W rzeczywistości, spontaniczność reakcji chemicznej można zrozumieć przez analizę zmian entropii i energii swobodnej. Kluczowym błędem jest także przypisanie roli równowagi chemicznej tylko do produktów stałych, ignorując znaczenie produktów gazowych. Warto również podkreślić, że niektóre reakcje, mimo że energetycznie niekorzystne, mogą zachodzić na skutek zwiększenia entropii, co jest szczególnie istotne w kontekście gazów. Zrozumienie tych koncepcji jest niezbędne dla analizy reakcji chemicznych w praktyce laboratoryjnej i przemysłowej.

Pytanie 21

Na etykiecie próbki środowiskowej należy umieścić datę jej pobrania, lokalizację poboru oraz

A. liczbę osób pobierających próbkę
B. czas transportu próbki
C. typ środka transportowego
D. nazwisko osoby, która pobrała próbkę
Podanie nazwiska osoby pobierającej próbkę jest kluczowe dla zapewnienia odpowiedzialności oraz identyfikowalności procesu pobierania próbek środowiskowych. W praktyce, każda próbka powinna być związana z osobą, która ją pobrała, aby w razie potrzeby można było przeprowadzić dalsze wyjaśnienia lub analizy. Przykładowo, w przypadku wykrycia nieprawidłowości w wynikach badań, identyfikacja osoby pobierającej próbkę pozwala na ocenę, czy pobranie było przeprowadzone zgodnie z obowiązującymi procedurami oraz standardami jakości. Zgodnie z normami ISO 17025 oraz ISO 14001, odpowiednia dokumentacja jest kluczowym elementem systemu zarządzania jakością i ochroną środowiska. Dodatkowo, w sytuacji audytów lub kontroli, informacje o osobie odpowiedzialnej za pobranie próbki mogą być istotne dla potwierdzenia zgodności z wymaganiami regulacyjnymi i procedurami operacyjnymi. Właściwe oznaczenie próbek zwiększa również przejrzystość i wiarygodność wyników badań.

Pytanie 22

Jaką objętość zasady sodowej o stężeniu 1,0 mol/dm3 należy dodać do 56,8 g kwasu stearynowego, aby otrzymać mydło sodowe (stearynian sodu)?

C17H35COOH + NaOH → C17H35COONa + H2O
(MC17H35COOH = 284 g/mol, MC17H35COONa = 306 g/mol, MNaOH = 40 g/mol, MH2O= 18 g/mol)
A. 100 cm3
B. 150 cm3
C. 250 cm3
D. 200 cm3
Odpowiedź 200 cm3 jest poprawna, ponieważ do syntezy mydła sodowego z kwasu stearynowego potrzebujemy odpowiedniej ilości zasady sodowej, która zneutralizuje kwas. W przypadku kwasu stearynowego, którego masa wynosi 56,8 g, obliczamy liczbę moli, korzystając z jego masy molowej wynoszącej około 284 g/mol. Obliczamy liczbę moli kwasu stearynowego: 56,8 g / 284 g/mol = 0,2 mol. Zasada sodowa w stężeniu 1,0 mol/dm3 oznacza, że w 1 dm3 roztworu znajduje się 1 mol NaOH. Aby zneutralizować 0,2 mola kwasu, potrzebujemy 0,2 dm3 roztworu NaOH, co odpowiada 200 cm3. Zastosowanie odpowiednich proporcji w syntezie mydeł jest kluczowe dla uzyskania właściwej struktury chemicznej produktu końcowego, co wpływa na jego właściwości użytkowe. Prawidłowe przygotowanie mydeł sodowych znajduje zastosowanie w przemyśle kosmetycznym oraz chemicznym, gdzie jakość surowców oraz ilości reagentów są ściśle normowane przez odpowiednie standardy.

Pytanie 23

Destylacja to metoda

A. zmiany ze stanu stałego w stan gazowy, omijając stan ciekły
B. transformacji ciała z formy ciekłej w stałą
C. oddzielania płynnej mieszanki poprzez odparowanie i kondensację jej składników
D. syntezy substancji zachodząca w obecności katalizatora
Destylacja jest procesem rozdzielania składników mieszaniny ciekłej, który opiera się na różnicy w ich temperaturach wrzenia. W praktyce polega to na odparowaniu jednej lub więcej frakcji z cieczy, a następnie ich skropleniu w osobnym naczyniu. Proces ten jest szeroko stosowany w przemyśle chemicznym oraz petrochemicznym do oczyszczania i separacji substancji, takich jak woda, alkohole czy oleje. Przykładem może być destylacja ropy naftowej, gdzie różne frakcje, takie jak benzyna, nafta czy olej napędowy, są oddzielane poprzez kontrolowane podgrzewanie. Zastosowanie destylacji można również zauważyć w laboratoriach chemicznych, gdzie wykorzystuje się ją do oczyszczania rozpuszczalników. Standardy branżowe, takie jak ASTM D86, opisują metody i procedury przeprowadzania destylacji, co jest kluczowe dla zapewnienia powtarzalności i dokładności wyników. W kontekście bezpieczeństwa, ważne jest stosowanie odpowiednich materiałów i urządzeń, aby zminimalizować ryzyko związane z procesem, zwłaszcza w przypadku substancji łatwopalnych.

Pytanie 24

Proces oddzielania składników jednorodnej mieszaniny, polegający na eliminacji jednego lub większej ilości składników z roztworu lub substancji stałej przy użyciu odpowiednio wybranego rozpuszczalnika, to

A. ekstrakcja
B. rektyfikacja
C. adsorpcja
D. destylacja
Ekstrakcja to taki proces, w którym oddzielamy składniki z jednorodnej mieszaniny, używając rozpuszczalnika, który potrafi rozpuścić jeden lub więcej z tych składników. To ma dość szerokie zastosowanie w różnych dziedzinach, jak chemia, farmacja czy przemysł spożywczy. Na przykład, kiedy produkuje się olejki eteryczne, ekstrakcja jest super ważna, żeby uzyskać czyste związki zapachowe z roślin. W laboratoriach chemicznych wykorzystuje się ekstrakcję faz ciekłych, żeby oczyścić różne związki chemiczne z mieszanin, a w analizach środowiskowych też się korzysta z ekstrakcji, żeby wyciągnąć zanieczyszczenia z próbek wód czy gleb. Ekstrakcja jest zgodna z dobrymi praktykami laboratoryjnymi, co znaczy, że zaleca się używanie odpowiednich rozpuszczalników i ciekawie też dostosowywać warunki temperaturowe oraz ciśnieniowe, żeby uzyskać jak najlepsze wyniki i nie tracić składników. Warto dodać, że ekstrakcja może być przeprowadzana w różnych skalach - od małych eksperymentów w laboratoriach po duże procesy przemysłowe, co czyni ją naprawdę wszechstronnym narzędziem.

Pytanie 25

Która z metod pozwala na oddzielanie składników mieszaniny na podstawie różnic w ich zachowaniu w układzie składającym się z dwóch faz, z których jedna jest fazą stacjonarną, a druga porusza się w określonym kierunku względem niej?

A. Destylacja
B. Sublimacja
C. Chromatografia
D. Krystalizacja
Chromatografia to technika analityczna, która wykorzystuje różnice w zachowaniu się poszczególnych związków chemicznych w układzie dwufazowym. W tym procesie jedna z faz, nazywana fazą stacjonarną, jest nieruchoma, podczas gdy druga faza, faza ruchoma, przemieszcza się w określonym kierunku. Działa to na zasadzie interakcji między składnikami mieszaniny a tymi fazami. Różne substancje w mieszaninie mają różne affinności do fazy stacjonarnej, co prowadzi do ich rozdzielenia. Przykładem zastosowania chromatografii jest analiza składników chemicznych w próbkach wody, gdzie różne zanieczyszczenia mogą być oddzielane i identyfikowane. Chromatografia jest szeroko stosowana w przemyśle farmaceutycznym, biotechnologii oraz w laboratoriach analitycznych do oceny czystości substancji chemicznych. Technika ta jest zgodna z międzynarodowymi standardami jakości, co czyni ją kluczowym narzędziem w badaniach i kontrolach jakości.

Pytanie 26

Proces przesiewania próbki prowadzi się za pomocą urządzenia przedstawionego na rysunku

A. B.
B. D.
C. C.
D. A.
Wybór odpowiedzi A, B lub D wskazuje na pewne nieporozumienia dotyczące podstawowych zasad przesiewania próbki. Odpowiedzi te mogą sugerować, że użytkownik nie rozumie, że proces przesiewania wymaga zastosowania odpowiednich narzędzi, które są specjalnie zaprojektowane do tego celu. Na przykład, odpowiedzi A i B mogą być mylone z ideą użycia innych metod mechanicznych, takich jak mieszanie czy szarpanie, które nie są właściwe do oddzielania cząstek według ich rozmiaru. W rzeczywistości, metody te nie zapewniają wymaganej precyzji, ponieważ nie segregują one cząstek na podstawie ich właściwości fizycznych. Odpowiedź D sugeruje z kolei inne techniki separacji, takie jak filtracja, która jest stosowana do usuwania większych zanieczyszczeń z cieczy, a nie do przesiewania ciał stałych. Kluczowym błędem myślowym, który może prowadzić do takich odpowiedzi, jest nieporozumienie dotyczące zasad mechaniki ciał stałych i procesów separacji. Przesiewanie i filtracja to dwa różne procesy, które mają swoje specyficzne zastosowania. Zrozumienie tego rozróżnienia jest niezbędne dla prawidłowego podejścia do analizy materiałów sypkich oraz do stosowania norm branżowych, które gwarantują skuteczność i dokładność wyników.

Pytanie 27

Korzystając z wykresu wskaż, w jakiej postaci występuje woda w temperaturze 10°C i pod ciśnieniem 100 barów.

Ilustracja do pytania
A. Lód.
B. Ciecz.
C. Gaz.
D. Sublimat
Wybór odpowiedzi "Ciecz" jest całkowicie poprawny, ponieważ woda w temperaturze 10°C i ciśnieniu 100 barów znajduje się w obszarze fazy ciekłej na wykresie fazowym. Woda przy tych parametrach spełnia warunki, które umożliwiają jej istnienie w stanie ciekłym. To zjawisko jest kluczowe w różnych zastosowaniach technologicznych, takich jak procesy przemysłowe, gdzie woda jako ciecz pełni funkcję chłodziwa czy medium transportującego ciepło. W praktyce, znajomość stanów skupienia wody i ich zależności od ciśnienia i temperatury jest istotna w inżynierii chemicznej, meteorologii oraz inżynierii środowiska. Dobrą praktyką jest regularne analizowanie wykresów fazowych, które mogą wskazywać na potencjalne zmiany stanu skupienia substancji, co jest kluczowe w projektowaniu i eksploatacji systemów, w których woda odgrywa fundamentalną rolę.

Pytanie 28

Jakie urządzenie laboratoryjne jest używane do realizacji procesu ekstrakcji?

A. Kolba ssawkowa
B. Kolba stożkowa
C. Biureta gazowa
D. Rozdzielacz
Rozdzielacz to w sumie mega ważne narzędzie w laboratorium, bo pozwala oddzielić różne fazy, a to kluczowe podczas ekstrakcji. Jego główna rola to separacja cieczy o różnych gęstościach, co jest istotne w chemii i biochemii. Ekstrakcja to tak naprawdę wydobywanie substancji z jednego medium do drugiego, a rozdzielacz, dzięki swojej budowie, umożliwia to w fajny sposób. Na przykład, gdy chcemy wyciągnąć związki organiczne z roztworów wodnych, to właśnie rozdzielacz pozwala nam na zebranie frakcji organicznej po oddzieleniu od wody. W praktyce często korzysta się z rozdzielaczy w kształcie lejka, co jest zgodne z zasadami dobrej praktyki w labie (GLP), bo zapewnia dokładność i powtarzalność wyników. Oczywiście, użycie rozdzielacza ma też swoje zasady dotyczące bezpieczeństwa i efektywności, więc to narzędzie jest naprawdę niezastąpione w laboratoriach chemicznych.

Pytanie 29

Reagenty o najwyższej czystości to reagenty

A. czyste do badań.
B. spektralnie czyste.
C. chemicznie czyste.
D. czyste.
Odpowiedź "spektralnie czyste" jest uznawana za właściwą, ponieważ odnosi się do odczynnika, który został oczyszczony w takim stopniu, że jego czystość jest wystarczająca do zastosowań w spektroskopii oraz innych czułych analizach chemicznych. W praktyce oznacza to, że odczynniki te mają bardzo niskie stężenia zanieczyszczeń, co jest kluczowe dla uzyskania dokładnych i powtarzalnych wyników w badaniach. W laboratoriach analitycznych i badawczych, gdzie precyzja wyników jest niezbędna, stosuje się odczynniki spektralnie czyste, aby uniknąć wpływu niepożądanych substancji na reakcje chemiczne lub pomiary. Przykładem może być analiza chromatograficzna, gdzie obecność zanieczyszczeń może prowadzić do fałszywych wyników. W standardach ISO oraz w pracach dotyczących analizy chemicznej, podkreśla się wagę używania odczynników o specjalistycznej czystości, co stanowi najlepszą praktykę w laboratoriach zajmujących się badaniami jakości oraz badaniami ilościowymi substancji chemicznych.

Pytanie 30

W tabeli zestawiono objętości molowe czterech gazów odmierzone w warunkach normalnych.
Dla którego spośród wymienionych w tabeli gazów objętość molowa najbardziej odchyla się od wartości obliczonej dla gazu doskonałego?

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2 ,
schłodzenie
do temperatury 2-5°C
laboratorium 24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2 ,
schłodzenie
do temperatury 2-5°C
laboratorium 48 godzin
GazSO2CHCl3(para)O3NH3
Objętość molowa (dm3/mol)21,8922,6021,622,08
A. Tlenku siarki(IV).
B. Amoniaku.
C. Ozonu.
D. Chloroformu.
Wybór amoniaku, chloroformu lub tlenku siarki(IV) jako gazów, dla których objętość molowa odchyla się od wartości obliczonej dla gazu doskonałego, wskazuje na niepełne zrozumienie właściwości gazów i ich zachowania w różnych warunkach. Amoniak, mimo że jest gazem polarnej cząsteczki, w warunkach normalnych wykazuje stosunkowo małe odchylenie od teorii gazu doskonałego, co jest wynikiem jego niskiego ciśnienia pary oraz rozmiarów cząsteczek. Chloroform, będący cieczą w normalnych warunkach, posiada inne właściwości fizyczne, a jego analiza jako gazu nie uwzględnia jego zachowań w stanie ciekłym. Tlenek siarki(IV) również jest gazem, ale jego objętość molowa w rzeczywistości nie odbiega znacznie od wartości teoretycznych, co czyni tę odpowiedź nieadekwatną. Powszechnym błędem w ocenie objętości molowych jest zignorowanie wpływu temperatury i ciśnienia na zachowanie gazów, co prowadzi do uproszczenia problemu i błędnych interpretacji. Istotne jest, aby przy ocenie gazów brać pod uwagę nie tylko ich skład chemiczny, ale także interakcje międzycząsteczkowe, które odgrywają kluczową rolę w rzeczywistych pomiarach i zastosowaniach praktycznych, co jest istotne w wielu dziedzinach, od chemii analitycznej po inżynierię procesową.

Pytanie 31

Poniżej jest równanie reakcji prażenia węglanu wapnia. 200 g węglanu wapnia zawierającego 10% zanieczyszczeń poddano prażeniu. Masa otrzymanego tlenku wapnia wyniosła

CaCO3 → CaO + CO2
(MCaCO3 = 100 g/mol, MCaO = 56 g/mol, MCO2 = 44 g/mol)
A. 31,1 g
B. 100,8 g
C. 112,0 g
D. 28,0 g
Odpowiedzi 112,0 g, 31,1 g oraz 28,0 g opierają się na nieprawidłowym rozumieniu zachodzących procesów chemicznych oraz błędnych obliczeniach. W przypadku pierwszej z tych odpowiedzi, mogąca wynikać z pominięcia etapu obliczania masy czystego węglanu wapnia, prowadzi do zawyżonego wyniku. Użytkownicy często zapominają, że zanieczyszczenia wpływają na efektywną ilość materiału reagującego, co jest kluczowe w obliczeniach związanych z reakcjami chemicznymi. Z kolei odpowiedź 31,1 g i 28,0 g mogą wynikać z błędnego stosunku mas molowych lub niewłaściwego zrozumienia reakcji chemicznej. Użytkownicy mogą mylnie zakładać, że masa otrzymanego tlenku wapnia powinna być znacznie mniejsza, co może wynikać z braku zrozumienia, że w procesie prażenia, mimo wydzielania dwutlenku węgla, masa pozostałego tlenku wapnia jest wciąż znaczna. W praktyce, poprawne podejście do rozwiązywania takich problemów wymaga ścisłego stosowania zasad chemii, uwzględniając zarówno masy molowe, jak i wpływ zanieczyszczeń w materiałach. Dlatego też przy pracy z reakcjami chemicznymi ważne jest, aby zawsze brać pod uwagę zarówno masę początkową, jak i czystość reagentów, co jest standardem w laboratoriach chemicznych.

Pytanie 32

Aby podnieść temperaturę roztworu do 330 K, jakie wyposażenie jest potrzebne?

A. statywu, siatki, zlewki, termometru z zakresem temperatur 0--50°C
B. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0-+100°C
C. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0--0°C
D. statywu, siatki, zlewki, termometru z zakresem temperatur 0+100°C
Poprawna odpowiedź to wykorzystanie trójnogu, siatki ceramicznej, zlewki oraz termometru z zakresem temperatur 0-+100°C. Ta konfiguracja jest właściwa, ponieważ umożliwia bezpieczne i efektywne ogrzewanie roztworu do wymaganej temperatury 330 K (około 57°C). Trójnóg zapewnia stabilność podczas ogrzewania, co jest kluczowe w laboratoriach, gdzie bezpieczeństwo jest priorytetem. Siatka ceramiczna rozkłada ciepło równomiernie, co minimalizuje ryzyko lokalnych przegrzań, które mogą prowadzić do niepożądanych reakcji chemicznych. Użycie zlewki do podgrzewania roztworu jest standardową praktyką, ponieważ zlewki wykonane z odpowiednich materiałów (np. szkło borokrzemowe) są odporne na zmiany temperatury. Termometr z zakresem 0-+100°C jest odpowiedni do monitorowania temperatury, ponieważ pozwala na bezpieczne kontrolowanie wzrostu temperatury roztworu w bezpiecznym zakresie, nie przekraczającym maksymalnej temperatury mierzonej przez termometr. W laboratoriach chemicznych kluczowe jest przestrzeganie standardów bezpieczeństwa oraz stosowanie odpowiednich narzędzi, co zapewnia nie tylko dokładność eksperymentów, ale również ochronę przed zagrożeniami związanymi z wysoką temperaturą.

Pytanie 33

W probówce połączono roztwory CuSO4 oraz NaOH. Powstał niebieski osad, który po podgrzaniu zmienił kolor na czarny. Czarnym osadem jest

A. wodorotlenek miedzi(I)
B. wodorotlenek miedzi(II)
C. tlenek miedzi(I)
D. tlenek miedzi(II)
Widzę, że wybrałeś jedną z opcji, która nie jest poprawna. Może to wynika z tego, że nie do końca zrozumiałeś, co się dzieje w tych reakcjach chemicznych. Wodorotlenek miedzi(II) (Cu(OH)2) jest rzeczywiście niebieskim osadem z reakcje CuSO4 z NaOH, ale kiedy go podgrzewasz, on się zmienia w tlenek miedzi(II) (CuO), który z kolei jest czarny. Wybór tlenku miedzi(I) (Cu2O) to błąd, bo on powstaje w zupełnie innej reakcji. Z kolei wodorotlenek miedzi(I) (CuOH) też nie jest odpowiedzią, bo nie jest stabilny w normalnych warunkach i nie powstaje w tych reakcjach, co może prowadzić do nieporozumień. Tlenek miedzi(II) jest zdecydowanie bardziej stabilny i powszechnie występuje w chemii. Dobrze byłoby zrozumieć te różnice, bo to pomaga w lepszym interpretowaniu wyników reakcji chemicznych i w ich wykorzystaniu w laboratorium.

Pytanie 34

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 50 cm3
B. 20 cm3
C. 10 cm3
D. 25 cm3
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 35

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 20 g KCl i 180 g wody
B. 5 g KCl i 200 g wody
C. 10 g KCl i 190 g wody
D. 10 g KCl i 200 g wody
Aby przygotować 200 g roztworu chlorku potasu (KCl) o stężeniu 5% (m/m), należy obliczyć masę substancji rozpuszczonej w odniesieniu do całkowitej masy roztworu. W przypadku stężenia 5% oznacza to, że 5% masy całkowitej roztworu stanowi KCl. Zatem, masa KCl w 200 g roztworu wynosi: 200 g * 0,05 = 10 g. Pozostała masa roztworu to masa wody, którą można obliczyć odejmując masę KCl od masy całkowitej roztworu: 200 g - 10 g = 190 g. Dlatego prawidłowym składnikiem do sporządzenia tego roztworu jest 10 g KCl i 190 g wody. Tego rodzaju obliczenia są niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskiwania powtarzalnych i wiarygodnych wyników eksperymentów. Stosowanie się do zasad i standardów, takich jak Good Laboratory Practice (GLP), zapewnia wysoką jakość wyników badań. Dodatkowo, umiejętność obliczania stężenia roztworów jest podstawą w pracach laboratoryjnych, biochemicznych oraz w wielu zastosowaniach przemysłowych.

Pytanie 36

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. rozpuszczalność
B. palność
C. czystość
D. reaktywność
Rozpuszczalność, palność i reaktywność to cechy chemiczne, które nie są bezpośrednio związane z temperaturą topnienia. Rozpuszczalność odnosi się do zdolności substancji do tworzenia roztworu w danym rozpuszczalniku, a jej pomiar wymaga zupełnie innych metod, takich jak testy rozpuszczalności w różnych rozpuszczalnikach czy badania na podstawie równowagi fazowej. Palność to z kolei właściwość dotycząca łatwości, z jaką substancje palą się w obecności tlenu, co wymaga analizy jej właściwości fizykochemicznych, a nie temperatury topnienia. Reaktywność odnosi się do skłonności substancji do reagowania z innymi substancjami chemicznymi, co można ocenić poprzez różnorodne testy chemiczne, ale również nie jest związane z pomiarem temperatury topnienia. Często błędne myślenie pojawia się, gdy studenci mylą te pojęcia z czystością substancji. Każda z tych cech wymaga odrębnych metod analizy, a skupienie się wyłącznie na temperaturze topnienia do ich oceny prowadzi do nieprawidłowych wniosków i niewłaściwej interpretacji wyników. Dlatego ważne jest, aby zrozumieć, że temperatura topnienia jest szczególnie przydatna w określaniu czystości substancji, a nie w analizie jej rozpuszczalności, palności czy reaktywności.

Pytanie 37

W procesie oddzielania osadu od roztworu, po przeniesieniu osadu na sączek, najpierw należy go

A. wyprażyć
B. zważyć
C. przemyć
D. wysuszyć
Przemywanie osadu po jego oddzieleniu od roztworu jest kluczowym krokiem w procesie analitycznym, który ma na celu usunięcie zanieczyszczeń i pozostałości reagentów. Przed przystąpieniem do ważenia, wysuszania czy wyprażania, istotne jest, aby osad był wolny od wszelkich substancji, które mogłyby wpłynąć na wyniki analizy. Przemywanie osadu za pomocą odpowiedniego rozpuszczalnika, zazwyczaj wody destylowanej, pozwala na usunięcie niepożądanych jonów lub cząsteczek, które mogłyby zafałszować wyniki późniejszych pomiarów. Na przykład, w przypadku analizy chemicznej, zanieczyszczenia mogą wprowadzać błędy w pomiarach masy, co może skutkować nieprawidłowymi wnioskami. Standardy laboratoryjne, takie jak ISO 17025, zalecają przestrzeganie procedur czyszczenia próbek, aby zapewnić wiarygodność uzyskanych danych. W praktyce laboratoryjnej, prawidłowe przemycie osadu przyczynia się do poprawy dokładności i precyzji wyników analitycznych, co jest kluczowe w badaniach naukowych i przemysłowych.

Pytanie 38

Do systemu odprowadzania ścieków, w formie rozcieńczonego roztworu wodnego o maksymalnej masie 100 g na raz, można wprowadzić

A. NaCl
B. AgF
C. BaCl2
D. Pb(NO3)2
NaCl, czyli chlorek sodu, jest substancją, która doskonale nadaje się do wprowadzania do systemu kanalizacyjnego w formie rozcieńczonego roztworu wodnego. Jest to związek chemiczny, który jest w pełni rozpuszczalny w wodzie i nie niesie ze sobą ryzyka wprowadzenia do środowiska toksycznych substancji. W kontekście standardów ochrony środowiska, NaCl jest szeroko stosowany w różnych dziedzinach, od przemysłu spożywczego po przemysł chemiczny, dzięki czemu jego obecność w kanalizacji jest akceptowalna. NaCl jest także stosowany do wspomagania procesów oczyszczania w oczyszczalniach ścieków, ponieważ wspiera działanie mikroorganizmów odpowiedzialnych za biodegradację organicznych zanieczyszczeń. Bezpieczeństwo stosowania soli kuchennej w ilości do 100 g jednorazowo jest zgodne z dobrymi praktykami w zakresie zarządzania odpadami, co czyni ją idealnym rozwiązaniem w tej sytuacji.

Pytanie 39

Aby oddzielić połączenia szlifów, należy w miejscu ich styku wprowadzić

A. kwas fluorowodorowy
B. wodorotlenek potasu
C. glicerynę
D. wodorotlenek sodu
Gliceryna jest substancją, która doskonale sprawdza się w procesie rozdzielania zapieczonych połączeń szlifów. Jej zastosowanie wynika z właściwości chemicznych, które pozwalają na skuteczne działanie w trudnych warunkach. Gliceryna jest środkiem niejonowym, co oznacza, że nie wywołuje reakcji z materiałami, z którymi współdziała. W praktyce, podczas zastosowania gliceryny na strefie połączenia szlifów, zwiększa się elastyczność otaczających materiałów, co ułatwia ich oddzielenie bez ryzyka uszkodzenia. Gliceryna ma również właściwości nawilżające, co dodatkowo sprzyja procesowi rozdzielania, zapewniając lepszą penetrację w obszary o dużym skurczeniu. W branżach zajmujących się szlifowaniem i obróbką materiałów, takich jak przemysł motoryzacyjny czy lotniczy, stosowanie gliceryny jako środka pomocniczego w rozdzielaniu połączeń jest zgodne z najlepszymi praktykami, co potwierdzają liczne standardy jakości. Dodatkowo, gliceryna jest substancją nietoksyczną, co czyni ją bezpiecznym wyborem w porównaniu do innych chemikaliów.

Pytanie 40

Próbka laboratoryjna posiadająca cechy higroskopijne powinna być pakowana

A. w szczelne opakowania
B. w torby papierowe
C. w skrzynie drewniane
D. w torby jutowe
Pakowanie próbek laboratoryjnych o właściwościach higroskopijnych w worki papierowe nie jest odpowiednie. Papier, mimo że jest materiałem naturalnym, nie zapewnia skutecznej ochrony przed wilgocią. W przypadku materiałów higroskopijnych, które mogą wchłaniać wodę z otoczenia, pakowanie ich w papier prowadzi do szybkiej degradacji próbki i zmiany jej właściwości. Zastosowanie drewnianych skrzyń również nie jest odpowiednie, ponieważ drewno może pochłaniać wilgoć i nie zapewnia hermetyczności. Tego typu opakowania są stosowane głównie w transporcie dużych objętości towarów, ale nie są dostosowane do wymagań laboratoryjnych. Worki jutowe, chociaż są biodegradowalne, również nie stanowią odpowiedniej bariery dla wilgoci, co czyni je nieodpowiednimi dla prób o właściwościach higroskopijnych. Zastosowanie niewłaściwych opakowań może prowadzić do wyniku analiz, które są niewłaściwe lub zafałszowane, co jest niezgodne z zasadami dobrej praktyki laboratoryjnej. W branży laboratoria są zobowiązane do stosowania norm ochrony materiałów, co podkreśla znaczenie odpowiednich metod pakowania, takich jak hermetyczne pojemniki, które zabezpieczają próbki przed niepożądanymi interakcjami ze środowiskiem.