Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 13 października 2025 16:18
  • Data zakończenia: 13 października 2025 16:49

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,001 mol/dm3
B. 0,1 mol/dm3
C. 0,01 mol/dm3
D. 1 mol/dm3
Stężenie roztworu NaOH wyliczamy dzieląc liczbę moli substancji przez objętość roztworu w decymetrach sześciennych. W przypadku 4 g wodorotlenku sodu, najpierw musimy policzyć, ile mamy moli, korzystając z masy molowej NaOH, która to wynosi 40 g/mol. To wygląda tak: 4 g podzielone przez 40 g/mol daje nam 0,1 mola. A ponieważ nasze objętość roztworu wynosi 1 dm³, stężenie okaże się 0,1 mol / 1 dm³, co daje 0,1 mol/dm³. Te obliczenia są super ważne w laboratoriach chemicznych, bo precyzyjne przygotowywanie roztworów jest kluczowe dla dobrej jakości wyników eksperymentów. W praktyce stężenie roztworu oddziałuje na reakcje chemiczne, ich tempo i efektywność, więc rozumienie tych zasad leży u podstaw chemii analitycznej i w różnych aplikacjach przemysłowych, jak synteza chemiczna czy proces oczyszczania.

Pytanie 2

Po zakończeniu pomiarów pH, elektrody powinny być przepłukane

A. roztworem buforowym o ustalonym pH
B. wodą destylowaną
C. roztworem chlorku potasu
D. wodą destylowaną z dodatkiem roztworu wzorcowego
Używanie roztworów wzorcowych, chlorku potasu czy buforów do przemywania elektrod pH jest nieodpowiednie i może prowadzić do poważnych błędów w pomiarach. Roztwór wzorcowy, mimo że ma na celu zapewnienie dokładności pomiarów, nie powinien być używany do czyszczenia, ponieważ wprowadza dodatkowe jony do elektrody, co może zafałszować wyniki kolejnych pomiarów. Proces pomiaru pH opiera się na pomiarze potencjału elektrycznego, a jakiekolwiek zmiany w składzie roztworu mogą prowadzić do błędnych odczytów. Chlorek potasu, choć jest często używany jako standardowy elektrolit w niektórych aplikacjach, nie jest odpowiedni do czyszczenia elektrody, ponieważ może prowadzić do zanieczyszczenia lub zmiany charakterystyki elektrody. Roztwory buforowe, mimo że stabilizują pH, są również nieodpowiednie w kontekście czyszczenia, ponieważ wprowadzają nowe jony, które mogą zaburzyć równowagę pomiarową. Pomiar pH wymaga precyzyjnego podejścia, a przemywanie elektrod wodą destylowaną zapewnia ich neutralność i przygotowuje je do następnych pomiarów. Typowe błędy myślowe, które mogą prowadzić do tych niepoprawnych wniosków, obejmują mylenie roli czyszczenia z kalibracją oraz niewłaściwe zrozumienie celu używania różnych rodzajów roztworów w kontekście pomiarowym.

Pytanie 3

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 10 cm3
B. 50 cm3
C. 25 cm3
D. 20 cm3
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 4

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. czerwonym
B. niebieskim
C. jasnozielonym
D. żółtym
Zrozumienie systemu oznaczania butli gazowych jest kluczowe dla bezpieczeństwa pracy z substancjami chemicznymi. Kolorystyka oznaczeń butli gazowych jest ściśle określona przez normy. Odpowiedzi sugerujące żółty, jasnozielony lub niebieski kolor są błędne, ponieważ nie odzwierciedlają one aktualnych praktyk w branży. Żółty kolor często kojarzony jest z gazami toksycznymi, a jasnozielony z gazami szlachetnymi, natomiast niebieski stosuje się zazwyczaj do azotu lub innych gazów obojętnych. Wybierając niepoprawne kolory, można narazić się na poważne konsekwencje, takie jak błędna identyfikacja gazu, co prowadzi do niebezpiecznych sytuacji. W przemyśle, gdzie obsługiwane są różne rodzaje gazów, znajomość i przestrzeganie norm dotyczących oznaczania butli gazowych jest niezbędne. Typowe błędy myślowe prowadzące do takich wniosków to ignorowanie standardów branżowych oraz brak świadomości na temat zagrożeń związanych z niewłaściwym oznaczeniem gazów. Warto pamiętać, że bezpieczeństwo w pracy z niebezpiecznymi substancjami chemicznymi opiera się na dokładnym przestrzeganiu procedur oraz systemów oznaczania, co bezpośrednio wpływa na zdrowie i życie pracowników oraz osób postronnych.

Pytanie 5

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
B. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
C. W otrzymanym zielonym proszku Cr<sub>2</sub>O<sub>3</sub> nie powinny być widoczne pomarańczowe kryształy substratu
D. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
Oceny dotyczące zakończenia reakcji nie można podejmować wyłącznie na podstawie obecności gazów, ponieważ niektóre reakcje mogą prowadzić do powstawania produktów w stanie stałym lub cieczy, które nie ulegają dalszym przemianom. Niepoprawne jest twierdzenie, że w przypadku reakcji rozkładu dichromianu (VI) amonu, sama egzotermiczność oznacza, że reakcja zawsze dobiegnie końca bez dalszych ocen. Niezrozumienie tego aspektu może prowadzić do błędnych wniosków, zwłaszcza gdy reakcji towarzyszy wydzielanie gazów. Ponadto, ocena obecności pomarańczowych kryształów może prowadzić do mylnych wniosków, gdyż nie każdy związek chromu prezentuje te same właściwości barwne. Kryształy dichromianu (VI) mają charakterystyczny kolor pomarańczowy, ale po zakończeniu reakcji i uzyskaniu tlenku chromu (III) nie powinny być już widoczne. Dlatego też, w praktyce chemicznej, powinniśmy korzystać z bardziej rzetelnych metod oceny, takich jak analizy spektroskopowe czy chromatograficzne, które pozwalają na dokładną identyfikację produktów reakcji i eliminację ryzyka błędnej interpretacji wyników. Uczenie się na błędach analitycznych oraz stosowanie dobrych praktyk laboratoryjnych to kluczowe elementy, które powinny być zawsze brane pod uwagę podczas oceny końcowego efektu reakcji chemicznych.

Pytanie 6

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. instrumentalnym
B. dokładności
C. paralaksy
D. losowym
Wybór 'paralaksy' to strzał w dziesiątkę! To dotyczy błędu w odczycie, który ma związek z tym, jak nasze oczy widzą coś z określonego kąta. Tak naprawdę paralaksa to ciekawe zjawisko optyczne – jakby obiekt wydaje się zmieniać, kiedy patrzymy na niego z różnych miejsc. W laboratorium, przy pomiarach cieczy w kolbie miarowej, bardzo ważne jest, żeby dobrze ustawić wzrok na menisku. Jak nie patrzymy z odpowiedniego poziomu, to możemy źle odczytać, ile płynu mamy. To jest kluczowe, zwłaszcza w chemii, gdzie dokładność to podstawa. No i jest kilka standardów, jak ISO 8655, które mówią, jak powinno się to robić, żeby wyniki były wiarygodne. Także pamiętaj, patrząc na menisk, rób to na wysokości oczu, żeby uniknąć błędów – to naprawdę robi różnicę.

Pytanie 7

Reagent, który reaguje wyłącznie z jednym konkretnym jonem lub związkiem, nazywamy reagente

A. selektywny
B. grupowy
C. specyficzny
D. maskujący
Odczynnik specyficzny to taki, który reaguje z jednym, ściśle określonym jonem lub związkiem chemicznym, co czyni go niezwykle przydatnym w analizach chemicznych i laboratoryjnych. Przykładem może być odczynnik nieselektywnego wykrywania jonów srebra, jakim jest chlorowodorek sodu, który wytrąca białe osady tylko w obecności jonów srebra. W praktyce, zastosowanie odczynników specyficznych pozwala na przeprowadzanie dokładnych analiz jakościowych i ilościowych, co jest kluczowe w laboratoriach chemicznych, analitycznych, a także w przemyśle farmaceutycznym i środowiskowym. Standardy ASTM i ISO promują stosowanie takich odczynników w badaniach laboratoryjnych, co podkreśla ich znaczenie w zapewnieniu wysokiej jakości wyników. W kontekście praktycznym, specyficzność odczynników jest niezwykle ważna w diagnostyce medycznej, gdzie konieczne jest precyzyjne określenie obecności konkretnych biomarkerów.

Pytanie 8

Którą z poniższych czynności należy wykonać, aby zapewnić wysoką dokładność pomiaru masy substancji podczas przygotowywania próbki do analizy chemicznej?

A. Pominąć etap ważenia przy sporządzaniu roztworu.
B. Wystarczy ważyć substancję na zwykłej wadze kuchennej.
C. Użyć linijki do określenia objętości substancji.
D. Zastosować wagę analityczną o dokładności do 0,1 mg.
Dokładność pomiaru masy substancji chemicznych ma kluczowe znaczenie w analizie laboratoryjnej. Użycie wagi analitycznej o dokładności do 0,1 mg jest standardem wszędzie tam, gdzie wymagane są precyzyjne oznaczenia ilościowe. Wagi analityczne mają specjalną konstrukcję – są zamknięte w osłonie przeciwwiatrowej, mają bardzo czułe mechanizmy i są regularnie kalibrowane, co minimalizuje wpływ czynników zewnętrznych takich jak drgania czy ruchy powietrza. Tak wysoka dokładność pozwala na ważenie nawet niewielkich ilości substancji, co jest często niezbędne przy pracy z odczynnikami o wysokiej aktywności lub kosztownych standardach. W praktyce zawodowej takie podejście pozwala uniknąć błędów systematycznych, które mogłyby zafałszować wyniki analizy i doprowadzić do nieprawidłowych wniosków. Stosowanie wag analitycznych jest opisane w normach branżowych i podręcznikach dla laborantów. Moim zdaniem, bez tej dokładności nie da się mówić o profesjonalnym przygotowaniu próbek. Warto też pamiętać, że nawet drobne różnice masy mogą mieć duże znaczenie przy przygotowywaniu roztworów wzorcowych czy analitycznych, dlatego nie ma tu miejsca na półśrodki.

Pytanie 9

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
B. Przepuszczalność promieniowania ultrafioletowego
C. Niska wrażliwość na zmiany temperatury
D. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
Przepuszczalność promieniowania nadfioletowego, większa kruchość i mniejsza wytrzymałość na uderzenia w porównaniu do zwykłego szkła oraz mała wrażliwość na zmiany temperatury są cechami, które mogą mylnie kojarzyć się z naczyniami kwarcowymi. Naczynia te rzeczywiście przepuszczają promieniowanie UV, co czyni je odpowiednimi do zastosowań w biologii molekularnej i fotonice, jednak ich odporność na różnorodne substancje chemiczne nie jest niezrównana. W rzeczywistości, kruchość naczyń kwarcowych często prowadzi do ich uszkodzeń w wyniku uderzeń, co jest sprzeczne z założeniem, że są one bardziej wytrzymałe od szklanych naczyń zwykłych. Warto również zauważyć, że chociaż naczynia kwarcowe wykazują pewną odporność na zmiany temperatury, nie są one zupełnie odporne na nagłe ich zmiany. Typowe błędy myślowe w analizie tego zagadnienia mogą obejmować uproszczone wnioski o wytrzymałości materiałów na podstawie ich ogólnych właściwości fizycznych, bez uwzględnienia specyficznych reakcji chemicznych, które mogą występować w praktycznych zastosowaniach. Dlatego tak ważne jest, aby dokładnie rozumieć właściwości materiałów i ich zastosowanie w kontekście specyficznych warunków pracy.

Pytanie 10

Jaką substancję należy koniecznie oddać do utylizacji?

A. Sodu chlorek
B. Gliceryna
C. Glukoza
D. Chromian(VI) potasu
Chromian(VI) potasu to substancja chemiczna, która jest klasyfikowana jako niebezpieczny odpad. Ze względu na swoje właściwości toksyczne oraz rakotwórcze, jego pozostałości muszą być traktowane z najwyższą ostrożnością i nie mogą być usuwane w sposób standardowy. Zgodnie z regulacjami dotyczącymi gospodarki odpadami, takie substancje powinny być przekazywane do specjalistycznych zakładów zajmujących się ich utylizacją. Przykładowo, chromiany są szeroko stosowane w przemyśle, w tym w procesach galwanicznych oraz w produkcji barwników, dlatego ważne jest, aby procesy te były zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące zarządzania odpadami niebezpiecznymi. Utylizacja chromianu VI wymaga zastosowania odpowiednich metod, takich jak stabilizacja chemiczna, aby zapobiec przedostawaniu się szkodliwych substancji do gruntu czy wód gruntowych. Właściwe postępowanie z tymi materiałami jest kluczowe dla ochrony zdrowia publicznego oraz ochrony środowiska.

Pytanie 11

W celu przeprowadzenia opisanego doświadczenia, należy przygotować:

Opis procesu wydzielenia kwasu acetylosalicylowego z tabletek
Pięć rozgniecionych tabletek aspiryny (polopiryny) umieszcza się w kolbie stożkowej o pojemności 100 ml, dodaje 10 ml etanolu i ogrzewa na łaźni wodnej, aż do momentu rozpadnięcia się tabletek. W roztworze znajduje się kwas acetylosalicylowy, natomiast masa tabletkowa pozostaje w osadzie. Osad ten odsącza się na ogrzanym lejku szklanym zaopatrzonym w sączek karbowany. Do odebiornego przesączu dodaje się 20-30 ml zimnej wody destylowanej. Dodatek wody powoduje wypadanie osadu aspiryny z roztworu (zmniejsza się rozpuszczalność aspiryny w roztworze wodno-alkoholowym). Wydzielone kryształy odsączyć na lejku sitowym i suszyć na powietrzu.
A. aspirynę, moździerz, etanol, kolbę stożkową 100 ml, łaźnię wodną, lejek szklany, kolbę ssawkową, lejek sitowy, sączek karbowany.
B. polopirynę, metanol, kolbę stożkową 100 ml, łaźnię wodną, bagietkę, lejek szklany, termometr.
C. aspirynę etanol, kolbę stożkową 250 ml, łaźnię wodną, lejek metalowy do sączenia na gorąco, bagietkę, pompkę wodą, cylinder miarowy.
D. etopirynę, stężony kwas siarkowy, etanol, kolbę ssawkową lejek sitowy, pompkę wodną, eksykator, cylinder miarowy, moździerz.
Odpowiedź jest poprawna, ponieważ opisany proces eksperymentalny rzeczywiście wymaga użycia aspiryny, która jest substancją czyną w tym doświadczeniu. Kluczowym krokiem jest rozcieranie aspiryny w moździerzu, co pozwala na zwiększenie powierzchni kontaktu substancji z rozpuszczalnikiem, jakim jest etanol. Użycie kolby stożkowej o pojemności 100 ml jest zgodne z zasadami laboratoryjnymi, które zalecają stosowanie odpowiednich naczyń do reakcji chemicznych, aby zapewnić dokładność pomiarów. Ogrzewanie roztworu w łaźni wodnej to standardowa procedura, która pozwala na kontrolowanie temperatury, co jest niezbędne dla prawidłowego rozpuszczenia aspiryny. W procesie filtracji, obecność lejka szklanego, kolby ssawkowej, lejka sitowego oraz sączka karbowanego umożliwia skuteczne oddzielenie kryształów aspiryny od roztworu oraz ich osuszenie. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi, które kładą nacisk na precyzję i efektywność w przeprowadzaniu doświadczeń chemicznych.

Pytanie 12

Jaką metodą nie można rozdzielać mieszanin?

A. ekstrakcja
B. krystalizacja
C. aeracja
D. chromatografia
Aeracja to proces, który nie jest metodą rozdzielania mieszanin, lecz techniką stosowaną w różnych dziedzinach, takich jak oczyszczanie wody czy hodowla ryb, w celu wzbogacenia medium w tlen. Proces ten polega na wprowadzeniu powietrza do cieczy, co ma na celu zwiększenie stężenia tlenu rozpuszczonego w wodzie. Aeracja znajduje zastosowanie w biotechnologii wodnej oraz przy oczyszczaniu ścieków, gdzie tlen jest niezbędny dla organizmów aerobowych, które degradować mogą zanieczyszczenia organiczne. W przeciwieństwie do metod takich jak chromatografia, krystalizacja czy ekstrakcja, które mają na celu separację konkretnych składników z mieszaniny, aeracja koncentruje się na poprawie warunków środowiskowych. Chromatografia jest szeroko stosowana w laboratoriach chemicznych do analizy substancji, krystalizacja służy do oczyszczania substancji chemicznych poprzez tworzenie kryształów, a ekstrakcja umożliwia oddzielenie substancji na podstawie ich różnej rozpuszczalności. Właściwe zrozumienie tych procesów jest kluczowe dla ich efektywnego zastosowania w przemyśle chemicznym i biotechnologii.

Pytanie 13

Aby przygotować miano kwasu solnego, konieczne jest odważenie węglanu sodu o masie wynoszącej około 400 mg. Jaką precyzję powinna mieć waga używana do odważenia węglanu sodu?

A. 1 g
B. 0,001 g
C. 0,01 g
D. 0,1 g
Wybór wagi o dokładności 0,001 g (1 mg) jest uzasadniony, gdyż do przygotowania miany kwasu solnego potrzebna jest odważka węglanu sodu o masie około 400 mg. Wymagana dokładność przy ważeniu substanacji chemicznych jest kluczowa dla uzyskania precyzyjnych wyników analitycznych. W analityce chemicznej, zwłaszcza w titracji, precyzyjne ważenie reagentów jest niezbędne, aby uniknąć błędów pomiarowych, które mogą prowadzić do fałszywych wniosków. Przyjęcie dokładności na poziomie 0,001 g pozwala na dokładniejsze przygotowanie roztworu, co jest istotne w kontekście późniejszych obliczeń i analiz. Stosowanie wag analitycznych jest standardem w laboratoriach chemicznych, ponieważ umożliwiają one kontrolowanie jakości analizowanego materiału i zapewniają zgodność z zasadami dobrej praktyki laboratoryjnej (GLP). Przykładowo, w przypadku przygotowywania roztworów wzorcowych, dokładność ważenia jest kluczowa dla uzyskania odpowiednich stężeń, co jest niezbędne w dalszych etapach analizy.

Pytanie 14

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. siarkowym(VI)
B. chlorowodorowym
C. bromowodorowym
D. azotowym(V)
Stosowanie kwasu siarkowego(VI) do roztwarzania mosiądzu nie jest optymalnym rozwiązaniem, ponieważ mimo że kwas siarkowy jest silnym kwasem, nie jest efektywny w przypadku stopów miedzi, takich jak mosiądz. Kwas siarkowy reaguje z miedzią, ale proces ten jest wolniejszy i mniej skuteczny w porównaniu do kwasu azotowego. Użycie kwasu chlorowodorowego może również prowadzić do niepełnych reakcji, ponieważ nie jest on wystarczająco silnym utleniaczem, a jego stosowanie w kontekście metali nieżelaznych, takich jak miedź, może prowadzić do ich nierozpuszczenia. Kwas bromowodorowy, mimo że jest kwasem, również nie wykazuje właściwości utleniających, które są kluczowe w procesie analizy jakościowej. W przypadku błędnego wyboru kwasu, można napotkać problemy związane z niepełnym rozpuszczeniem próbki, co prowadzi do błędnych wyników analizy. Typowym błędem jest założenie, że każdy silny kwas może zastąpić inny w reakcjach chemicznych, co jest mylne. Efektywność rozpuszczania stopów metalowych wymaga zastosowania odpowiednich reakcji chemicznych, które nie tylko rozpuszczają próbki, ale również prowadzą do ich pełnej analizy składu chemicznego. W rezultacie, niewłaściwy wybór kwasu może skutkować nieprawidłowymi wynikami, co w praktyce laboratoryjnej jest nieakceptowalne i może prowadzić do dalszych problemów związanych z jakością i bezpieczeństwem produktów końcowych.

Pytanie 15

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO3 → CaO + CO2. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?
Masy molowe: MCa = 40 g/mol, MC = 12 g/mol, MO = 16 g/mol.

A. 12,5 kg
B. 50,0 kg
C. 37,5 kg
D. 25,0 kg
Aby obliczyć ilość wapienia potrzebną do uzyskania 7 kg wapna palonego (CaO) przy wydajności reakcji wynoszącej 50%, należy najpierw zrozumieć reakcję chemiczną, która zachodzi. W reakcji CaCO<sub>3</sub> → CaO + CO<sub>2</sub> mol wapnia (Ca) uzyskujemy z jednego mola węglanu wapnia (CaCO<sub>3</sub>). Masy molowe są następujące: Ca = 40 g/mol, C = 12 g/mol, O = 16 g/mol, co daje masę CaCO<sub>3</sub> równą 100 g/mol. Z przeprowadzonej reakcji wynika, że 1 mol CaCO<sub>3</sub> daje 1 mol CaO, co odpowiada masie 56 g/mol dla CaO. Z punktu widzenia praktycznego, wydajność 50% oznacza, że aby otrzymać 7 kg (7000 g) wapna palonego, potrzebujemy 2 razy więcej węglanu wapnia, czyli 14000 g (14 kg) CaCO<sub>3</sub>. Jednak ze względu na wydajność, musimy użyć 28 kg CaCO<sub>3</sub>. Zatem, aby uzyskać 7 kg CaO, przy wydajności 50% potrzebujemy 25 kg CaCO<sub>3</sub> na uzyskanie 14 kg CaCO<sub>3</sub>. W praktyce, te obliczenia są kluczowe w przemyśle chemicznym i materiałowym, gdzie precyzyjne dawkowanie surowców jest istotne dla efektywności produkcji, co jest zgodne z normami jakości w branży.

Pytanie 16

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.
A. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
B. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
C. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
D. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
Wybór niepoprawnej odpowiedzi często wynika z braku zrozumienia specyfikacji narzędzi laboratoryjnych oraz ich zastosowania w konkretnych procedurach analitycznych. Wiele z błędnych odpowiedzi sugeruje użycie cylinderów o pojemności 100 cm3 lub zlewek, co w przypadku analizy kwasowości mleka jest niewłaściwe. Cylinder miarowy o pojemności 100 cm3 jest zbyt duży do precyzyjnego odmierzania niewielkich objętości wody destylowanej, co może prowadzić do błędów w obliczeniach. Zlewa nie jest narzędziem stosowanym do precyzyjnego odmierzania substancji, co czyni ją nieodpowiednią do zastosowań wymagających dokładności. Ponadto, użycie pipet wielomiarowych zamiast jednomiarowych może prowadzić do nieścisłości w pobieraniu prób, gdyż pipety jednomiarowe są zaprojektowane do precyzyjnego odmierzania pojedynczych objętości. W laboratoriach stosuje się standardy, które nakładają wymogi co do dokładności przygotowywanych roztworów, stąd konieczność przestrzegania procedur opartych na uznanych metodach analitycznych. Przygotowanie roztworów powinno odbywać się z użyciem odpowiednich narzędzi, a ich dobór ma kluczowe znaczenie dla jakości wyników, co podkreśla znaczenie znajomości sprzętu laboratoryjnego i jego funkcji.

Pytanie 17

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, waga, tryskawka, bagietka
B. Zlewka, lejek, waga, bagietka
C. Zlewka, lejek, statyw, bagietka
D. Zlewka, lejek, trójnóg, tygiel
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 18

Wskaż, do jakiego typu należą zamieszczone równania reakcji.

I. 2 Mg + O2 → 2 MgO
II. 2 KMnO4 → K2MnO4 + MnO2 + O2
III. BaCl2 + H2SO4→ BaSO4 + 2 HCl
A. I - analiza, II - synteza, HI - wymiana podwójna.
B. I - wymiana pojedyncza, II — analiza, III - synteza.
C. I - synteza, II - analiza, DI - wymiana podwójna.
D. I - synteza, II - analiza, HI - wymiana pojedyncza.
Odpowiedź "I - synteza, II - analiza, DI - wymiana podwójna" jest prawidłowa, ponieważ precyzyjnie klasyfikuje przedstawione reakcje chemiczne. Reakcja I, 2 Mg + O2 → 2 MgO, to klasyczny przykład reakcji syntezy, kiedy to dwa reagenty łączą się, tworząc jeden produkt. Takie reakcje są fundamentalne w chemii, ponieważ ilustrują procesy, które są podstawą wielu syntez chemicznych w przemyśle, na przykład w produkcji różnych związków chemicznych. Reakcja II, 2 KMnO4 → K2MnO4 + MnO2 + O2, jest reakcją analizy, gdzie jeden reagent ulega rozkładowi na kilka produktów, co jest kluczowym procesem w chemii analitycznej i przy wytwarzaniu różnych substancji chemicznych. Reakcja III, BaCl2 + H2SO4 → BaSO4 + 2 HCl, to reakcja wymiany podwójnej, podczas której dwa reagenty wymieniają składniki, co jest powszechną metodą w chemii nieorganicznej. Takie klasyfikacje są nie tylko istotne w akademickiej chemii, ale również mają zastosowanie w różnych gałęziach przemysłu chemicznego, gdzie zrozumienie typologii reakcji jest kluczowe dla optymalizacji procesów produkcyjnych.

Pytanie 19

Dekantacja to metoda

A. oddzielania cieczy od osadu, która polega na zlaniu cieczy znad osadu
B. oddzielania cieczy lub gazu od cząstek ciała stałego, które są w nich zawieszone, polegająca na przepuszczeniu zawiesiny przez przegrodę filtracyjną
C. oddzielania cieczy od osadu, która polega na odparowaniu cieczy
D. opadania cząstek ciała stałego w wyniku działania siły ciężkości, które są rozproszone w cieczy
Dekantacja to taki sposób oddzielania cieczy od osadu, polegający na tym, że wlewasz ciecz znad osadu do innego naczynia. Jest super popularna w laboratoriach chemicznych i w różnych branżach, szczególnie przy oczyszczaniu i separacji. Głównym celem tego procesu jest zdobycie czystej cieczy i pozbycie się osadu, który ląduje na dnie. Przykłady? No to na przykład wino – dekantuje się je, żeby oddzielić osad, który powstaje przy fermentacji. W laboratoriach też często używają dekantacji, żeby pozbyć się osadu po reakcjach chemicznych. To prosta i skuteczna metoda, co czyni ją jedną z podstawowych technik w chemii. Ważne jest, żeby robić to ostrożnie, żeby nie zmieszać cieczy z osadem. Dobrze jest też używać odpowiednich naczyń, które pomogą ci w precyzyjnym zlaniu cieczy.

Pytanie 20

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. chroniące przed substancjami chemicznymi
B. zwykłe gumowe
C. płócienne
D. zapewniające izolację termiczną
Wybór rękawic w laboratoriach jest naprawdę ważny i powinien zależeć od tego, co się tam robi. Rękawice gumowe czy płócienne to nie najlepszy wybór, bo nie dają odpowiedniej ochrony w przypadku obróbki szkła. Gumowe rękawice co prawda chronią przed chemikaliami, ale nie zapewniają izolacji termicznej, co jest ryzykowne przy pracy z gorącym szkłem. Jak ktoś sięgnie po gorący element, to może się mocno poparzyć, a to nieciekawa sprawa. Z płóciennymi rękawicami jest podobnie, bo one w ogóle nie mają właściwości ochronnych przed wysoką temperaturą czy chemikaliami, więc to jeszcze większe ryzyko. Trzeba też pamiętać, że rękawice chemiczne powinno się nosić tylko tam, gdzie jest zagrożenie kontaktu z toksycznymi substancjami, ale przy wysokich temperaturach to nie wystarcza. Ludzie czasem zapominają, że wybierając sprzęt ochronny, trzeba myśleć o specyfice pracy i zagrożeniach, żeby stosować się do najlepszych praktyk i zasad BHP, co na koniec dnia ma chronić ich zdrowie.

Pytanie 21

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
B. w najgłębszym punkcie, z którego czerpana jest woda
C. na powierzchni wody, w pobliżu brzegu zbiornika
D. na powierzchni wody, w centralnej części zbiornika
Zbieranie próbek wody na powierzchni zbiornika, zarówno przy brzegu, jak i na środku, jest nieodpowiednie, ponieważ nie odzwierciedla rzeczywistych warunków wody, która jest później używana w systemie wodociągowym. Pobieranie próbek wyłącznie z powierzchni może prowadzić do fałszywego obrazu jakości wody, ponieważ może ignorować zanieczyszczenia znajdujące się w niższych warstwach, które mogą być znacznie gorszej jakości. Na przykład, substancje chemiczne mogą osiadać na dnie zbiornika lub występować w niższych warstwach wody, a ich obecność nie będzie wykryta podczas pobierania próbek z powierzchni. Dodatkowo, zasysanie wody z najgłębszego miejsca zbiornika może wydawać się logiczne, jednak nie zawsze odpowiada to rzeczywistemu miejscu poboru, które może znajdować się w innym punkcie zbiornika na określonej głębokości. Warto również zauważyć, że zanieczyszczenia mogą różnić się w różnych częściach zbiornika, a ich analiza wymaga dokładnego określenia warunków, w których woda jest pobierana. Dlatego kluczowe jest, aby próbki były pobierane w miejscu i na głębokości, w której odbywa się rzeczywisty pobór wody, co zapewnia reprezentatywność wyników i zgodność z obowiązującymi standardami jakości wody.

Pytanie 22

Jakim rozpuszczalnikiem o niskiej temperaturze wrzenia wykorzystuje się do suszenia szkła laboratoryjnego?

A. roztwór węglanu wapnia
B. alkohol etylowy
C. woda amoniakalna
D. kwas siarkowy(VI)
Alkohol etylowy, znany również jako etanol, jest powszechnie stosowanym rozpuszczalnikiem w laboratoriach chemicznych ze względu na swoje właściwości lotne oraz zdolność do efektywnego rozpuszczania różnych substancji. W procesie suszenia szkła laboratoryjnego, alkohol etylowy jest wykorzystywany do usuwania wody oraz innych zanieczyszczeń, co jest kluczowe dla uzyskania wysokiej czystości sprzętu. Alkohol etylowy odparowuje w stosunkowo niskich temperaturach, co umożliwia szybkie i skuteczne suszenie bez ryzyka uszkodzenia szkła. Ponadto, etanol jest zgodny z zasadami dobrych praktyk laboratoryjnych, które podkreślają znaczenie stosowania substancji nie tylko skutecznych, ale także bezpiecznych dla użytkowników oraz środowiska. Warto również zwrócić uwagę, że alkohol etylowy jest substancją łatwopalną, dlatego podczas jego stosowania należy przestrzegać odpowiednich procedur bezpieczeństwa, takich jak praca w dobrze wentylowanych pomieszczeniach oraz unikanie otwartego ognia. Zastosowanie alkoholu etylowego w laboratoriach chemicznych jest również zgodne z normami EPA, które regulują użycie rozpuszczalników w kontekście ochrony środowiska.

Pytanie 23

Jakie środki ochronne należy zastosować podczas sporządzania 1M roztworu zasady sodowej ze stężonego roztworu NaOH, na opakowaniu którego widnieje oznaczenie S/36/37/39?

Numer zwrotu SWarunki bezpiecznego stosowania
S36Używać odpowiedniej odzieży ochronnej
S37Używać odpowiednich rękawic
S38W przypadku niewystarczającej wentylacji używać sprzętu do oddychania
S39Używać okularów lub maski ochronnej
A. Odzież ochronną, rękawice i okulary ochronne.
B. Fartuch ochronny, rękawice i maskę tlenową.
C. Gumowe rękawice i maskę ochronną.
D. Odzież ochronną i maskę tlenową.
Odpowiedź 'Odzież ochronną, rękawice i okulary ochronne.' jest poprawna, ponieważ zgodnie z oznaczeniami S/36/37/39 na opakowaniu NaOH, wymagane są wymienione środki ochrony osobistej. Oznaczenie S36 wskazuje na obowiązek noszenia odzieży ochronnej, co ma na celu minimalizację kontaktu skóry z substancją chemiczną, która może być silnie żrąca. S37 sugeruje stosowanie rękawic ochronnych, które chronią dłonie przed skutkami kontaktu z niebezpiecznymi substancjami, a S39 odnosi się do konieczności używania okularów ochronnych lub maski, aby zapobiec dostaniu się substancji do oczu. W praktyce, stosowanie tych środków ochrony jest kluczowe podczas pracy z chemikaliami, aby zminimalizować ryzyko urazów i zapewnić bezpieczeństwo w laboratorium. Przykładowo, w laboratoriach chemicznych zaleca się także regularne szkolenia z zakresu BHP, które podkreślają znaczenie odpowiednich środków ochrony osobistej.

Pytanie 24

Osoba pracująca z lotnym rozpuszczalnikiem straciła przytomność. Jakie działania należy podjąć, aby udzielić pierwszej pomocy?

A. rozpoczęciu reanimacji
B. rozpoczęciu resuscytacji
C. wyniesieniu osoby poszkodowanej na świeże powietrze
D. zwilżeniu zimną wodą czoła i karku
Wyniesienie osoby poszkodowanej na świeże powietrze jest kluczowym krokiem w sytuacji, gdy mamy do czynienia z utratą przytomności w wyniku działania lotnych rozpuszczalników. Lotne substancje chemiczne mogą powodować duszność, osłabienie lub nawet utratę przytomności w wyniku ich wdychania, co stwarza ryzyko zatrucia. Przeniesienie osoby do miejsca z lepszą wentylacją minimalizuje ekspozycję na szkodliwe opary, co zwiększa szanse na jej szybki powrót do zdrowia. W praktyce, jeśli zauważysz osobę, która straciła przytomność po kontakcie z takimi substancjami, pierwszym krokiem powinno być ocena sytuacji, a następnie ostrożne przeniesienie jej w bezpieczne, świeże powietrze. Zgodnie z wytycznymi Europejskiej Agencji Bezpieczeństwa i Zdrowia w Pracy (EU-OSHA), ważne jest, aby zawsze mieć na uwadze ryzyko inhalacji substancji chemicznych oraz znać procedury udzielania pierwszej pomocy w takich sytuacjach, co można wdrożyć w miejscu pracy, aby poprawić bezpieczeństwo pracowników.

Pytanie 25

Wszystkie pojemniki z odpadami, zarówno stałymi, jak i ciekłymi, które są przekazywane do służby zajmującej się utylizacją, powinny być opatrzone informacjami

A. o rodzaju analizy, do której były używane
B. o nazwie wytwórcy oraz dacie zakupu
C. o jak najbardziej dokładnym składzie tych odpadów
D. o dacie i godzinie przekazania
Odpowiedź dotycząca możliwie szczegółowego składu odpadów jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami dotyczącymi gospodarowania odpadami, szczegółowe informacje o składzie odpadów są kluczowe dla ich prawidłowej utylizacji. Umożliwia to odpowiednim służbom ustalenie, jakie procesy recyklingu lub unieszkodliwiania są najbardziej odpowiednie. Na przykład, jeśli odpady zawierają substancje niebezpieczne, konieczne jest zastosowanie specjalnych procedur ich przetwarzania, aby zminimalizować ryzyko dla środowiska i zdrowia publicznego. Dodatkowo, zgodnie z normami ISO 14001, organizacje powinny prowadzić ewidencję oraz monitorować rodzaje i ilości odpadów, co sprzyja efektywnemu zarządzaniu nimi i zgodności z przepisami. W praktyce, dokumentacja zawierająca szczegółowy skład odpadów może również ułatwić audyty oraz kontrole środowiskowe, a także przyczynić się do optymalizacji procesów gospodarki odpadami w przedsiębiorstwie.

Pytanie 26

W nieopisanej butelce prawdopodobnie znajduje się roztwór zasadowy. Wskaż odczynnik, który pozwoli to zweryfikować?

A. Roztwór chlorku potasu o stężeniu 1 mol/dm3
B. Alkoholowy roztwór fenoloftaleiny o stężeniu 2%
C. Roztwór kwasu siarkowego(VI) o stężeniu 2%
D. Roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3
Alkoholowy roztwór fenoloftaleiny o stężeniu 2% jest skutecznym odczynnikiem do wykrywania odczynu zasadowego. Fenoloftaleina, będąca wskaźnikiem pH, zmienia swój kolor z bezbarwnego na różowy w obecności roztworów o odczynie zasadowym, co czyni ją idealnym narzędziem w laboratoriach chemicznych. Jej zastosowanie w praktyce obejmuje nie tylko kontrolę odczynu pH w różnorodnych procesach chemicznych, ale również w edukacji, gdzie uczniowie uczą się o reakcjach kwasowo-zasadowych. Warto zauważyć, że fenoloftaleina działa w zakresie pH od około 8,2 do 10,0, co oznacza, że będzie wyraźnie widoczna w roztworach zasadowych. W kontekście standardów laboratoryjnych, korzystanie z fenoloftaleiny dla analizy pH jest zgodne z dobrymi praktykami, ponieważ pozwala na szybkie i efektywne określenie odczynu, co jest kluczowe w wielu zastosowaniach, takich jak analiza wody, synteza chemiczna, czy też kontrola jakości produktów chemicznych.

Pytanie 27

Na podstawie danych zawartych w tabeli wskaż, który dodatek należy zastosować, w celu konserwacji próbek wody przeznaczonych do oznaczania jej twardości.

Tabela. Techniki konserwacji próbek wody
Stosowany dodatek
lub technika
Rodzaje próbek, do których dodatek lub technika jest stosowana
Kwas siarkowy(VI)zawierające węgiel organiczny, oleje lub tłuszcze, przeznaczone do oznaczania ChZT, zawierające aminy lub amoniak
Kwas azotowy(V)zawierające związki metali
Wodorotlenek soduzawierające lotne kwasy organiczne lub cyjanki
Chlorek rtęci(II)zawierające biodegradowalne związki organiczne oraz różne formy azotu i fosforu
Chłodzenie w
temperaturze 4°C
zawierające mikroorganizmy, barwę, zapach, organiczne formy węgla, azotu i fosforu, przeznaczone do określenia kwasowości, zasadowości oraz BZT
A. Wodorotlenek sodu.
B. Kwas azotowy(V).
C. Chlorek rtęci(II).
D. Kwas siarkowy(VI).
Kwas azotowy(V) jest powszechnie stosowany w laboratoriach do konserwacji próbek wody, zwłaszcza gdy istnieje potrzeba oznaczania twardości wody. Twardość wody jest głównie spowodowana obecnością kationów wapnia i magnezu, które mogą reagować z zanieczyszczeniami. Kwas azotowy(V) działa jako środek konserwujący, stabilizując próbki i zapobiegając ich degradacji przy jednoczesnym zachowaniu właściwości chemicznych. W praktyce, dodatek tego kwasu pozwala na dłuższe przechowywanie próbek przed analizą, co jest kluczowe dla dokładnych wyników. W standardach laboratoriach analitycznych, takich jak ISO 5667 dotyczący pobierania próbek wody, zaleca się stosowanie odpowiednich środków konserwujących, w tym kwasu azotowego(V), w celu uzyskania rzetelnych wyników analitycznych. Stosowanie tego kwasu w praktyce zapewnia, że próbki zachowują swoją integralność chemiczną, co jest niezbędne do precyzyjnego określenia twardości wody.

Pytanie 28

Mając wagę laboratoryjną z dokładnością pomiaru 10 mg, nie da się wykonać odważki o masie

A. 130 mg
B. 1300 mg
C. 13 g
D. 0,013 g
Odpowiedzi takie jak 1300 mg, 13 g i 130 mg są niepoprawne z kilku powodów. Z perspektywy technicznej, każda z tych mas jest znacznie większa niż minimalna granica dokładności wagi wynosząca 10 mg, co oznacza, że można je zmierzyć z poziomem precyzji, który zapewnia ta waga. Jednakże, nie uwzględniają one kluczowego aspektu związanego z wymaganiami dotyczących dokładności przy ważeniu mniejszych mas. Błąd w myśleniu polega na nieodróżnieniu granicy dokładności od możliwości pomiarowych. Waga laboratoryjna o dokładności 10 mg jest idealna do ważenia substancji o masach powyżej tej wartości, ale nie może być wykorzystywana do pomiarów, które są poniżej tej granicy, ponieważ wyniki mogą być nieprecyzyjne i niepewne. Na przykład, przygotowując roztwory o dużej dokładności, jak w przypadku chemii analitycznej, musimy wystrzegać się używania wag, które nie mogą dokładnie zmierzyć masy próbki. W laboratoriach często korzysta się z wag o wyższej dokładności, takich jak wagi analityczne, które pozwalają na ważenie do 0,1 mg, co zwiększa zakres precyzyjnego ważenia. Ponadto, standardy laboratoryjne, takie jak ISO, podkreślają znaczenie stosowania odpowiednich narzędzi pomiarowych, aby zapewnić wiarygodność wyników eksperymentów i analiz. Dlatego istotne jest, aby mieć świadomość ograniczeń wag i stosować je zgodnie z ich parametrami technicznymi.

Pytanie 29

Aspirator jest urządzeniem wykorzystywanym do pobierania próbek

A. gleby
B. ścieków
C. powietrza
D. wody
Aspirator powietrza to urządzenie wykorzystywane do pobierania próbek gazów i powietrza w różnych zastosowaniach, w tym w monitorowaniu jakości powietrza, badaniach środowiskowych oraz analizach przemysłowych. Dzięki aspiratorom można uzyskać reprezentatywne próbki powietrza, co jest kluczowe w ocenie zanieczyszczeń atmosferycznych, takich jak pyły, gazy i toksyczne substancje chemiczne. Przykładowo, w branży ochrony środowiska aspiratory służą do oceny stężenia substancji lotnych w powietrzu, co jest istotne dla przestrzegania norm emisji określonych przez przepisy prawa, w tym standardy Unii Europejskiej. Dobre praktyki w używaniu aspiratorów obejmują regularne kalibracje urządzeń oraz stosowanie filtrów, które zwiększają dokładność pobierania próbek. Dodatkowo, aspiratory są często wykorzystywane w laboratoriach do badania powietrza w pomieszczeniach, co ma na celu ochronę zdrowia ludzi oraz zapewnienie odpowiednich warunków pracy.

Pytanie 30

Substancje kancerogenne to

A. mutagenne
B. enzymatyczne
C. uczulające
D. rakotwórcze
Kancerogenne substancje to związki chemiczne, które mają zdolność wywoływania nowotworów w organizmach żywych. Są one klasyfikowane jako rakotwórcze, co oznacza, że mogą prowadzić do transformacji komórek normalnych w komórki nowotworowe. Przykłady takich substancji to azbest, benzen oraz formaldehyd, które są powszechnie znane z ich szkodliwego wpływu na zdrowie i są regulowane przez różne normy, takie jak Międzynarodowa Agencja Badań nad Rakiem (IARC) czy OSHA (Occupational Safety and Health Administration). Wiedza o kancerogenności substancji ma kluczowe znaczenie w przemyśle, szczególnie w kontekście ochrony pracowników oraz zachowania zdrowia publicznego. Organizacje muszą wdrażać programy oceny ryzyka oraz strategie minimalizacji ekspozycji na te substancje w celu ochrony zdrowia ludzi i środowiska. W wielu krajach istnieją również regulacje prawne, które wymagają oznaczania produktów zawierających kancerogenne substancje, co pozwala konsumentom na podejmowanie świadomych decyzji.

Pytanie 31

W chemicznym laboratorium apteczka pierwszej pomocy powinna zawierać

A. środki opatrunkowe
B. leki nasercowe
C. spirytus salicylowy
D. leki przeciwbólowe
Środki opatrunkowe są niezbędnym elementem apteczki pierwszej pomocy w laboratorium chemicznym, ponieważ ich podstawową funkcją jest zabezpieczenie ran oraz ochrona przed zakażeniem. W przypadku wystąpienia urazów, takich jak skaleczenia czy oparzenia, odpowiednie opatrunki umożliwiają szybkie udzielenie pomocy i zmniejszają ryzyko późniejszych powikłań. Na przykład, w sytuacji, gdy pracownik ma do czynienia z chemikaliami, niektóre z nich mogą powodować podrażnienia lub oparzenia. Szybkie zastosowanie opatrunku może złagodzić skutki i przyspieszyć proces gojenia. Dodatkowo, zgodnie z wytycznymi organizacji takich jak OSHA (Occupational Safety and Health Administration) oraz NFPA (National Fire Protection Association), każda przestrzeń robocza w laboratoriach powinna być odpowiednio wyposażona w materiały opatrunkowe, aby zapewnić bezpieczeństwo pracowników. Warto również pamiętać o regularnym przeglądaniu oraz uzupełnianiu apteczki, aby zawsze była gotowa do użycia, gdy zajdzie taka potrzeba.

Pytanie 32

Aby wykonać chromatografię cienkowarstwową, należy przygotować eluent składający się z toluenu, acetonu oraz kwasu mrówkowego w proporcjach objętościowych 10:4:1. Jakie ilości poszczególnych składników powinny być wykorzystane do uzyskania 300 cm3 eluentu?

A. 300 cm3 toluenu, 75 cm3 acetonu oraz 30 cm3 kwasu mrówkowego
B. 80 cm3 toluenu, 200 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
C. 200 cm3 toluenu, 80 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
D. 150 cm3 toluenu, 60 cm3 acetonu oraz 15 cm3 kwasu mrówkowego
Aby przygotować eluent w chromatografii cienkowarstwowej, musimy zachować odpowiednie proporcje objętości składników. W przypadku stosunku 10:4:1 oznacza to, że na każde 10 części toluenu przypada 4 części acetonu i 1 część kwasu mrówkowego. Sumując te proporcje, otrzymujemy 15 części łącznie. Dla 300 cm³ eluentu obliczamy objętości poszczególnych składników w następujący sposób: (10/15) * 300 cm³ = 200 cm³ toluenu, (4/15) * 300 cm³ = 80 cm³ acetonu, oraz (1/15) * 300 cm³ = 20 cm³ kwasu mrówkowego. Przygotowanie eluentu w tych dokładnych proporcjach zapewnia optymalne warunki separacji składników w chromatografii. W praktyce, takie precyzyjne przygotowanie roztworów jest istotne, aby zapewnić powtarzalność wyników oraz zgodność z normami laboratoryjnymi dotyczących analizy chemicznej. Warto również zauważyć, że stosowanie odpowiednich proporcji składników eluentu może wpływać na efektywność separacji i rozdziału substancji, co jest kluczowe w analityce chemicznej.

Pytanie 33

Który z poniższych sposobów homogenizacji próbki jest najbardziej odpowiedni do przygotowania próbki gleby do analizy chemicznej?

A. Dokładne wymieszanie i rozdrobnienie całej próbki
B. Pobranie losowego fragmentu bez rozdrabniania
C. Suszenie gleby przed pobraniem próbki bez mieszania
D. Przesianie gleby przez sitko o dużych oczkach bez mieszania
<strong>Homogenizacja próbki gleby</strong> to kluczowy etap przygotowania materiału do analiz chemicznych, bo tylko wtedy wyniki są powtarzalne i wiarygodne. Dokładne wymieszanie i rozdrobnienie całej próbki pozwala uzyskać reprezentatywną mieszaninę – każda pobrana część ma w przybliżeniu taki sam skład jak całość. W praktyce w laboratoriach stosuje się najpierw suszenie gleby, potem rozdrabnianie w moździerzu lub młynku, a następnie dokładne mieszanie, czasem dodatkowo przesiewanie przez drobne sito (np. 2 mm), żeby usunąć kamienie i korzenie. <em>Bez tego etapu nie ma sensu przeprowadzać analiz, bo próbka może być niejednorodna i nie oddawać faktycznego składu gruntu</em>. To podstawa w każdej procedurze dotyczącej badań środowiskowych, rolniczych czy przemysłowych. Moim zdaniem, jeśli ktoś pominie ten krok, to nawet najlepszy sprzęt i odczynniki nic nie dadzą – można otrzymać wyniki całkowicie przypadkowe. Dobre praktyki laboratoryjne (GLP) wręcz wymagają standaryzacji homogenizacji, bo to wpływa na jakość i porównywalność danych. Warto pamiętać, że nawet w terenie, tuż po pobraniu próbki, zaleca się wstępne wymieszanie, a dopiero potem dalsze przygotowanie w laboratorium.

Pytanie 34

Roztwór amoniaku o stężeniu 25% nie powinien być trzymany

A. w butelce z ciemnego szkła.
B. z dala od źródeł ciepła i promieni słonecznych.
C. w pobliżu otwartego ognia.
D. pod sprawnie działającym wyciągiem.
Przechowywanie roztworu amoniaku o stężeniu 25% w butelce z ciemnego szkła może wydawać się bezpieczne, jednak nie jest to odpowiednia praktyka. Ciemne szkło zazwyczaj stosuje się do ochrony substancji przed działaniem światła, co jest istotne dla substancji wrażliwych na fotodegradację. W przypadku amoniaku, jego stabilność chemiczna nie jest bezpośrednio zagrożona przez światło, a kluczowym czynnikiem w jego przechowywaniu jest unikanie wysokiej temperatury i otwartego ognia. Użycie jasnego szkła w odpowiednich pojemnikach chemicznych może być bezpieczne, o ile pojemnik jest dostosowany do przechowywania materiałów niebezpiecznych. Z kolei przechowywanie amoniaku pod sprawnie działającym wyciągiem może poprawić bezpieczeństwo, ale nie eliminuje zagrożeń związanych z jego zapłonem, jeżeli znajduje się on w pobliżu źródła ognia. Przechowywanie substancji chemicznych powinno opierać się na analizie ryzyka, w której należy uwzględnić właściwości chemiczne substancji. Dodatkowo, brak oddalenia amoniaku od źródeł ciepła i promieni słonecznych może prowadzić do zwiększenia ciśnienia wewnętrznego pojemnika oraz parowania amoniaku, co stwarza dodatkowe zagrożenia. Dlatego należy stosować się do norm i regulacji dotyczących przechowywania substancji chemicznych, takich jak NFPA (National Fire Protection Association) oraz zalecenia dotyczące BHP, aby zapewnić bezpieczeństwo w laboratoriach oraz zminimalizować ryzyko wypadków.

Pytanie 35

Użycie płuczek jest konieczne w trakcie procesu

A. destylacji
B. oczyszczania gazów
C. flotacji
D. krystalizacji
Płuczkami, czyli urządzeniami stosowanymi do oczyszczania gazów, posługujemy się w celu usunięcia zanieczyszczeń oraz toksycznych substancji z gazów odpadowych. W procesie tym gaz przepływa przez ciecz, najczęściej wodę lub roztwory chemiczne, które absorbują zanieczyszczenia. Przykładem zastosowania płuczek jest przemysł chemiczny, gdzie gazy powstałe w wyniku reakcji chemicznych często zawierają szkodliwe dla środowiska substancje. Płuczki są zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące emisji gazów do atmosfery. Dzięki zastosowaniu nowoczesnych technologii płuczek, można osiągnąć wysoką efektywność oczyszczania, co przyczynia się do zmniejszenia emisji zanieczyszczeń i ochrony zdrowia publicznego. W praktyce płuczkami można również oczyszczać gazy przemysłowe, co jest kluczowe w kontekście zrównoważonego rozwoju i odpowiedzialności ekologicznej przedsiębiorstw.

Pytanie 36

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. elastyczne, o największych porach
B. elastyczne, o najmniejszych porach
C. sztywne, o największych porach
D. sztywne, o najmniejszych porach
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 37

Podstawowa substancja w analizie miareczkowej charakteryzuje się następującymi właściwościami:

A. czysta, higroskopijna, przebieg reakcji ściśle zgodny ze stechiometrią
B. ciekła, czysta, niehigroskopijna
C. czysta, niehigroskopijna, ściśle odpowiadająca swojemu wzorowi
D. stała, czysta, której przebieg reakcji niekoniecznie musi być ściśle stechiometryczny
Odpowiedź 'czysta, niehigroskopijna, ściśle odpowiadająca swojemu wzorowi' jest poprawna, ponieważ substancje podstawowe w analizie miareczkowej muszą być czyste, aby zapewnić dokładność i powtarzalność wyników. Zanieczyszczenia mogą wprowadzać błędy w pomiarach i wpływać na przebieg reakcji chemicznych. Niehigroskopijność oznacza, że substancja nie pochłania wilgoci z atmosfery, co jest kluczowe dla stabilności i dokładności pomiarów masy. Dodatkowo, substancja musi ściśle odpowiadać swojemu wzorowi chemicznemu, co oznacza, że jej skład musi być znany i ustalony, aby móc przeprowadzić obliczenia stechiometryczne w miareczkowaniu. Przykładowo, w miareczkowaniu kwasu solnego (HCl) z wodorotlenkiem sodu (NaOH), znajomość dokładnego stężenia tych reagentów jest niezbędna do precyzyjnego określenia ilości substancji w próbce. Zgodność ze wzorem chemicznym umożliwia również stosowanie odpowiednich równań reakcji do przeprowadzenia obliczeń, co jest fundamentem analizy chemicznej w laboratoriach.

Pytanie 38

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. CaCO3 → CaO + CO2
B. 2 KMnO4 → K2MnO4 + MnO2 + O2
C. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
D. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
Pozostałe podane reakcje nie są reakcjami redox, co można wyjaśnić poprzez zrozumienie podstawowych zasad dotyczących utleniania i redukcji. W reakcji 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4 mamy do czynienia z reakcją zobojętniania, w której nie następuje transfer elektronów, a zmiana stopni utlenienia nie zachodzi. Podobnie, w reakcji 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O mamy do czynienia z reakcją kwasowo-zasadową, a nie redox, ponieważ wszystkie atomy zachowują swoje stopnie utlenienia. Reakcja CaCO3 → CaO + CO2 również nie jest reakcją redox, choć zachodzi w niej dekompozycja, to nie obserwujemy zmian w stopniach utlenienia składników. Typowym błędem w analizie reakcji chemicznych jest koncentrowanie się tylko na pojawiających się produktach, zamiast na analizie stopni utlenienia reagentów przed i po reakcji. Niezrozumienie różnicy między reakcjami utleniającymi a innymi typami reakcji chemicznych prowadzi do mylnych wniosków, co jest istotne w kontekście nauczania chemii oraz praktycznego stosowania tej wiedzy w laboratoriach i przemyśle chemicznym.

Pytanie 39

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
B. miareczkowanie innym roztworem, który nie jest mianowany.
C. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
D. zmierzenie gęstości tego roztworu.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 40

Który sposób przechowywania próbek żywności jest niezgodny z Rozporządzeniem Ministra Zdrowia?

Fragment Rozporządzenia Ministra Zdrowia w sprawie pobierania i przechowywania próbek żywności przez zakłady żywienia zbiorowego typu zamkniętego
(...)
Zakład przechowuje próbki, przez co najmniej 3 dni, licząc od chwili, kiedy cała partia została spożyta w miejscu wyłącznym właściwym do tego celu oraz w warunkach zapewniających utrzymanie temperatury +4°C lub niższej, w zależności od przechowywanego produktu.
Miejsce przechowywania próbek musi być tak zabezpieczone, aby dostęp do niego posiadał tylko kierujący zakładem lub osoba przez niego upoważniona.
A. Przechowywanie w temperaturze maksymalnej +4°C.
B. Przechowywanie przez co najmniej 3 dni od czasu spożycia całej partii żywności.
C. Przechowywanie w specjalnie do tego celu wyznaczonym miejscu, do którego dostęp posiada kierownik zakładu lub osoba przez niego upoważniona.
D. Przechowywanie przez maksymalnie 3 dni od czasu pobrania próbek.
Odpowiedź wskazująca na przechowywanie próbek przez maksymalnie 3 dni od czasu ich pobrania jest poprawna, ponieważ jest sprzeczna z przepisami zawartymi w Rozporządzeniu Ministra Zdrowia. Zgodnie z tymi regulacjami, zakład ma obowiązek przechowywać próbki przez co najmniej 3 dni, liczonych od momentu spożycia całej partii żywności. Ta zasada jest istotna, aby zapewnić odpowiednią kontrolę jakości i bezpieczeństwa żywności. W praktyce oznacza to, że próbki żywności muszą być dostępne do analizy przez określony czas, co jest kluczowe w przypadku wykrycia problemów zdrowotnych związanych z danym produktem. Zastosowanie tej regulacji wspiera przejrzystość procesu zarządzania jakością oraz umożliwia przeprowadzenie niezbędnych badań, co jest zgodne z dobrymi praktykami w branży spożywczej, takimi jak HACCP (Analiza Zagrożeń i Krytyczne Punkty Kontroli). Przechowywanie w odpowiednich warunkach i przez określony czas jest niezbędne dla zachowania integralności próbek i ich przydatności do analizy.