Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 20:57
  • Data zakończenia: 17 grudnia 2025 21:06

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do jakich zastosowań należy używać zapraw szamotowych?

A. do mocowania izolacji termicznych w ścianach
B. do wykonywania posadzek na gruncie
C. do realizacji tynków w pomieszczeniach sanitarnych
D. do łączenia ceramicznych elementów palenisk
Wybór innych odpowiedzi może wynikać z niepełnego zrozumienia specyfiki zapraw szamotowych oraz ich zastosowań. Zaprawy stosowane do mocowania izolacji termicznych ścian nie są odpowiednie, gdyż do tych celów stosuje się materiały o innych właściwościach, takie jak zaprawy cementowe lub specjalistyczne kleje, które zapewniają dobrą przyczepność i odpowiednią izolacyjność. Co więcej, wykonywanie posadzek na gruncie wymaga zastosowania zapraw, które zapewniają wytrzymałość obciążeniową i odporność na wilgoć. Zaprawy szamotowe nie spełniają tych wymagań, gdyż ich główną funkcją jest łączenie elementów narażonych na wysokie temperatury, a nie typowe zastosowania budowlane. Z kolei stosowanie zapraw szamotowych do tynków w pomieszczeniach sanitarnych jest niewłaściwe, ponieważ w takich warunkach mamy do czynienia z wymogami dotyczącymi odporności na wilgoć, pleśnie i grzyby, co wymaga zastosowania tynków przeznaczonych do użytku w wilgotnych pomieszczeniach. Użycie zaprawy szamotowej w takich zastosowaniach byłoby nieefektywne i mogłoby prowadzić do uszkodzeń strukturalnych oraz obniżenia funkcjonalności pomieszczenia. W związku z tym, kluczowe jest, aby znać i stosować odpowiednie materiały budowlane zgodnie z ich przeznaczeniem oraz wymaganiami technicznymi, co zapewnia długowieczność i stabilność konstrukcji.

Pytanie 2

Na podstawie fragmentu instrukcji producenta oblicz, ile palet bloczków gazobetonowych o wymiarach
24×24×59 cm potrzeba do wymurowania dwóch ścian wysokości 2,75 m, długości 6 m i grubości 24 cm każda.

Informacje producenta bloczków betonu komórkowego
Wymiary bloczka
[cm]
Zużycie
[szt./m²]
Masa
[kg]
Liczba na palecie
[szt.]
24×24×59722,448
12×24×59712,296
8×24×5979,2144
A. 3 palety.
B. 58 palet.
C. 116 palet.
D. 5 palet.
Wybierając inną odpowiedź niż 5 palet, można napotkać na kilka typowych błędów obliczeniowych. Na przykład, wybierając 3 palety, można zakładać, że wystarczająca ilość bloczków zmieści się w tej liczbie, co jest mylne. Obliczenia wskazują, że potrzeba znacznie więcej bloczków, ponieważ 3 palety zapewniłyby jedynie 144 bloczki, co jest niewystarczające dla zapotrzebowania. Z kolei wybór 58 lub 116 palet wskazuje na dramatyczne przeszacowanie ilości potrzebnych materiałów. Obydwie te odpowiedzi mogą wynikać z błędów w założeniach dotyczących objętości lub niewłaściwego zrozumienia liczby bloczków na paletę. Brak dokładnego obliczenia objętości ścian oraz objętości bloczków może prowadzić do takich nieporozumień. Zrozumienie objętości to kluczowy element w budownictwie, ponieważ wpływa na planowanie, zarządzanie budżetem oraz harmonogramem. Właściwe zrozumienie procesu obliczeń materiałowych oraz znajomość standardów dotyczących wielkości paczek materiałów budowlanych są kluczowe w codziennej pracy inżynierów i projektantów. Ignorując te zasady, można znacząco opóźnić projekt oraz zwiększyć koszty, co jest sprzeczne z najlepszymi praktykami branżowymi.

Pytanie 3

Na fotografii przedstawiono materiał izolacyjny przeznaczony do wykonywania izolacji

Ilustracja do pytania
A. akustycznej i przeciwwodnej.
B. termicznej i akustycznej.
C. przeciwwilgociowej i paroprzepuszczalnej.
D. przeciwwodnej i przeciwwilgociowej.
Odpowiedź dotycząca izolacji termicznej i akustycznej jest prawidłowa, ponieważ wełna mineralna, prezentowana na zdjęciu, jest jednym z najczęściej stosowanych materiałów izolacyjnych w budownictwie. Charakteryzuje się doskonałymi właściwościami termicznymi, co oznacza, że skutecznie ogranicza utratę ciepła w budynkach, co jest zgodne z aktualnymi standardami efektywności energetycznej budowli. Jest to kluczowy aspekt, gdyż odpowiednia izolacja termiczna wpływa na obniżenie kosztów ogrzewania. Dodatkowo, wełna mineralna ma także znakomite właściwości akustyczne, co czyni ją idealnym rozwiązaniem w kontekście budowy ścian działowych czy sufitów podwieszanych, gdzie istotne jest ograniczenie hałasu. W praktyce, materiał ten jest również łatwy w obróbce i może być stosowany zarówno w nowych budynkach, jak i podczas modernizacji starszych obiektów, co czyni go wszechstronnym rozwiązaniem w branży budowlanej.

Pytanie 4

Na rysunku przedstawiono mur wykonany z zastosowaniem wiązania

Ilustracja do pytania
A. wielowarstwowego.
B. krzyżykowego.
C. pospolitego.
D. polskiego.
Wybór wiązania krzyżykowego, pospolitego lub wielowarstwowego jest nieprawidłowy ze względu na fundamentalne różnice w sposobie układania cegieł, które wpływają na stabilność i wytrzymałość muru. Wiązanie krzyżykowe charakteryzuje się stosowaniem cegieł w układzie, gdzie na zmianę ułożone są długie i krótkie boki cegieł, co może prowadzić do niejednorodnego rozkładu obciążeń oraz potencjalnych punktów osłabienia. Wiązanie pospolite, z kolei, polega na układaniu cegieł w taki sposób, że wszystkie są ustawione w linii, co również osłabia spoiny i zwiększa ryzyko pęknięć. Zastosowanie wiązania wielowarstwowego, mimo że może być korzystne w niektórych konstrukcjach, nie jest adekwatne w kontekście muru przedstawionego w pytaniu, gdzie kluczowe jest zapewnienie jednorodności i stabilności. Typowym błędem myślowym jest zrozumienie, że różne metody układania cegieł mogą być używane wymiennie; jednak każda z nich ma swoje unikalne właściwości i zastosowania, które powinny być dostosowane do specyficznych wymagań projektowych. W związku z tym, ważne jest, aby przy wyborze odpowiedniego wiązania kierować się nie tylko estetyką, ale przede wszystkim zasadami inżynierii budowlanej i najlepszymi praktykami w zakresie konstrukcji.

Pytanie 5

Czym charakteryzuje się tynk trójwarstwowy, który składa się z następujących po sobie warstw?

A. 1. narzut, 2. obrzutka, 3. gładź
B. 1. gładź, 2. obrzutka, 3. narzut
C. 1. gładź, 2. narzut, 3. obrzutka
D. 1. obrzutka, 2. narzut, 3. gładź
Wybór kolejności kolejnych warstw tynku trójwarstwowego, przedstawiony w niepoprawnych odpowiedziach, jest oparty na niepełnym zrozumieniu zasad aplikacji tynków i ich funkcji. Niezrozumienie roli obrzutki jako pierwszej warstwy prowadzi do ryzyka niewłaściwego przygotowania podłoża, co może skutkować odspajaniem się kolejnych warstw. Obrzutka, ze względu na swoją gruboziarnistą strukturę, jest kluczowa do zapewnienia przyczepności narzutu. Zastosowanie gładzi jako pierwszej warstwy jest technicznie błędne, ponieważ bez odpowiednio przygotowanej powierzchni, gładź nie będzie się trzymać, co może prowadzić do jej pękania i łuszczenia się. Z kolei błędne umiejscowienie narzutu przed obrzutką sprawia, że cała konstrukcja traci swoje właściwości izolacyjne i estetyczne. W praktyce, brak właściwego zastosowania kolejności warstw może prowadzić do kosztownych napraw i konieczności usunięcia i ponownego nałożenia tynku, co jest nieefektywne i niezgodne z zaleceniami branżowymi. Dlatego tak ważne jest, aby zrozumieć, jak każda warstwa przyczynia się do ostatecznego efektu i trwałości tynku, oraz aby stosować się do ustalonych standardów w budownictwie.

Pytanie 6

Która z poniższych zapraw jest odporna na wysokie temperatury?

A. Cementowa
B. Wapienna
C. Krzemionkowa
D. Silikatowa
Zaprawy silikatowe, wapienne i cementowe różnią się znacznie pod względem właściwości ogniotrwałych. Zaprawy silikatowe, mimo że są często wykorzystywane w budownictwie, nie są uważane za ogniotrwałe, ponieważ ich skład chemiczny zawiera znaczną ilość składników, które mogą się topnieć lub deformować w wysokich temperaturach. Stosowanie ich w miejscach narażonych na intensywne ciepło może prowadzić do ich uszkodzenia, co jest szczególnie istotne w kontekście konstrukcji przemysłowych oraz pieców. W przypadku zapraw wapiennych, chociaż mogą one być używane w różnych zastosowaniach budowlanych, ich odporność na wysoką temperaturę jest ograniczona. Wysoka zawartość węglanu wapnia sprawia, że w warunkach podwyższonej temperatury następuje ich rozkład, co prowadzi do utraty struktury i wytrzymałości. Z kolei zaprawy cementowe, mimo że są powszechnie stosowane ze względu na swoją wytrzymałość, również nie są odpowiednie do zastosowań ogniotrwałych, ponieważ w warunkach ekstremalnych mogą doświadczać pęknięć i deformacji spowodowanych skurczem termicznym. Wiele osób popełnia błąd myślowy, zakładając, że każdy rodzaj zaprawy, który wydaje się być wytrzymały, będzie również odporny na ciepło. Kluczowe jest zrozumienie różnic pomiędzy materiałami budowlanymi oraz ich specyfiką zastosowania, aby uniknąć problemów konstrukcyjnych w przyszłości.

Pytanie 7

Na której ilustracji przedstawiono pacę przeznaczoną do nakładania tynków mozaikowych?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 3.
C. Na ilustracji 4.
D. Na ilustracji 1.
Wybór innej ilustracji jako przedstawiającej pacę do nakładania tynków mozaikowych może wynikać z nieporozumienia dotyczącego funkcji i konstrukcji poszczególnych narzędzi budowlanych. Narzędzia przedstawione na innych ilustracjach mogą mieć podobny wygląd, ale ich zastosowanie jest zupełnie inne. Na przykład, zacieraczki, które często są mylone z pacami do tynków mozaikowych, mają węższe i bardziej zaokrąglone krawędzie, co jest przystosowane do wygładzania powierzchni gładzi gipsowych, a nie do aplikacji tynków z dekoracyjnymi elementami. Użycie złego narzędzia może prowadzić do nierównomiernego nałożenia tynku, co jest niezgodne z dobrymi praktykami budowlanymi. Dodatkowo, niewłaściwy dobór narzędzi może zwiększać ryzyko powstawania pęknięć i innych defektów tynków, co w dłuższej perspektywie skutkuje koniecznością przeprowadzania kosztownych napraw. Kluczowe jest, aby przed wyborem narzędzi dokładnie zrozumieć ich zastosowanie oraz techniki pracy z nimi. Osoby pracujące w budownictwie powinny być świadome różnic między narzędziami oraz ich odpowiednich funkcji, aby móc efektywnie i profesjonalnie wykonywać swoje zadania.

Pytanie 8

Jaki strop gęstożebrowy przedstawiono na rysunku?

Ilustracja do pytania
A. Akermana
B. Fert-40
C. DZ-3
D. Teriva
Wybór odpowiedzi innych niż Teriva wskazuje na nieporozumienie dotyczące klasyfikacji stropów gęstożebrowych. Odpowiedzi takie jak Fert-40, DZ-3 czy Akermana odnoszą się do różnych systemów stropowych, które różnią się od siebie zarówno w konstrukcji, jak i w zastosowaniu. Fert-40 to system, który wykorzystuje elementy prefabrykowane, ale jego kształt i sposób montażu różnią się od stropu Teriva. Odróżnia się on także zastosowaniem innego rodzaju pustaków, co wpływa na parametry użytkowe. DZ-3 to system przestarzały, który nie spełnia współczesnych norm jakościowych i technologicznych, a Akermana, mimo że również jest stropem gęstożebrowym, charakteryzuje się inną geometrią oraz wymaganiami montażowymi. Typowe błędy prowadzące do takich wyborów to brak znajomości różnic między systemami stropowymi oraz niepełne zrozumienie ich właściwości mechanicznych. Kluczowe jest zrozumienie, że każdy z tych systemów ma swoje unikalne zastosowania i parametry, co wpływa na ich wybór w projekcie budowlanym. Wiedza na temat różnic między systemami stropowymi jest niezbędna dla inżynierów budowlanych oraz architektów, aby podejmować świadome decyzje projektowe zgodne z najlepszymi praktykami branżowymi.

Pytanie 9

Jaki będzie koszt brutto produkcji 20 m3 mieszanki betonowej, jeżeli cena za 1 m3 wynosi 200 zł netto i obowiązuje podstawowa stawka VAT w wysokości 23%?

A. 4920 zł
B. 4000 zł
C. 5412 zł
D. 4400 zł
Aby obliczyć wartość brutto produkcji 20 m3 mieszanki betonowej, należy najpierw obliczyć koszt netto tej ilości. Koszt wyprodukowania 1 m3 mieszanki betonowej wynosi 200 zł, więc koszt netto dla 20 m3 wyniesie 200 zł/m3 * 20 m3 = 4000 zł. Następnie, aby uzyskać wartość brutto, należy dodać do kosztu netto podatek VAT wynoszący 23%. Obliczamy wartość VAT: 4000 zł * 0,23 = 920 zł. Wartość brutto to zatem: 4000 zł + 920 zł = 4920 zł. W praktyce, znajomość obliczania wartości brutto jest kluczowa w branży budowlanej, ponieważ pozwala na prawidłowe ustalanie kosztów projektów oraz wystawianie faktur. Dobrze jest mieć świadomość przepisów VAT, aby unikać problemów prawnych związanych z nieprawidłowym naliczaniem podatków. Warto także pamiętać, że błędne obliczenia mogą prowadzić do strat finansowych w firmach budowlanych.

Pytanie 10

Jakie kruszywo wykorzystuje się do produkcji betonów klasycznych?

A. Keramzyt
B. Łupkoporyt
C. Baryt
D. Żwir
Choć keramzyt, baryt i łupkoporyt mogą mieć swoje zastosowanie w budownictwie, nie są one odpowiednie do produkcji betonów zwykłych. Keramzyt, jako kruszywo lekkie, wykorzystywane jest głównie do produkcji betonu lekkiego, który ma inne właściwości fizyczne i mechaniczne niż beton zwykły. Jego zastosowanie w sytuacjach, gdzie zmniejszenie masy konstrukcji jest kluczowe, może prowadzić do nieporozumień w kontekście projektowania betonów o określonej wytrzymałości. Baryt, z kolei, jest stosowany głównie w przemyśle naftowym oraz w produkcji betonów o dużej gęstości, co oznacza, że jest niewłaściwy w kontekście standardowych betonów budowlanych, gdzie nie jest wymagane zwiększenie masy. W końcu, łupkoporyt, jako materiał kruszywowy, jest mniej dostępny i nieekonomiczny w produkcji betonu, a jego właściwości nie są optymalne do zastosowań budowlanych. Często błędne wybory dotyczące kruszyw wynikają z braku zrozumienia ich właściwości oraz zastosowań w konstrukcjach budowlanych, co może prowadzić do poważnych problemów strukturalnych w przyszłości.

Pytanie 11

Na rysunku przedstawiono wiązanie

Ilustracja do pytania
A. wielowarstwowe muru o grubości 2 cegieł.
B. kowadełkowe muru o grubości 1,5 cegły.
C. kowadełkowe muru o grubości 2 cegieł.
D. pospolite muru o grubości 2,5 cegły.
Wybór odpowiedzi, która sugeruje inny typ muru, skutkuje błędnym zrozumieniem zasady wiązania cegieł. Pospolite muru o grubości 2,5 cegły oraz kowadełkowe mur o grubości 1,5 cegły nie spełniają wymogów projektowych dla stabilnych konstrukcji. Pospolite muru, gdzie cegły są układane w jednej linii, prowadzi do zwiększonego ryzyka pęknięć, ponieważ nie zapewnia odpowiedniej rozkładu obciążeń. Z kolei kowadełkowe muru o grubości 1,5 cegły nie jest wystarczająco mocne, co może prowadzić do osiadania lub deformacji muru. Ważne jest, aby zrozumieć, że wiązania murarskie mają na celu nie tylko estetykę, ale przede wszystkim funkcjonalność. Niewłaściwe wiązanie może prowadzić do poważnych problemów konstrukcyjnych, takich jak niestabilność budynków. Dlatego kluczowe jest przestrzeganie standardów budowlanych oraz zasad dobrych praktyk, co w praktyce oznacza, że odpowiedni dobór grubości i rodzaju muru jest fundamentem każdej konstrukcji. W przypadku wielowarstwowych murów o grubości 2 cegieł również występują problemy, jeśli nie uwzględnia się odpowiedniego rozkładu warstw oraz ich właściwości termoizolacyjnych. W efekcie, niewłaściwy wybór rodzaju muru może prowadzić do kosztownych napraw w przyszłości oraz zagrożenia bezpieczeństwa użytkowników budynku.

Pytanie 12

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1 : 2 : 6, należy zastosować odpowiednio

A. 1 część cementu, 2 części wapna oraz 6 części wody
B. 1 część cementu, 2 części wapna i 6 części piasku
C. 1 część wapna, 2 części cementu oraz 6 części piasku
D. 1 część wapna, 2 części cementu oraz 6 części wody
Wszystkie błędne odpowiedzi opierają się na nieprawidłowym rozumieniu proporcji w zaprawie cementowo-wapiennej. Na przykład w jednym z przypadków podano, że należy użyć 1 części cementu, 2 części wapna i 6 części wody. Taki skład jest całkowicie nieodpowiedni, ponieważ nadmiar wody w zaprawie prowadzi do rozcieńczenia cementu, co negatywnie wpływa na jego zdolność do wiązania. W konsekwencji zaprawa staje się słaba, nietrwała i mniej odporna na czynniki zewnętrzne. W innym przypadku zaproponowano skład, który sugeruje użycie 1 części wapna, 2 części cementu i 6 części piasku. Taka proporcja zmienia równowagę składników, co obniża elastyczność i może prowadzić do problemów z przyczepnością. Jest to typowy błąd, polegający na niewłaściwym przypisaniu roli poszczególnych komponentów zaprawy; w tym przypadku cement nie pełniłby swojej funkcji jako podstawowe spoiwo. Ponadto, odpowiedzi wskazujące na użycie wody zamiast piasku są wysoce nieodpowiednie i mogą prowadzić do poważnych problemów w trakcie budowy. Użycie wody w nadmiarze niszczy strukturę zaprawy, co skutkuje ryzykiem uszkodzeń konstrukcyjnych w przyszłości. W kontekście budownictwa kluczowe jest przestrzeganie standardów jakości i właściwych proporcji, które zapewniają wytrzymałość oraz trwałość konstrukcji.

Pytanie 13

Jaką ilość chudego betonu trzeba przygotować, aby stworzyć podkład pod ławę fundamentową o szerokości 0,50 m i długości 10 m, jeśli grubość warstwy wynosi 15 cm?

A. 0,50 m3
B. 1,00 m3
C. 0,75 m3
D. 0,25 m3
Aby obliczyć objętość chudego betonu potrzebną do wykonania podkładu pod ławę fundamentową, należy zastosować wzór na objętość prostopadłościanu: V = a * b * h, gdzie a to szerokość, b to długość, a h to wysokość (grubość). W tym przypadku szerokość wynosi 0,50 m, długość 10 m, a grubość 15 cm (co jest równoważne 0,15 m). Zatem obliczenia będą wyglądały następująco: V = 0,50 m * 10 m * 0,15 m = 0,75 m3. Przygotowanie odpowiedniej ilości chudego betonu jest kluczowe dla zapewnienia właściwej nośności fundamentów oraz ich stabilności. W praktyce stosuje się chudy beton jako warstwę ochronną, która zapobiega nadmiernemu wchłanianiu wody przez materiał budowlany oraz chroni przed osiadaniem gruntu. W przypadku fundamentów, zgodnie z normami budowlanymi, należy również uwzględnić odpowiednie zbrojenie, aby zwiększyć odporność na działanie sił zewnętrznych. Dobrze przygotowany podkład pod fundamenty jest podstawą trwałości całej konstrukcji.

Pytanie 14

Przedstawiony na rysunku pustak ceramiczny służy do wykonania

Ilustracja do pytania
A. ścian z pustką powietrzną.
B. obudowy pionów kanalizacyjnych.
C. obudowy rur centralnego ogrzewania.
D. przewodów wentylacyjnych.
Analizując inne odpowiedzi, można zauważyć kilka istotnych błędów myślowych, które prowadzą do niepoprawnych wniosków. Odpowiedź o obudowie pionów kanalizacyjnych jest nietrafiona, ponieważ do ich budowy stosuje się materiały o wysokiej odporności na wilgoć i chemikalia, a pustak ceramiczny nie spełnia tych wymagań ze względu na swoją porowatość. Podobnie, wybór pustaków do obudowy rur centralnego ogrzewania jest niewłaściwy, gdyż te materiały muszą charakteryzować się właściwościami izolacyjnymi, które są kluczowe dla efektywności energetycznej całego systemu grzewczego. Pustaki ceramiczne nie zapewniają wystarczającej izolacji termicznej, co może prowadzić do strat ciepła. Z kolei odpowiedź o ścianach z pustką powietrzną jest myląca, ponieważ w tym przypadku stosuje się zazwyczaj materiały o lepszych właściwościach izolacyjnych, takie jak bloczki silikatowe lub materiały kompozytowe. Stosowanie pustaków ceramicznych do tych celów nie tylko obniża efektywność energetyczną budynku, ale także może prowadzić do problemów konstrukcyjnych w dłuższej perspektywie. W rezultacie, ważne jest, aby przy wyborze materiałów budowlanych kierować się nie tylko ich dostępnością, ale także ich właściwościami i przewidywanym zastosowaniem w kontekście norm budowlanych oraz najlepszych praktyk inżynieryjnych.

Pytanie 15

Na której ilustracji przedstawiono chwytak do przenoszenia cegieł?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 2.
C. Na ilustracji 3.
D. Na ilustracji 1.
Ilustracja 2 przedstawia chwytak do przenoszenia cegieł, co czyni ją poprawną odpowiedzią w tym pytaniu. Chwytaki tego typu są niezwykle istotnym narzędziem w branży budowlanej, umożliwiającym szybki i efektywny transport cegieł z miejsca na miejsce. Ich konstrukcja opiera się na mechanizmie zaciskowym, który pozwala na pewne i bezpieczne uchwycenie cegły, co znacznie minimalizuje ryzyko uszkodzenia materiału oraz obrażeń pracowników. W praktyce, chwytaki do przenoszenia cegieł są często stosowane na placach budowy, gdzie zwiększają wydajność pracy, a także redukują czas potrzebny na transport ciężkich materiałów. Warto zaznaczyć, że zgodność z normami BHP oraz standardami pracy odgrywa kluczową rolę w zapewnieniu bezpieczeństwa podczas używania takich narzędzi. Właściwe techniki przenoszenia materiałów, jak również znajomość właściwości cegieł, to aspekty, które każdy pracownik budowlany powinien znać, aby efektywnie i bezpiecznie wykonywać swoje zadania.

Pytanie 16

Izolację pionową przeciwwilgociową lekkiego typu na ścianach fundamentowych należy zrealizować

A. z jednej warstwy folii kubełkowej
B. z jednej warstwy emulsji asfaltowej
C. z dwóch warstw papy termozgrzewalnej
D. z dwóch warstw lepiku asfaltowego
Izolacja przeciwwilgociowa pionowa typu lekkiego na ścianach fundamentowych powinna być wykonana z dwóch warstw lepiku asfaltowego, co jest zgodne z aktualnymi standardami budowlanymi oraz praktykami w branży. Lepik asfaltowy charakteryzuje się wysoką odpornością na wilgoć i jest materiałem, który doskonale sprawdza się w warunkach gruntowych, gdzie występuje wysoka wilgotność. Dwie warstwy lepiku zapewniają lepszą szczelność i stanowią dodatkową barierę ochronną przed wodą. W praktyce zastosowanie dwóch warstw polega na nałożeniu pierwszej warstwy, a następnie drugiej, co zwiększa skuteczność izolacji poprzez eliminację potencjalnych miejsc na styku, gdzie mogłaby przenikać wilgoć. Warto również zwrócić uwagę na konieczność prawidłowego przygotowania podłoża oraz zastosowania odpowiednich technik aplikacji, takich jak termozgrzewanie, które zapewnia jednolite połączenie materiału z powierzchnią ścian fundamentowych. Zgodność z normami budowlanymi oraz dbałość o detale w procesie wykonawczym wpływają na trwałość izolacji oraz ochraniają budynek przed szkodliwym działaniem wody.

Pytanie 17

Który z podanych tynków należy do tynków o cienkiej warstwie?

A. Ciągnięty
B. Wypalony
C. Ciepłochronny
D. Akrylowy
Tynki ciągnione, wypalane oraz ciepłochronne różnią się od tynków akrylowych pod względem składu, przeznaczenia oraz metody aplikacji, co sprawia, że nie mogą być zaliczane do tynków cienkowarstwowych. Tynki ciągnione, stosowane przede wszystkim w budownictwie, mają zazwyczaj większą grubość i są kładzione w sposób tradycyjny za pomocą narzędzi takich jak kielnie. Tego typu tynki, często cementowe lub wapienne, służą głównie do wyrównywania powierzchni oraz przygotowania podłoża pod dalsze prace wykończeniowe. Z kolei tynki wypalane, które są tworzone na bazie ceramiki, są stosowane głównie w obiektach przemysłowych i nie są przystosowane do cienkowarstwowych aplikacji. Tynki ciepłochronne natomiast, choć ważne w kontekście izolacji termicznej budynków, również nie spełniają norm cienkowarstwowych, ponieważ ich grubość często przekracza 3 mm. Często pojawia się błędne myślenie, że tynki mogą być klasyfikowane jedynie na podstawie ich funkcji izolacyjnej lub estetycznej, podczas gdy kluczowym kryterium jest również ich grubość oraz sposób aplikacji. Dlatego ważne jest zrozumienie różnorodności tynków dostępnych na rynku oraz ich właściwości, aby podejmować właściwe decyzje w zakresie wyboru odpowiedniego materiału do określonych zastosowań budowlanych.

Pytanie 18

Podczas budowy ścian z małych bloczków z betonu komórkowego z użyciem zaprawy o właściwościach ciepłochronnych, wskazane jest stosowanie cienkowarstwowych spoin o szerokości

A. od 3,5 do 5,0 mm
B. od 1,0 do 3,0 mm
C. do 0,5 mm
D. od 5,5 do 6,5 mm
Odpowiedzi sugerujące spoiny 'od 3,5 do 5,0 mm', 'do 0,5 mm' oraz 'od 5,5 do 6,5 mm' są nieprawidłowe z różnych powodów. Spoina o grubości 'od 3,5 do 5,0 mm' jest zbyt gruba dla zastosowań z betonu komórkowego, co może prowadzić do efektu mostków termicznych. Grube spoiny zwiększają ryzyko utraty ciepła, co w efekcie prowadzi do wyższych kosztów ogrzewania. Z kolei odpowiedź 'do 0,5 mm' jest niepraktyczna, ponieważ zbyt cienkie spoiny mogą nie zapewnić odpowiedniej przyczepności zaprawy do bloczków, co z kolei może wpłynąć na stabilność muru. Takie podejście może prowadzić do osłabienia struktury, a w konsekwencji do pęknięć i innych uszkodzeń budynku. Natomiast spoiny o grubości 'od 5,5 do 6,5 mm' znacznie zwiększają ryzyko powstawania mostków termicznych oraz obniżają właściwości izolacyjne całej ściany. W praktyce, stosowanie odpowiednich grubości spoin jest kluczowe dla efektywności energetycznej budynków, a nieprzestrzeganie tej zasady może prowadzić do poważnych konsekwencji w trakcie eksploatacji. Dlatego istotne jest, aby studenci i praktycy budownictwa byli świadomi znaczenia odpowiednich grubości spoin przy użyciu betonu komórkowego i zapraw ciepłochronnych.

Pytanie 19

Szczeliny powietrzne w murach murowanych wprowadza się, aby poprawić

A. izolacyjność termiczną ściany
B. grubość ściany
C. ognioodporność ściany
D. izolacyjność akustyczną
Szczeliny powietrzne w ścianach murowanych są kluczowym elementem, który znacząco zwiększa izolacyjność termiczną tych ścian. Dzięki odpowiedniej konstrukcji, powietrze w szczelinach działa jako izolator, co redukuje wymianę ciepła między wnętrzem a otoczeniem. Zjawisko to jest szczególnie istotne w budownictwie energooszczędnym, gdzie celem jest minimalizacja strat ciepła. W praktyce, odpowiednia szerokość i umiejscowienie szczelin powietrznych mogą znacznie poprawić współczynniki przenikania ciepła (U), spełniając normy określone w przepisach budowlanych, takich jak Warunki Techniczne. Na przykład, w budynkach jednorodzinnych, stosowanie szczelin powietrznych może pomóc w osiągnięciu efektywności energetycznej zgodnej z wymaganiami dla budynków pasywnych. Warto również zauważyć, że skuteczne wykorzystanie szczelin powietrznych wpływa pozytywnie na komfort termiczny mieszkańców, co jest kluczowe w kontekście zrównoważonego rozwoju budownictwa.

Pytanie 20

Ile zaprawy do cienkowarstwowego murowania należy zastosować przy budowie ściany o wymiarach 3 m × 12 m z bloczków Silka Tempo o szerokości 24 cm, jeżeli zużycie zaprawy dla muru o tej grubości wynosi 1,2 kg na 1 m2?

A. 10,4 kg
B. 28,8 kg
C. 43,2 kg
D. 86,4 kg
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania ściany o wymiarach 3 m × 12 m, najpierw musimy obliczyć powierzchnię ściany. Powierzchnia ta wynosi 3 m × 12 m = 36 m². Znając zużycie zaprawy wynoszące 1,2 kg na 1 m², możemy obliczyć całkowitą ilość zaprawy: 36 m² × 1,2 kg/m² = 43,2 kg. To obliczenie opiera się na standardach budowlanych, które zalecają przestrzeganie określonych wartości zużycia materiałów w zależności od ich grubości i rodzaju. W praktyce, odpowiednie obliczenia pozwalają uniknąć niedoborów materiałów podczas budowy oraz zapewniają odpowiednią jakość muru. Warto również pamiętać, że różne rodzaje zaprawy mogą mieć różne właściwości, co wpływa na ich zużycie, dlatego zawsze warto posiłkować się danymi producenta. Wymagania te są szczególnie istotne w przypadku budowy obiektów, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla bezpieczeństwa i trwałości konstrukcji.

Pytanie 21

Na podstawie danych zawartych w tabeli oblicz ilość żwiru potrzebnego do wykonania 0,5 m3mieszanki betonowej klasy C 16/20.

Receptury robocze na 1 m3 mieszanki betonowej
klasa betonucementżwirpiasekwoda
C 8/10341 kg661 l367 l216 l
C 12/16362 kg642 l351 l227 l
C 16/20367 kg770 l426 l223 l
A. 385 l
B. 642 l
C. 213 l
D. 770 l
Wybór niepoprawnych odpowiedzi często wynika z błędnego zrozumienia proporcji materiałów w mieszance betonowej. Na przykład, odpowiedzi, takie jak 770 l, 213 l czy 642 l, nie uwzględniają odpowiedniego przeliczenia objętości żwiru z 1 m³. W praktyce, stosując standardowe proporcje dla mieszanki betonowej klasy C 16/20, uzyskujemy właściwy stosunek składników. Typowe błędy, które prowadzą do takich niepoprawnych odpowiedzi, obejmują nieprawidłowe przeliczenie objętości, pominięcie istotnych informacji z tabeli lub niewłaściwe zastosowanie proporcji. Na przykład, obliczając ilość żwiru, nie można zapominać o podstawowych zasadach dotyczących mieszania składników. Zmniejszając objętość mieszanki betonowej, należy proporcjonalnie zmniejszyć ilości wszystkich składników, w tym żwiru, aby uzyskać mieszankę o pożądanych właściwościach. Zrozumienie materiału i jego proporcji jest kluczowe w inżynierii budowlanej, ponieważ nieprawidłowe obliczenia mogą prowadzić do osłabienia konstrukcji, co w konsekwencji może zagrażać bezpieczeństwu. Dlatego, aby uniknąć takich błędów, ważne jest, aby zawsze odnosić się do norm i zaleceń branżowych dotyczących proporcji materiałów w mieszankach betonowych.

Pytanie 22

Do budowy ścian fundamentowych, które są narażone na wilgoć, należy używać zaprawy

A. wapiennej
B. cementowej
C. wapienno-gipsowej
D. gipsowej
Zaprawa wapienna, wapienno-gipsowa oraz gipsowa nie są odpowiednie do stosowania w konstrukcjach fundamentowych narażonych na zawilgocenie. Ich właściwości mechaniczne i odporność na wilgoć są znacznie niższe niż w przypadku zapraw cementowych. Zaprawa wapienna, chociaż ma swoje zastosowania, głównie w budownictwie zabytkowym i renowacyjnym, jest mniej odporna na działanie wody i nie zapewnia wystarczającej wytrzymałości w sytuacjach, gdzie występuje ciągła ekspozycja na wilgoć. Wapienno-gipsowa i gipsowa zaprawa charakteryzują się jeszcze większą podatnością na degradację pod wpływem wody, co sprawia, że ich użycie w fundamentach byłoby katastrofalnym błędem. Często błędnie sądzimy, że materiały oparte na wapnie mogą być wystarczająco trwałe, jednak w rzeczywistości ich zastosowanie w wilgotnych warunkach może prowadzić do poważnych uszkodzeń konstrukcji, co wymaga później kosztownych napraw. Standardy budowlane i dobre praktyki wyraźnie zalecają stosowanie zapraw cementowych w takich konstrukcjach, aby zapewnić zarówno trwałość, jak i bezpieczeństwo budynku. Zrozumienie tych różnic jest kluczowe dla każdego zajmującego się budownictwem.

Pytanie 23

Fragment muru przedstawiony na rysunku wykonany jest w wiązaniu

Ilustracja do pytania
A. wielowarstwowym.
B. polskim.
C. krzyżykowym.
D. pospolitym.
Wiązanie polskie to jeden z podstawowych sposobów układania cegieł w murach, który charakteryzuje się przesunięciem cegieł w kolejnych warstwach o połowę ich długości względem cegieł w warstwie poniżej. Takie podejście nie tylko zwiększa stabilność muru, ale także poprawia jego estetykę. W praktyce, zastosowanie wiązania polskiego jest powszechne w budownictwie tradycyjnym, zwłaszcza w sytuacjach, gdzie wymagana jest wysoka nośność oraz jednocześnie atrakcyjny wygląd zewnętrzny. Stosując to wiązanie, architekci i inżynierowie mogą zrealizować różnorodne projekty, od domów jednorodzinnych po budynki użyteczności publicznej. Ponadto, wiązanie polskie wpisuje się w zasady zachowania ciągłości konstrukcyjnej i zapobiega pękaniu murów, co jest kluczowe w miejscach o dużym obciążeniu. Wiedza na temat różnych typów wiązań, w tym polskiego, jest niezbędna dla każdego specjalisty zajmującego się projektowaniem i budową obiektów budowlanych.

Pytanie 24

Na rysunku przedstawiono rusztowanie

Ilustracja do pytania
A. wspornikowe.
B. koszowe.
C. stojakowe.
D. warszawskie.
Kiedy analizujemy opcje odpowiedzi, istotne jest zrozumienie, jakie charakterystyczne cechy różnią poszczególne typy rusztowań. Opcja koszowa odnosi się do konstrukcji, która ma za zadanie transportować materiały budowlane na wysokość, jednak nie jest stosowana jako podstawowa platforma robocza. Stojakowe rusztowania, z kolei, charakteryzują się inną formą konstrukcyjną, często używaną w specyficznych aplikacjach, gdzie potrzebna jest większa nośność, ale ich budowa oraz przeznaczenie różni się istotnie od rusztowania warszawskiego. W przypadku rusztowania wspornikowego, jego charakterystyczne cechy to brak stawiania podstaw na podłożu, co czyni je mniej stabilnym w porównaniu do rusztowania warszawskiego. Typowe błędy w myśleniu, które prowadzą do wyboru tych opcji, wynikają często z zamieszania w terminologii oraz braku zrozumienia podstawowych różnic pomiędzy tymi konstrukcjami. Wiedza o odpowiednich zastosowaniach i normach dla każdego typu rusztowania jest kluczowa w zapewnieniu bezpieczeństwa na budowie oraz w efektywnym przeprowadzaniu prac budowlanych. Zrozumienie tych różnic oraz ich praktycznych zastosowań jest niezbędne, aby uniknąć nieporozumień i zwiększyć efektywność pracy w branży budowlanej.

Pytanie 25

Określ właściwą sekwencję technologiczną działań związanych z obniżeniem poziomu posadowienia murowanych ław fundamentowych?

A. Wykonanie wykopu i zabezpieczenie deskowaniem → odciążenie ław → podbicie fundamentu
B. Podbicie fundamentu → odciążenie ław → wykonanie wykopu i zabezpieczenie deskowaniem
C. Odciążenie ław → podbicie fundamentu → wykonanie wykopu i zabezpieczenie deskowaniem
D. Wykonanie wykopu i zabezpieczenie deskowaniem → podbicie fundamentu → odciążenie ław
Wybór nieprawidłowej odpowiedzi często opiera się na błędnym zrozumieniu kolejności działań przy obniżaniu poziomu posadowienia ław fundamentowych. Przykładowo, rozpoczęcie od podbicia fundamentu może prowadzić do poważnych problemów. Jeśli najpierw podniesiemy fundament bez odpowiedniego wykopu i odciążenia, istnieje ryzyko przemieszczenia lub nawet pęknięcia muru, co może skutkować nieodwracalnymi uszkodzeniami konstrukcji. Wyjaśniając dalsze nieścisłości, odciążenie ław przed wykonaniem wykopu jest również niewłaściwe, gdyż fundamenty muszą być najpierw zabezpieczone, aby odciążyć je w sposób kontrolowany. Z perspektywy inżynieryjnej, każda z tych faz ma swoje znaczenie i powinny następować w ściśle określonej kolejności, aby zapewnić stabilność budowli. Ignorowanie tego porządku może prowadzić do nieefektywnego procesu budowlanego oraz zwiększenia kosztów związanych z ewentualnymi naprawami. Współczesne standardy budowlane i dobre praktyki branżowe kładą duży nacisk na precyzyjne planowanie i realizację działań budowlanych, co nie tylko wpływa na bezpieczeństwo, ale także na efektywność całego projektu.

Pytanie 26

Oblicz na podstawie rysunku powierzchnię ścianki działowej bez otworów, wiedząc, że wysokość pomieszczenia wynosi 280 cm.

Ilustracja do pytania
A. 8,96 m2
B. 9,40 m2
C. 6,71 m2
D. 8,95 m2
Wybór niepoprawnej odpowiedzi może wynikać z kilku nieścisłości w obliczeniach lub interpretacji zadania. Często błąd polega na nieprawidłowej konwersji jednostek, na przykład, zamiast przeliczać centymetry na metry, użytkownik może pomylić się w mnożeniu lub dodać wartości, co prowadzi do zawyżenia lub zaniżenia obliczeń. W przypadku błędnych odpowiedzi, takich jak 6,71 m² czy 9,40 m², można zauważyć, że wynik został uzyskany przez błędne założenia dotyczące wymiarów ścianki. Na przykład, błędna szerokość lub wysokość mogły zostać przyjęte, co jest częstym problemem przy obliczeniach geometrycznych. Ważne jest również, aby pamiętać, że precyzyjne pomiary w budownictwie są kluczowe; każdy błąd w obliczeniach może prowadzić do poważnych konsekwencji w procesie budowy. Ponadto, niektóre osoby mogą popełnić błąd, zakładając, że dodanie lub odjęcie wartości z wymiarów jest właściwą metodą obliczenia powierzchni, co jest oczywiście niezgodne z zasadami matematyki. Całościowe podejście do obliczeń wymaga więc solidnego zrozumienia zasad geometrycznych oraz znajomości praktycznych zastosowań w obszarze architektury i budownictwa, aby uniknąć takich typowych pułapek.

Pytanie 27

Ile wyniesie koszt mieszanki betonowej potrzebnej do wykonania wieńca o przekroju 25×30 cm w ścianach budynku, którego rzut przedstawiono na rysunku, jeżeli norma zużycia mieszanki betonowej wynosi 1,02 m3/m3, a cena mieszanki wynosi 250,00 zł/m3?

Ilustracja do pytania
A. 554,63 zł
B. 525,00 zł
C. 543,75 zł
D. 535,50 zł
W przypadku błędnych odpowiedzi, takich jak 525,00 zł, 543,75 zł, czy 554,63 zł, występuje szereg typowych błędów obliczeniowych, które mogą prowadzić do nieprawidłowych wyników. Często mylone jest pojęcie objętości wieńca z jego powierzchnią, co prowadzi do błędnego ustalenia wymaganego zużycia mieszanki betonowej. Obliczenia powinny uwzględniać nie tylko przekrój poprzeczny, ale także obwód wieńca, który w tym przypadku wynosi 20,9 m. Błąd może wynikać z nieprawidłowego zastosowania normy zużycia mieszanki betonowej, przez co obliczone zapotrzebowanie na mieszankę nie odpowiada rzeczywistości. Przy braku zrozumienia tych podstawowych koncepcji, obliczenia kosztów stają się nieprecyzyjne. Ważne jest, aby zrozumieć reguły obliczania objętości i kosztów materiałów budowlanych, aby móc skutecznie zarządzać budżetem projektów budowlanych oraz unikać znaczących błędów finansowych.

Pytanie 28

Jakie wiązanie cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Gotyckie.
B. Główkowe.
C. Wozówkowe.
D. Kowadełkowe.
Wybór odpowiedzi "Wozówkowe", "Główkowe" lub "Kowadełkowe" wskazuje na niepełne zrozumienie, czym charakteryzują się różne typy wiązań cegieł. Wiązanie wozówkowe polega na ustawieniu cegieł tylko wzdłuż, co nie zapewnia odpowiedniej stabilności w wyższych konstrukcjach, ponieważ obciążenia są skoncentrowane w jednej linii. Z kolei wiązanie główkowe skupia się na ułożeniu cegieł poprzecznie, co również może prowadzić do problemów z rozkładem obciążeń, zwłaszcza w sytuacji, gdy nie jest wspierane przez inne formy wiązania. Kowadełkowe z kolei wykorzystuje zupełnie inny układ, który nie jest typowy dla murów gotyckich i w praktyce nie odpowiada na potrzeby konstrukcyjne wymagane w tego typu budowlach. Typowe błędy w myśleniu, które prowadzą do tych wyborów, często wynikają z nieznajomości różnic w układzie cegieł oraz ich wpływu na nośność konstrukcji. Wiedza na temat wiązań cegieł jest kluczowa dla architektów i inżynierów budownictwa, ponieważ właściwy dobór wiązania ma ogromne znaczenie dla bezpieczeństwa i trwałości budowli. W praktyce stosowanie wiązań, takich jak gotyckie, powinno być zgodne z najlepszymi praktykami inżynieryjnymi, które promują zrównoważony rozwój oraz efektywność konstrukcyjną.

Pytanie 29

W przypadku tynków z klasy II i III maksymalne odchylenie promieni krzywizny powierzchni wnęki od zaplanowanego promienia nie może przekraczać

A. 10 mm
B. 7 mm
C. 30 mm
D. 5 mm
Wybór odpowiedzi 30 mm, 5 mm lub 10 mm jest niewłaściwy, ponieważ nie spełniają one wymogów dotyczących odchyleń promieni krzywizny dla tynków kategorii II i III. Odpowiedź 30 mm wprowadza poważny błąd, gdyż tak duże odchylenie może prowadzić do znacznych zaburzeń estetycznych oraz funkcjonalnych. W praktyce budowlanej, nadmierne odchylenia mogą skutkować zbieraniem się wody w zakamarkach, co z kolei prowadzi do degradacji tynku, a nawet korozji elementów budowlanych. Odpowiedź 5 mm, mimo że jest mniejsza niż 7 mm, również nie jest odpowiednia, ponieważ nie spełnia wymogów projektowych, które zostały jasno określone dla tynków tej kategorii. Tynki muszą być aplikowane z zachowaniem precyzyjnych wymiarów, aby zapewnić trwałość oraz estetykę wykonania. Przykłady nieprawidłowych podejść w aplikacji tynków mogą prowadzić do powstawania szczelin, pęknięć oraz innych defektów, które są nieakceptowalne w kontekście standardów budowlanych. Ostatecznie, wybór odpowiednich wartości odchyleń jest kluczowy dla osiągnięcia wysokiej jakości wykończenia oraz długotrwałej użyteczności, co jest istotne dla każdego projektu budowlanego.

Pytanie 30

Na fotografii przedstawiono narzędzie przeznaczone do ręcznego

Ilustracja do pytania
A. wyrównywania powierzchni bloczków z betonu komórkowego.
B. przycinania bloczków z betonu komórkowego.
C. wygładzania powierzchni ściany z betonu komórkowego.
D. wykonywania bruzd instalacyjnych w ścianie z betonu komórkowego.
Poprawna odpowiedź to "wykonywania bruzd instalacyjnych w ścianie z betonu komórkowego". Narzędzie przedstawione na fotografii to drut do cięcia betonu komórkowego, które jest specjalistycznym narzędziem wykorzystywanym w budownictwie. Jego główną funkcją jest precyzyjne wykonywanie bruzd w ścianach, co jest kluczowe dla prawidłowego montażu instalacji elektrycznych i hydraulicznych. W praktyce, narzędzie to pozwala na szybkie i dokładne usunięcie materiału w odpowiednich miejscach, co znacząco ułatwia późniejsze przeprowadzenie kabli czy rur przez ściany z betonu komórkowego. Warto zaznaczyć, że używanie odpowiednich narzędzi, takich jak drut do cięcia, zgodnie z normami budowlanymi, zwiększa efektywność pracy i minimalizuje ryzyko uszkodzenia materiałów budowlanych. Ponadto, stosowanie tego narzędzia jest zgodne z dobrymi praktykami w zakresie budowy instalacji, co zapewnia trwałość i bezpieczeństwo wykonanych prac.

Pytanie 31

Jaką powierzchnię tynku mozaikowego nałożono na cokole o wysokości 50 cm wokół budynku o wymiarach w rzucie 15 x 10 m?

A. 45 m2
B. 95 m2
C. 25 m2
D. 75 m2
Odpowiedź 25 m2 jest poprawna, ponieważ aby obliczyć powierzchnię tynku mozaikowego wokół budynku, należy najpierw wyznaczyć obwód budynku oraz pomnożyć go przez wysokość cokołu. Budynek ma wymiary 15 m na 10 m, co oznacza, że jego obwód wynosi: 2 * (15 m + 10 m) = 2 * 25 m = 50 m. Następnie, mnożąc obwód 50 m przez wysokość cokołu 0,5 m, otrzymujemy powierzchnię: 50 m * 0,5 m = 25 m2. Ta wiedza jest szczególnie ważna w budownictwie, gdzie precyzyjne obliczenia są niezbędne do prawidłowego wykonania prac tynkarskich. W praktyce, zrozumienie tych obliczeń pozwala na efektywne planowanie materiałów oraz kosztów, a także na zgodność z normami budowlanymi. Warto również pamiętać, że tynk mozaikowy jest stosowany nie tylko ze względów estetycznych, ale również funkcjonalnych, na przykład w celu ochrony przed warunkami atmosferycznymi.

Pytanie 32

Zgodnie z zasadami przedmiarowania robót tynkarskich z powierzchni tynków nie odlicza się powierzchni otworów do 3 m2, jeżeli ich ościeża są tynkowane. Oblicz powierzchnię ściany pokazanej na rysunku, zakładając, że ościeża będą otynkowane.

Ilustracja do pytania
A. 18,8 m2
B. 20,8 m2
C. 24,0 m2
D. 22,0 m2
Odpowiedź 20,8 m2 jest prawidłowa, ponieważ zgodnie z zasadami przedmiarowania robót tynkarskich, nie odlicza się powierzchni otworów do 3 m2, jeżeli ich ościeża są tynkowane. W omawianym przypadku mamy do czynienia z dwoma otworami okiennymi, każdy o powierzchni 1 m2, które nie są odliczane od całkowitej powierzchni ściany. Natomiast otwór drzwiowy o powierzchni 3,2 m2 jest większy niż 3 m2, co oznacza, że jego powierzchnia powinna zostać odjęta. Całkowita powierzchnia ściany przed odliczeniem otworów wynosi 24 m2. Po odjęciu 3,2 m2 uzyskujemy wynik 20,8 m2, co jest powierzchnią do tynkowania. Praktyczne zastosowanie tych zasad jest kluczowe w procesie kosztorysowania robót budowlanych, gdzie precyzyjne obliczenia wpływają na efektywność finansową projektu. Wiedza ta jest także istotna w kontekście przepisów budowlanych i standardów branżowych, które zalecają uwzględnianie tylko istotnych powierzchni w kosztorysach.

Pytanie 33

Podczas wykonywania tynków gipsowych kolejną czynnością po wstępnym wyrównaniu zaprawy łatą tynkarską typu H jest "piórowanie", czyli wstępne gładzenie powierzchni tynku. Na której ilustracji przedstawiono tę czynność?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 3.
C. Na ilustracji 2.
D. Na ilustracji 4.
Wybór niewłaściwej ilustracji może wynikać z nieporozumienia dotyczącego technik tynkarskich oraz etapu, na którym znajduje się proces tynkowania. Na ilustracjach 1 i 2 można zaobserwować czynności związane z nakładaniem zaprawy tynkarskiej, co jest pierwszym krokiem w procesie tynkowania. Nakładanie tynku polega na aplikacji zaprawy na powierzchnię ściany, co jest zupełnie inną czynnością niż piórowanie. Ponadto, ilustracja 4 przedstawia końcowe wygładzanie tynku, które ma miejsce po piórowaniu. Wiele osób może mylić te etapy, sądząc, że wszystkie czynności związane z gładzeniem są równoważne, co jest błędem. Prawidłowe zrozumienie poszczególnych etapów tynkowania jest kluczowe dla osiągnięcia wysokiej jakości wykończenia. Często zdarza się, że pomijane są istotne różnice między tymi technikami, co prowadzi do błędnych decyzji. Aby skutecznie piórować, należy najpierw odpowiednio nałożyć tynk, a następnie, gdy jego powierzchnia jest jeszcze wilgotna, przystąpić do procesu wygładzania. Bez tej wiedzy, łatwo jest popełnić błąd, co może wpłynąć na ostateczny efekt estetyczny oraz trwałość wykończenia.

Pytanie 34

Na podstawie informacji podanych w tabeli określ minimalną grubość tynku mozaikowego, wykonanego produktem MAJSTERTYNK MOZAIKOWY odmiany gruboziarnistej

Wyciąg z opisu stosowania masy tynkarskiej
L.p.Rodzaj masy tynkarskiejMinimalna grubość
wyprawy [mm]
Orientacyjne zużycie
na 1 m² wyprawy [kg]
1234
1.MAJSTERTYNK AKRYLOWY BARANEK
odmiany
1,01,01,9
1,51,52,6
2,02,03,0
2,52,53,6
2.MAJSTERTYNK AKRYLOWY KORNIK
odmiany
za1,52,6
2,02,03,0
2,52,53,7
3,03,04,2
3.MAJSTERTYNK MOZAIKOWY
odmiany:
drobnoziarnisty2,03,0
średnioziarnisty3,04,0
gruboziarnisty4,05,0
A. 4,0 mm
B. 3,0 mm
C. 2,0 mm
D. 5,0 mm
Wybierając grubość tynku mozaikowego, nie można kierować się jedynie intuicją lub przypuszczeniami. Odpowiedzi, które wskazują na mniejsze grubości, takie jak 5,0 mm, 3,0 mm czy 2,0 mm, są nieprawidłowe z kilku kluczowych powodów. Przede wszystkim, grubość tynku ma fundamentalne znaczenie dla jego funkcji. Tynki o zbyt małej grubości mogą nie tylko nie spełniać norm estetycznych, ale także prowadzić do poważnych problemów technicznych, takich jak osłabienie struktury, zwiększone ryzyko pęknięć, a także niewystarczająca ochrona przed czynnikami atmosferycznymi. Tynk o grubości 5,0 mm może być nadmierny, co nie jest zgodne z wytycznymi, podczas gdy 3,0 mm i 2,0 mm są znacznie poniżej zalecanego minimum, co może skutkować błędnymi interpretacjami właściwości materiału. Dodatkowo, warto zwrócić uwagę na to, że każdy produkt budowlany, w tym tynki, podlega normom technicznym, które jasno określają wymogi dotyczące ich użycia. Użycie grubości niezgodnych z zaleceniami producenta stwarza ryzyko nie tylko obniżenia jakości końcowego wykończenia, ale także może narazić inwestycje na dodatkowe koszty związane z naprawą i konserwacją. W związku z tym, kluczowe jest zrozumienie, że każda decyzja dotycząca grubości tynku musi być oparta na solidnych podstawach technicznych oraz standardach, które zapewniają zarówno estetykę, jak i funkcjonalność budynku.

Pytanie 35

Jakie materiały wykorzystuje się do łączenia warstw papy asfaltowej stosowanych jako izolacja ław fundamentowych?

A. lepikiem asfaltowym
B. kitem asfaltowym
C. emulsją asfaltową
D. roztworem asfaltowym
Emulsja asfaltowa, roztwór asfaltowy i kit asfaltowy to materiały, które mają różne właściwości i zastosowania, ale nie są odpowiednie do łączenia warstw papy asfaltowej na ławach fundamentowych. Emulsja asfaltowa jest zawiesiną cząstek asfaltu w wodzie z dodatkiem emulgatorów, co sprawia, że jest bardziej odpowiednia do aplikacji na wilgotne powierzchnie, lecz nie zapewnia tak silnej przyczepności jak lepik. Roztwór asfaltowy, z kolei, jest produktem na bazie rozpuszczonego asfaltu, często stosowanym do naprawy i impregnacji, ale nie stanowi idealnego rozwiązania do łączenia warstw, ponieważ może nie zapewniać odpowiedniej szczelności w długoterminowym użytkowaniu. Kit asfaltowy, będący materiałem uszczelniającym, choć skuteczny w pewnych zastosowaniach, nie jest tak trwały przy wysokich obciążeniach, jakie mogą występować w fundamentach. Użycie tych materiałów zamiast lepika asfaltowego może prowadzić do niewłaściwego zamocowania papy, co zwiększa ryzyko uszkodzeń hydroizolacji i wnikania wody do konstrukcji. Wybór niewłaściwego materiału do łączenia papy asfaltowej może spowodować poważne problemy, takie jak zawilgocenie fundamentów, co z kolei prowadzi do konieczności kosztownych napraw.

Pytanie 36

Jakie jest spoiwo mineralne powietrzne?

A. wapno hydrauliczne
B. cement portlandzki
C. gips budowlany
D. cement hutniczy
Cement hutniczy, gips budowlany, cement portlandzki oraz wapno hydrauliczne to materiały budowlane, które różnią się nie tylko składem chemicznym, ale również właściwościami oraz zastosowaniem w budownictwie. Cement hutniczy, znany również jako cement blastyczny, to materiał, który uzyskuje się w wyniku przetwarzania klinkieru cementowego z dodatkiem żużla. Jego główną cechą jest znacznie niższa zawartość wapnia w porównaniu do cementu portlandzkiego, co wpływa na jego właściwości wiążące i czas twardnienia. To spoiwo hydrauliczne, więc zachowuje swoje właściwości w kontakcie z wodą, co sprawia, że nie jest odpowiednie jako spoiwo mineralne powietrzne. Cement portlandzki, będący najczęściej stosowanym rodzajem cementu w budownictwie, również charakteryzuje się działaniem hydraulicznym. Jego wiązanie zachodzi w wyniku reakcji z wodą, co czyni go nieodpowiednim przykładem spoiwa mineralnego powietrznego. Wapno hydrauliczne jest spoiwem, które również twardnieje w obecności wody, a jego zastosowanie ogranicza się do określonych rodzajów budowli, w których wymagane są specyficzne właściwości chemiczne i fizyczne. W przypadku tych materiałów, typowe błędy myślowe polegają na myleniu ich funkcji i właściwości, co prowadzi do nieprawidłowych wniosków o możliwości ich zastosowania jako spoiw mineralnych powietrznych. Warto zwrócić uwagę na znaczenie dokładnego rozumienia klasyfikacji materiałów budowlanych, aby właściwie dobrać je do zastosowań w budownictwie.

Pytanie 37

Który sposób przygotowania cienkowarstwowej zaprawy murarskiej jest zgodny z przedstawioną instrukcją producenta?

Instrukcja producenta
Przygotowanie cienkowarstwowej zaprawy murarskiej
Zaprawę wsypać do odmierzonej ilości wody w proporcji 0,18 do 0,22 litra wody na 1 kg suchego proszku, następnie wymieszać mieszadłem mechanicznym do uzyskania jednorodnej masy. Odstawić na 3 do 5 minut i ponownie wymieszać. Zaprawę należy nakładać ręcznie pacą ząbkowaną lub innym narzędziem zwracając uwagę na dokładne wypełnienie spoin.
A. Wymieszać część suchego proszku z niewielką ilością wody, a następnie dodać pozostałą ilość wody oraz pozostałą ilość suchego proszku i ponownie wymieszać do uzyskania jednorodnej masy.
B. Do odmierzonej ilości wody wsypać odpowiednią ilość suchego proszku, wymieszać do uzyskania jednorodnej masy, odstawić na określony czas i ponownie wymieszać.
C. Wymieszać część suchego proszku z wodą, następnie do uzyskanej mieszanki wsypać pozostałą ilość suchego proszku i razem wymieszać.
D. Do odmierzonej ilości wody wsypać porcję suchego proszku, razem wymieszać do uzyskania jednorodnej masy, następnie dolać wody.
Niepoprawne odpowiedzi zawierają szereg mylnych koncepcji, które mogą prowadzić do nieprawidłowego przygotowania zaprawy murarskiej. Wymieszanie suchego proszku z wodą w dowolnej kolejności, takiej jak dodanie proszku do wody w pełnej ilości, może skutkować trudnościami w uzyskaniu jednorodnej masy. Proszek powinien być dodawany do wody, a nie odwrotnie, co pozwala na lepsze rozprowadzenie składników i uniknięcie grudek. W przypadku pominięcia etapu odstawienia zaprawy po wymieszaniu, ryzykujemy, że nie wszystkie składniki chemiczne zdążą zareagować, co może prowadzić do obniżenia jakości zaprawy. Dodatkowo, nieodpowiednie przygotowanie, na przykład poprzez nieterminowe wymieszanie po czasie odstawienia, może ograniczyć wytrzymałość zaprawy. Takie błędy wynikają często z braku znajomości procesu technologicznego oraz niewłaściwego podejścia do standardów branżowych, co może prowadzić do poważnych problemów w zachowaniu strukturalnym budynków. W kontekście praktycznym, każdy etap przygotowania zaprawy powinien być dokładnie przestrzegany, aby zapewnić zgodność z wymaganiami technicznymi oraz oczekiwaniami jakościowymi. Dobre praktyki w branży budowlanej wymagają dokładności i skrupulatności na każdym etapie, aby uniknąć kosztownych błędów w przyszłości.

Pytanie 38

W remontowanym budynku na poddaszu zamierzono stworzyć lekką ściankę działową, aby oddzielić dwa pokoje mieszkalne. Jakie materiały powinno się zastosować do jej budowy?

A. płyty wiórowe laminowane
B. cegły szamotowe
C. płyty Pro-Monta
D. cegły klinkierowe
Wybór płyty wiórowej laminowanej na ściankę działową może wydawać się spoko, ale w praktyce nie jest najlepszym pomysłem. One nie mają wystarczającej stabilności ani izolacji akustycznej, a to w mieszkaniach jest kluczowe. Może się zdarzyć, że dźwięki będą przenikały między pokojami, co jest trochę irytujące. Z kolei cegły klinkierowe to w ogóle nie jest dobre rozwiązanie, bo są za ciężkie i niepraktyczne w tym kontekście. Mogą obciążać konstrukcję budynku, co na poddaszu jest istotne, gdyż stropy mają swoje ograniczenia. A cegły szamotowe, mimo że mają swoją wartość w wysokich temperaturach, to też nie nadają się na ścianki działowe. Wybierając materiały budowlane, warto zwrócić uwagę na ich funkcjonalność i trwałość, a także na normy budowlane, które mówią, co jest dozwolone w wewnętrznych konstrukcjach.

Pytanie 39

Jakie właściwości techniczne wyróżniają stwardniałą zaprawę murarską?

A. Wytrzymałość na ściskanie i proporcje
B. Nasiąkliwość oraz urabialność
C. Proporcje oraz urabialność
D. Wytrzymałość na ściskanie i nasiąkliwość
Analiza cech technicznych zaprawy murarskiej daje jasny obraz ich funkcji i znaczenia w budownictwie. W kontekście nasiąkliwości i urabialności, choć oba te elementy są istotne, nie są one kluczowe dla stwardniałej zaprawy. Nasiąkliwość sama w sobie odnosi się do zdolności materiału do wchłaniania wody, co jest ważne w kontekście wpływu wilgoci na trwałość konstrukcji, jednak urabialność, odnosząca się do łatwości, z jaką zaprawa może być formowana i aplikowana, ma mniejsze znaczenie dla stabilności gotowego produktu. Również konsystencja, będąca miarą plastyczności i jednorodności mieszanki, nie jest kluczowym czynnikiem w kontekście stwardniałej zaprawy murarskiej. Istotność wytrzymałości na ściskanie jest niezaprzeczalna, gdyż odpowiednia wartość tej cechy pozwala na tworzenie solidnych i długoterminowych struktur. Przy ocenie zapraw murarskich, powinno się zwracać głównie uwagę na parametry, które mają bezpośredni wpływ na ich funkcjonalność w warunkach eksploatacyjnych. W praktyce, zaprawa o niskiej wytrzymałości na ściskanie może prowadzić do katastrofalnych skutków, takich jak osuwanie się ścian, co podkreśla, jak kluczowe jest wybieranie zaprawy, która spełnia określone normy wytrzymałościowe, takie jak PN-EN 998-2. Dlatego zrozumienie znaczenia wytrzymałości na ściskanie i nasiąkliwości jest kluczowe dla prawidłowego wyboru materiałów budowlanych oraz zapewnienia ich długotrwałej funkcjonalności.

Pytanie 40

Jakiego typu rusztowanie nie nadaje się do przeprowadzenia naprawy uszkodzonego tynku w okapie na wysokości około 7 metrów nad poziomem gruntu?

A. Kozłowego
B. Ramowego
C. Na wysuwnicach
D. Wiszącego
Wybór rusztowania do prac na wysokości jest kluczowy dla bezpieczeństwa i efektywności prowadzonych działań. W przypadku rusztowania na wysuwnicach, jego konstrukcja umożliwia łatwe dostosowanie do różnych wysokości, co czyni je odpowiednim rozwiązaniem dla prac przy okapie na wysokości 7 metrów. Wysuwane platformy robocze pozwalają na precyzyjne manewrowanie i zapewniają stabilną przestrzeń roboczą, co jest niezbędne podczas napraw tynku, gdzie konieczne może być utrzymanie równowagi i precyzyjnych ruchów. Z kolei rusztowania ramowe, które są powszechnie stosowane w budownictwie, zapewniają solidną konstrukcję, łatwy montaż i demontaż oraz stabilność, co czyni je idealnym narzędziem do wykonywania prac na większych wysokościach. Zastosowanie rusztowania wiszącego, które z kolei może być używane do prac elewacyjnych, również może być korzystne, zwłaszcza gdy dostęp do powierzchni roboczej jest utrudniony przez inne elementy architektoniczne. Wybór rusztowania kozłowego w sytuacji wymagającej pracy na wysokości 7 metrów może prowadzić do poważnych zagrożeń, takich jak niestabilność konstrukcji, brak dostatecznego wsparcia oraz ograniczona możliwość manipulacji narzędziami czy materiałami. Warto zatem zwrócić uwagę na specyfikę i przeznaczenie każdego typu rusztowania, a także na wymagania norm i standardów dotyczących pracy na wysokości, aby uniknąć niebezpieczeństw i zapewnić efektywność prowadzonych prac.