Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 12:14
  • Data zakończenia: 7 grudnia 2025 12:21

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono przewód kabelkowy do układania w tynku?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Odpowiedź A jest prawidłowa, ponieważ przedstawia przewód kabelkowy przeznaczony do układania w tynku. Tego typu przewód charakteryzuje się płaską konstrukcją oraz izolacją z PVC, co zapewnia odpowiednią ochronę przed wilgocią i uszkodzeniami mechanicznymi. W praktyce, przewody te są wykorzystywane w instalacjach elektrycznych w ścianach, gdzie ich umiejscowienie w tynku jest standardową praktyką, zapewniającą estetykę i bezpieczeństwo. Przewód z trzema żyłami, jak ten przedstawiony na rysunku A, zazwyczaj obejmuje fazę, zero oraz żyłę ochronną, co jest zgodne z normami PN-IEC 60364, które regulują zasady instalacji elektrycznych. Znajomość tych norm jest kluczowa dla profesjonalistów w dziedzinie elektryki, ponieważ gwarantuje, że instalacje będą funkcjonalne i spełnią wymagania bezpieczeństwa. Dobre praktyki branżowe zalecają również, aby przewody były układane w sposób, który minimalizuje narażenie na uszkodzenia, co czyni przewody kabelkowe idealnym rozwiązaniem do tego zastosowania.

Pytanie 2

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Watomierza
B. Woltomierza
C. Waromierza
D. Reflektometru
Waromierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru mocy biernej w układach elektrycznych. Moc bierna jest kluczowym pojęciem w systemach prądu przemiennego, szczególnie w kontekście obciążeń indukcyjnych i pojemnościowych. W odróżnieniu od mocy czynnej, która jest wykorzystywana do wykonania pracy, moc bierna nie przyczynia się do rzeczywistego zużycia energii, ale jest niezbędna do utrzymania pola elektromagnetycznego w takich urządzeniach jak silniki czy transformatory. Przykład zastosowania waromierza można znaleźć w analizie układów zasilania w przemyśle, gdzie istotne jest monitorowanie i optymalizacja zużycia energii. Użycie waromierza pozwala na dokładne określenie ilości mocy biernej w instalacji, co jest ważne dla poprawnej regulacji oraz zminimalizowania strat energetycznych, zgodnie z normami IEC 62053. Praktycznie, pomiary te są często wykorzystywane w celu obliczenia współczynnika mocy, który jest niezbędny dla oceny efektywności energetycznej układów elektrycznych.

Pytanie 3

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. określenie czasu oraz prądu zadziałania wyłącznika RCD
B. zweryfikowanie ciągłości połączeń w instalacji
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. wykonanie pomiaru rezystancji uziemienia
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 4

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. aR 16 A
C. gB 20 A
D. aM 20 A
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 5

Według którego schematu należy podłączyć miernik parametrów RCD w celu pomiaru prądu wyzwolenia i czasu zadziałania wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Podłączenie miernika parametrów RCD według innych schematów niż C może prowadzić do błędnych wyników pomiarów lub całkowitego braku zadziałania urządzenia. W przypadkach, gdy miernik nie jest prawidłowo podłączony do przewodów L, N oraz PE, nie jest w stanie zarejestrować wartości prądu upływu, co jest kluczowe dla oceny działania wyłącznika różnicowoprądowego. Na przykład, podłączenie miernika tylko do przewodu L lub N może spowodować, że pomiary będą niekompletne, a tym samym nieodpowiednie dla oceny bezpieczeństwa instalacji. Wiele osób błędnie zakłada, że wystarczy podłączyć miernik w sposób nieprzemyślany, co prowadzi do subiektywnej oceny jego możliwości. Jest to niezgodne z zasadami pomiarów elektrycznych i stanowi poważne naruszenie ogólnych zasad bezpieczeństwa. W praktyce, nieprawidłowe podłączenie może skutkować brakiem odpowiedzi RCD na prąd upływu, co jest bezpośrednim zagrożeniem dla użytkowników. Zrozumienie, jak poprawnie podłączyć miernik, jest kluczowe dla właściwej oceny oraz wyeliminowania potencjalnych zagrożeń związanych z użytkowaniem instalacji elektrycznych. Kluczowe jest również zapoznanie się z odpowiednimi normami oraz wytycznymi, które regulują procedury pomiarowe, aby uniknąć typowych błędów w analizach parametrów elektrycznych.

Pytanie 6

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. zdejmowania powłoki z przewodu.
B. profilowania żył przewodów.
C. zaciskania końcówek oczkowych.
D. zaciskania końcówek tulejkowych.
Zarówno zdejmowanie powłoki z przewodu, zaciskanie końcówek oczkowych, jak i zaciskanie końcówek tulejkowych wymagają użycia innych rodzajów narzędzi. W przypadku zdejmowania powłoki z przewodu najczęściej stosuje się nożyce lub specjalistyczne narzędzia do ściągania izolacji, które są zaprojektowane tak, aby precyzyjnie usunąć zewnętrzną warstwę bez uszkadzania wrażliwych żył wewnętrznych. Użycie szczypiec okrągłych w tym kontekście jest niewłaściwe, ponieważ ich konstrukcja nie sprzyja precyzyjnemu ściąganiu izolacji. Z kolei zaciskanie końcówek oczkowych i tulejkowych z reguły wymaga użycia odpowiednich szczypiec zaciskowych, które są dedykowane do tego celu. Użycie niewłaściwych narzędzi może prowadzić do nieszczelnych połączeń elektrycznych, co zwiększa ryzyko awarii lub uszkodzeń w instalacji. Powszechnym błędem myślowym jest przekonanie, że jedno narzędzie może zastąpić inne, co wynika z braku świadomości na temat specyfiki i funkcji poszczególnych narzędzi. Dobrze zrozumiane różnice pomiędzy różnymi rodzajami narzędzi oraz ich dedykowanymi zastosowaniami są kluczowe dla zachowania bezpieczeństwa i efektywności w pracach elektrycznych.

Pytanie 7

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D o oznaczeniu literowym gG i prądzie znamionowym 25 A?

Ilustracja do pytania
A. Wstawkę 3.
B. Wstawkę 4.
C. Wstawkę 2.
D. Wstawkę 1.
Wstawka kalibrowa, którą należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D o oznaczeniu literowym gG i prądzie znamionowym 25 A, to wstawkę 3. Wstawkę tę oznacza się jako 25/500, co wskazuje, że jest ona przeznaczona dla prądu znamionowego 25 A oraz wytrzymuje napięcie do 500 V. W praktyce, jako element zabezpieczający, wstawka kalibrowa zapobiega włożeniu wkładek o wyższych prądach znamionowych, co mogłoby prowadzić do przegrzania lub pożaru. W przypadku stosowania wkładek gG, które są odpowiednie do zabezpieczania obwodów z impulsowymi prądami zwarciowymi, ważne jest, aby zawsze dobrać właściwą wstawkę kalibrową, zgodnie z normą IEC 60269. Tylko wtedy można osiągnąć optymalną ochronę i wydajność systemu elektrycznego. Wstawkę 3 stosuje się powszechnie w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność i ochrona przed zwarciem.

Pytanie 8

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. YLY 2,5 mm2
B. ALY 2,5 mm2
C. ADY 2,5 mm2
D. YDY 2,5 mm2
Odpowiedzi ADY 2,5 mm2, YLY 2,5 mm2 oraz YDY 2,5 mm2 są niepoprawne, ponieważ nie spełniają właściwych kryteriów dotyczących materiału przewodnika oraz rodzaju konstrukcji. Oznaczenie ADY sugeruje, że przewód ma rdzeń aluminiowy, jednak nie odnosi się do specyfikacji, iż jest to przewód wielodrutowy. W praktyce, przewody aluminiowe jednożyłowe są rzadziej stosowane, ponieważ ich sztywność ogranicza elastyczność w instalacji w porównaniu do przewodów wielodrutowych. Z kolei oznaczenie YLY wskazuje na przewód miedziany, co jest niezgodne z wymaganiami pytania, które dotyczy przewodu aluminiowego. Warto pamiętać, że zastosowanie przewodów miedzianych w sytuacjach, gdzie aluminium powinno być użyte, może prowadzić do problemów z przewodnictwem oraz zwiększonego ryzyka przegrzania, co z kolei może skutkować uszkodzeniem instalacji. Ostatecznie, YDY oznacza przewód z żyłą miedzianą o odpowiednich parametrach, co znowu nie jest zgodne z wymaganiami pytania. Ważne jest, aby znać różnice w oznaczeniach i ich znaczenie dla bezpieczeństwa oraz efektywności systemów elektrycznych, aby unikać nieporozumień i potencjalnych zagrożeń w praktyce inżynieryjnej.

Pytanie 9

Oprawa oświetleniowa przedstawiona na zdjęciu ma być zamontowana za pomocą wkrętów i dybli, pokazanych na zdjęciu. Jakich narzędzi należy użyć do tego montażu?

Ilustracja do pytania
A. Wkrętaka płaskiego, wkrętaka PH, wkrętaka bit M10, ściągacza izolacji.
B. Wiertarki, wkrętaka płaskiego, klucza nasadowego, noża monterskiego, ściągacza izolacji.
C. Wkrętaka płaskiego, wkrętaka PH, klucza nasadowego, wiertarki, noża monterskiego.
D. Wiertarki, wkrętaka płaskiego, klucza płaskiego, noża monterskiego, ściągacza izolacji.
Wybór narzędzi jak nieodpowiednich to na pewno nie najlepsza opcja. Jak użyjesz złego sprzętu do montażu oprawy, to mogą się pojawić różne problemy, które popsują jakość i bezpieczeństwo pracy. Na przykład, jeśli wskazałeś wkrętak PH, to nie jest to dobry wybór, bo śruby, które w tym przypadku mamy, lepiej pasują do klucza nasadowego. Niewłaściwe narzędzia mogą zepsuć elementy oprawy, a nawet jeśli coś się zepsuje, to możesz narazić się na poważne problemy, jak awaria czy pożar. Klucz płaski też nie ma sensu, bo brakuje mu precyzji i momentu obrotowego, co w elektryce jest naprawdę istotne. Bez podstawowych narzędzi jak wiertarka czy ściągacz izolacji, możliwości prawidłowego montażu są mocno ograniczone. Przy montażu oprawy trzeba korzystać z odpowiednich narzędzi, bo każdemu przynależy konkretne zadanie i to na pewno zwiększa jakość i bezpieczeństwo pracy.

Pytanie 10

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
B. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
C. Silnik będzie zasilany prądem przeciwnym
D. Silnik będzie pracował w stanie jałowym
W sytuacjach, gdy silnik zasilany jest przeciwprądem, wirnik nie może osiągnąć ujemnego poślizgu, ponieważ prąd zasilający działa w przeciwną stronę, co może prowadzić do uszkodzenia silnika. Silnik nie pracuje wtedy w sposób efektywny, a jego działanie może być szkodliwe dla całego układu. Podobnie, pozostawienie silnika na biegu jałowym również nie prowadzi do ujemnego poślizgu, ponieważ wirnik nie obraca się w stosunku do pola magnetycznego, co oznacza, że poślizg jest równy zeru. Z kolei, gdy wirnik jest nieruchomy podczas zasilania, silnik działa w warunkach maksymalnego poślizgu, co jest całkowicie odmienne od ujemnego poślizgu. Zrozumienie tych podstawowych zasad działania silników indukcyjnych jest kluczowe, aby uniknąć typowych błędów myślowych związanych z interpretacją i zastosowaniem teorii silników elektrycznych. W przemyśle i praktyce inżynieryjnej ważne jest, aby znajomość charakterystyk silników indukcyjnych była stosowana w odpowiednich kontekstach, aby zapewnić ich efektywność i bezpieczeństwo operacyjne.

Pytanie 11

Na ilustracji przedstawiono schemat układu zasilania silnika elektrycznego zawierający

Ilustracja do pytania
A. czujnik kolejności i zaniku faz.
B. wyłącznik silnikowy.
C. przekaźnik termobimetalowy.
D. cyklokonwertor.
Nieprawidłowe odpowiedzi dotyczące wyłączników silnikowych, cyklokonwertorów oraz przekaźników termobimetalowych mogą prowadzić do nieporozumień w kontekście zasilania silników elektrycznych. Wyłącznik silnikowy, choć istotny w obwodach elektrycznych, nie monitoruje kolejności czy obecności faz, a jedynie chroni silnik przed przeciążeniem i zwarciem. Jego rola ogranicza się do zabezpieczenia, a nie do bieżącej kontroli parametrów zasilania. Cyklokonwertor, z drugiej strony, jest urządzeniem służącym do przekształcania częstotliwości prądu elektrycznego, co może być mylone z funkcjami czujnika, jednak jego zastosowanie dotyczy głównie regulacji prędkości obrotowej silników, a nie ich zabezpieczenia przed błędami w zasilaniu. Przekaźnik termobimetalowy działa na zasadzie zmiany kształtu pod wpływem temperatury, a jego zastosowanie dotyczy ochrony przed przegrzaniem, a nie monitorowania faz. Powszechnym błędem w myśleniu jest utożsamianie tych urządzeń z funkcjami czujnika, co może prowadzić do niewłaściwego doboru komponentów w układach zasilania, a tym samym do awarii lub zniszczenia silników elektrycznych.

Pytanie 12

Na którym rysunku przedstawiono szybkozłączkę do puszek instalacyjnych?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Szybkozłączka do puszek instalacyjnych, jak pokazano w rysunku D, to kluczowy element w nowoczesnych instalacjach elektrycznych, umożliwiający szybkie i bezpieczne łączenie przewodów. Element ten charakteryzuje się przezroczystą obudową, co pozwala na wizualną kontrolę poprawności połączenia. Żółte dźwignie są przeznaczone do zaciskania przewodów, co eliminuje potrzebę użycia narzędzi i przyspiesza proces instalacji. Szybkozłączki tego typu znajdują zastosowanie w różnych aplikacjach, od domowych instalacji elektrycznych po bardziej skomplikowane systemy przemysłowe, gdzie czas montażu jest kluczowy. Warto zwrócić uwagę na normy IEC 60947-7-1, które regulują użycie takich połączeń w instalacjach, zapewniając bezpieczeństwo i niezawodność. Prawidłowe użycie szybkozłączek zmniejsza ryzyko błędów instalacyjnych oraz zapewnia łatwość konserwacji i rozbudowy instalacji.

Pytanie 13

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Elektroluminescencyjnych.
B. Rtęciowych.
C. Indukcyjnych.
D. Żarowych.
Rozważając inne typy źródeł światła, które zostały wymienione w odpowiedziach, można dostrzec szereg fundamentalnych różnic w działaniu i zastosowaniach. Lampy rtęciowe, często używane w oświetleniu ulicznym, opierają się na zjawisku wyładowania elektrycznego w parze rtęci, co skutkuje nieefektywnym wykorzystaniem energii i szkodliwym wpływem na środowisko ze względu na obecność rtęci. Z kolei lampy indukcyjne, które również nie są poprawną odpowiedzią, działają na zasadzie indukcji elektromagnetycznej, ale wymagają wysokiego napięcia i są mniej popularne w zastosowaniach domowych. Lampy żarowe, znane z powszechnego użycia, emitują światło poprzez podgrzewanie włókna, co prowadzi do wysokiej emisji ciepła i niskiej efektywności energetycznej. W praktyce, użytkownicy często mylą te technologie z LED, nie zdając sobie sprawy z ich ograniczeń. Błędem jest postrzeganie tych źródeł jako nowoczesnych i energooszczędnych, co prowadzi do nieprawidłowych wyborów w obszarze oświetlenia. Przykładowo, wybierając lampy żarowe zamiast LED, popełniamy istotny błąd, który przekłada się na wyższe koszty eksploatacji oraz negatywny wpływ na środowisko. Zrozumienie różnic między tymi rodzajami oświetlenia jest kluczowe dla podejmowania świadomych decyzji w zakresie inwestycji w technologie oświetleniowe.

Pytanie 14

Na którym rysunku przedstawiono prawidłowe połączenie łącznika świecznikowego z żyrandolem?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź D jest poprawna, ponieważ przedstawia prawidłowe połączenie łącznika świecznikowego z żyrandolem. W tym układzie przewód fazowy L został poprawnie podłączony do łącznika, co pozwala na kontrolowanie zasilania żyrandola. Przewód neutralny N łączy łącznik z żarówką, co jest kluczowe dla prawidłowego działania obwodu elektrycznego. W praktyce, takie połączenie zapewnia nie tylko funkcjonalność, ale także bezpieczeństwo użytkowania systemu oświetleniowego. Zgodnie z obowiązującymi normami, instalacje elektryczne powinny być wykonane w sposób, który minimalizuje ryzyko zwarcia czy uszkodzenia sprzętu. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak bezpieczniki, które chronią obwody przed przeciążeniem. Znajomość zasad poprawnego podłączania elementów instalacji elektrycznej jest niezbędna dla zapewnienia ich efektywności oraz długotrwałej eksploatacji.

Pytanie 15

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Kontrola zabezpieczeń i stanu osłon części wirujących
B. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
C. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
D. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 16

Który przewód oznacza symbol PE?

A. Wyrównawczy
B. Uziemiający
C. Ochronny
D. Ochronno-neutralny
Odpowiedź "Ochronny" jest prawidłowa, ponieważ przewód oznaczony symbolem PE (ang. Protective Earth) jest kluczowym elementem systemów ochrony przed porażeniem elektrycznym. Przewód PE ma za zadanie prowadzenie prądu doziemnego w przypadku awarii urządzenia, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce, przewód ten jest integralną częścią instalacji elektrycznych w budynkach, a jego właściwe podłączenie do uziemienia jest niezbędne dla zapewnienia bezpieczeństwa. Zgodnie z normami, takimi jak PN-IEC 60364, przewód PE powinien być stosowany w każdym obwodzie elektrycznym, w którym zainstalowane są urządzenia elektryczne. Jego zastosowanie obejmuje zarówno instalacje przemysłowe, jak i domowe, gdzie uziemienie urządzeń, takich jak lodówki czy pralki, jest niezbędne dla ochrony przed skutkami zwarcia. Warto również podkreślić, że stosowanie przewodu PE w instalacjach elektrycznych jest wymagane przez przepisy prawa budowlanego, co dodatkowo podkreśla jego znaczenie w kontekście bezpieczeństwa użytkowników.

Pytanie 17

Schemat którego silnika przedstawiono na ilustracji?

Ilustracja do pytania
A. Obcowzbudnego prądu stałego.
B. Synchronicznego z obcym wzbudzeniem.
C. Indukcyjnego klatkowego.
D. Indukcyjnego pierścieniowego.
Schemat przedstawia silnik indukcyjny pierścieniowy, co jest łatwe do zauważenia dzięki obecności pierścieni ślizgowych, które są integralną częścią konstrukcji wirnika. Silniki te są szczególnie cenione w aplikacjach wymagających regulacji prędkości obrotowej oraz momentu obrotowego, ponieważ umożliwiają stosunkowo łatwą kontrolę tych parametrów poprzez dobór odpowiednich rezystorów w obwodzie pierścieni ślizgowych. W praktyce, silniki indukcyjne pierścieniowe są często wykorzystywane w przemysłowych aplikacjach, takich jak napędy w ciężkich maszynach, gdzie wymagana jest duża moc oraz elastyczność w regulacji prędkości. W odróżnieniu od silników klatkowych, które mają prostszą konstrukcję wirnika, silniki pierścieniowe pozwalają na lepsze dostosowanie charakterystyki pracy do specyficznych wymagań aplikacji. Warto również zauważyć, że w standardach IEC dotyczących silników elektrycznych, silniki indukcyjne pierścieniowe są klasyfikowane jako bardziej zaawansowane technologicznie, co podkreśla ich znaczenie w nowoczesnych rozwiązaniach inżynieryjnych.

Pytanie 18

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. pomiar rezystancji uziemienia
B. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
C. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
D. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
Pomiar rezystancji uziemienia to kluczowy element zapewnienia bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie ma na celu odprowadzenie nadmiaru prądu do ziemi, co chroni przed porażeniem elektrycznym i uszkodzeniem urządzeń. Przykładowo, w instalacjach przemysłowych, gdzie stosowane są maszyny o wysokich mocach, pomiar rezystancji uziemienia jest niezbędny do zapewnienia, że układ uziemiający jest skuteczny. Zgodnie z normą PN-EN 61557-4, rezystancja uziemienia powinna być mniejsza niż 10 Ω, co zapewnia odpowiednią ochronę przed skutkami udarów elektrycznych. Regularne pomiary rezystancji uziemienia pozwalają na wczesne wykrywanie problemów, takich jak korozja elementów uziemiających, co może prowadzić do ich degradacji. W praktyce, takie pomiary powinny być przeprowadzane co najmniej raz w roku lub częściej w przypadku instalacji narażonych na zmienne warunki atmosferyczne. Właściwe utrzymanie systemu uziemiającego jest nie tylko wymogiem prawnym, ale także kluczowym elementem ochrony osób i mienia.

Pytanie 19

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 6 mm2
B. 4 mm2
C. 16 mm2
D. 10 mm2
Minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w wewnętrznych liniach zasilających (WLZ) wynosi 10 mm2. Ta wartość jest określona przez normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które wskazują na konieczność zabezpieczenia przewodów przed przegrzewaniem oraz zapewnienia odpowiedniej nośności prądowej. Przekrój 10 mm2 jest stosowany, aby zminimalizować straty mocy i zapewnić bezpieczeństwo eksploatacji. Przykładowo, w budynkach jednorodzinnych, gdzie przewody te muszą obsługiwać różnorodne urządzenia elektryczne, zastosowanie przewodów o odpowiednio dużym przekroju pozwala na uniknięcie przeciążeń i potencjalnych zagrożeń pożarowych. W praktyce, stosowanie przewodów o zbyt małym przekroju może prowadzić do ich przegrzewania, co z kolei zwiększa ryzyko awarii systemu zasilania oraz uszkodzenia urządzeń elektrycznych.

Pytanie 20

W układzie jak na rysunku po załączeniu wskazówka watomierza W1 wychyliła się w lewą stronę. Po zamianie zacisków napięciowych watomierz wskazał moc 350 W. Jaka jest całkowita moc pobierana przez odbiornik, jeśli watomierz W2 wskazuje 800 W?

Ilustracja do pytania
A. 450W
B. 1150W
C. 350W
D. 800W
Wybór odpowiedzi 350W, 800W lub 1150W może wynikać z błędnych założeń dotyczących interpretacji wskazań watomierzy. Pierwsza z tych wartości, 350W, odpowiada jedynie odczytowi watomierza W1 po zamianie zacisków, co nie odzwierciedla rzeczywistego całkowitego poboru energii przez odbiornik. Ignorowanie wskazań W2, które są kluczowe dla pełnej analizy mocy, prowadzi do niekompletnego obrazu sytuacji. Kolejna wartość – 800W, będąca wskazaniem watomierza W2, również jest myląca, ponieważ wskazuje na moc dostarczoną przez źródło, a nie na moc pobraną przez odbiornik. Ostatnia opcja, 1150W, jest sumą mocy wskazywanych przez oba watomierze bez uwzględniania ich charakterystyki, co prowadzi do fałszywego wniosku, że całkowita moc pobierana przez odbiornik wynosi tyle, ile suma odczytów, co jest błędne. W praktyce, przy pomiarach energii elektrycznej, konieczne jest rozumienie zasadów działania watomierzy, gdzie pomiar może wskazywać moc ujemną w przypadku niewłaściwego podłączenia. Ważne jest, aby zrozumieć, że moc dostarczana przez źródło i moc pobierana przez odbiorniki muszą być traktowane w kontekście całego układu, co pozwala na dokładne obliczenia i unikanie nieporozumień w analizie mocy w systemach elektrycznych.

Pytanie 21

Na podstawie tabeli określ znamionowy prąd wyłącznika nadprądowego do zabezpieczenia jednofazowego obwodu oświetlenia złożonego z dwunastu lamp 2×36 W z kompensacją mocy biernej.

Ilustracja do pytania
A. 10 A
B. 13 A
C. 6 A
D. 4 A
Wybór 6 A, 13 A lub 4 A jako prądu znamionowego wyłącznika nadprądowego do zabezpieczenia obwodu oświetlenia złożonego z dwunastu lamp 2×36 W jest błędny z kilku powodów. Przede wszystkim, odpowiedni dobór wyłączników nadprądowych powinien opierać się na obliczeniach dotyczących całkowitej mocy obwodu oraz przewidywanego prądu roboczego. Prąd znamionowy 6 A jest zbyt niski, aby wytrzymać obciążenie 864 W, co stwarza ryzyko wyzwolenia wyłącznika w normalnych warunkach pracy, prowadząc do niepotrzebnych przerw w zasilaniu. Z kolei prąd 13 A, mimo że może wydawać się adekwatny, nie uwzględnia odpowiednich praktyk doboru, które sugerują, aby prąd znamionowy wyłącznika był nieprzekraczający 125% obliczonego prądu roboczego w celu stworzenia dodatkowego marginesu bezpieczeństwa. Prąd 4 A jest wprost nieadekwatny do obliczonej mocy obwodu, co może prowadzić do sytuacji, w której wyłącznik będzie nieustannie się załączał. Właściwe podejście do doboru wyłączników nadprądowych powinno uwzględniać nie tylko obliczenia teoretyczne, ale także praktyczne aspekty eksploatacji, takie jak zmiany obciążenia czy wpływ mocy biernej na wydajność obwodu. Dlatego kluczowe jest stosowanie wyłączników, które spełniają normy oraz zapewniają bezpieczeństwo i niezawodność instalacji elektrycznej.

Pytanie 22

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 23

Na rysunku przedstawiono schemat łącznika

Ilustracja do pytania
A. schodowego.
B. dwubiegunowego.
C. hotelowego.
D. jednobiegunowego.
Odpowiedź "schodowego" jest poprawna, ponieważ na przedstawionym schemacie znajduje się symbol łącznika schodowego, który jest kluczowym elementem w systemach oświetleniowych. Łącznik schodowy umożliwia sterowanie oświetleniem z dwóch lub więcej miejsc, co jest szczególnie przydatne w korytarzach, na schodach czy w dużych pomieszczeniach. Istotnym elementem tego rozwiązania są dodatkowe styki krzyżowe, które pozwalają na wygodne przełączanie między różnymi punktami zasilania, co zwiększa komfort użytkowników. Przykładowo, w domach jednorodzinnych, łączniki schodowe są często instalowane na pierwszym i ostatnim piętrze schodów, umożliwiając włączanie i wyłączanie światła bez konieczności przechodzenia przez całe pomieszczenie. Zgodnie z normą PN-EN 60669, projektowanie obwodów oświetleniowych przy użyciu łączników schodowych jest uznawane za standardową praktykę, co dodatkowo potwierdza ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 24

Na którym rysunku przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Rozdzielnica natynkowa, jak wskazuje odpowiedź D, jest konstrukcją zaprojektowaną do montażu na powierzchni ścian, co odróżnia ją od modeli podtynkowych, które są osadzone w murze. W odpowiedzi D widzimy wyraźnie rozdzielnicę z drzwiczkami, co umożliwia dostęp do osprzętu elektrycznego, takiego jak bezpieczniki czy wyłączniki. W praktyce, rozdzielnice natynkowe są często stosowane w budynkach użyteczności publicznej, biurach oraz obiektach przemysłowych, gdzie zapewniają łatwy dostęp do instalacji elektrycznych. Dobrze zaprojektowana rozdzielnica powinna przestrzegać norm bezpieczeństwa, takich jak PN-EN 61439, która reguluje wymagania dotyczące rozdzielnic niskonapięciowych. W kontekście aplikacji, uwagę należy zwrócić na odpowiednie rozmieszczenie urządzeń w rozdzielnicy oraz ich oznakowanie, co wspomaga zarówno wykonanie prac serwisowych, jak i codzienną eksploatację instalacji elektrycznej.

Pytanie 25

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zwarcia w obwodzie elektrycznym
B. przeciążenia obwodu elektrycznego
C. uszkodzenia podłączonego urządzenia elektrycznego
D. zagrożenia porażeniem prądem elektrycznym
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 26

Na której ilustracji przedstawiono przewód przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 3.
C. Na ilustracji 2.
D. Na ilustracji 4.
Ilustracja 4 przedstawia przewód czterordzeniowy, co jest zgodne z wymaganiami dotyczącymi trójfazowego przyłącza ziemnego w systemie TN-S. W tym systemie mamy do czynienia z trzema przewodami fazowymi (L1, L2, L3), jednym przewodem neutralnym (N) oraz oddzielnym przewodem ochronnym (PE). Taki układ zapewnia odpowiednią separację przewodów, co jest niezbędne dla bezpieczeństwa i efektywności instalacji elektrycznej. Przewody czterordzeniowe są powszechnie stosowane w budynkach jednorodzinnych z przyłączami trójfazowymi, ponieważ pozwalają na równomierne obciążenie faz oraz minimalizują ryzyko przeciążenia. Zgodnie z normami europejskimi, instalacje elektryczne powinny być projektowane zgodnie z zasadami bezpieczeństwa, a wybór odpowiednich przewodów jest kluczowy. Przewód czterordzeniowy na ilustracji 4 jest idealnym rozwiązaniem, ponieważ zapewnia zarówno zasilanie dla urządzeń trójfazowych, jak i ochronę przed porażeniem elektrycznym, co jest zgodne z normą PN-EN 60204-1. W praktyce, użycie takiego przewodu umożliwia również elastyczność w rozbudowie instalacji o dodatkowe urządzenia lub obwody, co jest istotnym aspektem w nowoczesnym budownictwie.

Pytanie 27

Które parametry techniczne określają stycznik przedstawiony na rysunku?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedź C jest prawidłowa, ponieważ odnosi się do konkretnego modelu stycznika marki Eaton, oznaczonego jako Z-SCH230/40-31. Analizując dane techniczne, możemy zauważyć, że znamionowy prąd pracy tego stycznika wynosi 40 A, co odpowiada wymogom zastosowań w typowych instalacjach elektrycznych. Liczba styków NO (normalnie otwartych) wynosi 3, a liczba styków NC (normalnie zamkniętych) to 1, co jest zgodne z danymi przedstawionymi na zdjęciu. Takie styczniki są szeroko stosowane w automatyce budynkowej oraz w instalacjach przemysłowych, umożliwiając kontrolę nad obwodami elektrycznymi. Zastosowanie styczników o odpowiednich parametrach jest kluczowe, aby zapewnić bezpieczeństwo oraz efektywność energetyczną w różnych systemach. Warto również zaznaczyć, że przy doborze styczników należy kierować się normami IEC 60947-4-1, co zapewnia ich odpowiednie właściwości eksploatacyjne oraz bezpieczeństwo użytkowania.

Pytanie 28

W jakim celu należy użyć przyrządu przedstawionego na rysunku?

Ilustracja do pytania
A. Pomiaru prędkości obrotowej wałów.
B. Punktowego przenoszenia wysokości.
C. Wykrywania przewodów pod tynkiem.
D. Pomiaru natężenia oświetlenia.
Udzielenie odpowiedzi dotyczącej pomiaru prędkości obrotowej wałów, natężenia oświetlenia czy punktowego przenoszenia wysokości pokazuje nieporozumienie w zakresie zastosowania detektorów. Prędkość obrotowa wałów to parametr, który można mierzyć za pomocą tachometrów, a nie detektorów przewodów, które nie są przystosowane do tak specyficznych zadań. Z kolei pomiar natężenia oświetlenia wymaga użycia luksomierzy, które służą do oceny jasności w danym pomieszczeniu, a nie do lokalizacji obiektów w ścianach. Punktowe przenoszenie wysokości odnosi się do metod geodezyjnych, które również nie mają związku z funkcjonalnością detektorów przewodów. Użycie niewłaściwego przyrządu do konkretnego zadania może prowadzić do błędnych pomiarów oraz potencjalnych uszkodzeń sprzętu. W praktyce, wybór odpowiednich narzędzi do danego zadania jest kluczowy. Ignorowanie właściwych zastosowań detektorów i wybieranie ich z pomieszaniem terminologii może skutkować nie tylko nieefektywnością, ale także narażeniem na niebezpieczeństwo, co jest szczególnie istotne w kontekście prac budowlanych i remontowych. Dlatego znajomość przeznaczenia urządzeń oraz ich specyfikacji technicznych jest fundamentalna w każdym profesjonalnym środowisku.

Pytanie 29

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Komory łukowej.
B. Wyzwalacza zwarciowego.
C. Styku ruchomego.
D. Wyzwalacza przeciążeniowego.
Pojęcia związane ze stykami ruchomymi, komorami łukowymi oraz wyzwalaczami przeciążeniowymi często mylone są z funkcją wyzwalacza zwarciowego, co prowadzi do nieporozumień w zrozumieniu działania wyłączników nadprądowych. Styki ruchome są elementami, które w momencie zadziałania wyłącznika fizycznie przerywają obwód, jednak same w sobie nie mają zdolności do detekcji zwarcia. Ich rola jest czysto mechaniczna i nie obejmuje analizy prądu. Komory łukowe natomiast służą do gaszenia łuku elektrycznego, który powstaje w momencie przerywania obwodu, ale również nie mają zdolności wykrywania zwarć. Wyzwalacze przeciążeniowe, z drugiej strony, odpowiadają za zadziałanie w sytuacji długotrwałego nadmiaru prądu, co różni się od nagłego zwarcia. Często występujące nieporozumienia dotyczące tych elementów mogą wynikać z błędnej interpretacji ich funkcji. Kluczowe jest zrozumienie, że wyzwalacz zwarciowy jest wyspecjalizowanym elementem odpowiedzialnym za natychmiastowe przerwanie obwodu w przypadku niebezpiecznego wzrostu prądu, co ma fundamentalne znaczenie dla ochrony instalacji elektrycznej. Zatem, znajomość działania tych elementów oraz ich roli w systemie ochrony elektrycznej jest niezbędna dla zapewnienia bezpieczeństwa w instalacjach i umożliwienia prawidłowego doboru komponentów w zgodzie z normami branżowymi.

Pytanie 30

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
B. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
C. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
D. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.

Pytanie 31

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Odpowiedź B jest poprawna, ponieważ łącznik przedstawiony na zdjęciu to łącznik pojedynczy, jednobiegunowy, co jest zgodne z symboliką stosowaną w branży elektrycznej. W praktyce, łączniki te są powszechnie używane do włączania i wyłączania obwodów oświetleniowych w domach i biurach. Zgodnie z normami IEC (Międzynarodowa Komisja Elektrotechniczna), poprawne oznaczenie graficzne elementów instalacji elektrycznych ma kluczowe znaczenie dla ich właściwej identyfikacji i funkcjonowania. Użycie symbolu z opcji B ułatwia instalatorom i technikom szybkie rozpoznanie typu łącznika, co przyspiesza proces montażu oraz ewentualnych prac serwisowych. Przykładem praktycznym może być zastosowanie łącznika jednobiegunowego w domach jednorodzinnych, gdzie jedna para przycisków kontroluje jedno źródło światła, co jest zgodne z powszechnymi standardami instalacyjnymi. Dobrą praktyką jest również stosowanie jednolitych symboli graficznych na schematach elektrycznych, co minimalizuje ryzyko pomyłek podczas realizacji projektów elektrycznych.

Pytanie 32

Którego z przedstawionych na rysunkach przyrządów pomiarowych należy użyć w celu zbadania rozkładu temperatury wewnątrz rozdzielnicy?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Przyrząd pomiarowy przedstawiony na rysunku B to kamera termowizyjna, który jest niezastąpionym narzędziem w diagnostyce elektronicznej i energetycznej. Umożliwia bezkontaktowe skanowanie obiektów, co pozwala na szybkie i efektywne zlokalizowanie miejsc o podwyższonej temperaturze. W kontekście rozdzielnic elektrycznych, stosowanie kamery termowizyjnej jest praktyką zalecaną według normy IEC 60364, która podkreśla znaczenie monitorowania temperatury w instalacjach elektrycznych, aby zapobiegać przeciążeniom oraz wykrywać wczesne oznaki uszkodzeń połączeń czy komponentów. Przykładem zastosowania może być regularne wykonywanie inspekcji termograficznych w zakładach przemysłowych, co pozwala na identyfikację problemów zanim dojdzie do awarii, co w dłuższej perspektywie skutkuje obniżeniem kosztów eksploatacji oraz poprawą bezpieczeństwa pracy. Dodatkowo, analiza termograficzna wspiera działania związane z utrzymaniem ruchu, a także jest elementem audytów energetycznych, mających na celu optymalizację zużycia energii.

Pytanie 33

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź D. jest poprawna, ponieważ detektor przewodów elektrycznych to specjalistyczne narzędzie, które umożliwia lokalizację przewodów w ścianach oraz innych elementach budowlanych. W przypadku instalacji podtynkowych, gdzie przewody są ukryte, kluczowe jest precyzyjne określenie ich położenia, aby uniknąć uszkodzeń podczas prac remontowych czy budowlanych. Detektory te działają na zasadzie wykrywania pola elektromagnetycznego emitowanego przez przewody, co pozwala na ich skuteczną lokalizację bez potrzeby przeprowadzania skomplikowanych badań. Dzięki zastosowaniu detektorów, można również zminimalizować ryzyko uszkodzenia istniejących instalacji. W branży elektrycznej stosowanie tego typu przyrządów jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami, co podkreśla ich znaczenie w planowaniu i realizacji instalacji elektrycznych.

Pytanie 34

Kabel oznaczony symbolem DYd 750 jest wykonany z

A. linki pokrytej gumą
B. drutu pokrytego gumą
C. drutu pokrytego polwinitem
D. linki pokrytej polwinitem
Przewód oznaczony symbolem DYd 750 wykonany jest z drutu izolowanego polwinitem, co oznacza, że jego główną funkcją jest zapewnienie odpowiedniej elastyczności oraz odporności na różne czynniki zewnętrzne. Polwinit to rodzaj materiału izolacyjnego, który jest szeroko stosowany w przemyśle elektrotechnicznym ze względu na swoje właściwości dielektryczne oraz odporność na działanie wilgoci i chemikaliów. Przewody tego typu są powszechnie używane w instalacjach elektrycznych, w tym w budownictwie oraz w różnych urządzeniach elektrotechnicznych. Dzięki zastosowaniu drutu, przewód charakteryzuje się lepszą przewodnością elektryczną w porównaniu do linki, co czyni go bardziej efektywnym w aplikacjach wymagających stałego połączenia elektrycznego. W standardach branżowych, takich jak PN-EN 60228, przewody tego typu są klasyfikowane jako posiadające wyspecyfikowane właściwości użytkowe, co czyni je odpowiednimi do różnych zastosowań, w tym zasilania w obiektach przemysłowych oraz mieszkalnych.

Pytanie 35

Który element oznaczony jest na przedstawionym schemacie symbolem literowym dT?

Ilustracja do pytania
A. Przekaźnik termobimetalowy.
B. Bezpiecznik.
C. Wyłącznik silnikowy.
D. Rozłącznik.
Wybór odpowiedzi dotyczącej wyłącznika silnikowego, bezpiecznika lub rozłącznika świadczy o pewnych nieporozumieniach dotyczących funkcji oraz zastosowania tych urządzeń w obwodach elektrycznych. Wyłącznik silnikowy, choć również używany do ochrony silników, działa na zasadzie mechanicznego odłączenia zasilania w przypadku wykrycia awarii, co czyni go innym typem zabezpieczenia. Z kolei bezpiecznik ma na celu przeciwdziałanie zwarciom poprzez przerywanie obwodu w wyniku nadmiernego prądu, jednak nie monitoruje on stanu temperatury, co czyni go nieodpowiednim w kontekście przeciążeń spowodowanych długotrwałymi obciążeniami, które mogą być bardziej niebezpieczne, ale nie muszą natychmiast prowadzić do zwarcia. Rozłącznik natomiast nie zapewnia automatycznego wyłączenia w wyniku przeciążenia - jest to urządzenie służące do ręcznego odłączania obwodu, a jego działanie jest ograniczone do zastosowań, gdzie nie wymagana jest automatyka. Wybór nieprawidłowej odpowiedzi może wynikać z braku zrozumienia różnic między tymi urządzeniami oraz ich specyficznych zastosowań w obwodach elektrycznych. W praktyce, kluczowe jest stosowanie właściwych zabezpieczeń zgodnych z charakterystyką obciążenia oraz wymaganiami norm przemysłowych, co pozwala na efektywne i bezpieczne zarządzanie urządzeniami elektrycznymi.

Pytanie 36

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Polakierować uszkodzoną izolację przewodu
B. Wymienić wszystkie przewody na nowe o większym przekroju
C. Wymienić uszkodzony przewód na nowy o takim samym przekroju
D. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 37

Jaki jest prawidłowy sposób postępowania w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego?

A. Kontynuowanie użytkowania do czasu planowanej konserwacji.
B. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu.
C. Natychmiastowe odłączenie zasilania i wymiana przewodu.
D. Owinięcie uszkodzonego miejsca taśmą izolacyjną.
Prawidłowe postępowanie w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego to natychmiastowe odłączenie zasilania i wymiana przewodu. Jest to zgodne z podstawowymi zasadami bezpieczeństwa pracy z urządzeniami i instalacjami elektrycznymi. Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem, zwarcia, a nawet pożar. Dlatego kluczowe jest, aby niezwłocznie usunąć zagrożenie poprzez odłączenie zasilania, co zapobiega dalszemu narażeniu na ryzyko. Następnie uszkodzony przewód powinien zostać wymieniony na nowy, spełniający odpowiednie normy i standardy. Takie podejście jest nie tylko zgodne z zasadami BHP, ale także z dobrą praktyką inżynierską, która kładzie nacisk na prewencję i dbałość o bezpieczeństwo użytkowników oraz sprzętu. Przykładem może być wymiana uszkodzonego przewodu w gospodarstwie domowym; ignorowanie takiego problemu mogłoby doprowadzić do poważnych konsekwencji, dlatego działanie jest kluczowe.

Pytanie 38

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. nastaw urządzeń zabezpieczających w instalacji
B. stanu obudów wszystkich elementów instalacji
C. wartości rezystancji izolacji przewodów
D. poprawności działania wyłącznika różnicowoprądowego
Wiesz, wartość rezystancji izolacji przewodów mówi nam, jak dobrze te przewody są izolowane. Fajnie, że znasz tę definicję! Ale w praktyce, w trakcie sprawdzania instalacji elektrycznych w mieszkaniach nie ma wymogu, żeby to sprawdzać. Normy, jak PN-IEC 60364, mówią głównie o bezpieczeństwie użytkowników i tym, żeby instalacja działała jak należy. Gdy przeglądasz instalację, skup się na tym, żeby ocenić stan obudów i elementów zabezpieczających. Te rzeczy są na prawdę ważne. Wyłączniki różnicowoprądowe też warto sprawdzić, bo są kluczowe dla ochrony przed porażeniem elektrycznym. Możesz to zrobić, wciskając przycisk testowy, co jest dość standardowe. Dzięki temu łatwiej zauważysz, czy coś jest nie tak. Taki sposób działania pomaga uniknąć problemów i sprawia, że instalacja będzie bezpieczna i zgodna z normami.

Pytanie 39

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. cewkę przekaźnika z opóźnionym odpadaniem.
B. cewkę przekaźnika z opóźnionym działaniem.
C. wyzwalanie cieplne.
D. wyzwalanie elektroniczne.
Wyzwalanie cieplne, przedstawione na schemacie, jest kluczowym elementem w kontekście zabezpieczeń elektrycznych, które ma na celu ochronę przed przeciążeniem. Zgodnie z normą PN-EN 60617, symbol ten odnosi się do mechanizmu, który działa na zasadzie rozszerzalności cieplnej materiałów. Przykładem zastosowania wyzwalania cieplnego są wyłączniki nadprądowe, które automatycznie odłączają obwód, gdy prąd przekracza określony próg przez zbyt długi czas. Dzięki temu zapobiegają uszkodzeniu urządzeń oraz minimalizują ryzyko pożaru. Oprócz wyłączników nadprądowych, wyzwalanie cieplne stosowane jest również w przekaźnikach termicznych, które mogą być używane w silnikach elektrycznych do monitorowania temperatury i zapobiegania przegrzaniu. Zrozumienie działania tego mechanizmu jest fundamentem dla inżynierów pracujących nad projektowaniem systemów zabezpieczeń elektrycznych, co podkreśla znaczenie znajomości symboliki występującej w dokumentacji technicznej.

Pytanie 40

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Co pięć lat
B. Co najmniej raz na rok
C. Po każdej naprawie maszyn
D. Tylko przed uruchomieniem nowych maszyn
Warto zaznaczyć, że przegląd instalacji elektrycznej tylko przed uruchomieniem nowych maszyn nie jest wystarczający. Wprowadzenie nowego sprzętu do istniejącej instalacji wymaga sprawdzenia jej zgodności, ale nie zastępuje regularnych przeglądów. Nowe maszyny mogą wprowadzać dodatkowe obciążenie na system, co zwiększa ryzyko przeciążenia lub awarii. Ponadto, przegląd po każdej naprawie maszyn również nie jest wystarczający. Choć istotne jest, aby po naprawie sprawdzić poprawność działania, nie zapewnia to bieżącego monitorowania stanu całej instalacji. Regularne przeglądy są konieczne, aby identyfikować ukryte problemy, które mogą się pojawić podczas normalnej eksploatacji. Z kolei przeglądy co pięć lat są zdecydowanie zbyt rzadkie. Taka częstotliwość nie pozwala na wystarczająco szybkie wykrycie problemów, co może prowadzić do niebezpiecznych sytuacji i nieplanowanych przestojów w pracy zakładu. Dlatego też normy i przepisy branżowe zalecają częstsze przeglądy, aby zapewnić bezpieczeństwo i efektywność działania instalacji elektrycznych. Zignorowanie tych zasad może skutkować nie tylko przerwami w produkcji, ale także poważnymi zagrożeniami dla życia i zdrowia pracowników.