Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 12:10
  • Data zakończenia: 19 grudnia 2025 12:20

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który schemat montażowy instalacji oświetleniowej przedstawionej na zamieszczonym planie jest prawidłowy?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Schematy montażowe A., B. i D. zawierają istotne błędy w podłączeniu przewodów, co może prowadzić do poważnych zagrożeń dla użytkowników oraz do awarii systemu oświetleniowego. W schemacie A. przewody fazowe są podłączone w sposób, który nie zapewnia prawidłowego działania przełącznika bistabilnego, co może skutkować sytuacją, w której lampa nie włącza się lub włącza, ale nie ma możliwości jej wyłączenia. W przypadku schematu B., podłączenie neutralne do przełącznika zamiast do lamp jest błędne i może doprowadzić do sytuacji, w której urządzenie pozostaje pod napięciem nawet po wyłączeniu, co stwarza ryzyko porażenia prądem. Z kolei schemat D. sugeruje nieprawidłowe podłączenie przewodów fazowych do lamp, co może prowadzić do nieefektywności systemu oraz skrócenia żywotności źródeł światła. Te błędy mogą wynikać z nieprawidłowej interpretacji zasady działania instalacji elektrycznych oraz braku zrozumienia roli przełączników w systemach oświetleniowych. Właściwe podejście do projektowania instalacji powinno opierać się na standardach takich jak PN-IEC 60364 oraz na znajomości zasad dobrego montażu, co zapewnia zarówno bezpieczeństwo, jak i efektywność energetyczną systemu.

Pytanie 2

Którą z funkcji umożliwia układ zasilania silnika elektrycznego przedstawiony na schemacie?

Ilustracja do pytania
A. Rozruch za pomocą rozrusznika rezystorowego.
B. Przełączanie uzwojeń z gwiazdy na trójkąt.
C. Pracę ze zmiennym kierunkiem obrotów.
D. Hamowanie dynamiczne.
Kiedy analizujesz odpowiedzi, warto zwrócić uwagę na pewne błędy związane z układem zasilania silnika elektrycznego. Inaczej mówiąc, praca ze zmiennym kierunkiem obrotów w tym schemacie nie jest możliwa. Aby to zrobić, potrzebny jest układ, który pozwala zmieniać kolejność zasilania faz silnika. Jak chcesz zmieniać kierunek obrotów silnika asynchronicznego, musisz przełączyć przewody zasilające, a to w przypadku rozrusznika rezystorowego nie następuje. I jeszcze jedno – zmiana uzwojeń z gwiazdy na trójkąt wymaga odpowiednich styczników, a w układzie rezystorowym to by się nie udało, bo on głównie kontroluje prąd rozruchowy. Hamowanie dynamiczne to kolejna rzecz, która nie jest załatwiana przez ten układ, bo do tego potrzebne są dodatkowe obwody i hamulce, a tego w tym schemacie nie ma. Myślę, że wiele osób popełnia te same błędy, bo źle rozumie, jak działają różne elementy tego układu. Dlatego warto poczytać więcej o tym, jak różne układy rozruchowe działają, żeby unikać takich nieporozumień w przyszłości.

Pytanie 3

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk TEST na wyłączonym wyłączniku
B. Naciskając przycisk TEST na załączonym wyłączniku
C. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
D. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
Naciskanie przycisku TEST na wyłączniku wyłączonym jest niewłaściwe, ponieważ nie spowoduje ono żadnej reakcji ze strony urządzenia. Wyłącznik różnicowoprądowy działa na zasadzie monitorowania różnicy prądów wpływających i wypływających z obwodu. Jeśli wyłącznik jest wyłączony, nie ma aktywnego obwodu, w którym mogłoby dojść do wykrycia różnicy prądów. Takie podejście prowadzi do błędnych wniosków, że urządzenie jest sprawne, podczas gdy w rzeczywistości nie zostało poddane żadnemu testowi. Obserwacja reakcji wyłącznika na odłączenie przewodu ochronnego lub zwarcie przewodów czynnych to również nieprawidłowe metody sprawdzania. Te działania mogą prowadzić do niebezpiecznych sytuacji, takich jak uszkodzenie urządzenia czy nawet porażenie prądem. Użytkownicy często mylą te metody, myśląc, że wystarczy jedynie obserwacja, aby potwierdzić sprawność wyłącznika. Rzeczywistość jest taka, że wyłącznik RCD musi być testowany w warunkach jego normalnej pracy, co oznacza, że powinien być włączony, aby móc skutecznie zareagować na symulację wycieku prądu. Ignorowanie tej zasady może prowadzić do poważnych konsekwencji w sytuacjach awaryjnych.

Pytanie 4

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. niskonapięciowych liniach elektroenergetycznych.
B. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
C. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
D. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 5

Oprawa oświetleniowa przedstawiona na zdjęciu ma być zamontowana za pomocą wkrętów i dybli, pokazanych na zdjęciu. Jakich narzędzi należy użyć do tego montażu?

Ilustracja do pytania
A. Wiertarki, wkrętaka płaskiego, klucza nasadowego, noża monterskiego, ściągacza izolacji.
B. Wiertarki, wkrętaka płaskiego, klucza płaskiego, noża monterskiego, ściągacza izolacji.
C. Wkrętaka płaskiego, wkrętaka PH, klucza nasadowego, wiertarki, noża monterskiego.
D. Wkrętaka płaskiego, wkrętaka PH, wkrętaka bit M10, ściągacza izolacji.
Wybór narzędzi jak nieodpowiednich to na pewno nie najlepsza opcja. Jak użyjesz złego sprzętu do montażu oprawy, to mogą się pojawić różne problemy, które popsują jakość i bezpieczeństwo pracy. Na przykład, jeśli wskazałeś wkrętak PH, to nie jest to dobry wybór, bo śruby, które w tym przypadku mamy, lepiej pasują do klucza nasadowego. Niewłaściwe narzędzia mogą zepsuć elementy oprawy, a nawet jeśli coś się zepsuje, to możesz narazić się na poważne problemy, jak awaria czy pożar. Klucz płaski też nie ma sensu, bo brakuje mu precyzji i momentu obrotowego, co w elektryce jest naprawdę istotne. Bez podstawowych narzędzi jak wiertarka czy ściągacz izolacji, możliwości prawidłowego montażu są mocno ograniczone. Przy montażu oprawy trzeba korzystać z odpowiednich narzędzi, bo każdemu przynależy konkretne zadanie i to na pewno zwiększa jakość i bezpieczeństwo pracy.

Pytanie 6

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. G9
B. MR11
C. E27
D. GU10
Oprawka E27, którą widzisz na obrazku, to jedna z tych, które najczęściej spotyka się w domach i różnych lokalach. Ten duży gwint E27 sprawia, że montaż żarówek jest prosty jak dwa razy dwa. A jakbyś pomyślał o różnych rodzajach żarówek, to znajdziesz tu sporo opcji, jak energooszczędne czy LED – każdy sobie coś dobrego wybierze. Te oprawki są chętnie używane w lampach sufitowych, kinkietach i takich wolnostojących lampach, które dodają trochę charakteru. Ich popularność wynika z tego, że są wszędzie dostępne i pasują do różnych projektów oświetleniowych. Jak wymieniasz źródło światła, E27 to świetny wybór, bo wpasujesz to właściwie wszędzie, dzięki standardowym wymiarom.

Pytanie 7

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 500 V
B. 250 V
C. 100 V
D. 1000 V
Wybór niewłaściwego napięcia probierczego przy pomiarach rezystancji izolacji może wynikać z niepełnego zrozumienia zasad bezpieczeństwa oraz specyfiki obwodów SELV i PELV. Użycie napięcia 100 V, na przykład, może być niewystarczające do skutecznego zdiagnozowania stanu izolacji. Praktyka pokazuje, że takie niskie napięcie nie jest w stanie ujawnić potencjalnych usterek, które są krytyczne dla bezpieczeństwa. W przypadku obwodów o napięciu roboczym, które wymagają wyższego poziomu izolacji, napięcie probiercze powinno być dostosowane do tych wymagań, co w przypadku SELV i PELV oznacza wartość nie mniejszą niż 250 V. Użycie napięcia 500 V lub 1000 V, z kolei, może prowadzić do uszkodzenia bardzo wrażliwych podzespołów w niektórych zastosowaniach, co jest szczególnie ważne w obwodach niskonapięciowych. Właściwe dobieranie napięcia probierczego to kluczowy element w zapewnieniu bezpieczeństwa systemów elektrycznych, a nieprzestrzeganie tych zasad może prowadzić do poważnych konsekwencji. Wiele osób błędnie zakłada, że wyższe napięcia są zawsze lepsze, jednak w rzeczywistości należy kierować się normami oraz zaleceniami producentów, aby zminimalizować ryzyko uszkodzeń oraz zapewnić bezpieczeństwo eksploatacyjne obwodów elektrycznych.

Pytanie 8

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 3, N z 2, 1 z 4
B. L z 4, N z 1, 2 z 3
C. L z 1, N z 4, 2 z 3
D. L z 1, N z 3, 2 z 4
Wybór niewłaściwej kombinacji przewodów może prowadzić do poważnych problemów w instalacji elektrycznej. Na przykład, w przypadku połączenia L z 3, N z 2 oraz 1 z 4, przewód fazowy (L) zostaje połączony z niewłaściwym punktem, co nie tylko może uniemożliwić włączenie oświetlenia, ale także stwarza ryzyko niebezpiecznych sytuacji, takich jak zwarcie czy porażenie prądem. Przewód neutralny (N) w takim układzie może pozostać niepodłączony lub niewłaściwie połączony, co zakłóca prawidłowy przepływ prądu. W praktyce, połączenie przewodów w puszce rozgałęźnej jest kluczowe do zapewnienia, że wszystkie elementy działają w zgodzie ze sobą. Zdarza się, że osoby wykonujące instalacje pomijają te fundamentalne zasady, co prowadzi do typowych błędów, takich jak nieprawidłowe łączenie przewodów, nieprzestrzeganie kolorów przewodów (np. nieodpowiednie użycie przewodu neutralnego), czy niezrozumienie roli przełącznika. Należy pamiętać, że każde połączenie powinno być zgodne z obowiązującymi normami, aby zapewnić bezpieczeństwo oraz efektywność całego obwodu. Z tego powodu kluczowe jest zrozumienie podstawowych zasad i standardów montażu elektrycznego, aby uniknąć takich pomyłek.

Pytanie 9

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Wiertarki udarowej z wiertłem widiowym
B. Klucza imbusowego
C. Klucza nasadowego
D. Wkrętarki akumulatorowej z odpowiednim bitem
Użycie klucza imbusowego w kontekście wykonywania połączeń w listwach zaciskowych śrubowych jest niewłaściwe, ponieważ narzędzie to jest przeznaczone głównie do luzowania i dokręcania śrub z gniazdem sześciokątnym. W przypadku listw zaciskowych, które zazwyczaj wymagają bardziej elastycznego podejścia do różnych typów śrub, klucz imbusowy nie zapewnia optymalnej efektywności ani szybkości. Wkrętarka akumulatorowa z dopasowanym bitem jest narzędziem, które pozwala na szybką wymianę bitów w zależności od wymagań konkretnego zadania. Z kolei wiertarka udarowa z wiertłem widiowym jest przeznaczona do wiercenia otworów, a nie do dokręcania śrub, co czyni jej użycie w tym kontekście niepraktycznym. Klucz nasadowy, mimo że może być używany do różnych zastosowań, w przypadku listw zaciskowych również nie oferuje takiej uniwersalności i efektywności jak wkrętarka akumulatorowa. Typowym błędem myślowym jest założenie, że każde narzędzie do dokręcania jest odpowiednie do wszystkich zastosowań. W rzeczywistości, wybór narzędzia powinien być uzależniony od specyfiki zadania oraz wymagań dotyczących precyzji, szybkości i bezpieczeństwa pracy. Właściwe narzędzie przyczynia się nie tylko do efektywności, ale również do jakości wykonania instalacji elektrycznej, co jest kluczowe dla jej długotrwałego funkcjonowania.

Pytanie 10

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B
A. Wyłączników nadprądowych.
B. Transformatorów.
C. Wyłączników różnicowoprądowych.
D. Styczników.
Odpowiedzi o transformatorach i wyłącznikach różnicowoprądowych są nietrafione, bo to zupełnie inne urządzenia z innymi zastosowaniami. Transformatory zmieniają napięcie w obwodach elektrycznych, a nie są montowane na szynie TH 35, więc porównywanie ich do wyłączników nadprądowych nie ma sensu. Co do wyłączników różnicowoprądowych, to one też chronią, ale działają na innej zasadzie - wykrywają różnicę prądów między fazą a przewodem neutralnym, co jest kluczowe, żeby uniknąć porażenia prądem, jak coś się uszkodzi. W praktyce często mylimy różne typy urządzeń, co prowadzi do błędnych wniosków. A styczniki, które też były wspomniane, są do załączania i wyłączania obwodów, ale nie mają funkcji zabezpieczającej jak wyłączniki nadprądowe. Dobrze jest znać różnice między tymi urządzeniami i wiedzieć, kiedy ich używać, bo to ma spore znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 11

Zdjęcie przedstawia

Ilustracja do pytania
A. płytkę zaciskową.
B. listwę montażową.
C. drabinkę kablową.
D. szynę łączeniową.
Odpowiedzi, które zawierają inne elementy elektryczne, takie jak listwy montażowe, płytki zaciskowe czy drabinki kablowe, opierają się na nieporozumieniach dotyczących funkcji i zastosowania tych komponentów w instalacjach elektrycznych. Listwa montażowa, choć może wydawać się podobnym elementem, służy głównie do zamocowania innych urządzeń lub elementów instalacji, a nie do ich łączenia. Z kolei płytki zaciskowe są stosowane do bezpośredniego łączenia przewodów, co różni je od szyn łączeniowych, które centralizują połączenia neutralne, zapewniając większą efektywność i bezpieczeństwo. Drabinki kablowe, z drugiej strony, mają na celu organizację i prowadzenie przewodów w przestrzeni, co również różni się od funkcji szyn łączeniowych. Typowe błędy myślowe prowadzące do takiej pomyłki obejmują brak zrozumienia różnic między tymi komponentami, co może skutkować błędnym doborem elementów w projekcie instalacji elektrycznej. Wiedza na temat specyfiki i standardów stosowanych w branży elektrycznej jest kluczowa dla właściwego projektowania i wykonania instalacji, co przekłada się na bezpieczeństwo i efektywność działania całego systemu.

Pytanie 12

Na którym rysunku przedstawiono schemat podłączenia automatu schodowego, umożliwiający prawidłową pracę układu oświetlenia?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Rysunek C przedstawia prawidłowe podłączenie automatu schodowego, co jest kluczowe dla zapewnienia efektywnego i bezpiecznego działania systemu oświetleniowego w miejscach o dużym natężeniu ruchu, takich jak klatki schodowe. W tym układzie przewód fazowy L jest prawidłowo podłączony do zacisku L automatu, co umożliwia kontrolowanie przepływu prądu. Zastosowanie przewodu neutralnego N do zacisku N zapewnia zamknięcie obwodu, a poprawne podłączenie przewodu oświetleniowego do symbolu żarówki gwarantuje, że po naciśnięciu przycisku oświetlenie zostanie włączone. Przyciski połączeniowe do zacisków A1 i A2 są niezbędne, aby umożliwić użytkownikom uruchomienie oświetlenia z różnych lokalizacji. Dobrą praktyką jest również stosowanie automatów schodowych, które mają możliwość regulacji czasu świecenia, co zwiększa komfort użytkowania oraz oszczędność energii. W kontekście norm i standardów, instalacje elektryczne powinny być zgodne z wymaganiami normy PN-IEC 60364, która określa zasady projektowania i wykonania instalacji elektrycznych, zapewniając bezpieczeństwo oraz efektywność energetyczną.

Pytanie 13

Łącznik przedstawiony na zdjęciu jest oznaczony na schematach symbolem graficznym

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór odpowiedzi A, B lub D może wynikać z nieporozumienia dotyczącego symboliki graficznej używanej w elektrotechnice. Symbole te mają na celu ułatwienie identyfikacji funkcji urządzeń oraz ich prawidłowego połączenia w instalacjach elektrycznych. Odpowiedź A może sugerować, że użytkownik pomylił dwuklawiszowy łącznik z innym typem łącznika, podczas gdy w rzeczywistości każdy typ łącznika ma swoje specyficzne oznaczenie. Z kolei odpowiedź B może być wynikiem nieprawidłowego zrozumienia schematów elektrycznych, gdzie umiejętność ich czytania jest kluczowa. Odpowiedź D, która nie odnosi się w ogóle do dwuklawiszowego łącznika, może świadczyć o braku wiedzy na temat różnorodności łączników dostępnych na rynku. W każdym z tych przypadków, kluczowym błędem jest brak zrozumienia, jak symbole graficzne przekładają się na rzeczywiste urządzenia elektryczne oraz ich funkcjonalności. Właściwe rozpoznawanie symboli jest fundamentalne, ponieważ pozwala na poprawne wykonanie instalacji elektrycznych zgodnie z obowiązującymi normami i standardami, co jest istotne dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w obiektach budowlanych. Aby uniknąć takich pomyłek, warto zapoznać się z materiałami edukacyjnymi związanymi z podstawami elektrotechniki oraz z praktykami instalacyjnymi, które pomogą w interpretacji schematów oraz właściwym doborze elementów w instalacjach.

Pytanie 14

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q21 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 2NO + 1NC
B. 3NO + 2NC + 1NO
C. 3NC + 2NC + 1NO
D. 3NO + 2NO + 1NC
Pomimo tego, że różne odpowiedzi mogą wydawać się atrakcyjne, żadna z opcji nie dostarcza kompletnego zestawu zestyków wymaganych do poprawnej pracy stycznika Q21. W przypadku odpowiedzi, które zawierają zestyk normalnie zamknięty (NC) w nadmiarze, pojawia się problem z realizacją funkcji sterowania silnika oraz innymi aspektami automatyki, ponieważ zbyt duża ilość zestyków NC może powodować nieprzewidziane blokady obwodów. Z kolei zestyk normalnie otwarty (NO) jest kluczowy dla załączania faz, a ich niewłaściwa ilość może prowadzić do niewłaściwego działania układu. Odpowiedzi, które sugerują wykorzystywanie większej liczby zestyków NC, świadczą o braku zrozumienia podstawowych zasad działania styczników oraz ich zastosowania w układach elektrycznych. Należy pamiętać, że w układach trójfazowych kluczowe jest wyważenie pomiędzy zestykami NO a NC, aby zapewnić zarówno wydajność, jak i bezpieczeństwo systemu. Dlatego, aby prawidłowo dobrać stycznik, konieczne jest zrozumienie, jak różne rodzaje zestyków wpływają na funkcjonalność oraz bezpieczeństwo całego układu.

Pytanie 15

Zgodnie z danymi przestawionymi w tabeli dobierz minimalny przekrój przewodu miedzianego jednożyłowego do wykonania jednofazowej natynkowej instalacji o napięciu 230 V, zasilającej piec rezystancyjny o mocy 5 000 W.

Ilustracja do pytania
A. 4 mm2
B. 2,5 mm2
C. 1,5 mm2
D. 6 mm2
Wybór niewłaściwego przekroju przewodu może przynieść poważne problemy, zarówno pod względem bezpieczeństwa jak i wydajności. Odpowiedzi 1,5 mm2 i 6 mm2 są zupełnie nietrafione przy zasilaniu pieca rezystancyjnego o mocy 5000 W. Przewód 1,5 mm2 po prostu nie jest w stanie przeprowadzić prądu 21,74 A, co stwarza ryzyko przegrzania i różnych uszkodzeń. Przewody o zbyt małym przekroju mogą powodować spadki napięcia, co negatywnie wpłynie na działanie pieca. Z kolei przewód 6 mm2 jest za duży na to obciążenie, co zwiększa koszty materiałów i może sprawić problemy z montażem oraz wyglądem całej instalacji. Często ludzie przy wyborze przekroju skupiają się tylko na maksymalnej mocy, a zapominają o innych ważnych rzeczach, takich jak długość przewodu, temperatura otoczenia czy rodzaj izolacji. Takie błędne podejście do doboru przewodu to prosta droga do kłopotów i zagraża bezpieczeństwu użytkowników oraz poprawnemu działaniu systemu elektrycznego. Dlatego warto kierować się normami i wytycznymi branżowymi, by nie popełniać takich błędów.

Pytanie 16

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Odłącznik bezpiecznikowy.
B. Rozłącznik bezpiecznikowy.
C. Wyłącznik nadmiarowoprądowy.
D. Wyłącznik przepięciowy.
Wybór niewłaściwej odpowiedzi może wynikać z mylenia różnych typów urządzeń zabezpieczających. Na przykład, odłącznik bezpiecznikowy, często mylony z rozłącznikiem, ma na celu odłączenie zasilania, ale nie zabezpiecza obwodu przed przepięciami czy przeciążeniami w ten sam sposób. Natomiast wyłącznik przepięciowy, który również może wydawać się atrakcyjną opcją, służy głównie do ochrony przed szkodliwymi skokami napięcia, które mogą uszkodzić podłączone urządzenia, a nie jest to jego funkcja w rozłączniku bezpiecznikowym. Wyłącznik nadmiarowoprądowy, z drugiej strony, może chronić przed przeciążeniem, jednak nie ma zdolności do odłączania obwodu w kontekście zapewnienia bezpieczeństwa operatora w sytuacji awaryjnej. Takie nieporozumienia mogą prowadzić do nieprawidłowego doboru urządzeń zabezpieczających, co w konsekwencji zwiększa ryzyko uszkodzeń instalacji oraz naraża użytkowników na niebezpieczeństwo. Kluczowym błędem jest zatem brak znajomości różnic w działaniach i zastosowaniach tych urządzeń, co powinno być uwzględnione podczas projektowania lub modernizacji instalacji elektrycznych. Właściwy dobór zabezpieczeń jest istotny dla zapewnienia bezpieczeństwa i efektywności działania całego systemu elektrycznego.

Pytanie 17

W instalacjach elektrycznych w budynkach mieszkalnych o napięciu 230 V nie wolno używać opraw oświetleniowych zrealizowanych w klasie ochrony

A. 0
B. I
C. III
D. II
Wybór klasy ochronności I, II lub III dla opraw oświetleniowych w instalacjach o napięciu 230 V jest nieodpowiedni ze względu na różnice w poziomie zabezpieczeń, które oferują poszczególne klasy. Klasa I obejmuje urządzenia, które mają zabezpieczenie w postaci uziemienia, co może stwarzać mylne wrażenie większego bezpieczeństwa w porównaniu do klasy 0. W rzeczywistości jednak, jeśli nie jest zastosowane odpowiednie uziemienie, urządzenie klasy I może być równie niebezpieczne, zwłaszcza w przypadku uszkodzeń. Z kolei klasa II zapewnia dodatkową izolację, co czyni ją bardziej odpowiednią dla instalacji domowych. Klasa III jest z kolei przeznaczona dla urządzeń niskonapięciowych, co nie jest zgodne z wymaganiami dla standardowych opraw oświetleniowych w mieszkaniach, gdzie napięcie wynosi 230 V. Błędem myślowym jest zakładanie, że klasy z większym poziomem zabezpieczeń mogą być stosowane w sytuacjach, gdzie nie jest to zalecane. Właściwe zrozumienie klas ochrony i ich zastosowań jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych, a ich niewłaściwe dobieranie może prowadzić do poważnych wypadków oraz uszkodzeń sprzętu. Dlatego tak ważne jest, aby zawsze przestrzegać standardów oraz zasad bezpieczeństwa określonych w normach elektrycznych.

Pytanie 18

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. doboru oraz oznaczenia przewodów
B. doboru zabezpieczeń i urządzeń
C. wartości natężenia oświetlenia w miejscach pracy
D. układu tablic informacyjnych i ostrzegawczych
Wszystkie inne odpowiedzi są nieprawidłowe w kontekście wymagań dotyczących sprawdzania nowo wykonanych instalacji elektrycznych. Dobór i oznaczenie przewodów jest fundamentalnym aspektem, który zapewnia bezpieczeństwo oraz poprawność działania instalacji. Przewody muszą być odpowiednio dobrane do obciążenia, co jest zgodne z normą PN-IEC 60364, która określa zasady planowania, wykonania oraz odbioru instalacji elektrycznych. Podobnie, dobór zabezpieczeń i aparatury jest kluczowy, aby zapewnić odpowiednią ochronę przed przeciążeniem oraz zwarciem, co jest istotne dla bezpieczeństwa użytkowników i zgodności z przepisami. Niewłaściwy dobór zabezpieczeń może prowadzić do poważnych awarii i zagrożeń, dlatego tak ważne jest, aby ten aspekt został dokładnie skontrolowany. Rozmieszczenie tablic ostrzegawczych i informacyjnych jest także istotne, ponieważ dostępność i widoczność tych informacji mają kluczowe znaczenie dla bezpieczeństwa w przestrzeni roboczej. Niedostateczne oznakowanie może prowadzić do wypadków i nieporozumień, zwłaszcza w kontekście pracy w obiektach przemysłowych. Przykładowo, w obiektach, gdzie używa się substancji niebezpiecznych, obecność informacji o zagrożeniach jest nie tylko wymagana przepisami, ale również kluczowa dla ochrony zdrowia pracowników. Uznanie, że wartości natężenia oświetlenia są równie istotne jak inne elementy instalacji, może prowadzić do błędnego postrzegania priorytetów w zakresie bezpieczeństwa oraz funkcjonalności nowo wykonanych instalacji elektrycznych.

Pytanie 19

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z miedzi w formie linki
B. Z aluminium w formie drutu
C. Z miedzi w formie drutu
D. Z aluminium w formie linki
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 20

Jaka jest bezwzględna wartość błędu pomiarowego natężenia prądu, jeśli multimetr pokazał wynik 30,0 mA, a dokładność miernika podana przez producenta dla zastosowanego zakresu pomiarowego wynosi
±(1 % + 2) cyfry?

A. ±3,2 mA
B. ±0,3 mA
C. ±2,0 mA
D. ±0,5 mA
W przypadku błędnych odpowiedzi, zwykle wynikają one z nieprawidłowej interpretacji podanych danych dotyczących dokładności pomiaru. Często mylone są różne składniki błędu. Na przykład, jeżeli obliczamy błąd jako samą wartość procentową, pomijając dodatek 2 cyfry, możemy uzyskać wynik, który nie odzwierciedla rzeczywistego błędu pomiaru. Warto również zauważyć, że pomiar z użyciem multimetru wymaga świadomego podejścia do jego specyfikacji, ponieważ różne urządzenia mogą mieć różne poziomy dokładności w zależności od zastosowanego zakresu pomiarowego. W praktyce, pomiar natężenia prądu powinien być zawsze przeprowadzany z uwzględnieniem całkowitego błędu pomiaru, a nie tylko jego części, co prowadzi do zafałszowania wyników. Dodatkowo, pomiar błędu jako np. ±3,2 mA lub ±2,0 mA zakładałby niewłaściwą interpretację zarówno błędu procentowego, jak i błędu w cyfrach. W inżynierii, gdzie dokładność jest kluczowa, błędne obliczenia mogą prowadzić do poważnych konsekwencji, takich jak uszkodzenia sprzętu lub niewłaściwe decyzje projektowe. Użycie zbyt dużych wartości błędu, które byłyby niemożliwe do zaakceptowania w kontekście standardów branżowych, pokazuje brak zrozumienia dla mechanizmów pomiarowych oraz ich ograniczeń.

Pytanie 21

Na którym rysunku przedstawiono typ schematu, na podstawie którego istnieje możliwość lokalizacji braku ciągłości rzeczywistych połączeń w instalacji elektrycznej?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór innych schematów, takich jak A, C lub D, nie dostarcza wystarczających informacji do lokalizacji braków ciągłości w połączeniach elektrycznych. Schemat A może przedstawiać ogólny zarys instalacji, ale brak w nim szczegółowych oznaczeń, które są kluczowe dla identyfikacji problemów. W przypadku schematu C, być może ilustruje on różne komponenty, ale ich rozmieszczenie i brak wyraźnych połączeń uniemożliwiają efektywną diagnostykę. Schemat D z kolei może dotyczyć innego aspektu instalacji, co wprowadza w błąd, ponieważ nie odnosi się bezpośrednio do problemu lokalizacji awarii. W praktyce, niektóre schematy nie uwzględniają standardów, które nakładają obowiązek na techników przedstawiania instalacji w sposób umożliwiający łatwe zrozumienie i diagnozowanie. Problemy te mogą prowadzić do nieporozumień i wydłużenia czasu potrzebnego na naprawę, co jest nieefektywne i kosztowne. Oparcie się na schematach, które nie spełniają tych norm, generuje ryzyko dla bezpieczeństwa i niezawodności instalacji elektrycznych. Niezrozumienie różnicy między detalami przedstawionymi na schemacie a ich praktycznym zastosowaniem może skutkować nieprawidłowym podejściem do diagnozowania awarii, co może być szkodliwe zarówno dla instalatora, jak i dla użytkowników danego systemu.

Pytanie 22

Jakie urządzenie AGD oznaczamy w dokumentacji elektrycznej przedstawionym na rysunku symbolem?

Ilustracja do pytania
A. Kuchenkę elektryczną.
B. Grzejnik elektryczny
C. Zmywarkę do naczyń.
D. Pralkę elektryczną.
Kuchenki elektryczne, pralki i grzejniki, wszystkie mają swoje symbole w dokumentach elektrycznych według normy PN-EN 60617. Ale zmywarki do naczyń często są mylone z innymi urządzeniami. Na przykład kuchenki mają inny symbol, bo mówią o gotowaniu, a nie myciu naczyń. Pralki też mają swoje symbole, które odnoszą się do prania, więc to w ogóle nie to samo. Grzejniki za to są związane z ogrzewaniem, co nie ma nic wspólnego z myciem. Chyba to trochę wynika z tego, że nie każdy zna się na różnicach w symbolach lub po prostu nie zwraca na to uwagi. Ważne jest, by umieć rozpoznać te symbole, bo błędy w dokumentacji mogą prowadzić do naprawdę poważnych problemów, a tego nikt nie chce. Dlatego lepiej zrozumieć te symbole i wiedzieć, jak ich używać.

Pytanie 23

Który przewód jest oznaczony literami PE?

A. Ochronno-neutralny
B. Neutralny
C. Ochronny
D. Fazowy
Odpowiedzi inne niż "Ochronny" są niepoprawne z kilku powodów. Przewód fazowy, będący źródłem energii elektrycznej, nie ma funkcji ochronnych i nie może być używany do zapewnienia bezpieczeństwa użytkowników. Mylenie przewodu fazowego z przewodem ochronnym często prowadzi do zagrożeń związanych z porażeniem prądem. Z kolei przewód ochronno-neutralny, oznaczany jako PEN, łączy funkcje przewodu neutralnego i ochronnego, co w niektórych systemach może być praktykowane, jednak w nowoczesnych instalacjach elektrycznych, zgodnych z aktualnymi normami, stosowanie odrębnych przewodów PE i N jest zalecane dla większego bezpieczeństwa. Przewód neutralny, który ma za zadanie zamykać obwód, nie powinien być w żadnym wypadku używany do celów ochronnych, ponieważ może wprowadzać niebezpieczne napięcia, co stwarza ryzyko dla urządzeń oraz użytkowników. Kluczowym błędem myślowym jest założenie, że przewód neutralny może pełnić rolę ochronną, co jest sprzeczne z zasadami bezpieczeństwa w instalacjach elektrycznych. Dla ochrony użytkowników oraz urządzeń, niezbędne jest stosowanie dedykowanego przewodu ochronnego, co zapewnia bezpieczeństwo w przypadku awarii.

Pytanie 24

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 4 i 8
B. 1 i 4
C. 7 i 8
D. 1 i 7
Wybrane odpowiedzi sugerują błędne podejście do analizy schematu połączeń czujnika kontroli i zaniku faz z cewką stycznika. W przypadku odpowiedzi 1 i 4, wyprowadzenia 1 oraz 4 nie są przeznaczone do szeregowego połączenia z cewką, co oznacza, że nie będą monitorować obecności faz w sposób wymagany do zabezpieczenia silnika. Podobnie, połączenie 1 i 7 oraz 4 i 8 również nie spełnia kryteriów, które pozwoliłyby na efektywne działanie czujnika. Typowym błędem myślowym jest zakładanie, że wystarczą dowolne wyprowadzenia czujnika do zabezpieczenia urządzenia. Ważne jest, aby zrozumieć, że czujnik zaniku faz ma specyficzne wyprowadzenia, które muszą być stosowane zgodnie z zaleceniami producenta, aby uniknąć niepożądanych sytuacji, takich jak zbyt wczesne wyłączenie silnika lub jego uszkodzenie w wyniku pracy w warunkach braku zasilania. Niezrozumienie zasad działania systemów zabezpieczeń może prowadzić do poważnych awarii, a w konsekwencji do wysokich kosztów napraw i przestojów produkcji. W związku z tym kluczowe jest, aby każdy inżynier miał pełne zrozumienie schematów oraz zasad działania urządzeń, z którymi pracuje.

Pytanie 25

Które z przedstawionych na rysunkach narzędzi przeznaczone jest do zaciskania końcówek tulejkowych izolowanych?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór nieodpowiedniego narzędzia do zaciskania końcówek tulejkowych izolowanych może prowadzić do wielu problemów technicznych, które wpływają na jakość i bezpieczeństwo połączeń elektrycznych. Wiele osób może sądzić, że inne narzędzia, takie jak szczypce uniwersalne, spawarki lub narzędzia do cięcia, mogą być stosowane do tego celu. Jednakże, jest to fundamentalny błąd. Narzędzia te nie zapewniają odpowiedniego profilu zaciskowego ani precyzji, co skutkuje nierównomiernym lub niewłaściwym zaciśnięciem końcówki. Tego typu błędy mogą prowadzić nie tylko do zwiększonego oporu elektrycznego, ale także do przegrzewania się połączeń, co w konsekwencji może prowadzić do ich uszkodzenia lub zapłonu. Również, niezastosowanie się do standardów, takich jak normy IEC, które precyzują wymagania dotyczące narzędzi elektrycznych, może skutkować nieodpowiednimi połączeniami. Kluczowe jest, aby wykorzystywać odpowiednie narzędzia do konkretnych zadań - w tym przypadku szczypce do zaciskania końcówek tulejkowych izolowanych, które zostały zaprojektowane z myślą o zapewnieniu trwałej i bezpiecznej pracy. Wybór właściwego narzędzia ma kluczowe znaczenie dla długotrwałości instalacji oraz bezpieczeństwa użytkowników.

Pytanie 26

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
IN – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IB ≤ IZ ≤ IN
B. IN ≤ IB ≤ IZ
C. IZ ≤ IN ≤ IB
D. IB ≤ IN ≤ IZ
Wybór odpowiedzi, która nie spełnia relacji IB ≤ IN ≤ IZ, prowadzi do nieprawidłowego rozumienia zasad projektowania instalacji elektrycznych. Niektóre z niepoprawnych odpowiedzi sugerują, że prąd obciążenia może być większy od prądu znamionowego zabezpieczenia, co jest fundamentalnym błędem. Taki błąd może prowadzić do sytuacji, w której zabezpieczenie nie zadziała w odpowiednim momencie, co z kolei skutkuje przegrzaniem przewodów i ich uszkodzeniem. Istotne jest, aby pamiętać, że prąd znamionowy zabezpieczenia powinien być zawsze dostosowany do przewidywanego obciążenia; w przeciwnym razie może dojść do ryzyka awarii. Ponadto, nieodpowiednie przypisanie wartości prądu obciążenia w stosunku do obciążalności przewodów prowadzi do nieefektywnego działania całej instalacji. Zgodnie z normami, przed przystąpieniem do wymiany przewodów lub zmiany zabezpieczeń, należy dokładnie obliczyć zarówno IB, jak i IZ oraz zrozumieć, jak te wartości wpływają na dobór IN. Ignorowanie tych zasad może prowadzić do kosztownych błędów w instalacji elektrycznej, które mogą zagrażać bezpieczeństwu użytkowników i mienia.

Pytanie 27

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy A
B. Klasy C
C. Klasy D
D. Klasy B
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 28

Ile powinna wynosić minimalna liczba żył przewodów w miejscach oznaczonych X oraz Y na przedstawionym schemacie instalacji elektrycznej, aby po jej wykonaniu zgodnie z tym schematem możliwe było jednoczesne sterowanie oświetleniem w obu punktach oświetleniowych niezależnie czterema łącznikami?

Ilustracja do pytania
A. X – 4 żyły, Y – 4 żyły.
B. X – 5 żył, Y – 5 żył.
C. X – 5 żył, Y – 4 żyły.
D. X – 4 żyły, Y – 5 żył.
Wybrana odpowiedź jest prawidłowa, ponieważ aby umożliwić jednoczesne sterowanie oświetleniem w dwóch punktach za pomocą czterech łączników, zastosowanie odpowiedniej liczby żył w przewodach jest kluczowe. W punkcie X potrzebujemy czterech żył, co pozwala na zainstalowanie łącznika krzyżowego. Taki łącznik wymaga dwóch przewodów do sterowania i dwóch do łączenia z innymi łącznikami. W punkcie Y z kolei, pięć żył jest niezbędnych, ponieważ oprócz czterech żył dla łącznika krzyżowego, potrzebujemy jeszcze jednego przewodu do zasilania samego oświetlenia. W praktyce, stosowanie łączników schodowych i krzyżowych to standard w instalacjach elektrycznych, szczególnie w dużych pomieszczeniach, gdzie wiele punktów oświetleniowych jest sterowanych z różnych miejsc. Dzięki dobrej organizacji przewodów można uniknąć problemów z nieprawidłowym działaniem systemu oświetlenia oraz zapewnić komfort użytkowania, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 29

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. B.
B. C.
C. A.
D. D.
Wybranie odpowiedzi B. jest właściwe, ponieważ wyłącznik różnicowoprądowy P304 25/0,03 A ma specyfikację prądu znamionowego 25 A oraz prądu różnicowego 30 mA. W kontekście instalacji mieszkaniowych trójfazowych, istotne jest, aby odpowiedni wyłącznik miał te same parametry. Wyłącznik oznaczony literą B. również spełnia te normy: 25 A prądu znamionowego i 30 mA prądu różnicowego, co zapewnia efektywne zabezpieczenie przed porażeniem elektrycznym oraz przeciążeniem. Dodatkowo, typ wyłączania AC jest zgodny z typowymi wymaganiami dla instalacji domowych, gdzie obciążenia są zwykle jednofazowe, a występowanie prądów różnicowych jest minimalne. Zastosowanie wyłączników różnicowoprądowych zgodnych z tymi parametrami nie tylko zwiększa bezpieczeństwo użytkowników, ale także spełnia standardy określone w normach PN-EN 61008-1, które regulują kwestie instalacji elektrycznych. Znajomość tych zasad jest kluczowa dla każdego elektryka, aby zapewnić właściwe działanie instalacji elektrycznych.

Pytanie 30

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik będzie zasilany prądem w kierunku przeciwnym
B. Podczas zasilania silnika jego wirnik będzie stał
C. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
D. Silnik będzie pracować na biegu jałowym
Analizując pozostałe opcje, warto zauważyć, że zasilenie silnika przeciwprądem prowadzi do sytuacji, w której wirnik nie ma możliwości obrotów, co generuje maksymalny poślizg. W takim przypadku wirnik staje się właściwie statyczny, a energia nie jest efektywnie przetwarzana. Sytuacja ta nie tylko powoduje straty, ale również może prowadzić do uszkodzeń silnika. Z kolei, gdy wirnik silnika jest całkowicie nieruchomy, co ma miejsce w przypadku, gdy silnik jest zasilany bez obciążenia lub niesprawny, poślizg osiąga wartość maksymalną, ponieważ nie ma żadnego ruchu, co prowadzi do nieefektywnego wykorzystania energii. Praca silnika na biegu jałowym może sprawiać wrażenie podobnej do sytuacji z wirnikiem nieruchomym, jednakże w przypadku biegu jałowego wirnik wykonuje pewne obroty, co obniża poślizg. Wreszcie, praca silnika w znamionowych warunkach zasilania i obciążenia również nie zapewnia minimalnego poślizgu, ponieważ obciążenie wprowadza różnice prędkości wynikające z oporu mechanicznego oraz charakterystyki samego silnika. Ważne jest, aby zrozumieć, że optymalizacja pracy silników indukcyjnych, w tym zmniejszenie poślizgu, jest kluczowym elementem w kontekście efektywności energetycznej oraz długowieczności urządzeń.

Pytanie 31

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
B. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
C. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
D. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
Przekaźnik bistabilny to element automatyki, który po zadziałaniu przechodzi w stan, w którym pozostaje do momentu ponownego zadziałania. Parametry techniczne, takie jak napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania oraz sygnalizacja załączenia, są kluczowe dla jego prawidłowego funkcjonowania. Napięcie zasilania określa, jakie napięcie musi być dostarczone do przekaźnika, aby mógł on prawidłowo działać. Prąd obciążenia to maksymalny prąd, który może przechodzić przez styk przekaźnika, co jest istotne przy doborze urządzenia do konkretnych aplikacji. Wartość prądu impulsu sterującego wskazuje, jaki prąd jest potrzebny do zmiany stanu przekaźnika i jest kluczowa dla jego efektywności. Opóźnienie zadziałania pozwala na określenie czasu reakcji, co jest istotne w aplikacjach wymagających precyzyjnego sterowania. Sygnalizacja załączenia informuje użytkownika o stanie przekaźnika, co ma znaczenie w kontekście bezpieczeństwa i diagnostyki. Przykładowo, w systemach automatyki budynkowej, przekaźniki bistabilne mogą być używane do kontroli oświetlenia oraz zarządzania innymi urządzeniami, co czyni je niezbędnymi w inteligentnych instalacjach. Zrozumienie tych parametrów jest kluczowe dla projektowania i wdrażania systemów automatyki zgodnych z obowiązującymi standardami branżowymi.

Pytanie 32

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze wysokoprężne.
B. Półprzewodnikowe.
C. Żarowe.
D. Wyładowcze niskoprężne.
Wybór innych typów źródeł światła, takich jak wyładowcze niskoprężne, półprzewodnikowe czy wyładowcze wysokoprężne, jest nieprawidłowy z kilku powodów. Wyładowcze niskoprężne, takie jak lampy fluorescencyjne, działają na zasadzie wyładowania elektrycznego w gazie, co skutkuje zupełnie inną charakterystyką świetlną. Te lampy emitują miękkie, rozproszone światło o niższej temperaturze barwowej w porównaniu do lamp halogenowych, co sprawia, że są mniej odpowiednie do zastosowań wymagających intensywności oraz jakości światła. Półprzewodnikowe źródła światła, jak diody LED, charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, ale również różnią się od żarówek halogenowych pod względem jakości emitowanego światła. W kontekście oświetlenia akcentującego, lampy LED mogą nie osiągać takiej samej temperatury barwowej, co lampy halogenowe. Wyładowcze wysokoprężne, z kolei, to lampy stosowane w oświetleniu ulicznym czy przemysłowym, które generują bardzo silne światło, ale mają ograniczone zastosowanie w kontekście domowym. Wybór niewłaściwego źródła światła może prowadzić do niezadowolenia z jakości oświetlenia oraz wyższych kosztów eksploatacji. Dlatego zrozumienie różnic pomiędzy tymi technologiami jest kluczowe w doborze odpowiednich źródeł światła do konkretnych zastosowań.

Pytanie 33

Na schematach instalacji elektrycznych symbolem przedstawionym na ilustracji oznacza się przewód prowadzony

Ilustracja do pytania
A. w korytku instalacyjnym.
B. nad sufitem podwieszanym.
C. w tynku.
D. pod tynkiem.
Wybór odpowiedzi dotyczącej przewodów prowadzonych nad sufitem podwieszanym, pod tynkiem lub w korytku instalacyjnym jest mylny i wynika z kilku nieporozumień związanych z oznaczeniami instalacji elektrycznych. Przewody prowadzone nad sufitem podwieszanym są zazwyczaj oznaczane innymi symbolami, które wskazują na ich lokalizację oraz sposób układania. W przypadku instalacji pod tynkiem, przewody również wymagają szczególnych oznaczeń, gdyż ich położenie jest często związane z różnorodnymi wytycznymi dotyczącymi ochrony przed uszkodzeniami. Korytka instalacyjne, w których przewody są prowadzone, również mają swoje własne symbole, które różnią się od tych stosowanych dla przewodów ukrytych w tynku. Niezrozumienie tych różnic może prowadzić do błędnych interpretacji schematów, co w konsekwencji może skutkować nieprawidłowym wykonaniem instalacji. Przykładem błędu myślowego jest założenie, że dowolne oznaczenie przewodu może odnosić się do jakiejkolwiek metody prowadzenia, co jest dalekie od rzeczywistości. Właściwa znajomość symboliki elektrycznej jest kluczowa dla poprawnego projektowania i wykonania instalacji, a każde nieporozumienie w tej kwestii może mieć poważne konsekwencje dla bezpieczeństwa użytkowników oraz funkcjonalności instalacji.

Pytanie 34

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Ochronnika przepięć
B. Elektronicznego przekaźnika czasowego
C. Wyłącznika nadprądowego
D. Wyłącznika różnicowoprądowego
Wybór innego urządzenia, takiego jak wyłącznik nadprądowy, elektroniczny przekaźnik czasowy lub ochronnik przepięć, pokazuje nieporozumienie w zakresie funkcji i zastosowania tych urządzeń. Wyłącznik nadprądowy, choć również istotny w instalacjach elektrycznych, ma na celu ochronę przed przeciążeniem i zwarciem, a nie przed porażeniem prądem. Nie prowadzi się pomiarów prądu zadziałania w kontekście wyłączników nadprądowych, co czyni tę odpowiedź niepoprawną. Elektroniczny przekaźnik czasowy, który jest używany do kontrolowania czasów działania obwodów elektrycznych, nie ma zastosowania w kontekście ochrony przeciwporażeniowej. Z kolei ochronniki przepięć zabezpieczają urządzenia przed nagłymi wzrostami napięcia, ale również nie są odpowiednie w kontekście ochrony ludzi przed porażeniem prądem. Właściwe zrozumienie funkcji poszczególnych elementów instalacji elektrycznej jest kluczowe dla zapewnienia bezpieczeństwa. Typowe błędy myślowe, takie jak mylenie funkcji ochronnych różnych urządzeń, mogą prowadzić do nieprawidłowej oceny ryzyka oraz niewłaściwych decyzji w zakresie zabezpieczeń elektrycznych. W praktyce, wiedza na temat odpowiednich zastosowań wyłączników różnicowoprądowych oraz ich regularne testowanie są niezbędne dla ochrony użytkowników instalacji elektrycznych.

Pytanie 35

Jakie środki ochrony przed porażeniem zastosowano w systemie, gdzie zasilanie urządzeń pochodzi z transformatora bezpieczeństwa?

A. Ochronne obniżenie napięcia
B. Podwójną lub wzmocnioną izolację
C. Separację urządzeń
D. Izolację miejsca pracy
W kontekście ochrony przed porażeniem prądem elektrycznym, podwójna lub wzmocniona izolacja jest jedną z metod ochrony, jednak jej zastosowanie nie jest odpowiednie w każdym przypadku. Metoda ta polega na zastosowaniu dodatkowej izolacji poza standardową, co rzeczywiście może zwiększyć bezpieczeństwo urządzenia. Nie jest to jednak wystarczające rozwiązanie dla systemów zasilanych z transformatorów bezpieczeństwa, gdzie kluczowym czynnikiem jest niskie napięcie. Separacja odbiorników również nie jest najlepszym podejściem, mimo że ma swoje miejsce w projektowaniu systemów elektrycznych. Oznacza to oddzielenie obwodów elektrycznych w celu zwiększenia bezpieczeństwa, jednak nie eliminuje ryzyka porażenia, zwłaszcza w zastosowaniach niskonapięciowych. Izolacja stanowiska, czyli zabezpieczanie użytkowników przed dostępem do elementów czynnych, jest strategią bardziej stosowaną w kontekście obszarów roboczych, lecz nie adresuje podstawowego problemu związane z niskim napięciem, które jest kluczowe w przypadkach zasilania z transformatorów bezpieczeństwa. Ostatecznie, ochronne obniżenie napięcia jest najskuteczniejszym i rekomendowanym środkiem w takich sytuacjach, ponieważ obniża ryzyko porażenia do minimum poprzez stosowanie bezpiecznych wartości napięcia.", ""]

Pytanie 36

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. żyrandol.
B. przewód ochronny.
C. przewody zasilające.
D. łącznik.
Wybór łącznika jako błędnie podłączonego elementu jest poprawny, ponieważ łącznik powinien być zawsze podłączony w obwodzie fazowym (L) w celu prawidłowej kontroli zasilania. W sytuacji, gdy łącznik przerywa obwód neutralny (N), mamy do czynienia z poważnym zagrożeniem dla bezpieczeństwa użytkowników. Zgodnie z normami PN-IEC 60364, instalacje elektryczne powinny być projektowane oraz wykonywane w sposób zapewniający ich bezpieczeństwo, co obejmuje również właściwe podłączenie łączników. Praktyka poprawnego stosowania łączników w instalacjach elektrycznych polega na tym, że przy włączonym obwodzie fazowym, możliwe jest odcięcie zasilania i tym samym zapewnienie bezpieczeństwa podczas konserwacji urządzeń. Dobrą praktyką jest również stosowanie łączników, które posiadają oznaczenia wskazujące ich położenie w obwodzie, co ułatwia identyfikację w razie awarii. Podczas projektowania instalacji, należy także uwzględnić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, aby minimalizować ryzyko porażenia prądem. Dlatego poprawne podłączenie łącznika jest kluczowe dla ogólnego bezpieczeństwa instalacji elektrycznej.

Pytanie 37

Z instrukcji obsługi przedstawionego na ilustracji miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego

Ilustracja do pytania
A. cyfrą 1 przy zwartych przewodach pomiarowych.
B. cyfrą 2 przy odłączonych przewodach pomiarowych.
C. cyfrą 2 przy zwartych przewodach pomiarowych.
D. cyfrą 1 przy odłączonych przewodach pomiarowych.
W przypadku niepoprawnych odpowiedzi ważne jest zrozumienie, dlaczego poszczególne podejścia są błędne, co może wynikać z nieprawidłowego zrozumienia procesu wyzerowania omomierza. Kiedy wybierzesz cyfrę 1 lub 2 przy odłączonych przewodach pomiarowych, nie uwzględniasz faktu, że w takim przypadku nie ma zwarcia, co skutkuje brakiem odniesienia do zero. W konsekwencji nie możesz prawidłowo ustawić miernika, co prowadzi do pomiarów obarczonych błędem. Z kolei wybór cyfr przy odłączonych przewodach jest podstawowym błędem, ponieważ odczytany wynik nie będzie odpowiadał rzeczywistej rezystancji, a jedynie wartości, którą miernik rejestruje w stanie spoczynku, co zmniejsza jego dokładność. Ostatecznie, nie zrozumienie, dlaczego konieczne jest zwarcie przewodów przed wyzerowaniem, może prowadzić do poważnych błędów w analizie wyników pomiarów. Dlatego kluczowe jest, aby każdy użytkownik omomierza rozumiał zasady działania tego narzędzia oraz były świadomy, że wszelkie pomiary należy przeprowadzać zgodnie z procedurami, aby zapewnić maksymalną precyzję i wiarygodność działania. Takie standardy są powszechnie uznawane w branży elektrycznej i pomiarowej.

Pytanie 38

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór innej odpowiedzi może wynikać z tego, że nie wszyscy znają podstawowe funkcje narzędzi pomiarowych. Rysunki innych urządzeń pomiarowych mogą być mylące, bo każde z nich ma swoje konkretne zastosowanie. Na przykład, niektóre z nich mierzą wilgotność albo temperaturę, co kompletnie nie ma związku z lokalizowaniem przewodów. Czasami ludzie mylą różne urządzenia z funkcjami detektora, co jest typowym błędem. W praktyce, wiele osób może nie wiedzieć, że detektory przewodów są stworzone specjalnie do prac elektrycznych, więc to naprawdę kluczowe narzędzie w budownictwie. Ignorowanie faktu, że odpowiednie narzędzia są istotne podczas remontów, może powodować poważne skutki, jak uszkodzenie kabli, co może prowadzić do ryzyka pożaru. Normy bezpieczeństwa kładą duży nacisk na używanie odpowiednich urządzeń, co pokazuje, jak ważne jest, aby znać właściwe zastosowanie narzędzi w praktyce.

Pytanie 39

Instalacja elektryczna, której odbiorniki oznaczone są symbolem graficznym pokazanym na rysunku

Ilustracja do pytania
A. posiada podwójną lub wzmocnioną izolację.
B. ma uziemione przewodzące obudowy odbiorników.
C. jest zasilana bardzo niskim napięciem.
D. nie posiada ochrony przed dotykiem pośrednim.
Odpowiedź "jest zasilana bardzo niskim napięciem" jest prawidłowa, ponieważ symbol graficzny na rysunku oznacza urządzenie elektryczne klasy III. Urządzenia tej klasy są projektowane do pracy w systemach zasilanych bardzo niskim napięciem (SELV - Safety Extra Low Voltage), co znacząco zwiększa bezpieczeństwo użytkowania. Dzięki zastosowaniu niskiego napięcia, ryzyko wystąpienia porażenia elektrycznego jest minimalne, co czyni te urządzenia idealnymi do użytku w warunkach, gdzie występuje zwiększone ryzyko kontaktu z wodą lub wilgocią. W praktyce, urządzenia klasy III są szeroko stosowane w instalacjach, takich jak oświetlenie w łazienkach, zasilanie urządzeń w ogrodach czy w obiektach publicznych. Standardy elektrotechniczne, takie jak IEC 61140, definiują zasady bezpieczeństwa dla tego typu urządzeń, co potwierdza ich zaufanie w zastosowaniach na całym świecie.

Pytanie 40

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
B. Samoczynne wyłączenie zasilania
C. Dodatkowe miejscowe wyrównawcze połączenia ochronne
D. Bardzo niskie napięcie ze źródła bezpiecznego
Uniedostępnianie, czyli umieszczenie urządzeń elektrycznych poza zasięgiem ręki, jest jedną z metod ochrony, jednak nie stanowi uzupełniającej ochrony przeciwporażeniowej. W rzeczywistości, polega ono na fizycznym oddzieleniu użytkownika od potencjalnych zagrożeń, co może w pewnych sytuacjach zwiększać bezpieczeństwo, ale nie eliminuje ryzyka całkowicie. Ponadto, taka metoda nie jest skuteczna w przypadku sytuacji awaryjnych, gdzie dostęp do urządzeń elektrycznych jest niezbędny do ich wyłączenia. Samoczynne wyłączenie zasilania to kolejna strategia, która ma na celu zminimalizowanie skutków porażenia prądem, ale jej skuteczność jest uzależniona od wykrycia awarii, co nie zawsze jest gwarantowane. Bardzo niskie napięcie ze źródła bezpiecznego również jest metodą ochrony, lecz nie jest to metoda uzupełniająca, a podstawowa koncepcja, która sama w sobie nie wystarcza do zapewnienia pełnej ochrony. Dobre praktyki w zakresie ochrony przeciwporażeniowej wymagają zastosowania złożonych systemów zabezpieczeń, w tym połączeń wyrównawczych, co pokazuje, że ignorowanie tych podstawowych zasad może prowadzić do błędnych wniosków i zwiększonego ryzyka w sytuacjach awaryjnych.