Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 11 lutego 2026 01:04
  • Data zakończenia: 11 lutego 2026 01:21

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie powinny być nastawy przełącznika przemiennika częstotliwości, by można było sterować jego pracą za pomocą sygnału 0÷20 mA?

Ilustracja do pytania
A. 1-ON, 2-ON, 3-ON, 4-ON
B. 1-OFF, 2-ON, 3-OFF, 4-OFF
C. 1-ON, 2-OFF, 3-OFF, 4-OFF
D. 1-OFF, 2-OFF, 3-OFF, 4-OFF
Odpowiedź 1-ON, 2-OFF, 3-OFF, 4-OFF jest prawidłowa, ponieważ zgodnie z zasadami działania przełączników w przemiennikach częstotliwości, sekcja 1 musi być włączona (ON), aby umożliwić odbieranie sygnału analogowego 4-20 mA. Ustawienie to jest kluczowe dla prawidłowej komunikacji między urządzeniem a systemem sterującym, ponieważ sygnał 4-20 mA jest standardowym sygnałem w automatyce przemysłowej. Umożliwia on precyzyjne sterowanie prędkością silnika, co jest niezbędne w aplikacjach wymagających zmiennej prędkości obrotowej. W praktyce, takie ustawienie pozwala na optymalne wykorzystanie mocy silnika oraz oszczędność energii poprzez dostosowanie wydajności do aktualnych potrzeb. Warto zaznaczyć, że brak włączenia sekcji 1 (OFF) uniemożliwiłby przepływ sygnału, co mogłoby prowadzić do niewłaściwej pracy całego systemu. Dobrą praktyką jest również regularne monitorowanie i weryfikacja ustawień przełączników, szczególnie w aplikacjach, gdzie zmiany w obciążeniu mogą wpływać na parametry pracy.

Pytanie 2

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Kompilator
B. Deasembler
C. Emulator
D. Debugger
Odpowiedzi, które wybrałeś, nie są związane z procesem tłumaczenia kodu źródłowego na kod maszynowy. Symulator to narzędzie, które imituje działanie mikrokontrolera, pozwalając na testowanie programów bez potrzeby fizycznego wgrania ich do urządzenia. Jego rola polega na umożliwieniu deweloperom analizy działania ich kodu w bezpiecznym środowisku, ale nie wykonuje ono konwersji kodu. Deasembler, z drugiej strony, to narzędzie, które przekształca kod maszynowy z powrotem na formę bardziej zrozumiałą dla ludzi, ale nie generuje kodu maszynowego z kodu źródłowego. Właściwie używa się go w kontekście analizy istniejącego kodu, a nie w procesie tworzenia oprogramowania. Debugger to narzędzie używane do identyfikacji i naprawy błędów w kodzie. Choć jest kluczowe w procesie programowania, jego zadaniem nie jest tłumaczenie kodu, lecz raczej monitorowanie działania programu w czasie rzeczywistym i umożliwienie analizy stanów oraz wartości zmiennych. Zrozumienie różnicy pomiędzy tymi narzędziami jest kluczowe dla każdego programisty, aby stosować odpowiednie podejścia i narzędzia w procesie tworzenia oprogramowania.

Pytanie 3

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s
A. impulsowo.
B. z opóźnieniem czasowym.
C. z ograniczeniem czasowym.
D. warunkowo.
Odpowiedź "z opóźnieniem czasowym" jest poprawna, ponieważ zapis w metodzie Grafcet zawiera informację o opóźnieniu, które jest kluczowym elementem w automatyzacji procesów. Opóźnienia czasowe w systemach automatyki są często stosowane do synchronizacji działań, co zapewnia płynne działanie całego systemu. W tym przypadku, akcja otwarcia zaworu 1V1 następuje po upływie 2 sekund od momentu aktywacji danego kroku. Przykładem zastosowania takiego opóźnienia może być scenariusz, w którym otwarcie zaworu musi być zsynchronizowane z innymi procesami, na przykład uruchomieniem pompy, która dostarcza ciecz do zaworu. W takich sytuacjach, stosowanie opóźnień jest zgodne z najlepszymi praktykami w projektowaniu systemów automatyki, co zwiększa niezawodność i bezpieczeństwo operacji. Ponadto, standardy branżowe, takie jak IEC 61131-3, podkreślają znaczenie precyzyjnego definiowania czasów reakcji w systemach sterowania, co także odnosi się do omawianego przypadku.

Pytanie 4

Którego z przedstawionych na ilustracjach elementów należy użyć do połączenia pneumatycznego przewodu gumowego z instalacją sprężonego powietrza wyposażoną w gniazdo szybkozłącza?

Ilustracja do pytania
A. Elementu 1.
B. Elementu 3.
C. Elementu 4.
D. Elementu 2.
Jak wybierzesz niewłaściwe elementy do połączenia przewodu gumowego z systemem sprężonego powietrza, to możesz się narazić na różne problemy, jak nieszczelności i spadek efektywności całego układu. Elementy 1, 2 i 3 nie nadają się do gniazda szybkozłącza, przez co łatwo można coś pomylić. Zdarza się, że ludzie mylą te rzeczy przez brak wiedzy o ich specyfikacji. Każdy element w instalacji musi być odpowiednio dobrany, bo inaczej można uszkodzić sprzęt, a to oznacza dodatkowe koszty na naprawy. Branżowe standardy mówią jasno, jakie złącza do czego są, więc trzeba na to zwracać uwagę. Często można spotkać się z błędem myślowym, że wszystko da się zastosować zamiennie. A to nieprawda – każdy typ złącza ma swoje własne właściwości, które są bardzo ważne dla bezpieczeństwa i efektywności całej instalacji.

Pytanie 5

Do połączeń spoczynkowych trwałych nie wlicza się

A. spawania
B. kołkowania
C. nitowania
D. klejenia
Kołkowanie to technika łączenia elementów, która nie tworzy połączeń spoczynkowych nierozłącznych. W przeciwieństwie do spawania, klejenia czy nitowania, kołkowanie polega na wprowadzeniu kołków w otwory w elementach, co pozwala na ich łatwe zdemontowanie. To podejście jest często stosowane w konstrukcjach, gdzie wymagana jest możliwość demontażu w przyszłości, jak na przykład w budownictwie modułowym. W praktyce oznacza to, że kołkowane połączenia mogą być używane w miejscach, gdzie zachodzi potrzeba konserwacji lub wymiany komponentów bez konieczności uszkadzania całej struktury. Zgodnie z normami ISO oraz PN, kołkowanie odbywa się z zachowaniem odpowiednich tolerancji wymiarowych i materiałowych, co zapewnia ich niezawodność i bezpieczeństwo. Warto również zauważyć, że kołkowanie jest jedną z metod stosowanych w różnych branżach, w tym w motoryzacji i konstrukcjach stalowych, gdzie elastyczność w montażu jest kluczowa.

Pytanie 6

Rezystory R1 = 400 Ω/0,25 W i R2 = 400 Ω/1 W ograniczają prądy płynące przez diody D1, D2. Woltomierze V1, V2 wskazują napięcie po 15 V. Oznacza to, że

Ilustracja do pytania
A. rezystory R1 i R2 nie są przeciążone.
B. rezystory R1 i R2 są przeciążone.
C. rezystor R1 jest przeciążony.
D. rezystor R2 jest przeciążony.
Rezystor R1 okazuje się przeciążony, czego nie da się ukryć, gdy spojrzymy na obliczenia dotyczące mocy. Mając napięcie 15 V, możemy policzyć moc dla R1 używając wzoru P = U²/R, co wychodzi P = (15 V)² / 400 Ω = 0,5625 W. To już sporo, bo przekracza maksymalną moc 0,25 W tego rezystora. W praktyce oznacza to, że jeśli używamy rezystora z zbyt małą mocą, to może się uszkodzić, a to może być niebezpieczne. Tak samo jest z R2, gdzie moc również wychodzi 0,5625 W, co znaczy, że też jest przeciążony. W elektronice ważne, żeby dobierać rezystory z odpowiednią mocą, bo inaczej możemy mieć problemy z działaniem całego układu. Odpowiednie dobranie rezystorów to klucz do stabilności i bezpieczeństwa w projektach elektronicznych.

Pytanie 7

W przedstawionym na rysunku siłowniku dwustronnego działania ruch tłoka odbywa się w kierunku wskazanym strzałką. Jaka komora oznaczona została literą B?

Ilustracja do pytania
A. Nadtłokowa.
B. Spływowa.
C. Podtłokowa.
D. Tłoczna.
Wybór odpowiedzi 'Tłoczna' jest trafny, ponieważ w siłownikach dwustronnego działania komora tłoczna to ta, do której dostarczane jest ciśnienie, aby poruszyć tłok w uzgodnionym kierunku. Na przedstawionym rysunku zauważamy, że strzałka wskazuje ruch tłoka w lewo, co sugeruje, że ciśnienie musi być wprowadzone do komory B, aby umożliwić ten ruch. W praktyce, systemy hydrauliczne i pneumatyczne często wykorzystują siłowniki do realizacji różnych czynności mechanicznych, takich jak podnoszenie, przesuwanie lub zaciskanie. Wiedza na temat działania komór w siłownikach jest niezbędna do projektowania i serwisowania urządzeń, które opierają swoje funkcjonowanie na takich mechanizmach. W branży automatyki i robotyki, standardy takie jak ISO 4413 dotyczące systemów hydraulicznych, podkreślają znaczenie zrozumienia poszczególnych komponentów systemu, w tym komór siłowników, co pozwala na ich efektywne i bezpieczne użytkowanie.

Pytanie 8

Tłoczysko siłownika 1A1 powinno wysunąć się po wciśnięciu przycisku zaworu 1V1, a wsunąć po wciśnięciu przycisku zaworu 1V2. Układ sterowania pneumatycznego, połączony według schematu przedstawionego na rysunku, nie działa poprawnie. Przyczyną jest błędne połączenie

Ilustracja do pytania
A. zaworów 1V1 i 1V3
B. zaworu 1V3 i siłownika 1A1
C. zespołu przygotowania powietrza 1Z1 i zaworu 1V3
D. zaworów 1V2 i 1V3
Wybrana odpowiedź jest prawidłowa, ponieważ zawór 1V3 ma kluczowe znaczenie w poprawnym działaniu siłownika 1A1 w omawianym układzie. Zawór 1V3 powinien kierować sprężone powietrze do siłownika w taki sposób, aby realizować wymagane ruchy tłoczyska. Po wciśnięciu przycisku zaworu 1V1, tłoczysko powinno się wysunąć, a po wciśnięciu przycisku zaworu 1V2, powinno się wsunąć. Jeśli zachowanie układu jest odwrotne, to oznacza, że połączenie między tym zaworem a siłownikiem jest błędne. W praktyce, przy projektowaniu układów pneumatycznych kluczowe jest przestrzeganie schematów połączeń oraz zrozumienie zasady działania poszczególnych komponentów. Użycie standardów, takich jak ISO 4414, może pomóc w zachowaniu odpowiednich norm bezpieczeństwa i efektywności działania systemu. Należy również pamiętać, że testowanie połączeń i ich poprawności jest istotnym krokiem podczas uruchamiania systemu, co ma na celu uniknięcie potencjalnych awarii w przyszłości.

Pytanie 9

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
B. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
C. wrzucić je do kosza na śmieci
D. pozostawić je obok kontenera na śmieci
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 10

Element zaznaczony na zdjęciu to

Ilustracja do pytania
A. symetryzator.
B. kondensator.
C. przekaźnik.
D. transformator.
Element zaznaczony na zdjęciu to przekaźnik, co można stwierdzić na podstawie typowych oznaczeń, takich jak napięcie cewki (12V) oraz parametry styków (250V~/16A). Przekaźniki są kluczowymi komponentami w systemach automatyzacji i sterowania, umożliwiającym załączanie i wyłączanie obwodów elektrycznych. W zastosowaniach przemysłowych przekaźniki często są używane do kontrolowania silników, lamp oraz innych urządzeń, co pozwala na zdalne sterowanie lub automatyzację procesów. Przekaźniki są również stosowane w układach zabezpieczeń, gdzie ich zadaniem jest ochrona przed przeciążeniem lub zwarciem. Warto również zwrócić uwagę, że przekaźniki są dostępne w różnych konfiguracjach, co pozwala na dostosowanie ich do specyficznych potrzeb aplikacji. W świetle standardów branżowych, takich jak IEC 60947, przekaźniki muszą spełniać określone wymagania dotyczące bezpieczeństwa i niezawodności, co czyni je niezastąpionymi w nowoczesnych systemach elektrycznych.

Pytanie 11

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. różnicowy.
B. dwustronnej pracy, bez amortyzacji.
C. jednostronnej pracy.
D. dwustronnej pracy.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 12

Sensory indukcyjne działające w trybie zbliżeniowym nie mogą być używane do detekcji elementów stworzonych

A. z miedzi
B. z aluminium
C. z polipropylenu
D. ze stali
Odpowiedź 'z polipropylenu' jest prawidłowa, ponieważ zbliżeniowe sensory indukcyjne działają na zasadzie wykrywania zmian w polu elektromagnetycznym, które są generowane przez metalowe obiekty. Polipropylen, będący materiałem nieprzewodzącym i nieferromagnetycznym, nie wpływa na to pole, co uniemożliwia sensoryzm ich detekcję. Użycie takich materiałów w aplikacjach wymagających wykrywania obiektów jest istotne, na przykład w automatyce przemysłowej, gdzie potrzebne są nietypowe materiały, jak plastiki, do produkcji elementów maszyny. W rzeczywistości, sensory indukcyjne są szeroko stosowane w procesach automatyzacji, takich jak detekcja elementów wykonanych z metali, np. w liniach montażowych. W takich aplikacjach standardy, takie jak ISO 12100 dotyczące bezpieczeństwa maszyn, wymagają odpowiedniego doboru technologii detekcji, co potwierdza praktyczną przydatność sensorów indukcyjnych w przemyśle.

Pytanie 13

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. uzwojenia
B. komutatora
C. szczotek
D. łożysk
Wymiana uzwojenia w silniku komutatorowym jest kluczowym krokiem w naprawie uszkodzonego silnika, który uległ długotrwałemu przeciążeniu, prowadzącemu do zwarć międzyzwojowych. Uzwojenie jest odpowiedzialne za generowanie pola magnetycznego, które umożliwia pracę silnika. W przypadku zwarć międzyzwojowych, wirujące pole magnetyczne przestaje działać efektywnie, co prowadzi do znacznych strat energetycznych i potencjalnych uszkodzeń innych komponentów silnika. Wymiana uzwojenia polega na demontażu uszkodzonych zwojów oraz na ich zastąpieniu nowymi, co wymaga precyzyjnego wykonania, aby zapewnić właściwe parametry pracy silnika. Ważne jest, aby stosować materiały o wysokiej jakości oraz przestrzegać norm dotyczących izolacji, co pozwala na długotrwałą i niezawodną pracę silnika. Praktyka pokazuje, że właściwie wymienione uzwojenie znacząco zwiększa efektywność oraz żywotność silnika, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 14

W układzie przedstawionym na ilustracji wykonano pomiary rezystancji pomiędzy punktem zasilania +24 V a kolejnymi punktami wejściowymi sterownika PLC. Otrzymane wyniki zapisano w tabeli. Które elementy (łączniki sterownicze, kontaktrony) powinny zostać wymienione?

Mierzony
odcinek
Wartość zmierzonej
rezystancji
+24 V / WE11,02 Ω
+24 V / WE2
+24 V / WE3
+24 V / WE42,04 Ω
+24 V / WE5
+24 V / WE62,12 Ω
Ilustracja do pytania
A. S0 i S1
B. B2 i B4
C. S0 i B2
D. B3 i B5
Wybór odpowiedzi B3 i B5 jest poprawny ze względu na analizę wartości rezystancji zmierzonych pomiędzy punktem zasilania a wejściami sterownika PLC. Normą dla sprawnych połączeń jest niska rezystancja, co wskazuje na prawidłowe funkcjonowanie obwodu. Wartości rezystancji dla WE2 oraz WE5 wynoszą nieskończoność, co sugeruje, że występuje przerwa w obwodzie. W tym przypadku należy skupić się na łącznikach B3 i B5, które są odpowiedzialne za te połączenia. Wymiana tych elementów jest kluczowa dla zapewnienia ciągłości pracy systemu i unikania błędów w sterowaniu. W kontekście stosowania urządzeń automatyki, ważne jest, aby regularnie przeprowadzać pomiary rezystancji oraz analizować wyniki, co pozwala na wczesne wykrywanie usterek i planowanie konserwacji. Praktyczne przykład to regularne inspekcje instalacji, które mogą zapobiec awariom i wpłynąć na wydajność całego układu.

Pytanie 15

Określ prawidłową kolejność dokręcania śrub lub nakrętek części podzespołu, przedstawionej na rysunku.

Ilustracja do pytania
A. B, E, C, F, D, A
B. F, B, D, C, E, A
C. F, C, A, D, B, E
D. A, F, B, C, D, E
Wybór nieprawidłowej kolejności dokręcania śrub naraża podzespół na szereg potencjalnych problemów. Odpowiedzi takie jak A, F, B, C, D, E oraz F, C, A, D, B, E, oraz inne nie uwzględniają zasady krzyżowego dokręcania, a to prowadzi do niejednorodnego rozkładu sił. Stosując błędną kolejność, siły mogą kumulować się w jednym obszarze, co zwiększa ryzyko lokalnych odkształceń, pęknięć czy nawet całkowitego zniszczenia podzespołu. Często popełnianym błędem w takich zadaniach jest brak zrozumienia wpływu sił działających na materiał w momencie dokręcania. W odpowiedziach, które omijają krzyżowe dokręcanie, zaniedbuje się także kwestie związane z tzw. 'przeładowaniem' śrub, co może prowadzić do ich uszkodzenia oraz osłabienia całej konstrukcji. W praktyce, inżynierowie często odwołują się do standardów, takich jak ISO, które jasno określają zasady dokręcania. Ignorowanie tych zasad podczas montażu części mechanicznych prowadzi do nieefektywności i wyższych kosztów związanych z serwisowaniem i naprawą. Dlatego kluczowe jest, aby przy podejmowaniu decyzji o kolejności dokręcania śrub kierować się nie tylko intuicją, ale także sprawdzonymi metodami i zaleceniami branżowymi.

Pytanie 16

Silnik synchroniczny zasilany z przemiennika częstotliwości o ustawieniach przedstawionych na rysunku, będzie pracował z prędkością obrotową

Ilustracja do pytania
A. 4,8 obr./min
B. 50 obr./min
C. 1500 obr./min
D. 400 obr./min
Silnik synchroniczny zasilany z przemiennika częstotliwości o częstotliwości 50 Hz i czterech parach biegunów będzie kręcił się z prędkością 1500 obrotów na minutę. To wynika z prostego wzoru na prędkość obrotową silnika, który brzmi: n = (120 * f) / p. Tu n to prędkość w obrotach na minutę, f to częstotliwość w Hertzach, a p to liczba par biegunów. W naszym przypadku mamy 120 * 50 / 4, co daje 1500 obr./min. Dobrze jest wiedzieć, że te obliczenia są mega przydatne w praktyce. Dzięki nim można na przykład precyzyjnie ustawić parametry pracy silników w różnych zastosowaniach przemysłowych, jak taśmy transportowe czy wentylacja. Silniki synchroniczne są super popularne w automatyce, bo są dokładne w utrzymywaniu prędkości i oszczędne energetycznie. W dodatku, dzięki przemiennikom częstotliwości możesz płynnie kontrolować prędkość silnika, co jest zgodne z najlepszymi praktykami zarządzania energią.

Pytanie 17

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Napięciem przyłożonym do obwodu twornika
B. Rezystancją w obwodzie twornika
C. Rezystancją w obwodzie wzbudzenia
D. Napięciem przyłożonym do obwodu wzbudzenia
Rezystancja w obwodzie wzbudzenia silnika obcowzbudnego prądu stałego wpływa na siłę pola magnetycznego, co z kolei oddziałuje na moment obrotowy silnika. Zwiększenie rezystancji w tym obwodzie prowadzi do zmniejszenia prądu wzbudzenia, co skutkuje osłabieniem pola magnetycznego i może prowadzić do obniżenia momentu obrotowego przy danej wartości napięcia. Takie podejście może być stosowane w niektórych sytuacjach, ale nie zapewnia efektywnej regulacji prędkości w szerokim zakresie. Zwiększenie rezystancji w obwodzie twornika również nie jest właściwym rozwiązaniem, ponieważ prowadzi do strat mocy oraz obniżenia sprawności energetycznej silnika. Działania te mogą prowadzić do nieefektywnego działania, zwłaszcza w aplikacjach wymagających dynamicznej regulacji prędkości. Warto zwrócić uwagę, że stosowanie napięcia przyłożonego do obwodu wzbudzenia może wprowadzać dodatkowe problemy, takie jak trudności w uzyskaniu stabilnej pracy silnika w niższych prędkościach, co czyni tę metodę niepraktyczną. W kontekście najlepszych praktyk inżynieryjnych, należy unikać podejść, które nie gwarantują pełnej kontroli nad parametrami pracy silnika, a także mogą prowadzić do nadmiernych strat energetycznych i złożoności w implementacji systemu. Ostatecznie, wybór odpowiedniej metody regulacji prędkości powinien być oparty na analizie wymagań aplikacji oraz efektywności energetycznej.

Pytanie 18

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. imbusowego
B. nasadowego
C. nasadowego
D. płaskiego
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.

Pytanie 19

Po przeprowadzeniu napraw w szafie sterowniczej numerycznej obrabiarki, pracownik doznał porażenia prądem. Jest nieprzytomny, lecz oddycha. W pierwszej kolejności, po odłączeniu go od źródła prądu, powinno się wykonać następujące kroki:

A. ułożyć poszkodowanego na noszach w wygodnej pozycji i przetransportować go do lekarza w celu oceny stanu zdrowia
B. wezwać pomoc medyczną, położyć poszkodowanego na plecach i rozpocząć sztuczne oddychanie
C. ustawić poszkodowanego na boku, zapewnić mu świeże powietrze i rozpocząć sztuczne oddychanie
D. ustawić poszkodowanego w stabilnej pozycji bocznej i wezwać pomoc medyczną
Odpowiedź, w której porażony zostaje ułożony w pozycji bocznej ustalonej, jest prawidłowa, ponieważ zapewnia to drożność dróg oddechowych i minimalizuje ryzyko aspiracji. Pozycja ta jest kluczowa w przypadku osób nieprzytomnych, które oddychają, ponieważ pozwala na swobodne wydostawanie się ewentualnych wydzielin, a jednocześnie chroni przed zadławieniem. Wzywając pomoc lekarską, dbamy o to, aby profesjonalna interwencja mogła zostać podjęta jak najszybciej, co jest szczególnie ważne w przypadku porażenia prądem, które może prowadzić do poważnych uszkodzeń wewnętrznych. W praktyce, osoby pracujące w środowisku przemysłowym powinny być przeszkolone w zakresie udzielania pierwszej pomocy, co jest zgodne z normą ISO 45001 dotyczącą zarządzania bezpieczeństwem i zdrowiem w pracy. Przykładowo, jeśli pracownik ulegnie porażeniu, niezwłocznie należy ocenić jego stan, a po umieszczeniu go w odpowiedniej pozycji, regularnie kontrolować jego oddech i reakcje, co jest kluczowe do oceny jego stanu przed przybyciem służb medycznych.

Pytanie 20

W siłowniku zakwalifikowanym do naprawy z powodu obniżenia się jego sprawności należy w pierwszej kolejności wymienić

Ilustracja do pytania
A. uszczelnienie tłoka.
B. magnes.
C. pokrywę tylną.
D. tłoczysko.
Uszczelnienie tłoka jest kluczowym elementem w układzie siłownika hydraulicznego, którego zadaniem jest zapewnienie szczelności oraz prawidłowego ciśnienia w systemie. W przypadku obniżenia sprawności siłownika, często pierwszym krokiem diagnostycznym jest sprawdzenie stanu uszczelnień. Uszczelnienia tłoka mają na celu zapobieganie wyciekom medium roboczego, które w większości przypadków jest olejem hydraulicznym. Wycieki te mogą prowadzić do znacznego spadku efektywności siłownika, co z kolei może wpływać negatywnie na cały system hydrauliczny, prowadząc do jego awarii. Wymiana uszczelnienia tłoka powinna być przeprowadzana zgodnie z zaleceniami producenta oraz standardami branżowymi, aby zapewnić długotrwałą i niezawodną pracę siłownika. Dodatkowo, regularna konserwacja i kontrola uszczelnień mogą znacznie wydłużyć żywotność siłowników oraz zapobiec poważniejszym awariom, co jest zgodne z najlepszymi praktykami w zakresie utrzymania ruchu.

Pytanie 21

Dioda podłączona równolegle do cewki przekaźnika pracującego w obwodzie prądu stałego

Ilustracja do pytania
A. eliminuje napięcie samoindukcji w cewce podczas zwalniania.
B. likwiduje drgania styków przekaźnika podczas zadziałania.
C. zwiększa rezystancję styków przekaźnika.
D. zmniejsza czas reakcji styków przekaźnika.
Dioda, która jest podłączona równolegle do cewki przekaźnika, jest naprawdę ważnym elementem w obwodach prądu stałego. Jej głównym zadaniem jest ochrona układu przed napięciem, które może się pojawić przy wyłączaniu przekaźnika. Kiedy przekaźnik się wyłącza, prąd przestaje płynąć, co powoduje nagły spadek natężenia. I tu wchodzi zasada Lenza - zmieniający się prąd w cewce generuje napięcie w przeciwnym kierunku, co może uszkodzić inne układy, jak tranzystory czy mikroprocesory. Dioda działa jak taki zawór, który wpuszcza prąd tylko w jedną stronę, co pozwala na rozpraszenie energii zgromadzonej w cewce. W praktyce, używa się tych diod w różnych układach, na przykład w sterowaniu silnikami, gdzie ochrona przed przepięciami jest kluczowa dla długotrwałej i niezawodnej pracy systemu. Dobrze jest pamiętać, że stosowanie diod zabezpieczających to standard w inżynierii elektrycznej, a normy jak IEC 61131 pokazują, jak ważne są bezpieczeństwo i trwałość elementów w tych projektach.

Pytanie 22

Na zdjęciu przedstawiono element hydrauliczny i odpowiadający mu symbol graficzny. Jest to

Ilustracja do pytania
A. zawór kulowy.
B. rozdzielacz suwakowy.
C. zasilacz kompaktowy.
D. pompa łopatkowa.
Wybór odpowiedzi innej niż zawór kulowy, może wprowadzać w błąd, jeśli chodzi o funkcje elementów hydraulicznych. Pompa łopatkowa, choć jest ważna, to tak naprawdę przetłacza ciecz, a nie kontroluje jej przepływ. Działa na innych zasadach niż zawor, bo chodzi o wytwarzanie ciśnienia. Zasilacz kompaktowy to z kolei coś, co dostarcza energię, a nie reguluje przepływu. Rozdzielacz suwakowy z kolei kieruje ciecz w różne strony, co też diametralnie różni się od prostego działania zaworu kulowego. Może to wszystko wynikać z mylnego wrażenia, że te elementy mają podobne funkcje. Ważne, żeby zrozumieć, jak każdy z tych komponentów działa i do czego służy, bo to bardzo ułatwia projektowanie i dbanie o systemy hydrauliczne. Lepiej nie pomijać tej wiedzy, bo później mogą się pojawić problemy.

Pytanie 23

Który rodzaj połączenia przedstawiono na rysunku?

Ilustracja do pytania
A. kołkowe.
B. klinowe.
C. sworzniowe.
D. wciskowe.
Wybór odpowiedzi sugerującej inne rodzaje połączeń, takie jak klinowe, wciskowe czy sworzniowe, wskazuje na pewne nieporozumienia dotyczące charakterystyki i zastosowania tych mechanizmów łączenia. Połączenia klinowe wykorzystują kształt klinów do zapewnienia stabilności, co jest skuteczne w niektórych kontekstach, ale nie oddaje zasady działania kołków, które działają na zasadzie przejrzystego przepływu sił przez cylindryczny element. Ponadto, połączenia wciskowe opierają się na dopasowaniu elementów, które są łączone poprzez siłę tarcia, co również różni się od mechanizmu opartego na kołkach. W przypadku sworzniowych połączeń, elementy są łączone za pomocą sworzni, które również mają inną funkcję i zastosowanie. Wiele osób myli różne typy połączeń, co może prowadzić do nieefektywności w projektach inżynieryjnych czy konstrukcyjnych. Kluczowe jest, aby zrozumieć, jakie są różnice między tymi mechanizmami oraz ich specyfikę w kontekście materiałów i zastosowań. Znajomość standardów branżowych, takich jak PN-EN 1993 dla konstrukcji stalowych, pozwoli na lepsze zrozumienie, kiedy i jakie połączenie zastosować, aby zapewnić maksymalną wydajność, bezpieczeństwo i trwałość w budownictwie.

Pytanie 24

Jakie jest właściwe podłączenie dla przyłącza oznaczonego literą 'T' w zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P i T?

A. Do zbiornika oleju hydraulicznego
B. Do zbiornika sprężonego powietrza
C. Do siłownika dwustronnego działania
D. Do siłownika jednostronnego działania
Odpowiedź "Do zbiornika oleju hydraulicznego" jest jak najbardziej trafna. Przyłącze oznaczone literą "T" w układzie hydrauliki siłowej faktycznie działa jako odpływ. W standardowych zaworach hydraulicznych 4/2 to właśnie tam kierowany jest olej, którego nie wykorzystujemy w danym momencie do pracy siłownika. Moim zdaniem, świetnym przykładem jest hydraulika w maszynach budowlanych - po prostu musimy odprowadzać nadmiar oleju, żeby nie było problemów z przegrzewaniem się układu. Dobrze jest też regularnie sprawdzać poziom oleju w zbiorniku, bo jak będzie zbyt niski, to może się zdarzyć, że pompa zacznie zassysać powietrze, a to już poważnie obniża efektywność całego systemu.

Pytanie 25

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
B. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
C. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
D. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
Twoja odpowiedź dotycząca osuszania i filtrowania powietrza, redukcji ciśnienia i nasycenia mgłą olejową jest jak najbardziej na miejscu. To ważne etapy, które pozwalają na przygotowanie sprężonego powietrza, które będzie dobrze działać w systemach pneumatycznych. Osuchanie i filtrowanie powietrza są kluczowe, żeby pozbyć się wszelkich zanieczyszczeń, bo woda, olej czy jakieś drobinki mogą zepsuć sprzęt i sprawić, że cała maszyna przestanie działać, a to już nie jest przyjemne. Po osuszeniu powietrze musi być odpowiednio nasycone olejem, żeby elementy ruchome się nie zacierały, co znacznie wydłuża ich żywotność. Dobrym przykładem jest produkcja, gdzie jakość sprężonego powietrza naprawdę może zmienić efektywność pracy.

Pytanie 26

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Pojemnościowy
B. Tensometryczny
C. Hallotronowy
D. Ultradźwiękowy
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.

Pytanie 27

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. dwoma kluczami płaskimi
B. dwoma kluczami nasadowymi
C. jednym kluczem nasadowym
D. jednym kluczem płaskim
Wybór jednego klucza płaskiego do zabezpieczenia połączeń gwintowych jest niewłaściwą strategią, ponieważ nie zapewnia równomiernego i stabilnego mocowania. Klucz płaski, używany w pojedynkę, nie może skutecznie zapobiec odkręceniu się nakrętki, szczególnie w sytuacjach narażonych na wibracje lub zmiany temperatury, które mogą powodować luzowanie się połączeń. Użycie jednego klucza płaskiego prowadzi do zwiększonego ryzyka uszkodzenia gwintu, ponieważ siła zastosowana do obracania nakrętki może być niestabilna i wymuszać nieprawidłowe obciążenia na połączeniu. Podobnie, korzystanie z dwóch kluczy nasadowych lub jednego klucza nasadowego w takim kontekście również nie jest optymalne. Klucze nasadowe, choć mogą być efektywne w kilku zastosowaniach, nie zapewniają takiego samego poziomu kontroli nad obydwoma elementami gwintowymi jak klucze płaskie. Klucze nasadowe mogą łatwo zsuwać się z nakrętek, zwłaszcza przy zmieniających się obciążeniach, co dodatkowo zwiększa ryzyko poluzowania. W praktyce, kluczowe jest zrozumienie, że odpowiednie narzędzia i techniki zabezpieczania połączeń gwintowych odgrywają kluczową rolę w zapewnieniu ich trwałości i funkcjonalności. Zachowanie standardów montażowych oraz konserwacyjnych jest istotnym elementem w inżynierii, który wpływa na bezpieczeństwo i wydajność całych konstrukcji.

Pytanie 28

Który z przedstawionych symboli graficznych oznacza tranzystor MOSFET ze wzbogaconym kanałem typu n?

Ilustracja do pytania
A. Symbol 3.
B. Symbol 4.
C. Symbol 1.
D. Symbol 2.
Wybór innego symbolu niż Symbol 3 może wynikać z nieporozumienia dotyczącego oznaczeń tranzystorów MOSFET. Każdy z pozostałych symboli może przedstawiać różne typy tranzystorów, ale brak w nich poprawnych cech, które definiują tranzystor MOSFET ze wzbogaconym kanałem typu n. Niezrozumienie symboliki może prowadzić do zastosowania niewłaściwych komponentów w projektach, co w efekcie może skutkować nieprawidłowym działaniem całego układu. Często zdarza się, że osoby projektujące obwody mylą tranzystory typu n z tranzystorami typu p, co może wynikać z niedostatecznej znajomości podstawowych cech tych komponentów. Przykładowo, tranzystory typu p mają strzałki skierowane do wnętrza kanału, co odzwierciedla ich odmienny charakter. Kluczowym aspektem, który należy wziąć pod uwagę, jest także charakterystyka elektryczna zastosowanego tranzystora, która różni się w zależności od typu i może mieć wpływ na wydajność obwodu. Dlatego ważne jest, aby inżynierowie mieli solidną wiedzę na temat symboliki oraz właściwości tranzystorów MOSFET, aby uniknąć typowych błędów, które mogą prowadzić do awarii systemów. Zrozumienie, jak interpretować symbole i jakie mają implikacje dla projektowania układów, jest niezbędne w praktyce inżynierskiej.

Pytanie 29

Którego z wymienionych narzędzi należy użyć do odkręcenia śruby przedstawionej na ilustracji?

Ilustracja do pytania
A. Klucza imbusowego.
B. Klucza płaskiego.
C. Wkrętaka z końcówką krzyżową.
D. Wkrętaka z końcówką torx.
Wkrętak z końcówką torx jest narzędziem idealnie przystosowanym do pracy z śrubami torx, które mają sześcioramienną główkę. Jego konstrukcja pozwala na doskonałe dopasowanie do kształtu śruby, co z kolei minimalizuje ryzyko poślizgu i uszkodzenia zarówno narzędzia, jak i samej śruby. Wkrętak torx zapewnia również lepszy moment obrotowy w porównaniu do standardowych wkrętaków, co pozwala na skuteczniejsze odkręcanie lub przykręcanie śrub. W zastosowaniach przemysłowych i technicznych, śruby torx są często preferowane ze względu na ich wytrzymałość i zdolność do przenoszenia większych obciążeń. Dobór odpowiedniego narzędzia jest kluczowy dla efektywności prac montażowych czy serwisowych, a stosowanie wkrętaka torx w przypadku śrub tego typu jest zgodne z branżowymi standardami, co wpływa na jakość i bezpieczeństwo wykonywanych prac.

Pytanie 30

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Zawór bezpieczeństwa
B. Tłokowy pierścień uszczelniający
C. Sprężynę zaworu zwrotnego
D. Filtr oleju
Tłokowy pierścień uszczelniający odgrywa kluczową rolę w działaniu podnośnika hydraulicznego, ponieważ zapewnia uszczelnienie między tłokiem a cylindrem, co zapobiega niepożądanym wyciekom oleju hydraulicznego. Gdy tłokowy pierścień jest zużyty lub uszkodzony, może to prowadzić do spadku ciśnienia w systemie, co z kolei powoduje, że podnoszona masa opada po pewnym czasie. W praktyce, regularna kontrola stanu pierścieni uszczelniających jest niezbędna w ramach konserwacji podnośników hydraulicznych, co jest zgodne z zaleceniami branżowymi dotyczącymi serwisowania sprzętu hydraulicznego. Zastosowanie wysokiej jakości materiałów w produkcji tych pierścieni oraz ich poprawna instalacja mają kluczowe znaczenie dla długotrwałej i efektywnej pracy podnośnika. W przypadku zauważenia problemów z opadaniem podnoszonego ciężaru, wymiana tłokowego pierścienia uszczelniającego powinna być jednym z pierwszych kroków diagnostycznych, aby przywrócić prawidłowe funkcjonowanie systemu hydraulicznego.

Pytanie 31

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Przewodu koncentrycznego
B. Skrętki czteroparowej, ekranowanej
C. Przewodu dziewięciożyłowego
D. Skrętki dwuprzewodowej
Wybór nieodpowiedniego przewodu do komunikacji w magistrali CAN może prowadzić do licznych problemów, takich jak zakłócenia sygnału, błędy w transmisji oraz obniżona wydajność całego systemu. Skrętka czteroparowa, mimo że jest popularna w sieciach Ethernet i innych systemach komunikacyjnych, nie jest zoptymalizowana pod kątem wymagań magistrali CAN. System ten wymaga przewodu o specyficznych właściwościach, takich jak niska impedancja i efektywna ochrona przed zakłóceniami, co skrętka czteroparowa nie zapewnia. Przewód koncentryczny stosowany jest w telekomunikacji i nie nadaje się do zastosowania w magistrali CAN, ponieważ jego konstrukcja nie wspiera metod różnicowych, które są kluczowe dla stabilnej komunikacji w tym standardzie. Ponadto, przewód dziewięciożyłowy jest zbyt skomplikowany i nieefektywny do implementacji w systemach CAN, które wykorzystują jedynie dwa przewody do komunikacji. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często opierają się na mylnej interpretacji zastosowania różnych typów przewodów bez uwzględnienia specyfikacji technicznych i wymagań dotyczących sygnałów CAN. Rekomendacje branżowe jasno wskazują, że dla magistrali CAN najlepszym wyborem jest skrętka dwuprzewodowa, co zapewnia efektywność i niezawodność całego systemu.

Pytanie 32

Którym medium roboczym jest zasilane urządzenie o symbolu graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Cieczą hydrauliczną.
B. Prądem stałym.
C. Sprężonym powietrzem.
D. Prądem przemiennym.
Cieczą hydrauliczną zasilane są urządzenia, które wykorzystują moc cieczy do generowania siły. W przypadku zaworów hydraulicznych, które widzimy na przedstawionym symbolu, ich głównym zadaniem jest kontrolowanie przepływu cieczy w układach hydraulicznych. Zawory mogą mieć różne funkcje, w tym regulację ciśnienia, kierunku przepływu oraz jego ilości, co jest kluczowe dla prawidłowego funkcjonowania maszyn i urządzeń przemysłowych. Systemy hydrauliczne są powszechnie stosowane w różnych branżach, takich jak budownictwo, przemysł motoryzacyjny i produkcja, gdzie siły generowane przez ciecz są wykorzystywane do napędu narzędzi, podnoszenia ciężarów i sterowania ruchem. Zrozumienie działania zaworów hydraulicznych oraz ich roli w systemach hydraulicznych jest niezwykle istotne, ponieważ prawidłowe ich dobranie i konfiguracja są kluczowe dla efektywności i bezpieczeństwa operacji. Przykładem może być maszyna budowlana, która wykorzystuje hydraulikę do podnoszenia i przemieszczania ciężkich elementów.

Pytanie 33

Sygnał MO w układzie przedstawionym na rysunku jest równy 1, gdy

Ilustracja do pytania
A. S1 = 0 i S2 = 1
B. S1 = 1 i S2 = 1
C. S1 = 0 i S2 = 0
D. S1 = 1 i S2 = 0
Odpowiedź jest prawidłowa, ponieważ w układzie przedstawionym na rysunku, który działa jako przerzutnik typu SR, sygnał MO przyjmuje wartość 1, gdy wejście S jest w stanie wysokim (1), a wejście R, po zanegowaniu, również osiąga stan wysoki. W tej sytuacji, aby stan R był aktywny, S musi mieć wartość 1, co jest zgodne z zasadami działania przerzutników. W praktycznych zastosowaniach przerzutników SR, takie jak w systemach pamięci czy licznikach, zrozumienie działania tych sygnałów jest kluczowe. Umożliwia to projektowanie bardziej złożonych układów cyfrowych, które są fundamentem technologii mikroprocesorowej. Dobrą praktyką w projektowaniu układów cyfrowych jest zawsze uwzględnianie logiki negacji sygnałów, co pozwala na pełne wykorzystanie możliwości przerzutników. Wiedza na temat działania przerzutników jest nieoceniona w kontekście inżynierii elektronicznej oraz automatyzacji, gdzie precyzyjne sterowanie sygnałami jest kluczowe.

Pytanie 34

Podzespół instalacji pneumatycznej, którego fragment dokumentacji technicznej przedstawiono poniżej, służy do usuwania

Dane techniczne:

  • całość można rozmontować i użyć jako osobne urządzenia (filtro-reduktor i olejarka)
  • filtr to podstawa do otrzymania czystego powietrza szczególnie w lakiernictwie
  • zalecany dla wszystkich pneumatycznych narzędzi takich jak: klucze, piły pneumatyczne, młotki itd.
  • ciśnienie jest dokładnie ustawialne dzięki zastosowanemu regulatorowi na filtrze
  • można też dokładnie ustawić wielkość mgły olejowej poprzez śrubę regulacyjną
  • filtr jest wyposażony w półautomatyczny spust kondensatu
  • przepływ powietrza na poziomie 750 l/min.
Ilustracja do pytania
A. zanieczyszczeń powietrza w postaci drobin stałych, redukowania ciśnienia i naolejania powietrza.
B. zanieczyszczeń powietrza w postaci drobin stałych i cząstek oleju.
C. wilgoci z powietrza oraz stabilizowania jego ciśnienia i temperatury.
D. oleju, wilgoci i wytwarzania nadciśnienia powietrza.
Poprawna odpowiedź odnosi się do kluczowego zadania podzespołu instalacji pneumatycznej, który obejmuje filtr, reduktor ciśnienia oraz oliwiarkę. Filtr jest odpowiedzialny za eliminację zanieczyszczeń powietrza, takich jak drobiny stałe, które mogą uszkodzić narzędzia pneumatyczne oraz obniżyć ich efektywność. Reduktor ciśnienia umożliwia precyzyjne dostosowanie ciśnienia powietrza, co ma istotne znaczenie w kontekście zapewnienia stabilnych warunków pracy urządzeń pneumatycznych. Zbyt wysokie ciśnienie może prowadzić do uszkodzeń, natomiast zbyt niskie może powodować niewłaściwe działanie. Oliwiarka natomiast odpowiedzialna jest za naolejanie powietrza, co zapewnia właściwe smarowanie ruchomych elementów narzędzi pneumatycznych, zmniejszając ich zużycie i przedłużając żywotność. Wzorcowe praktyki branżowe podkreślają znaczenie regularnej konserwacji tych komponentów, co przyczynia się do zwiększenia efektywności systemów pneumatycznych i zmniejszenia kosztów eksploatacyjnych.

Pytanie 35

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Tłokowa z dwustronnym tłoczyskiem
B. Nurnikowa
C. Tłokowa z jednostronnym tłoczyskiem
D. Teleskopowa
Konstrukcje teleskopowe siłowników hydraulicznych charakteryzują się tym, że składają się z kilku cylindrów, które są wciągane jeden w drugi. Dzięki temu, nawet przy stosunkowo krótkiej długości całkowitej, teleskopowe siłowniki mogą osiągnąć znaczny skok. Jest to szczególnie przydatne w zastosowaniach, gdzie przestrzeń jest ograniczona, a wymagana jest duża ruchomość, na przykład w dźwigach, podnośnikach czy maszynach budowlanych. Teleskopowe siłowniki są często wykorzystywane w przemyśle, gdzie zaawansowane rozwiązania hydrauliczne są wymagane do efektywnej pracy. W standardach branżowych, takich jak ISO 6022, podkreśla się znaczenie teleskopowych siłowników w kontekście ich zdolności do pracy w ograniczonej przestrzeni, co czyni je niezastąpionymi w wielu zastosowaniach. W praktyce, przy odpowiednim doborze materiałów oraz technologii produkcji, teleskopowe siłowniki mogą pracować z dużymi obciążeniami i przy wysokich ciśnieniach, co zapewnia ich trwałość i niezawodność.

Pytanie 36

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. przymiaru średnicowego
B. mikroskopu technicznego
C. śruby mikrometrycznej
D. przymiaru kreskowego
Śruba mikrometryczna to narzędzie pomiarowe, które umożliwia uzyskanie wyjątkowo dokładnych wyników pomiarów średnicy wałków oraz innych elementów cylindrycznych. Posiada ona mechaniczną konstrukcję, która pozwala na odczyt wartości z dokładnością do setnych lub nawet tysięcznych części milimetra. Dzięki zastosowaniu śruby mikrometrycznej użytkownik może precyzyjnie ustawić narzędzie na obiekcie pomiarowym, a następnie odczytać wynik z podziałki, co zapewnia wysoką powtarzalność i dokładność. W praktyce, śruby mikrometryczne są powszechnie stosowane w laboratoriach pomiarowych, zakładach produkcyjnych oraz w warsztatach mechanicznych, gdzie precyzja pomiarów jest kluczowa. Przykładem zastosowania może być kontrola średnicy wałków w przemyśle motoryzacyjnym, gdzie tolerancje wymiarowe mają bezpośredni wpływ na bezpieczeństwo i funkcjonalność pojazdów. Biorąc pod uwagę standardy takie jak ISO 2878, precyzyjne pomiary przy użyciu śrub mikrometrycznych są niezbędne do zapewnienia zgodności z wymaganiami jakościowymi.

Pytanie 37

Cechą charakterystyczną przedstawionej na rysunku wyspy zaworowej jest

Ilustracja do pytania
A. wspólne zasilanie bloków.
B. wzmocnienie ciśnienia.
C. tłumienie hałasu.
D. pojedynczy sygnał wyjściowy.
Cechą charakterystyczną wyspy zaworowej jest wspólne zasilanie bloków, co oznacza, że wszystkie zawory w danym module są zasilane z jednego źródła powietrza. Taki układ ma kluczowe znaczenie w systemach pneumatycznych, ponieważ umożliwia centralne zarządzanie i synchronizację pracy poszczególnych zaworów. Dzięki wspólnemu zasilaniu możliwe jest efektywne wykorzystanie zasobów powietrza oraz uproszczenie instalacji, co przekłada się na mniejsze ryzyko awarii i łatwiejszą konserwację. W praktyce, takie rozwiązanie jest często stosowane w automatyce przemysłowej, gdzie wymagana jest szybka i precyzyjna kontrola procesów produkcyjnych. Stosowanie wysp zaworowych zgodnie z najlepszymi praktykami branżowymi sprzyja zwiększeniu wydajności oraz niezawodności systemów, co jest kluczowe w kontekście ciągłości produkcji i minimalizacji przestojów. Warto również zauważyć, że wyspy zaworowe przyczyniają się do redukcji przewodów pneumatycznych, co z kolei ogranicza ryzyko wycieków i poprawia estetykę instalacji.

Pytanie 38

Czujnik indukcyjny, którego dane techniczne przedstawiono w tabeli, może pracować w układzie elektrycznym o następujących parametrach:

Typ czujnikaindukcyjny
Konfiguracja wyjścia2-przewodowy NO
Zasięg0÷4 mm
Napięcie zasilania15÷34V DC
Obudowa czujnikaM12
Przyłączeprzewód 2 m
Klasa szczelnościIP67
Prąd pracy max.25 mA
Temperatura pracy-25÷70°C
Rodzaj czoławysunięte
Częstotliwość przełączania maks.300 Hz
A. napięcie zasilania 15 V DC i prąd pracy 0,02 A
B. napięcie zasilania 24 V DC i prąd pracy 30 mA
C. napięcie zasilania 24 V DC i prąd pracy 0,02 A
D. napięcie zasilania 20 V AC i prąd pracy 0,02 A
Poprawna odpowiedź to napięcie zasilania 24 V DC i prąd pracy 30 mA. Czujniki indukcyjne są szeroko stosowane w automatyce przemysłowej, a ich prawidłowe zasilanie jest kluczowe dla ich funkcjonalności. Napięcie 24 V DC jest standardowym poziomem zasilania w wielu systemach automatyzacji, co ułatwia integrację czujników z innymi komponentami. W przypadku czujnika, ważne jest również, aby prąd roboczy nie przekraczał dopuszczalnych wartości, co w tym przypadku wynosi 30 mA. Przykładem zastosowania czujników indukcyjnych w praktyce może być detekcja obecności obiektów metalowych w linii produkcyjnej, co pozwala na automatyzację procesów, zwiększenie wydajności i redukcję ryzyka błędów ludzkich. Stosowanie czujników o odpowiednich parametrach technicznych zgodnych z wymaganiami systemu to najlepsza praktyka w obszarze inżynierii automatyki, co zapewnia niezawodność i bezpieczeństwo operacji.

Pytanie 39

Jaki miernik należy zastosować w przedstawionym na rysunku układzie pomiaru metodą pośrednią?

Ilustracja do pytania
A. amperomierz.
B. watomierz.
C. omomierz.
D. woltomierz.
Woltomierz jest urządzeniem przeznaczonym do pomiaru napięcia elektrycznego i w przedstawionym układzie pomiarowym należy go podłączyć równolegle do elementu Rwz. Takie podłączenie jest zgodne z zasadami pomiarów elektrycznych, ponieważ pozwala na dokładne zmierzenie napięcia bez wpływu na obwód. W praktyce, woltomierze są szeroko stosowane w różnych dziedzinach, w tym w elektrotechnice i elektronice, gdzie wymagane jest monitorowanie napięć w obwodach. Zgodnie z normami, woltomierze powinny mieć wysoką impedancję wejściową, co ogranicza wpływ na mierzony układ. Dobrą praktyką jest stosowanie woltomierzy cyfrowych, które zapewniają lepszą dokładność pomiaru oraz łatwość odczytu. W przypadku pomiaru napięcia w obwodach przemysłowych, warto również zwrócić uwagę na zakres pomiarowy urządzenia, aby dostosować go do wartości napięcia, które będzie mierzone. Dodatkowo, w kontekście bezpieczeństwa, zawsze należy przestrzegać zasad BHP, korzystając z odpowiednich osłon i narzędzi ochronnych.

Pytanie 40

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z litego materiału magnetycznego anizotropowego
B. z pakietu blach elektrotechnicznych nie izolowanych od siebie
C. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie
D. z litego materiału magnetycznego izotropowego
Rdzeń wirnika silnika indukcyjnego wykonany jest z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie, co jest powszechną praktyką w projektowaniu maszyn elektrycznych. Taki zabieg ma na celu minimalizację strat energetycznych, które występują w wyniku prądów wirowych. Wysokiej jakości blachy elektrotechniczne, produkowane zgodnie z normami, takimi jak EN 10106, charakteryzują się niską stratnością magnetyczną oraz wysoką przewodnością magnetyczną. Dzięki ich zastosowaniu, rdzeń wirnika jest bardziej efektywny w generowaniu pola magnetycznego, co przekłada się na lepsze parametry pracy silnika, mniejsze straty ciepła oraz wyższą efektywność energetyczną. Przykładem zastosowania tej technologii są silniki asynchroniczne, które są powszechnie wykorzystywane w przemyśle, automatyce oraz napędach elektrycznych. Prawidłowe wykonanie rdzenia wirnika z blach elektrotechnicznych ma kluczowe znaczenie dla żywotności i niezawodności silnika.