Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 16 lutego 2026 19:19
  • Data zakończenia: 16 lutego 2026 19:50

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które zaciski listwy zaciskowej transformatora trójfazowego obniżającego napięcie należy połączyć, aby uzyskać połączenie uzwojenia górnego napięcia w gwiazdę, a uzwojenia dolnego napięcia w trójkąt?

Ilustracja do pytania
A. 4-5-6 oraz 8-10, 9-11, 7-12
B. 2-4, 3-5, 1-6 oraz 7-8-9
C. 2-4, 3-5, 1-6 oraz 8-10, 9-11, 7-12
D. 4-5-6 oraz 7-8-9
Prawidłowa odpowiedź „4-5-6 oraz 8-10, 9-11, 7-12” wynika bezpośrednio z zasad łączenia uzwojeń trójfazowych w układ gwiazdy i trójkąta. W transformatorze trójfazowym obniżającym napięcie uzwojenie górnego napięcia (GN) ma być połączone w gwiazdę, czyli końce trzech faz muszą zostać ze sobą zwarte, tworząc punkt neutralny. Na listwie zaciskowej rolę tych końców pełnią zaciski 4, 5 i 6 – ich połączenie daje klasyczne połączenie Y po stronie pierwotnej. Zaciski 1, 2 i 3 są wtedy zaciskami liniowymi L1, L2, L3 zasilania. To jest bardzo typowy układ Y/Δ stosowany np. w transformatorach 15 kV/0,4 kV, tylko tutaj w wersji „warsztatowej” na listwie 12‑zaciskowej. Po stronie dolnego napięcia (DN) ma powstać trójkąt, czyli koniec jednego uzwojenia musi być połączony z początkiem następnego. Właśnie to realizują mostki 8-10, 9-11 i 7-12: łączą wyprowadzenia poszczególnych faz w zamknięty obwód trójkąta. Na pozostałych wolnych zaciskach (7, 8, 9 lub 10, 11, 12 – zależnie od schematu producenta) wyprowadzamy fazy do odbiornika. Dzięki temu uzwojenie DN pracuje w układzie Δ, co w praktyce zapewnia m.in. lepszą kompensację prądów trzeciej harmonicznej i zwiększoną odporność na niesymetrię obciążeń. Moim zdaniem warto zapamiętać, że: gwiazda = wspólny punkt trzech końców, trójkąt = trzy odcinki połączone „koniec z początkiem” w pętlę. W rzeczywistym montażu zawsze trzeba porównać numerację zacisków z tabliczką znamionową i schematem z dokumentacji transformatora, bo nie każdy producent stosuje identyczny układ numerów, natomiast zasada połączeń Y/Δ pozostaje taka sama.

Pytanie 2

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
B. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
C. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
D. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
Odpowiedź polegająca na wymianie żarówki, która się nie świeci, oraz sprawdzeniu przewodów i oprawy oświetleniowej jest prawidłowa, ponieważ pozwala na kompleksowe zdiagnozowanie problemu. W pierwszej kolejności należy wymienić żarówkę, aby upewnić się, że usterka nie leży po stronie źródła światła. Zgodnie z dobrą praktyką, przed wymianą żarówki warto upewnić się, że źródło zasilania jest wyłączone, co zapewnia bezpieczeństwo podczas pracy. Następnie, sprawdzenie przewodów pozwala na wykrycie ewentualnych uszkodzeń lub przerwań, które mogą powodować brak zasilania. Warto również sprawdzić oprawę oświetleniową pod kątem korozji, zanieczyszczeń czy uszkodzeń mechanicznych, które mogą wpływać na funkcjonowanie układu. Przeprowadzanie tych kroków zgodnie z procedurami przewidzianymi w normach elektrycznych pozwala na skuteczną eliminację przyczyn usterki oraz zapobiega ewentualnym przyszłym problemom z oświetleniem. Długoterminowe utrzymanie systemów oświetleniowych w dobrym stanie technicznym jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa użytkowników.

Pytanie 3

Który element instalacji, montowany w rozdzielnicy, przedstawiono na rysunku?

Ilustracja do pytania
A. Ogranicznik przepięć.
B. Wyłącznik nadprądowy.
C. Sygnalizator dzwonkowy.
D. Lampkę kontrolną.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ jego podstawowym zadaniem jest ochrona instalacji elektrycznej przed nagłymi wzrostami napięcia, które mogą być spowodowane na przykład wyładowaniami atmosferycznymi czy też skokami napięcia w sieci. Ograniczniki przepięć montowane w rozdzielnicach są kluczowym elementem systemów zabezpieczeń, zgodnie z normą PN-EN 61643-11, która określa wymogi dotyczące tych urządzeń. Przykładowo, w budynkach mieszkalnych oraz komercyjnych zastosowanie ograniczników przepięć pozwala na ochronę drogiego sprzętu elektronicznego, takich jak komputery, telewizory czy systemy alarmowe, przed uszkodzeniami wynikającymi z przepięć. Warto zauważyć, że ograniczniki przepięć są projektowane tak, aby działały w sposób automatyczny, minimalizując potrzebę interwencji ze strony użytkowników. W praktyce zaleca się umieszczenie takich urządzeń w każdym nowo projektowanym obiekcie, co wychodzi naprzeciw dobrym praktykom w zakresie ochrony elektrycznej.

Pytanie 4

Który element elektroniczny oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Termistor.
B. Tranzystor polowy.
C. Tranzystor bipolarny.
D. Tyrystor.
Na symbolu widzisz klasyczny symbol tranzystora bipolarnego złączowego (BJT). Charakterystyczne są trzy elektrody: baza (pionowa linia po lewej), emiter (wyprowadzenie z ukośną strzałką) i kolektor (drugie ukośne wyprowadzenie, bez strzałki). Strzałka zawsze znajduje się przy emiterze i pokazuje kierunek przepływu prądu konwencjonalnego w złączu baza–emiter. W tranzystorze NPN strzałka jest skierowana na zewnątrz, w PNP – do środka. Na rysunku jest właśnie ten typowy układ linii, który w normach PN-EN/IEC przyjmowany jest jako symbol tranzystora bipolarnego. Tranzystor bipolarny pracuje w oparciu o przewodnictwo nośników większościowych i mniejszościowych, a sterowanie odbywa się prądem bazy. W praktyce w układach instalacyjnych, automatyce budynkowej czy sterowaniu urządzeniami spotyka się go np. w stopniach sterujących przekaźnikami, w prostych wzmacniaczach sygnałów z czujników, w obwodach załączania diod LED sygnalizacyjnych, czasem w prostych zasilaczach impulsowych niskiej mocy. Moim zdaniem warto zapamiętać układ graficzny: pionowa baza i dwa skośne ramiona przypominające literę „Y”, z czego jedno ma strzałkę – to zawsze będzie tranzystor bipolarny. Tyrystor ma symbol bardziej zbliżony do diody z dodatkową elektrodą bramki, tranzystor polowy ma bramkę oddzieloną szczeliną od kanału, a termistor w ogóle nie ma strzałek, tylko rezystor z literką NTC/PTC. W dokumentacji technicznej, schematach serwisowych i projektach według dobrych praktyk branżowych zawsze stosuje się właśnie takie oznaczenie, więc rozpoznanie go jest podstawą do dalszej analizy działania całego układu.

Pytanie 5

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. G9
B. GU10
C. MR11
D. E27
Oprawka E27, którą widzisz na obrazku, to jedna z tych, które najczęściej spotyka się w domach i różnych lokalach. Ten duży gwint E27 sprawia, że montaż żarówek jest prosty jak dwa razy dwa. A jakbyś pomyślał o różnych rodzajach żarówek, to znajdziesz tu sporo opcji, jak energooszczędne czy LED – każdy sobie coś dobrego wybierze. Te oprawki są chętnie używane w lampach sufitowych, kinkietach i takich wolnostojących lampach, które dodają trochę charakteru. Ich popularność wynika z tego, że są wszędzie dostępne i pasują do różnych projektów oświetleniowych. Jak wymieniasz źródło światła, E27 to świetny wybór, bo wpasujesz to właściwie wszędzie, dzięki standardowym wymiarom.

Pytanie 6

Którą z wymienionych czynności należy wykonać podczas oględzin instalacji elektrycznej?

A. Wymienić wyłącznik różnicowoprądowy w rozdzielnicy.
B. Zmierzyć rezystancję izolacji przewodów.
C. Sprawdzić wizualnie osprzęt, zabezpieczenia i środki ochrony przeciwporażeniowej.
D. Poprawić mocowanie przewodów w urządzeniach elektrycznych.
Prawidłowo wybrana czynność dotyczy oględzin, czyli podstawowego, wstępnego etapu sprawdzania instalacji elektrycznej. Oględziny zgodnie z dobrą praktyką i normami (np. PN-HD 60364) polegają właśnie na wizualnym sprawdzeniu osprzętu, zabezpieczeń oraz środków ochrony przeciwporażeniowej, bez wykonywania jeszcze jakichkolwiek prac montażowych czy pomiarowych. Chodzi o to, żeby najpierw „rzucić okiem” na całość: czy gniazda, łączniki, obudowy rozdzielnic, przewody, listwy zaciskowe, wyłączniki nadprądowe i różnicowoprądowe są dobrze zamontowane, nieuszkodzone mechanicznie, bez śladów przegrzania, nadpaleń, pęknięć, luzów, prowizorek itp. Moim zdaniem to jest taki etap, na którym doświadczony elektryk już bardzo dużo widzi, zanim w ogóle podłączy miernik. Podczas oględzin sprawdza się też, czy zostały zastosowane właściwe środki ochrony przeciwporażeniowej: czy są odpowiednie przekroje przewodów ochronnych, czy przewody PE i PEN są prawidłowo oznaczone kolorystycznie, czy zaciski ochronne są dokręcone i dostępne, czy obudowy urządzeń klasy I są połączone z przewodem ochronnym, czy zastosowane wyłączniki RCD odpowiadają wymaganiom danej instalacji (prąd znamionowy, prąd różnicowy, typ AC/A/B). Patrzy się również, czy osprzęt ma odpowiedni stopień ochrony IP do miejsca montażu, np. w łazienkach, na zewnątrz, w pomieszczeniach wilgotnych, bo to jest bardzo ważne z punktu widzenia bezpieczeństwa. W praktyce oględziny wykonuje się zawsze przed pomiarami, bo jeżeli coś jest ewidentnie źle zamontowane, uszkodzone albo niezgodne z dokumentacją, to nie ma sensu od razu mierzyć – najpierw trzeba usunąć widoczne usterki. Dobrą praktyką jest też porównanie stanu faktycznego z dokumentacją techniczną i schematami: czy zabezpieczenia są takie, jak wpisano w projekcie, czy obwody są prawidłowo opisane w rozdzielnicy, czy nie ma „samowolek” i dziwnych przeróbek. Takie sumienne oględziny bardzo często pozwalają uniknąć późniejszych problemów eksploatacyjnych, a przede wszystkim zwiększają bezpieczeństwo użytkowników instalacji.

Pytanie 7

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. przeciążeniem
B. porażeniem
C. przepięciem
D. zwarciem
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 8

Zamieszczony na rysunku zrzut ekranu przyrządu pomiarowego przedstawia wyniki pomiaru

Ilustracja do pytania
A. impedancji pętli zwarcia w sieci trójfazowej.
B. impedancji pętli zwarcia w sieci jednofazowej.
C. rezystancji izolacji przewodu w sieci trójfazowej.
D. rezystancji izolacji przewodu w sieci jednofazowej.
Poprawna odpowiedź wskazuje na pomiar rezystancji izolacji przewodu w sieci jednofazowej, co jest kluczowym aspektem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Na zrzucie ekranu widoczne są wartości rezystancji izolacji między przewodami, co pozwala na ocenę stanu izolacji. Wartości te wyrażane są w megaomach (MΩ), co jest standardem dla pomiarów izolacji, gdzie zaleca się, aby minimalna rezystancja izolacji wynosiła co najmniej 1 MΩ. Regularne pomiary rezystancji izolacji są zgodne z normą PN-EN 61557-2, która określa metody i wymagania dla takich badań. W praktyce, pomiar ten jest kluczowy dla identyfikacji ewentualnych defektów izolacji, które mogą prowadzić do porażenia prądem, a także do uszkodzeń urządzeń elektrycznych. Z tego powodu, zrozumienie i umiejętność interpretacji wyników pomiaru rezystancji izolacji jest niezbędne dla każdego technika elektryka.

Pytanie 9

Stosując kryterium obciążalności prądowej, dobierz przewód kabelkowy o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej w układzie TN-S, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B16.

Przekrój przewodu mm²Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu AŻyła Al AŻyła Cu AŻyła Al AŻyła Cu AŻyła Al A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
6332644355442
A. YDY 5x1 mm2
B. YADY 5x4 mm2
C. YDY 5x1,5 mm2
D. YDY 5x2,5 mm2
Wybór przewodu YDY 5x1,5 mm2 jest prawidłowy, ponieważ jego obciążalność długotrwała wynosi 18A, co jest wyższe od prądu znamionowego wyłącznika B16, wynoszącego 16A. W praktyce oznacza to, że przewód ten będzie w stanie efektywnie i bezpiecznie przewodzić prąd w instalacji trójfazowej w układzie TN-S. Takie rozwiązanie jest zgodne z normami PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych. Dobrze dobrany przewód nie tylko zapewnia bezpieczeństwo, ale także wpływa na efektywność energetyczną całej instalacji. W przypadku przewodów miedzianych, ważne jest, aby ich przekrój był dostosowany do obciążenia, co pozwala uniknąć przegrzewania się izolacji i potencjalnych awarii. Przewód YDY 5x1,5 mm2 jest często stosowany w budownictwie mieszkalnym oraz w małych obiektach przemysłowych, gdzie obciążenia nie są bardzo wysokie, a bezpieczeństwo instalacji jest priorytetem.

Pytanie 10

W instalacji elektrycznej, której schemat przedstawiono na rysunku, po wykonanym montażu włączono pierwszy klawisz łącznika i wszystkie żarówki się tylko żarzyły, natomiast po włączeniu drugiego klawisza, przy włączonym pierwszym, zaświeciły się cztery żarówki. W celu ustalenia przyczyny nieprawidłowego działania instalacji należy sprawdzić poprawność połączeń przewodów do zacisków

Ilustracja do pytania
A. łącznika.
B. puszki zasilającej.
C. żyrandola.
D. gniazda wtyczkowego.
Błędne podejście do analizy problemu może prowadzić do mylnych wniosków i nieefektywnego rozwiązania problemów w instalacji elektrycznej. Wskazanie na łącznik jako źródło problemu z pewnością jest nieprecyzyjne, ponieważ działanie łącznika powinno być zgodne z jego przeznaczeniem, a ewentualne usterki w tym obszarze zazwyczaj objawiają się innym rodzajem awarii, np. brakiem działania całej instalacji. Podobnie, puszka zasilająca czy gniazdo wtyczkowe pełnią kluczowe funkcje w instalacji, ale w omawianym przypadku, ich poprawność działania nie jest wystarczającym wyjaśnieniem. Oparcie się na tych elementach w kontekście problemu nieprawidłowego działania żarówek jest błędne, ponieważ nie uwzględnia specyfiki obwodu, który powinien być analizowany jako całość. Typowym błędem rozumowania jest przenoszenie odpowiedzialności na elementy, które w rzeczywistości nie mają wpływu na zaobserwowane zjawisko. Właściwa diagnoza problemu wymaga szczegółowego zrozumienia interakcji pomiędzy poszczególnymi komponentami instalacji, co w tym przypadku jednoznacznie wskazuje na żyrandol jako miejsce potencjalnych usterek, a nie na elementy zasilające czy łączące.

Pytanie 11

Do czego służą przy montażu instalacji elektrycznej przedstawione na rysunku kleszcze?

Ilustracja do pytania
A. Zaciskania końcówek tulejkowych na żyłach przewodu.
B. Montażu zacisków zakleszczających.
C. Formowania oczek na końcach żył.
D. Zaprasowywania przewodów w połączeniach wsuwanych.
Kleszcze do formowania oczek, które przedstawiono na rysunku, są kluczowym narzędziem w instalacjach elektrycznych, ponieważ umożliwiają precyzyjne formowanie oczek na końcach żył przewodów. Oczka te są niezbędne do wykonania solidnych połączeń elektrycznych, które muszą być trwałe i odporne na luzy. Stosowanie kleszczy zapewnia, że oczka są odpowiednio uformowane, co wpływa na jakość połączenia oraz jego bezpieczeństwo. W praktyce, na przykład w przypadku montażu rozdzielnic elektrycznych, dobrze uformowane oczka pozwalają na łatwe i szybkie przyłączenie żył do zacisków, co przekłada się na efektywność pracy elektryka. Dodatkowo, korzystanie z odpowiednich narzędzi zgodnych z normami, takimi jak PN-EN 60947-1, daje pewność, że instalacja spełnia standardy bezpieczeństwa oraz jakości. Warto pamiętać, że użycie kleszczy do formowania oczek jest częścią dobrych praktyk branżowych, które sprzyjają uzyskaniu długotrwałych i pewnych połączeń.

Pytanie 12

Na której ilustracji przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 4.
C. Na ilustracji 1.
D. Na ilustracji 3.
W pozostałych wariantach problemem nie jest samo użycie zacisku śrubowego, ale sposób ułożenia przewodu względem śruby i elementu dociskowego. To jest dość typowy błąd montażowy: przewód niby jest w zacisku, śruba niby dokręcona, a połączenie wcale nie jest pewne ani trwałe. Jeżeli drut trafi pod samą krawędź śruby lub obok właściwej strefy docisku, to siła skupia się w jednym, bardzo małym punkcie. W efekcie żyła może być mechanicznie „ścięta”, spłaszczona, a kontakt elektryczny będzie miał zwiększoną rezystancję przejścia. Taki zacisk zaczyna się po jakimś czasie grzać, szczególnie przy większym obciążeniu prądowym. Z mojego doświadczenia właśnie z tak wykonanych połączeń biorą się lokalne przypalenia izolacji, ciemnienie obudowy czy w skrajnym przypadku nadtopienia w gniazdach i wyłącznikach. Innym typowym błędem jest częściowe wsunięcie przewodu. Końcówka drutu znajduje się wtedy tylko na skraju pola docisku, a reszta przestrzeni pod śrubą jest pusta. Przy dokręcaniu śruba potrafi „odjechać” na bok, wygiąć przewód albo go powoli wysuwać. Na rysunkach nieprawidłowych dokładnie to widać: brak pełnego podparcia żyły pod elementem dociskowym i niewłaściwe prowadzenie drutu. Część osób kieruje się tu mylnym założeniem, że skoro śruba dotyka przewodu, to połączenie jest OK. Niestety BHP i dobre praktyki mówią coś innego – śruba ma dociskać przewód do szyny, płytki lub ścianki zacisku, a nie tylko go „łapać” punktowo. Producenci aparatów instalacyjnych wręcz ostrzegają w katalogach i instrukcjach przed takim montażem, bo prowadzi on do luzowania połączeń pod wpływem zmian temperatury i drgań. W instalacjach zgodnych z PN‑HD 60364 i ogólnymi zasadami montażu zaleca się zawsze pełne wsunięcie żyły, ułożenie jej równolegle do płaszczyzny docisku i kontrolę, czy izolacja nie weszła pod śrubę. Właśnie zlekceważenie tych szczegółów widoczne jest na błędnych ilustracjach: zbyt mała powierzchnia styku, niewłaściwy tor przepływu prądu i duże ryzyko uszkodzenia żyły. Dlatego takie sposoby łączenia nie spełniają wymogów bezpieczeństwa i nie powinny być stosowane w prawidłowo wykonanej instalacji.

Pytanie 13

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 4.
B. Końcówki 1.
C. Końcówki 2.
D. Końcówki 3.
Końcówka 2. jest właściwym rozwiązaniem, ponieważ wyłączniki nadprądowe montowane na szynie TH 35 wymagają użycia wkrętaka o płaskiej końcówce do ich demontażu. Końcówka płaska zapewnia odpowiednią stabilność i precyzję podczas wkręcania i wykręcania śrub mocujących, co jest kluczowe w kontekście pracy z instalacjami elektrycznymi. Użycie odpowiedniego narzędzia minimalizuje ryzyko uszkodzenia złączy oraz zwiększa bezpieczeństwo pracy. Przykładowo, używając końcówki płaskiej, można z łatwością uzyskać dostęp do wyłącznika, co jest szczególnie istotne w przypadku rutynowych przeglądów lub konserwacji instalacji elektrycznych. Standardy branżowe zalecają korzystanie z narzędzi, które są dostosowane do specyfiki montażu, dlatego znajomość odpowiednich końcówek wkrętaka, jak w tym przypadku, jest niezbędna dla każdego elektryka.

Pytanie 14

Którego silnika elektrycznego dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Bocznikowego prądu stałego.
B. Synchronicznego.
C. Synchronizowanego.
D. Szeregowego prądu stałego.
Twoja odpowiedź jest poprawna, ponieważ schemat przedstawia silnik szeregowy prądu stałego, który charakteryzuje się szeregowym połączeniem uzwojenia wzbudzenia z uzwojeniem twornika. W silnikach tych prąd wzbudzenia jest taki sam jak prąd w uzwojeniu twornika, co prowadzi do proporcjonalnego wzrostu momentu obrotowego przy zwiększeniu obciążenia. Silniki te znajdują zastosowanie w aplikacjach wymagających dużego momentu startowego, takich jak wózki widłowe, pralki czy maszyny robocze. Dzięki prostocie konstrukcji i niskim kosztom produkcji, silniki szeregowe są powszechnie używane w różnych dziedzinach przemysłu. Dobrą praktyką przy projektowaniu układów z silnikami szeregowych prądu stałego jest uwzględnienie odpowiedniego zabezpieczenia przed przeciążeniem, aby uniknąć uszkodzeń wskutek nadmiernego wzrostu prędkości obrotowej. Dodatkowo, ze względu na ich charakterystykę, silniki te są często stosowane tam, gdzie wymagany jest szybki start i duży moment obrotowy.

Pytanie 15

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Krzyżowy
B. Schodowy
C. Świecznikowy
D. Dwubiegunowy
Odpowiedź 'Świecznikowy' jest poprawna, ponieważ łącznik świecznikowy jest dedykowany do sterowania różnymi sekcjami źródeł światła w żyrandolach. Dzięki niemu można niezależnie włączać i wyłączać poszczególne źródła światła, co pozwala na regulację natężenia oświetlenia w pomieszczeniu oraz na tworzenie różnorodnych efektów świetlnych. Przykładem zastosowania łącznika świecznikowego może być sytuacja, gdy w jednym pomieszczeniu zainstalowany jest żyrandol z dwoma sekcjami, na przykład w salonie, gdzie można włączyć tylko jedną część żyrandola na wieczorny relaks, a drugą podczas spotkań rodzinnych. Stosowanie łączników świecznikowych jest zgodne z normami instalacji elektrycznych, co zapewnia bezpieczeństwo i komfort użytkowania. Dobre praktyki sugerują ich wykorzystanie w pomieszczeniach, gdzie różne źródła światła pełnią istotną rolę w aranżacji przestrzeni oraz atmosferze wnętrza.

Pytanie 16

Który przewód jest oznaczony literami PE?

A. Fazowy
B. Neutralny
C. Ochronno-neutralny
D. Ochronny
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 17

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Sprawdzając napięcie oraz prąd wyłącznika
B. Naciskając przycisk "TEST"
C. Zmieniając ustawienie dźwigni "ON-OFF"
D. Tworząc zwarcie w obwodzie zabezpieczonym
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 18

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, wkrętak, próbnik
B. Ściągacz izolacji, lutownica, tester
C. Szczypce, wkrętak, lutownica
D. Tester, wkrętak, lutownica
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 19

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
B. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
C. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
D. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 20

Kontrolując warunek automatycznego wyłączenia zasilania jako element ochrony przed porażeniem w systemach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia konieczne jest określenie dla zastosowanego wyłącznika

A. wartości prądu wyłączającego
B. maksymalnej wielkości prądu zwarciowego
C. czasu działania wyzwalacza zwarciowego
D. progu zadziałania wyzwalacza przeciążeniowego
Wartość prądu wyłączającego to kluczowy parametr przy ocenie skuteczności nadprądowego wyłącznika instalacyjnego w kontekście samoczynnego wyłączenia zasilania, co jest jednym z podstawowych środków ochrony przeciwporażeniowej w sieciach TN-S. Prąd wyłączający to minimalna wartość prądu, przy której wyłącznik zareaguje i rozłączy obwód, zapewniając w ten sposób bezpieczeństwo użytkowników. W praktyce, aby spełnić wymagania norm, takich jak PN-IEC 60364, należy określić, czy prąd zwarciowy w danym obwodzie przekracza tę wartość, co pozwoli na skuteczne odcięcie zasilania w przypadku wystąpienia awarii. Warto również zwrócić uwagę na dobór wyłącznika, który powinien być dostosowany do specyfiki obwodu oraz przewidywanych warunków pracy. W przypadku braku odpowiedniego doboru wyłącznika, ryzyko porażenia prądem lub uszkodzeń urządzeń znacznie wzrasta. Dlatego również w praktyce często wykonuje się testy impedancji pętli zwarcia, aby upewnić się, że prąd zwarciowy osiągnie wartość wyłączającą, co jest kluczowe dla zapewnienia ochrony.

Pytanie 21

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,57
B. 0,99
C. 0,69
D. 0,82
Znamionowy współczynnik mocy silnika trójfazowego można obliczyć za pomocą wzoru: cos φ = Pn / (√3 * UN * IN), gdzie Pn to moc mechaniczna, UN to napięcie nominalne, a IN to prąd nominalny. Wstawiając nasze dane: Pn = 2,2 kW = 2200 W, UN = 400 V, IN = 4,6 A, otrzymujemy: cos φ = 2200 W / (√3 * 400 V * 4,6 A). Po obliczeniach uzyskujemy, że współczynnik mocy wynosi 0,82. Praktyczne znaczenie współczynnika mocy jest kluczowe w kontekście efektywności energetycznej. Wyższy współczynnik mocy oznacza, że silnik pracuje bardziej efektywnie, co przekłada się na niższe rachunki za energię oraz mniejsze straty w instalacji elektrycznej. Zgodnie z normami IEC, silniki trójfazowe powinny dążyć do współczynnika mocy powyżej 0,85, aby zminimalizować obciążenie systemu energetycznego. Obliczenie współczynnika mocy jest więc istotne przy projektowaniu systemów, aby zapewnić ich efektywność oraz spełnić wymagania dotyczące jakości energii elektrycznej.

Pytanie 22

Który element wskazano czerwoną strzałką w przedstawionym układzie elektronicznym?

Ilustracja do pytania
A. Termistor.
B. Tranzystor.
C. Potencjometr montażowy.
D. Kondensator nastawny.
Wskazany czerwonym wskaźnikiem element to potencjometr montażowy, czyli mały, regulowany rezystor przeznaczony głównie do jednorazowego lub sporadycznego ustawienia parametru w układzie. Rozpoznaje się go po charakterystycznej, małej obudowie z tworzywa i nacięciu pod śrubokręt na górze. Ma trzy wyprowadzenia – dwa końce ścieżki oporowej i suwak, który przesuwa się po tej ścieżce. Zmieniając położenie suwaka, zmieniasz rezystancję między suwakiem a danym końcem, więc możesz precyzyjnie ustawić np. próg zadziałania komparatora, częstotliwość generatora, jasność świecenia diody, czas opóźnienia itp. W praktyce w takich małych modułach elektronicznych potencjometry montażowe często służą do kalibracji: ustawia się je przy uruchomieniu układu i później raczej się do nich nie wraca. Dlatego są montowane na płytce, a nie na panelu frontowym jak klasyczne potencjometry z gałką. Z mojego doświadczenia wynika, że dobrze jest przy montażu zaznaczać sobie położenie „fabryczne” potencjometru, żeby w razie czego móc wrócić do punktu wyjścia. Warto też pamiętać o doborze odpowiedniej mocy i zakresu rezystancji – zgodnie z kartą katalogową układu, który tym potencjometrem sterujesz. W dobrych praktykach serwisowych przy pierwszym uruchomieniu nie kręci się potencjometrem na skrajne położenia, tylko reguluje powoli, obserwując zachowanie układu i mierząc napięcia albo prądy. Taki element, poprawnie użyty, pozwala bardzo precyzyjnie dostroić pracę całego urządzenia.

Pytanie 23

Oprawa oświetleniowa pokazana na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem

Ilustracja do pytania
A. E14
B. MR16
C. E27
D. GU10
Oprawa oświetleniowa przedstawiona na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem GU10, co można stwierdzić na podstawie analizy wizualnej. Trzonek GU10 charakteryzuje się dwoma bolcami zakończonymi małymi wypustkami, co jest typowe dla tego standardu. W praktyce, żarówki GU10 są powszechnie stosowane w oświetleniu punktowym, halogenowym oraz LED, zapewniając dużą wydajność świetlną oraz możliwość łatwej wymiany. Warto zwrócić uwagę na to, że zastosowanie odpowiednich żarówek w danej oprawie oświetleniowej jest kluczowe dla zapewnienia optymalnego działania systemu oświetleniowego oraz bezpieczeństwa użytkowania. W profesjonalnych instalacjach oświetleniowych, takich jak biura czy przestrzenie komercyjne, standard GU10 jest często preferowany ze względu na różnorodność dostępnych źródeł światła oraz ich łatwość w montażu i demontażu, co sprzyja serwisowaniu. Zastosowanie odpowiednich standardów trzonków pozwala także na lepsze zarządzanie energią i efektywność kosztową, co jest istotne w kontekście nowoczesnych rozwiązań oświetleniowych.

Pytanie 24

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
B. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
C. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 25

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Tylko z PVC
B. Z PVC lub gumowe
C. Metalowe lub gumowe
D. Tylko metalowe
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 26

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na rok
B. raz na pół roku
C. co najmniej raz na 10 lat
D. co najmniej raz na 5 lat
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 27

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Sterownik rolet.
C. Regulator oświetlenia.
D. Przekaźnik bistabilny.
Pomimo atrakcyjności pozostałych odpowiedzi, żaden z wymienionych elementów nie pasuje do opisu przekaźnika priorytetowego. Regulator oświetlenia jest urządzeniem służącym do dostosowywania natężenia światła w pomieszczeniach, co jest istotne w kontekście oszczędności energetycznej, ale nie ma on funkcji zarządzania priorytetami zasilania. Sterownik rolet z kolei jest dedykowany do automatyzacji otwierania i zamykania rolet, co ma na celu poprawę komfortu użytkowania oraz ochronę przed słońcem, lecz nie ma zastosowania w kontekście zarządzania priorytetami zasilania. Przekaźnik bistabilny, mimo że jest elementem wykorzystywanym w automatyce do przełączania stanów, nie posiada mechanizmu rozróżniania priorytetów dla różnych urządzeń elektrycznych. Wszyscy odpowiadający mogą mylnie sądzić, że elementy te mogą pełnić podobne funkcje, jednak kluczowe różnice funkcjonalne sprawiają, że odpowiedzi te są błędne. Zrozumienie tych różnic jest kluczowe dla projektowania i wdrażania skutecznych systemów automatyki budynkowej, które są zgodne z najlepszymi praktykami branżowymi.

Pytanie 28

Który z poniższych przewodów jest przeznaczony do stosowania na zewnątrz budynków?

A. LNY
B. NYM
C. YDY
D. YKY
Przewód YKY jest specjalnie zaprojektowany do stosowania na zewnątrz budynków. Głównym atutem tego przewodu jest jego izolacja i powłoka ochronna, które zapewniają odporność na warunki atmosferyczne, takie jak deszcz, śnieg czy promieniowanie UV. Dzięki zastosowaniu polwinitowej izolacji oraz dodatkowej powłoki ochronnej, przewód YKY spełnia wymagania norm dotyczących instalacji zewnętrznych. Ważne jest, aby podczas montażu przewodów na zewnątrz budynków stosować materiały certyfikowane i przetestowane pod kątem wytrzymałości na ekstremalne warunki środowiskowe. Przewód YKY jest również odporny na uszkodzenia mechaniczne, co czyni go idealnym wyborem do stosowania na otwartej przestrzeni, gdzie mogą występować różnego rodzaju zagrożenia fizyczne. Z mojego doświadczenia wynika, że przewody te są powszechnie używane w instalacjach ogrodowych, oświetleniowych oraz w miejscach, gdzie wymagana jest niezawodność i trwałość przez długi czas.

Pytanie 29

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-C
B. TN-S
C. TT
D. IT
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 30

Przed włożeniem uzwojenia do żłobków silnika indukcyjnego należy

A. pokryć je lakierem elektroizolacyjnym
B. wstawić w nie kliny ochronne
C. wyłożyć je izolacją żłobkową
D. pokryć je olejem elektroizolacyjnym
Wyłożenie uzwojenia w żłobkach silnika indukcyjnego izolacją żłobkową jest kluczowym krokiem w zapewnieniu prawidłowej funkcjonalności oraz bezpieczeństwa urządzenia. Izolacja żłobkowa chroni uzwojenie przed wilgocią, zanieczyszczeniami oraz mechanicznymi uszkodzeniami, co ma szczególne znaczenie w przypadku silników pracujących w trudnych warunkach. Dobrze dobrana izolacja skutecznie zapobiega także przebiciom elektrycznym, co może prowadzić do awarii lub uszkodzenia elementów silnika. W praktyce, zastosowanie izolacji żłobkowej zgodnie z normami, takimi jak IEC 60034, zapewnia długotrwałą i niezawodną pracę silnika. Dodatkowo, dobór odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe czy włókna szklane, wpływa na parametry termiczne i elektryczne silnika, co przyczynia się do optymalizacji jego wydajności oraz efektywności energetycznej.

Pytanie 31

Który układ sterowania przedstawiono na schemacie?

Ilustracja do pytania
A. Do pracy zależnej dwóch styczników.
B. Do rozruchu silnika pierścieniowego.
C. Do pracy równoległej dwóch styczników.
D. Do załączenia silnika z opóźnieniem.
Odpowiedź "Do pracy zależnej dwóch styczników" jest poprawna, ponieważ schemat przedstawia układ, w którym odpowiednie połączenie styczników K1 i K2 pozwala na zależne działanie tych urządzeń. W praktyce, taki układ jest wykorzystywany w systemach automatyki przemysłowej, gdzie jeden proces wymaga aktywacji kolejnego urządzenia. Przykładem może być sytuacja, w której włączenie jednego silnika elektrycznego (K1) uruchamia system chłodzenia (K2). W standardach branżowych, takich jak normy IEC 60204 dotyczące bezpieczeństwa maszyn, kluczowe jest zapewnienie, aby sterowanie urządzeniami odbywało się w sposób przemyślany i bezpieczny, co jest realizowane poprzez zastosowanie układów zależnych. Takie podejście nie tylko zwiększa efektywność systemu, ale również minimalizuje ryzyko błędów w procesach przemysłowych oraz zapewnia wysoką niezawodność działania układów automatyki.

Pytanie 32

Z którego z wymienionych materiałów wykonuje się rezystory drutowe?

A. Z mosiądzu
B. Z cynku.
C. Z kanthalu.
D. Z aluminium.
Rezystory drutowe wykonuje się z kanthalu, ponieważ jest to specjalny stop oporowy o bardzo dużej rezystywności i wysokiej odporności temperaturowej. Kanthal to najczęściej stop żelaza z chromem i aluminium (FeCrAl), zaprojektowany właśnie do pracy jako element grzejny lub rezystancyjny. Z mojego doświadczenia wynika, że w praktyce elektrycznej i elektronicznej, jeśli chcemy mieć rezystor, który może się mocno nagrzewać, znosić duże moce i się nie przepalać od razu, to naturalnym wyborem jest właśnie drut oporowy z kanthalu albo podobnego stopu (np. konstantan, nichrom – ale w pytaniu chodzi konkretnie o kanthal). Kanthal ma tę zaletę, że przy nagrzewaniu nie zmienia zbyt mocno swoich parametrów elektrycznych, ma stosunkowo stabilny współczynnik temperaturowy oporu i tworzy na powierzchni warstwę tlenków, która chroni go przed utlenianiem. Dlatego rezystory drutowe dużej mocy, stosowane np. w obwodach rozruchowych silników, w układach hamowania silników falownikowych, w rezystorach obciążeniowych do testów zasilaczy czy przetwornic, są nawijane właśnie z takiego drutu na ceramiczny karkas. W dobrych praktykach warsztatowych zwraca się uwagę, żeby nie stosować zwykłych metali konstrukcyjnych na elementy oporowe, tylko właśnie specjalne stopy oporowe takie jak kanthal – to wynika i z norm materiałowych, i z doświadczeń eksploatacyjnych: rezystor ma trzymać wartość, nie palić się i nie zmieniać parametrów po kilku nagrzaniach. Kanthal dokładnie to zapewnia i dlatego jest klasycznym materiałem dla rezystorów drutowych i elementów grzejnych.

Pytanie 33

Zamiast starego bezpiecznika trójfazowego 25A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. C.
B. B.
C. A.
D. D.
Wybór odpowiedzi A, czyli BPC 425/030 4P AC, jest zgodny z wymogami dotyczącymi zabezpieczeń elektrycznych w instalacjach trójfazowych. Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem ochrony przed porażeniem elektrycznym, który wykrywa różnice w prądzie między przewodami fazowymi a neutralnym. Wymagana charakterystyka AC oznacza, że wyłącznik jest przystosowany do ochrony przed prądami przemiennymi, co jest typowe w instalacjach domowych i przemysłowych. Prąd znamionowy 25A oraz wartość różnicowoprądowa 30mA (oznaczona jako 030) są standardowymi wartościami stosowanymi w takich instalacjach. Wartość 30mA jest powszechnie uznawana za bezpieczną dla ochrony ludzi przed porażeniem. W praktyce, zastosowanie takiego wyłącznika w instalacji trójfazowej nie tylko zwiększa bezpieczeństwo, ale również spełnia wymagania norm IEC 61008, które definiują wymagania dotyczące wyłączników różnicowoprądowych. Dzięki odpowiedniemu doborowi wyłącznika różnicowoprądowego zapewniasz bezpieczeństwo użytkowników oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć i zwarć doziemnych.

Pytanie 34

Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Czas wyłączenia wyłącznika nadprądowego.
C. Rezystancję izolacji.
D. Rezystancję uziemienia.
Pomiar impedancji pętli zwarcia jest kluczowym zadaniem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Miernik wielofunkcyjny, jak ten przedstawiony na zdjęciu, jest zaprojektowany do wykonywania tych pomiarów zgodnie z normą PN-EN 61557-3, która dotyczy pomiarów w instalacjach elektrycznych. Pomiar ten ma na celu ocenę skuteczności zabezpieczeń przeciwporażeniowych, co jest niezbędne do oceny ryzyka wystąpienia awarii. W praktyce, impedancja pętli zwarcia pozwala na określenie, jak szybko zabezpieczenie (np. wyłącznik nadprądowy) zareaguje na zwarcie. Niskie wartości impedancji świadczą o sprawności zabezpieczeń, a także minimalizują ryzyko uszkodzenia instalacji oraz zapewniają bezpieczeństwo użytkowników. Wartości tej impedancji można mierzyć w różnych punktach instalacji, co pozwala na identyfikację słabych miejsc w systemie ochrony. Dlatego umiejętność używania mierników do pomiaru impedancji pętli zwarcia jest niezbędna dla elektryków oraz specjalistów zajmujących się instalacjami elektrycznymi.

Pytanie 35

Pomiar którego parametru wyłącznika różnicowoprądowego przedstawiono na rysunku?

Ilustracja do pytania
A. Prądu obciążenia.
B. Rezystancji izolacji.
C. Czasu zadziałania.
D. Rzeczywistego prądu zadziałania.
Pomiar rzeczywistego prądu zadziałania wyłącznika różnicowoprądowego jest kluczowym elementem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Rzeczywisty prąd zadziałania to minimalna wartość prądu różnicowego, przy której wyłącznik reaguje, odcinając zasilanie. Na przedstawionym rysunku widać, jak miernik jest połączony z wyłącznikiem, aby precyzyjnie określić ten parametr. Wartości prądu różnicowego są istotne, ponieważ określają czułość wyłącznika, co jest regulowane normami, takimi jak PN-EN 61008-1. Stosowanie taki pomiarów w praktyce pozwala na wczesne wykrycie usterek w instalacji, co jest niezbędne w kontekście ochrony przed porażeniem elektrycznym oraz zminimalizowaniem ryzyka pożaru. Często w profesjonalnych instalacjach przeprowadza się cykliczne testy, aby upewnić się, że wyłączniki działają prawidłowo, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 36

Na podstawie rysunku montażowego określ, na jakiej wysokości od podłogi należy zamontować dolną krawędź rozdzielnicy.

Ilustracja do pytania
A. 0,90 m
B. 1,4 m
C. 0,80 m
D. 1,5 m
Zgodnie z rysunkiem montażowym, dolna krawędź rozdzielnicy powinna być zamontowana na wysokości 1500 mm (1,5 m) od podłogi. Taki wymiar jest zgodny z normami branżowymi, które określają ergonomiczne i bezpieczne wysokości montażu rozdzielnic elektrycznych. Wysokość ta zapewnia wygodny dostęp do urządzeń oraz pozwala na swobodne prowadzenie prac serwisowych. Dodatkowo, montaż na tej wysokości minimalizuje ryzyko przypadkowego kontaktu z wodą oraz zanieczyszczeniami, co jest istotne w kontekście bezpieczeństwa elektrycznego. W praktyce, takie umiejscowienie rozdzielnicy ułatwia również korzystanie z niej w warunkach przemysłowych lub w budynkach użyteczności publicznej, gdzie użytkownicy mogą być różnego wzrostu. Warto pamiętać, że zgodność z obowiązującymi standardami oraz zasadami BHP jest kluczowym aspektem każdego projektu instalacji elektrycznych.

Pytanie 37

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. YDY
B. YAKY
C. LY
D. OMY
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 38

Na którym rysunku przedstawiono poprawny sposób podłączenia dwóch wyłączników RCD zgodnie ze schematem?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedź C jest poprawna, gdyż ilustruje prawidłowy sposób podłączenia dwóch wyłączników RCD, co jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Rozdzielenie obwodów dla pokoju i łazienki oraz zastosowanie osobnych wyłączników RCD dla każdego z nich gwarantuje, że w przypadku wystąpienia awarii w jednym z obwodów, drugi obwód pozostanie funkcjonalny. To podejście jest zgodne z zaleceniami normy PN-IEC 61008, która podkreśla znaczenie stosowania wyłączników różnicowoprądowych w miejscach o zwiększonym ryzyku, takich jak łazienki. Dodatkowo, stosowanie RCD w oddzielnych obwodach minimalizuje ryzyko porażenia prądem, co jest niezwykle istotne w kontekście ochrony użytkowników. W praktyce, odpowiedni dobór wyłączników RCD oraz ich lokalizacja w instalacji poprawia nie tylko bezpieczeństwo, ale także komfort użytkowania. Przykładowo, w przypadku awarii w obwodzie łazienkowym, użytkownicy pokoju nie będą narażeni na problemy związane z brakiem zasilania, co może być szczególnie istotne w codziennym użytkowaniu.

Pytanie 39

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 6,6 Ω
C. 3,8 Ω
D. 2,3 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 40

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 20 A, 16 A, 20 A, 16 A
C. 20 A, 16 A, 16 A, 20 A
D. 16 A, 20 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.