Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 13 października 2025 22:11
  • Data zakończenia: 13 października 2025 22:14

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Świecznikowy
B. Krzyżowy
C. Schodowy
D. Jednobiegunowy
Odpowiedzi schodowy, jednobiegunowy i świecznikowy to różne rodzaje łączników, a każdy z nich ma swoje konkretne zastosowanie. Łącznik schodowy, który często widzimy przy schodach, działa tylko z dwóch punktów i ma tylko dwa zaciski. To oznacza, że nie nadaje się do bardziej rozbudowanych układów, gdzie musimy sterować światłem z kilku miejsc. Z kolei jednobiegunowy łącznik jest jeszcze bardziej ograniczony, bo działa tylko w jednym miejscu. A łącznik świecznikowy, jak sama nazwa wskazuje, jest do obsługi jednego obwodu, więc też nie spełnia wymagań do sterowania z wielu lokalizacji. Takie myślenie, że każdy łącznik sprawdzi się wszędzie, to błąd, bo wymogi instalacyjne bywają różne. Dlatego warto wybierać łączniki zgodnie z ich przeznaczeniem oraz zasadami budowlanymi, żeby wszystko działało sprawnie i bezpiecznie, co jest ważne dla komfortu użytkowania.

Pytanie 2

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Połączenie obudowy z przewodem ochronnym sieci
B. Użycie napięcia zasilania o zmniejszonej wartości
C. Zastosowanie podwójnej warstwy izolacji
D. Zasilanie z transformatora izolacyjnego
W kontekście ochrony przed dotykiem pośrednim, wiele podejść może wydawać się atrakcyjnych, jednak nie są one wystarczające do zapewnienia właściwego poziomu bezpieczeństwa. Zastosowanie napięcia zasilającego o obniżonej wartości, choć teoretycznie może zredukować ryzyko porażenia, nie eliminuje go całkowicie, ponieważ w przypadku awarii izolacji nadal może wystąpić ryzyko niebezpiecznego napięcia. Zasilanie z transformatora separacyjnego również nie stanowi pełnej odpowiedzi na problem, gdyż chociaż transformator ten ogranicza ryzyko porażenia, to nie jest to rozwiązanie wystarczające w przypadku urządzeń, które nie są dostatecznie izolowane. Połączenie obudowy z przewodem ochronnym sieci jest bardziej charakterystyczne dla urządzeń klasy I, gdzie niezbędne jest uziemienie, natomiast w oprawach klasy II, które są projektowane bez przewodu ochronnego, takie podejście jest nieadekwatne. Te nieprawidłowe koncepcje często wynikają z braku zrozumienia zasad klasyfikacji sprzętu elektrycznego oraz norm bezpieczeństwa, takich jak IEC 61140, które jasno definiują wymagania dotyczące ochrony przeciwporażeniowej. Właściwe zrozumienie i zastosowanie zasad dotyczących izolacji oraz konstrukcji sprzętu jest kluczowe dla zapewnienia bezpieczeństwa użytkowników, co jest często pomijane w praktycznych zastosowaniach.

Pytanie 3

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Uziemienie ochronne
B. Samoczynne wyłączanie zasilania
C. Separacja elektryczna
D. Umieszczenie części dostępnych poza zasięgiem ręki
Samoczynne wyłączanie zasilania jest jednym z kluczowych środków ochrony przeciwporażeniowej, który polega na szybkim odłączeniu zasilania w przypadku wykrycia zwarcia lub innego niebezpiecznego stanu w instalacji elektrycznej. Aby ocenić skuteczność tego systemu, przeprowadza się pomiar rezystancji pętli zwarcia, który pozwala określić, czy prąd zwarciowy jest wystarczająco niski, aby automatyczne wyłączniki mogły zareagować. Standardy, takie jak IEC 60364, określają wymagania dotyczące pomiarów rezystancji pętli, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Praktycznie, jeśli rezystancja pętli zwarcia jest zbyt wysoka, może to oznaczać, że samoczynne wyłączanie zasilania nie zadziała prawidłowo, co może prowadzić do niebezpiecznych sytuacji. Dlatego regularne testowanie i konserwacja instalacji elektrycznych są niezbędne, aby zapewnić ich bezpieczeństwo i sprawność. Warto również zauważyć, że w przypadku braku odpowiednich przeciwwskazań, instalacje elektryczne powinny być projektowane tak, aby ułatwiały pomiar rezystancji pętli, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 4

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Zwarcie międzyzwojowe w fazie W
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy V
D. Przerwa w uzwojeniu fazy W
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 5

Aby chronić przewód przed przeciążeniem i zwarciem, wykorzystuje się wyłącznik

A. z wyzwalaczami przeciążeniowymi oraz zwarciowymi
B. który działa z przekaźnikiem czasowym
C. który współdziała z przekaźnikiem sygnalizacyjnym
D. posiadający aparat różnicowoprądowy
W kontekście zabezpieczania przewodów przed przeciążeniem i zwarciem, odpowiedzi sugerujące współpracę z przekaźnikiem czasowym, sygnalizacyjnym lub wyposażenie w aparat różnicowoprądowy są nieadekwatne do postawionego pytania. Przekaźnik czasowy, który może być używany do kontrolowania czasowego działania urządzeń elektrycznych, nie jest elementem bezpośrednio zabezpieczającym przed przeciążeniem. Jego funkcjonalność koncentruje się na precyzyjnym zarządzaniu czasem, co nie ma zastosowania w kontekście natychmiastowego reagowania na nadmierny prąd. Z kolei przekaźnik sygnalizacyjny jest używany do monitorowania i wskazywania stanu obwodu, a nie do jego ochrony. Co więcej, aparaty różnicowoprądowe są wyspecjalizowane w detekcji prądów upływowych, mających na celu zabezpieczenie osób i mienia przed porażeniem prądem, lecz nie eliminują ryzyka przeciążeń czy zwarć. Zastosowanie tych elementów w miejscu wyłącznika zabezpieczającego może prowadzić do fałszywego poczucia bezpieczeństwa, ponieważ nie zapewniają one właściwego odcięcia zasilania w przypadku zbyt wysokiego natężenia prądu. Kluczowym błędem w myśleniu jest zapominanie, że każdy z tych elementów ma swoją specyfikę i zastosowanie; ich niewłaściwe użycie może skutkować poważnymi konsekwencjami dla bezpieczeństwa instalacji elektrycznej.

Pytanie 6

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Warunki zewnętrzne, którym instalacja jest poddawana
B. Kształt budynku w przestrzeni
C. Liczba urządzeń zasilanych z tej instalacji
D. Metoda montażu instalacji
Koncepcje związane z innymi czynnikami, takimi jak liczba odbiorników zasilanych z instalacji, kształt przestrzenny budynku czy sposób montażu instalacji, nie mają decydującego wpływu na częstotliwość okresowych kontroli instalacji elektrycznej. Liczba odbiorników, mimo że wpływa na obciążenie systemu, nie przekłada się bezpośrednio na warunki, które mogą prowadzić do uszkodzeń instalacji. Zwiększona liczba urządzeń nie oznacza, że instalacja będzie bardziej narażona na awarie. Natomiast kształt budynku, chociaż może wpływać na dystrybucję energii i projekt instalacji, nie jest czynnikiem wpływającym na de facto potrzebę częstszych kontroli, ponieważ nie zmienia on warunków eksploatacyjnych, w jakich znajduje się instalacja. Z kolei sposób montażu instalacji, chociaż istotny dla bezpieczeństwa i funkcjonalności systemu, nie determinujący częstotliwości przeglądów. Często spotykanym błędem jest mylenie częstotliwości przeglądów z jakością wykonania instalacji. Dlatego tak ważne jest, aby skupić się na warunkach, w jakich instalacja pracuje, ponieważ to one ostatecznie wpływają na jej trwałość i bezpieczeństwo. Przykłady z praktyki pokazują, że instalacje narażone na trudne warunki atmosferyczne, takie jak wilgoć czy zanieczyszczenia, muszą być szczególnie regularnie kontrolowane, aby zminimalizować ryzyko awarii, co nie może być zrealizowane przez analizowanie tylko innych wymienionych czynników.

Pytanie 7

Jaką wartość ma znamionowa sprawność silnika jednofazowego, którego dane to: PN = 3,7 kW (moc mechaniczna na wale), UN = 230 V, IN = 21,4 A, cos φ = 0,95?

A. 0,95
B. 0,79
C. 0,71
D. 0,75
Znamionowa sprawność silnika jednofazowego wynosi 0,79, co oznacza, że 79% energii elektrycznej dostarczonej do silnika przekształca się w moc mechaniczną na wale. Obliczenie sprawności silnika można przeprowadzić na podstawie wzoru: η = P_N / (U_N * I_N * cos φ), gdzie P_N to moc mechaniczna na wale, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ to współczynnik mocy. Dla tego silnika mamy: η = 3,7 kW / (230 V * 21,4 A * 0,95) = 0,79. Taka sprawność jest typowa dla silników elektrycznych, które są projektowane z myślą o jak najwyższej efektywności energetycznej. W praktyce, silniki o wysokiej sprawności są szczególnie poszukiwane w przemyśle, ponieważ pozwalają na znaczne oszczędności kosztów energii, a także redukcję emisji CO2. W dobie rosnących cen energii elektrycznej i rosnącej presji na ochronę środowiska, wybór silników o wysokiej sprawności staje się kluczowy.

Pytanie 8

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Watomierza
B. Waromierza
C. Woltomierza
D. Reflektometru
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 9

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. niskonapięciowych liniach elektroenergetycznych.
B. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
C. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
D. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 10

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Schodowy
B. Dwubiegunowy
C. Krzyżowy
D. Świecznikowy
Odpowiedzi takie jak 'Dwubiegunowy', 'Schodowy' czy 'Krzyżowy' nie są odpowiednie w kontekście pytania o sterowanie dwoma sekcjami źródeł światła w żyrandolu. Łącznik dwubiegunowy, choć umożliwia włączanie i wyłączanie obwodów, nie jest przeznaczony do niezależnego sterowania różnymi sekcjami tego samego źródła światła. Zazwyczaj stosuje się go do prostych obwodów, gdzie jedynie kontroluje zasilanie jednego obwodu. Łącznik schodowy jest używany głównie w instalacjach, gdzie potrzebne jest kontrolowanie jednego źródła światła z dwóch różnych miejsc, co z kolei nie ma zastosowania w przypadku żyrandola z wieloma sekcjami. Łącznik krzyżowy służy do rozszerzenia możliwości już istniejącego układu schodowego, umożliwiając sterowanie jednym źródłem światła z więcej niż dwóch miejsc, ale także nie jest odpowiedni dla żyrandola, gdzie potrzebne jest niezależne włączanie poszczególnych sekcji. Typowe błędy myślowe mogą obejmować założenie, że każdy rodzaj łącznika posiada uniwersalne zastosowanie, co nie jest zgodne z rzeczywistością instalacyjną i wymaga szczególnej uwagi przy wyborze odpowiedniego typu łącznika do konkretnej aplikacji oświetleniowej.

Pytanie 11

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Kontrola temperatury przewodów
B. Zdalne sterowanie obwodami elektrycznymi
C. Ochrona przed przeciążeniami
D. Zmniejszenie zużycia energii
Przekaźnik to bardzo wszechstronne urządzenie stosowane w instalacjach elektrycznych głównie do zdalnego sterowania obwodami elektrycznymi. Działa na zasadzie elektromagnetycznego przełącznika, który pozwala na kontrolowanie dużych prądów za pomocą małego sygnału elektrycznego. To właśnie ta funkcja umożliwia automatyzację wielu procesów w instalacjach. Przekaźniki są kluczowe w systemach sterowania, gdzie pozwalają na włączanie i wyłączanie obwodów bez konieczności fizycznego kontaktu, co zwiększa bezpieczeństwo i efektywność operacyjną. W praktyce, przekaźniki są używane w wielu aplikacjach, takich jak automatyka domowa, układy sterowania maszynami czy systemy zabezpieczeń. Ponadto, ich zastosowanie jest standardem w systemach, gdzie konieczna jest szybka reakcja na zmianę stanu, np. w przypadku awarii lub nadmiernego obciążenia. Ich niezawodność i łatwość w integracji sprawiają, że są nieodzownym elementem współczesnych systemów elektrycznych.

Pytanie 12

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP54 4x4 mm2
B. IP56 5x4 mm2
C. IP45 5x6 mm2
D. IP43 5x4 mm2
Wybór puszki instalacyjnej z oznaczeniami, które nie spełniają odpowiednich norm ochrony, może prowadzić do kilku poważnych problemów. Na przykład, oznaczenie IP43 nie zapewnia wystarczającej ochrony przed wodą i pyłem, co jest kluczowe w warunkach myjni samochodowej, gdzie występuje intensywna eksploatacja związana z wodą i detergentami. Z kolei IP45, mimo że oferuje lepszą ochronę przed pyłem, nie zapewnia odpowiedniego zabezpieczenia przed silnymi strumieniami wody, co może prowadzić do uszkodzeń instalacji elektrycznej. W przypadku IP54, chociaż przewód o przekroju 4x4 mm2 ma swoje zastosowanie, nie jest on odpowiedni dla wymagań związanych z obciążeniem prądowym oraz odpornością na warunki panujące w myjniach. Kluczowym błędem myślowym jest założenie, że jakiekolwiek oznaczenie IP będzie wystarczające, bez uwzględnienia konkretnego środowiska pracy. W rzeczywistości, dobór odpowiednich komponentów do instalacji elektrycznych powinien być oparty na analizie warunków, w jakich będą one eksploatowane. Dlatego ważne jest, aby przy podejmowaniu decyzji kierować się nie tylko wartościami liczbowymi, ale także ich praktycznym zastosowaniem oraz specyfiką miejsca pracy.

Pytanie 13

Jakie środki ochrony przed porażeniem zastosowano w systemie, gdzie zasilanie urządzeń pochodzi z transformatora bezpieczeństwa?

A. Izolację miejsca pracy
B. Podwójną lub wzmocnioną izolację
C. Ochronne obniżenie napięcia
D. Separację urządzeń
W kontekście ochrony przed porażeniem prądem elektrycznym, podwójna lub wzmocniona izolacja jest jedną z metod ochrony, jednak jej zastosowanie nie jest odpowiednie w każdym przypadku. Metoda ta polega na zastosowaniu dodatkowej izolacji poza standardową, co rzeczywiście może zwiększyć bezpieczeństwo urządzenia. Nie jest to jednak wystarczające rozwiązanie dla systemów zasilanych z transformatorów bezpieczeństwa, gdzie kluczowym czynnikiem jest niskie napięcie. Separacja odbiorników również nie jest najlepszym podejściem, mimo że ma swoje miejsce w projektowaniu systemów elektrycznych. Oznacza to oddzielenie obwodów elektrycznych w celu zwiększenia bezpieczeństwa, jednak nie eliminuje ryzyka porażenia, zwłaszcza w zastosowaniach niskonapięciowych. Izolacja stanowiska, czyli zabezpieczanie użytkowników przed dostępem do elementów czynnych, jest strategią bardziej stosowaną w kontekście obszarów roboczych, lecz nie adresuje podstawowego problemu związane z niskim napięciem, które jest kluczowe w przypadkach zasilania z transformatorów bezpieczeństwa. Ostatecznie, ochronne obniżenie napięcia jest najskuteczniejszym i rekomendowanym środkiem w takich sytuacjach, ponieważ obniża ryzyko porażenia do minimum poprzez stosowanie bezpiecznych wartości napięcia.", ""]

Pytanie 14

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Wymiana oprawki.
B. Wymiana złączki.
C. Wykonanie pomiarów natężenia oświetlenia.
D. Czyszczenie obudowy i styków.
Czyszczenie obudowy i styków jest kluczowym elementem konserwacji opraw oświetleniowych. Regularne usuwanie kurzu, brudu oraz osadów poprawia nie tylko estetykę, ale przede wszystkim funkcjonalność urządzenia. Zabrudzenia na obudowie mogą prowadzić do przegrzewania się oprawy, co skraca jej żywotność i zwiększa ryzyko awarii. Czyszczenie styków zapewnia dobry kontakt elektryczny, co jest niezbędne do prawidłowego działania źródeł światła. W kontekście standardów branżowych, takich jak normy dotyczące bezpieczeństwa elektrycznego oraz efektywności energetycznej, regularna konserwacja opraw oświetleniowych jest wymagana do utrzymania ich w dobrym stanie technicznym. Przykładowo, w obiektach przemysłowych czy biurowych, gdzie oświetlenie ma kluczowe znaczenie dla bezpieczeństwa i wydajności pracy, regularne czyszczenie oraz konserwacja opraw są niezbędne do spełnienia norm BHP i ergonomii. Właściwe praktyki konserwacyjne przyczyniają się także do zmniejszenia kosztów eksploatacji poprzez ograniczenie konieczności przeprowadzania napraw oraz wymiany uszkodzonych elementów.

Pytanie 15

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. YAKY
B. LY
C. YDY
D. OMY
Oznaczenia LY, YDY oraz YAKY, mimo że są powszechnie stosowane w branży elektroinstalacyjnej, nie są odpowiednie do zastosowań zasilania odbiorników przenośnych. Oznaczenie LY odnosi się do przewodów o niskiej elastyczności, przeznaczonych głównie do instalacji stałych, co czyni je nieodpowiednimi do aplikacji, w których wymagana jest mobilność. Takie przewody mogą być podatne na uszkodzenia mechaniczne i nie są dostosowane do dynamicznych warunków pracy. Oznaczenie YDY odnosi się do przewodów instalacyjnych, które również nie zapewniają wystarczającej elastyczności i odporności na mechaniczne uszkodzenia w warunkach mobilnych. Z kolei YAKY to przewód, który może być stosowany w instalacjach stałych, często wykorzystywany w budynkach, ale nie spełnia standardów dla urządzeń przenośnych. Wybór niewłaściwego przewodu do zasilania przenośnych odbiorników elektrycznych może prowadzić do ryzykownych sytuacji, takich jak zwarcia, uszkodzenia sprzętu, a nawet pożary. Dlatego kluczowe jest stosowanie przewodów oznaczonych odpowiednio do specyfiki aplikacji, co jest zgodne z normami dotyczącymi bezpieczeństwa i efektywności energetycznej.

Pytanie 16

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Nadtynkowych
B. Podtynkowych
C. Napowietrznych
D. Wtynkowych
Układanie przewodów w rurkach karbowanych jest charakterystyczne dla instalacji podtynkowych, ponieważ zapewnia to nie tylko estetykę, ale również dodatkową ochronę mechaniczną przewodów. Rurki karbowane, zwane również rurami osłonowymi, są elastyczne i łatwe w instalacji, co pozwala na dostosowanie ich do różnych kształtów i rozmiarów pomieszczeń. Przewody umieszczone w takich rurkach są chronione przed uszkodzeniami mechanicznymi, wilgocią oraz wpływem czynników zewnętrznych. W standardach instalacyjnych, takich jak norma PN-IEC 60364, zaleca się stosowanie rur karbowanych w miejscach, gdzie występuje ryzyko uszkodzeń przewodów, co zwiększa bezpieczeństwo całej instalacji. Przykładem zastosowania mogą być instalacje elektryczne w domach jednorodzinnych, gdzie przewody są układane w ścianach i sufitach, a ich estetyczne ukrycie wraz z ochroną jest kluczowe dla komfortu użytkowania. Warto również zauważyć, że odpowiednia instalacja zgodna z normami oraz zaleceniami producentów rur jest niezbędna do zapewnienia długotrwałej i bezawaryjnej pracy instalacji elektrycznej.

Pytanie 17

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do docinania przewodów.
B. do ściągania izolacji z żył przewodów.
C. do zaciskania końcówek oczkowych.
D. do zaciskania końcówek tulejkowych.
Podane odpowiedzi sugerują różne funkcje narzędzia, które nie są zgodne z jego rzeczywistym przeznaczeniem. Zaciskanie końcówek tulejkowych czy oczkowych wymaga użycia innych narzędzi, takich jak szczypce zaciskowe, które mają zupełnie inną budowę i mechanizm działania. Narzędzia te są projektowane tak, aby zapewnić odpowiednie ciśnienie na końcówki, co jest kluczowe dla prawidłowego połączenia elektrycznego. Z kolei ściąganie izolacji z żył przewodów różni się od prostego cięcia przewodów, które powinno być realizowane narzędziami takimi jak nożyce do przewodów, które są dedykowane do tego celu. Typowe błędy myślowe w tym kontekście mogą wynikać z nieznajomości specyfikacji technicznych narzędzi czy mylenia ich funkcji. Zrozumienie różnicy między tymi narzędziami oraz ich zastosowaniem w praktyce jest kluczowe dla właściwego wykonania prac elektrycznych oraz zapewnienia bezpieczeństwa w instalacjach. Każde z tych narzędzi ma swoją unikalną rolę i stosowanie niewłaściwego narzędzia może prowadzić do uszkodzeń oraz zagrożeń dla bezpieczeństwa.

Pytanie 18

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 3-5 krotności prądu znamionowego
B. 5-10 krotności prądu znamionowego
C. 20-30 krotności prądu znamionowego
D. 10-20 krotności prądu znamionowego
Wybór niepoprawnej odpowiedzi na temat obszaru zadziałania wyzwalaczy elektromagnetycznych może wynikać z nieporozumień dotyczących sposobu działania wyłączników nadprądowych. Wyłączniki charakterystyki B, które są najczęściej stosowane w instalacjach domowych i biurowych, działają na zasadzie wykrywania prądów zwarciowych w określonym przedziale, który nie obejmuje wartości 5-10 ani 10-20 krotności prądu znamionowego. Takie podejście może prowadzić do mylnego przekonania, że wyłączniki te mają szerszy zakres działania, co nie jest zgodne z ich specyfikacją. Przykładowo, zbyt wysoki zakres zadziałania może sugerować, że wyłącznik będzie skutecznie chronił przed intensywnymi zwarciami, jednak w rzeczywistości jego zainstalowanie w takich zastosowaniach może prowadzić do uszkodzenia instalacji lub urządzeń elektrycznych, które powinny być chronione. Ponadto, wybór wyłącznika o niewłaściwej charakterystyce może prowadzić do pominięcia potrzebnej ochrony przeciwprzeciążeniowej w aplikacjach, w których wymagane są mniejsze wartości zadziałania. Zrozumienie zakresu zadziałania wyzwalaczy jest kluczowe dla prawidłowego doboru urządzeń zabezpieczających zgodnie z wymaganiami norm elektrotechnicznych, takich jak IEC 60898, które definiują zasady stosowania wyłączników nadprądowych w różnych typach instalacji elektrycznych.

Pytanie 19

Zamiast starego bezpiecznika trójfazowego 25 A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. C.
B. D.
C. A.
D. B.
Wybór niepoprawnej opcji może wynikać z kilku nieporozumień dotyczących specyfikacji wyłączników różnicowoprądowych. Niezrozumienie norm dotyczących prądu znamionowego może prowadzić do nieodpowiedniego doboru urządzenia. Na przykład, niektóre opcje mogą oferować zbyt wysokie prądy znamionowe, co skutkowałoby brakiem odpowiedniego zabezpieczenia dla obciążenia 25 A. W takich przypadkach, wybór urządzenia o niższym prądzie znamionowym może prowadzić do zadziałania wyłącznika w sytuacjach, które nie są krytyczne, co obniża jego skuteczność w ochronie. Ponadto, niewłaściwe zrozumienie liczby biegunów może doprowadzić do zastosowania wyłączników jednofazowych w instalacjach trójfazowych, co jest absolutnie niezalecane, ponieważ nie zapewnia to pełnej ochrony przed porażeniem prądem. Czułość wyłącznika różnicowoprądowego jest kluczowym parametrem, który powinien być dostosowany do specyfiki instalacji. Wybór urządzenia o zbyt dużej czułości, na przykład 100 mA, może nie zapewnić odpowiedniego zabezpieczenia, podczas gdy zbyt mała czułość może prowadzić do niepotrzebnych zadziałań. Takie błędy w doborze wyłączników mogą prowadzić do poważnych konsekwencji, w tym ryzyka wystąpienia pożaru czy porażenia prądem, co jest wysoce niepożądane w każdej instalacji elektrycznej. Dlatego kluczowe jest dobrać wyłącznik, który nie tylko spełnia normy, ale również jest odpowiednio dostosowany do charakterystyki używanych urządzeń i wymagań instalacji.

Pytanie 20

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 312 B-16-30-AC
B. P 344 C-16-30-AC
C. P 302 25-30-AC
D. P 304 25-30-AC
Wiec, ten wyłącznik różnicowoprądowy P 312 B-16-30-AC to naprawdę dobry wybór do gniazd wtykowych w jednofazowej instalacji 230 V/50 Hz. Łączy w sobie wszystkie potrzebne funkcje, które dbają o nasze bezpieczeństwo. W skrócie: chroni nas przed porażeniem prądem, bo wyłapuje różnicę prądów między fazą a neutralnym, co pozwala szybko zauważyć, jeśli coś z izolacją jest nie tak. Jest też super, bo chroni przed przeciążeniem i zwarciem, a to zwiększa bezpieczeństwo całej instalacji. I co ważne, spełnia normy IEC 61008 i PN-EN 60947-2, więc można być spokojnym o jego jakość. Przykładowo, idealnie nadaje się do domków jednorodzinnych, gdzie gniazdka zasilają różne sprzęty. Wybór odpowiedniego wyłącznika różnicowoprądowego to kluczowa sprawa, żeby utrzymać mienie i użytkowników w bezpieczeństwie.

Pytanie 21

Jakie z podanych usterek mogą powodować nadmierne wibracje w silniku indukcyjnym?

A. Przerwa w uzwojeniu stojana, zatarcie łożysk, nadmierna rezystancja uzwojeń wirnika
B. Zwarcie w uzwojeniu wirnika, zmieniona kolejność faz
C. Zbyt niskie napięcie, przerwa w jednej z faz, przeciążenie silnika
D. Skrzywienie wału, niewłaściwe wyważenie wirnika, zbyt duży luz na łożyskach
Niestety, Twoje odpowiedzi nie trafiły w sedno. Czynniki jak zbyt niskie napięcie czy przerwa w fazie nie są bezpośrednio powiązane z wibracjami silnika indukcyjnego, chociaż mogą wpływać na jego działanie. Zbyt niskie napięcie może osłabić moment obrotowy silnika, co z czasem prowadzi do różnych problemów, ale nie powoduje samych wibracji. Przerwa w fazie też nie wywołuje wibracji, a jedynie daje nierównomierne zasilanie, co objawia się innymi problemami. Zatarcie łożysk to poważna sprawa, ale objawia się raczej hałasem niż wibracjami. W skrócie, wibracje najczęściej pochodzą z problemów mechanicznych, jak błędy w budowie czy montażu, a nie z kwestii elektrycznych. Warto zrozumieć, że to rozkład masy oraz wyważenie są kluczowe, a nie tylko elektryka czy stan łożysk.

Pytanie 22

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Najwyższy czas zadziałania
B. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
C. Maksymalny prąd zwarciowy
D. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
Wybór odpowiedzi dotyczącej dopuszczalnego prądu zwarciowego nie jest właściwy, ponieważ kod C10 nie odnosi się do tego parametru. Dopuszczalny prąd zwarciowy to maksymalny prąd, który wyłącznik może znieść w przypadku zwarcia, natomiast kod C10 dotyczy charakterystyki czasowo-prądowej i prądu znamionowego, co jest fundamentalnie innym zagadnieniem. Z kolei maksymalny czas zadziałania to parametr, który określa, jak szybko wyłącznik zareaguje na nadmierny prąd; jest to również różne od informacji, które niesie kod C10. Typowa pomyłka polega na myleniu tych dwóch różnych aspektów: charakterystyki czasowo-prądowej, która dotyczy sposobu działania wyłącznika w odpowiedzi na zmiany prądu, z parametrami związanymi z jego wytrzymałością na zwarcia. Ostatecznie, każda z opcji, które podałeś, odnosi się do różnych aspektów funkcjonowania wyłączników, co może prowadzić do nieporozumień, jeśli nie zrozumie się podstawowych różnic między nimi. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności instalacji, a błąd w ich interpretacji może prowadzić do niewłaściwego doboru wyłączników, co zagraża zarówno sprzętowi, jak i użytkownikom.

Pytanie 23

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 1,0 MΩ
B. 2,0 MΩ
C. 1,5 MΩ
D. 0,5 MΩ
Wybór wartości 1,5 MΩ, 0,5 MΩ lub 2,0 MΩ jako minimalnej rezystancji izolacji dla instalacji elektrycznych do 500 V jest wynikiem nieporozumień dotyczących standardów bezpieczeństwa i wymagań technicznych. Wartość 1,5 MΩ może wydawać się odpowiednia w kontekście innych zastosowań, jednak nie spełnia podstawowych norm dla instalacji na napięcie do 500 V, które wyraźnie określają minimalną wartość na poziomie 1,0 MΩ. Z kolei wartość 0,5 MΩ jest całkowicie niewystarczająca i stwarza poważne ryzyko dla bezpieczeństwa, ponieważ nie zapewnia odpowiedniej ochrony przed przebiciem i porażeniem prądem. Natomiast 2,0 MΩ, choć wydaje się być odpowiednio wysoka, nie jest zakładanym minimum, co może prowadzić do nadmiernych kosztów w kontekście wymogów projektowych, gdzie nie zawsze jest konieczne stosowanie tak wysokiej wartości. W praktyce rzeczywiste wymagania powinny być dostosowane do specyfiki instalacji oraz jej przeznaczenia, jednak zawsze z poszanowaniem ustalonych norm i standardów. Błędem jest zatem myślenie, że wartości wyższe niż wymagane są zawsze korzystne; kluczowe jest przestrzeganie ściśle określonych norm, które zostały opracowane w celu ochrony bezpieczeństwa ludzi i mienia.

Pytanie 24

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193C25
B. S193B25
C. S191C25
D. S191B25
Wybór wyłączników S193B25, S191C25 oraz S191B25 do zastąpienia bezpieczników topikowych 25 A w obwodach silnika trójfazowego jest niewłaściwy z kilku powodów. Wyłącznik S193B25, mimo że posiada odpowiedni prąd nominalny, charakteryzuje się inną charakterystyką, co może prowadzić do niewłaściwej reakcji na przeciążenia i zwarcia, nie zapewniając odpowiedniej ochrony dla silnika. Z kolei S191C25 i S191B25 to wyłączniki o charakterystyce B, co oznacza, że ich reakcja na przeciążenia jest zbyt wolna w porównaniu do wymagań dla silników trójfazowych. Silniki te mogą w momencie rozruchu pobierać znacznie wyższy prąd, co powoduje, że wyłączniki o charakterystyce B mogą nie zadziałać w odpowiednim czasie, co prowadzi do ich uszkodzenia. Ponadto, zastosowanie wyłączników o niewłaściwych charakterystykach może skutkować niebezpiecznymi sytuacjami, w tym pożarami lub uszkodzeniem instalacji elektrycznej. Istotnym aspektem jest również fakt, że niektóre z tych wyłączników mogą nie spełniać norm IEC dotyczących ochrony obwodów silnikowych, co zwiększa ryzyko eksploatacyjne. Ważne jest, aby przy wyborze wyłączników kierować się nie tylko prądem nominalnym, ale także ich charakterystyką oraz przeznaczeniem do konkretnego zastosowania, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 25

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Silnik będzie zasilany prądem przeciwnym
B. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
C. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
D. Silnik będzie pracował w stanie jałowym
Ujemny poślizg silnika indukcyjnego występuje, gdy wirnik jest dopędzany powyżej prędkości synchronicznej, co oznacza, że wirnik obraca się szybciej niż pole magnetyczne wytwarzane przez stojan. W takiej sytuacji silnik działa w trybie generacyjnym, co jest wykorzystywane w aplikacjach, gdzie odzyskuje się energię, na przykład w systemach hamowania regeneracyjnego w pojazdach elektrycznych. W praktyce, jeśli wirnik osiągnie prędkość większą niż wartość synchroniczna, to wytwarzane przez niego napięcie indukowane jest dodatnie w stosunku do napięcia zasilającego, co prowadzi do odwrotnego kierunku przepływu prądu. Ta zasada jest istotna w zastosowaniach takich jak elektrownie wiatrowe, gdzie turbiny mogą pracować zarówno jako silniki, jak i generatory. Zrozumienie zjawiska poślizgu jest kluczowe dla inżynierów projektujących systemy napędowe oraz dla operatorów utrzymujących ich działanie w optymalnych warunkach.

Pytanie 26

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 20 mA
B. IΔ = 40 mA
C. IΔ = 10 mA
D. IΔ = 30 mA
Odpowiedź IΔ = 10 mA jest poprawna, ponieważ sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA nie powinien zadziałać przy prądzie różnicowym mniejszym od jego nominalnej wartości. Wartości prądu różnicowego, które są poniżej tego poziomu, nie powinny aktywować mechanizmu wyłączającego. Na przykład, jeżeli w instalacji elektrycznej wystąpi niewielki prąd upływowy spowodowany np. wilgocią lub wadliwym urządzeniem, to przy prądzie 10 mA wyłącznik nie zareaguje, co oznacza, że urządzenie może dalej działać. Wyłączniki różnicowoprądowe są kluczowym elementem w systemach zabezpieczeń, a zgodnie z normami IEC 61008-1, powinny być stosowane w instalacjach, aby zapewnić bezpieczeństwo użytkowników przed porażeniem prądem elektrycznym. Odpowiednia konfiguracja takich wyłączników jest istotna w kontekście ochrony zdrowia i życia, a ich prawidłowe działanie powinno być regularnie kontrolowane.

Pytanie 27

W prawidłowo działającej instalacji elektrycznej w kuchni wymieniono uszkodzone gniazdo wtykowe. Po uruchomieniu odbiornika zadziałał wyłącznik różnicowoprądowy. Jaki błąd wystąpił przy montażu gniazda?

A. Nie podłączono przewodu ochronnego
B. Zamieniono zacisk przewodu ochronnego z neutralnym
C. Zamieniono zacisk przewodu fazowego z neutralnym
D. Nie podłączono przewodu neutralnego
Brak podłączenia przewodu ochronnego jest jednym z najczęstszych błędów montażowych w instalacjach elektrycznych, jednak jego skutki mogą być nieco mniej dramatyczne niż zamiana przewodów. Przewód ochronny odgrywa kluczową rolę w bezpieczeństwie użytkowników, zapewniając ochronę przed porażeniem prądem elektrycznym. W przypadku jego nieobecności, nawet przy poprawnym podłączeniu przewodów fazowego i neutralnego, użytkownik może być narażony na niebezpieczeństwo w sytuacji awaryjnej. Mylne przekonanie o tym, że nie jest konieczne podłączenie przewodu ochronnego w gniazdach elektrycznych, prowadzi do sytuacji, w której urządzenia elektryczne mogą działać, ale nie są bezpieczne. Zamiana zacisku przewodu fazowego z neutralnym jest kolejnym nieprawidłowym podejściem, które nie tylko może skutkować uszkodzeniem sprzętu, ale również stwarza poważne zagrożenie dla użytkowników. W takich sytuacjach, gdy faza jest zamieniana z neutralnym, nieprawidłowe napięcie może pojawić się na gniazdach, co jest niebezpieczne dla podłączonych urządzeń. Warto również zauważyć, że niepodłączenie przewodu neutralnego w systemach jednofazowych może spowodować, że urządzenia nie będą działały poprawnie, ale niekoniecznie będą zagrażały bezpieczeństwu. Każdy z tych błędów jest wynikiem nierozumienia podstawowych zasad działania instalacji elektrycznych oraz zaniedbania norm bezpieczeństwa, co może prowadzić do poważnych konsekwencji zarówno dla użytkowników, jak i dla samej instalacji.

Pytanie 28

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 8,0 Ω
B. 7,7 Ω
C. 2,3 Ω
D. 4,6 Ω
Wartości takie jak 7,7 Ω, 4,6 Ω czy 8,0 Ω są zbyt wysokie, aby zapewnić skuteczną ochronę przed porażeniem prądem w obwodzie z wyłącznikiem nadprądowym C10. Przy zbyt wysokiej impedancji pętli zwarcia czas wyzwolenia wyłącznika może być niewystarczający, co prowadzi do ryzyka poważnego porażenia prądem elektrycznym w przypadku uszkodzenia izolacji. Na przykład, z wartością 4,6 Ω, przy zwarciu, prąd może być na tyle niski, że wyłącznik nie zareaguje w odpowiednim czasie, co jest niezgodne z zasadami ochrony. Należy pamiętać, że aby wyłącznik nadprądowy zadziałał poprawnie, musi zostać dostarczony odpowiedni prąd zwarcia, który zależy od impedancji pętli. W praktyce, przy projektowaniu instalacji elektrycznych, inżynierowie często popełniają błąd, nie uwzględniając wszystkich elementów obwodu, takich jak długość przewodów czy ich przekroje, co wpływa na całkowitą impedancję. Zatem dobór odpowiednich parametrów instalacji elektrycznej jest kluczowy dla zapewnienia bezpieczeństwa oraz zgodności z normami, takimi jak PN-EN 60364, które dokładnie określają wymagania dotyczące ochrony przed skutkami porażenia prądem.

Pytanie 29

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Kluczem płaskim
B. Nożem monterskim
C. Wkrętakiem
D. Neonowym wskaźnikiem napięcia
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 30

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. doboru oraz oznaczenia przewodów
B. układu tablic informacyjnych i ostrzegawczych
C. wartości natężenia oświetlenia w miejscach pracy
D. doboru zabezpieczeń i urządzeń
Wszystkie inne odpowiedzi są nieprawidłowe w kontekście wymagań dotyczących sprawdzania nowo wykonanych instalacji elektrycznych. Dobór i oznaczenie przewodów jest fundamentalnym aspektem, który zapewnia bezpieczeństwo oraz poprawność działania instalacji. Przewody muszą być odpowiednio dobrane do obciążenia, co jest zgodne z normą PN-IEC 60364, która określa zasady planowania, wykonania oraz odbioru instalacji elektrycznych. Podobnie, dobór zabezpieczeń i aparatury jest kluczowy, aby zapewnić odpowiednią ochronę przed przeciążeniem oraz zwarciem, co jest istotne dla bezpieczeństwa użytkowników i zgodności z przepisami. Niewłaściwy dobór zabezpieczeń może prowadzić do poważnych awarii i zagrożeń, dlatego tak ważne jest, aby ten aspekt został dokładnie skontrolowany. Rozmieszczenie tablic ostrzegawczych i informacyjnych jest także istotne, ponieważ dostępność i widoczność tych informacji mają kluczowe znaczenie dla bezpieczeństwa w przestrzeni roboczej. Niedostateczne oznakowanie może prowadzić do wypadków i nieporozumień, zwłaszcza w kontekście pracy w obiektach przemysłowych. Przykładowo, w obiektach, gdzie używa się substancji niebezpiecznych, obecność informacji o zagrożeniach jest nie tylko wymagana przepisami, ale również kluczowa dla ochrony zdrowia pracowników. Uznanie, że wartości natężenia oświetlenia są równie istotne jak inne elementy instalacji, może prowadzić do błędnego postrzegania priorytetów w zakresie bezpieczeństwa oraz funkcjonalności nowo wykonanych instalacji elektrycznych.

Pytanie 31

Która z poniższych wartości wskazuje na najwyższy poziom precyzji narzędzia pomiarowego?

A. 0,5
B. 5
C. 0,1
D. 1
Wybór odpowiedzi 5, 0,5 lub 1 wskazuje na nieporozumienie w zakresie pojęcia klasy dokładności narzędzi pomiarowych. Klasa dokładności odnosi się do tego, jak precyzyjnie narzędzie może określićmierzoną wartość. Wartość 5 oznacza, że narzędzie pomiarowe ma stosunkowo niską dokładność, co jest nieodpowiednie w sytuacjach wymagających precyzyjnych pomiarów. Odpowiedź 0,5, podobnie jak 1, wskazuje na umiarkowaną dokładność, jednak w obydwu przypadkach nie osiągają one poziomu precyzji, jakim charakteryzuje się wartość 0,1. Typowym błędem myślowym jest mylenie wartości liczbowych z klasą dokładności, co prowadzi do wniosku, że większa liczba byłaby lepsza. W rzeczywistości, im mniejsza wartość, tym wyższa precyzja, co jest fundamentem w metrologii. Takie podejście jest kluczowe w branżach, gdzie dokładność pomiarów wpływa bezpośrednio na jakość produktów i bezpieczeństwo procesów, np. w przemyśle lotniczym czy medycznym. Właściwe zrozumienie klas dokładności narzędzi pomiarowych jest niezbędne, aby uniknąć błędów w pomiarach i zapewnić zgodność z wymaganiami norm jakości. Niezależnie od używanego narzędzia, kluczem do sukcesu jest znajomość jego dokładności oraz umiejętność dopasowania go do specyficznych potrzeb pomiarowych.

Pytanie 32

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Omomierza
B. Amperomierza
C. Megaomomierza
D. Watomierza
Wybór watomierza, amperomierza lub megaomomierza w celu sprawdzenia ciągłości przewodu jest nieprawidłowy, ponieważ każdy z tych instrumentów ma inne funkcje i zastosowania, które nie odpowiadają wymaganiom zadania. Watomierz jest używany do pomiaru mocy elektrycznej w obwodzie, co oznacza, że mierzy ilość energii zużywanej przez urządzenia. Nie jest użyteczny w kontekście sprawdzania ciągłości przewodów, ponieważ nie dostarcza informacji o oporze elektrycznym ani o ewentualnych przerwach w obwodzie. Amperomierz natomiast służy do pomiaru natężenia prądu, co również nie jest adekwatne w przypadku testowania ciągłości. Przyrząd ten nie wykryje, czy przewód jest zerwany czy uszkodzony, a jedynie zmierzy ilość przepływającego prądu, co ma znaczenie tylko w pełnoobciążonym obwodzie. Megaomomierz, z kolei, jest narzędziem przeznaczonym do pomiaru oporu izolacji, a nie ciągłości przewodu. Jego zastosowanie jest kluczowe w testach urządzeń wysokiego napięcia oraz w ocenie stanu izolacji, ale nie jest on przeznaczony do sprawdzania samej ciągłości przewodów. Typowym błędem jest mylenie funkcji tych przyrządów i ich zastosowań, co może prowadzić do nieprawidłowych diagnoz i potencjalnych zagrożeń w instalacjach elektrycznych.

Pytanie 33

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Szczypce długie, nóż monterski, szczypce czołowe
B. Nóż monterski, szczypce boczne, szczypce monterskie
C. Nóż monterski, szczypce boczne, zestaw wkrętaków
D. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
Odpowiedź 'Nóż monterski, szczypce boczne, komplet wkrętaków' jest prawidłowa, ponieważ te narzędzia są kluczowe do wykonywania połączeń przewodów typu DY w instalacjach elektrycznych. Nóż monterski umożliwia precyzyjne ścięcie izolacji z przewodów, co jest niezbędne do ich prawidłowego połączenia. Szczypce boczne są używane do cięcia przewodów oraz wyginania ich końcówek, co jest istotne przy montażu w puszkach rozgałęźnych. Komplet wkrętaków, który zawiera wkrętaki o różnych rozmiarach i typach, jest niezbędny do mocowania złączek śrubowych, co zapewnia solidne i trwałe połączenie. Zgodnie z normami branżowymi, stosowanie odpowiednich narzędzi wpływa na bezpieczeństwo instalacji oraz jej zgodność z obowiązującymi przepisami. Przykładowo, źle przeprowadzone połączenia mogą prowadzić do zwarć, co może zagrażać bezpieczeństwu użytkowników. Dlatego znajomość i umiejętność użycia odpowiednich narzędzi jest niezbędna w pracy każdego elektryka.

Pytanie 34

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. omomierza i amperomierza
B. woltomierza i amperomierza
C. watomierza oraz woltomierza
D. omomierza oraz woltomierza
Podczas analizy błędnych odpowiedzi warto zauważyć, że pomiar rezystancji nie może być prawidłowo przeprowadzony wyłącznie za pomocą omomierza i woltomierza, ani tym bardziej wykorzystując watomierz. Omomierz jest narzędziem specjalistycznym przeznaczonym do bezpośredniego pomiaru rezystancji, jednak nie jest on wystarczający, aby uzyskać dokładne wyniki w przypadku bardziej skomplikowanych układów elektrycznych, gdzie istotne są zarówno napięcie, jak i prąd. Z kolei amperomierz sam w sobie nie mierzy rezystancji, lecz natężenie prądu, co w praktyce nie pozwala na bezpośrednie określenie wartości rezystancji bez znajomości napięcia. Wykorzystanie watomierza, który mierzy moc, również nie ma zastosowania w kontekście pomiarów rezystancji, ponieważ nie umożliwia obliczenia wartości R. Typowym błędem myślowym jest przeświadczenie, że jakiekolwiek urządzenie pomiarowe związane z elektrycznością może być użyteczne do pomiaru rezystancji, co jest mylnym rozumieniem zasady działania tych narzędzi. Aby uzyskać prawidłowe wyniki, niezbędne jest zrozumienie podstawowych zasad dotyczących relacji między napięciem, prądem i rezystancją oraz znajomość odpowiednich narzędzi do ich pomiaru.

Pytanie 35

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Rezystancję przewodów ochronnych i rezystancję uziemienia
B. Impedancję pętli zwarcia oraz pomiar prądu upływu
C. Rezystancję izolacji przewodów oraz rezystancję uziemienia
D. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
Rezystancja izolacji przewodów i rezystancja uziemienia, mimo że są ważnymi parametrami w analizie instalacji elektrycznych, nie są wystarczające do przeprowadzenia kompleksowego przeglądu w sieci TN-S. Zmierzona rezystancja izolacji informuje o stanie izolacji, ale nie dostarcza informacji o zabezpieczających mechanizmach w instalacji, które są kluczowe dla ochrony przed skutkami zwarcia. Ponadto, rezystancja uziemienia sama w sobie nie jest wystarczająca do zapewnienia bezpieczeństwa, ponieważ nie uwzględnia wymagań dotyczących szybkiego wyłączenia w przypadku awarii. Z kolei mierzona rezystancja przewodów ochronnych oraz rezystancja uziemienia, chociaż istotne, mogą prowadzić do mylnego wniosku o kompletnym bezpieczeństwie systemu, nie uwzględniając przy tym dynamiki systemu oraz potencjalnych zagrożeń związanych z zanikami uziemienia. Zastosowanie tylko pomiaru impedancji pętli zwarcia jest niewystarczające, ponieważ nie zapewnia pełnej oceny stanu instalacji, a brak pomiaru rezystancji izolacji może prowadzić do niedostrzegania uszkodzeń, które z czasem mogą stać się poważnym zagrożeniem. Z tego powodu, przeprowadzając przegląd instalacji elektrycznej, nie można pomijać żadnego z wymienionych parametrów, co jest zgodne z najlepszymi praktykami branżowymi i obowiązującymi normami.

Pytanie 36

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie probiercze i prąd zadziałania.
B. Napięcie probiercze i prąd znamionowy.
C. Napięcie znamionowe i prąd zadziałania.
D. Napięcie znamionowe i prąd znamionowy.
Wybierając inne parametry, jak napięcie probiercze czy prąd zadziałania, to nie był najlepszy pomysł. Napięcie probiercze dotyczy testów izolacji, a nie tego, co pokazuje urządzenie na stałe. Prąd zadziałania to natomiast wartość, przy której zabezpieczenie jak wyłącznik różnicowoprądowy włącza się, gdy coś jest nie tak. Te pojęcia są ważne, ale nie pasują tu do parametrów znamionowych wypisanych na urządzeniu. Ważne jest, aby rozumieć te różnice, bo to pomaga w prawidłowym użytkowaniu sprzętu elektrycznego i jego bezpieczeństwie. Często ludzie mylą te terminy, co prowadzi do błędów przy doborze sprzętu i zabezpieczeń. Brak wiedzy na ten temat może skutkować poważnymi problemami, jak uszkodzenia urządzeń czy nawet pożar. Dlatego warto zawsze sprawdzać specyfikacje znamionowe, bo to podstawa do poprawnego użytkowania i projektowania instalacji elektrycznych.

Pytanie 37

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
B. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
C. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
D. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
Protokół z badań po modernizacji sieci musi zawierać kluczowe informacje, takie jak nazwisko zleceniodawcy, nazwisko wykonawcy oraz czas wykonywania pomiarów. Te elementy są niezbędne, aby zapewnić pełną przejrzystość i odpowiedzialność w procesie pomiarów. Zleceniodawca, jako osoba zlecająca prace, powinien być wymieniony, aby można było w razie potrzeby zidentyfikować odpowiednie osoby odpowiedzialne za projekt. Nazwisko wykonawcy jest istotne, ponieważ odpowiada on za prawidłowe wykonanie badań, co jest kluczowe dla zapewnienia bezpieczeństwa i jakości sieci. Czas wykonywania pomiarów także ma znaczenie, ponieważ umożliwia śledzenie postępu prac oraz weryfikację, czy pomiary zostały przeprowadzone zgodnie z harmonogramem. Wszystkie te dane są zgodne z najlepszymi praktykami w branży oraz standardami, które zalecają dokumentowanie szczegółowych informacji o przebiegu prac oraz wynikach badań.

Pytanie 38

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. silników przed przeciążeniami oraz zwarciami
B. urządzeń półprzewodnikowych przed zwarciami
C. przewodów przed przeciążeniami oraz zwarciami
D. urządzeń półprzewodnikowych przed przeciążeniami
Przy wyborze wkładki topikowej bezpiecznika ważne jest zrozumienie ich specyfikacji oraz przeznaczenia. Odpowiedzi sugerujące, że wkładka gL zabezpiecza silniki przed przeciążeniem i zwarciami, są mylące, ponieważ silniki wymagają specjalnych wkładek, które mogą radzić sobie z chwilowymi prądami rozruchowymi. Odpowiedzi dotyczące zabezpieczenia urządzeń półprzewodnikowych również są nietrafne. Urządzenia te wymagają wkładek o specyficznych charakterystykach, takich jak gG, które są lepiej dostosowane do ochrony przed impulsywnymi prądami zwarciowymi typowymi dla takich urządzeń. W przypadku przewodów wkładki gL oferują niezawodne zabezpieczenie, jednak proponowanie ich użycia w kontekście silników czy półprzewodników dowodzi braku zrozumienia różnorodności typów bezpieczników oraz ich specyficznych zastosowań. Niezrozumienie tych różnic może prowadzić do zastosowania niewłaściwych zabezpieczeń, co z kolei może skutkować poważnymi uszkodzeniami instalacji elektrycznej oraz zagrażać bezpieczeństwu użytkowników. W przemyśle i instalacjach elektrycznych ważne jest stosowanie odpowiednich elementów zabezpieczających zgodnie z zaleceniami producentów oraz normami, co w praktyce oznacza właściwy dobór bezpieczników do specyfiki chronionych obwodów.

Pytanie 39

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 2,30 Ω
B. 3,83 Ω
C. 2,00 Ω
D. 1,15 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, dla zapewnienia skutecznej ochrony przeciwporażeniowej przy uszkodzeniu izolacji, wynosi 1,15 Ω. Wartość ta jest kluczowa, ponieważ umożliwia szybkie zadziałanie instalacyjnego wyłącznika nadprądowego, takiego jak C20, który ma zdolność wyłączenia w ciągu 0,4 sekundy przy prądzie zwarciowym wynoszącym 5 kA. W praktyce, impedancja pętli zwarcia powinna być obliczana zgodnie z obowiązującymi normami, takimi jak PN-EN 60364, które określają zasady projektowania i wykonawstwa instalacji elektrycznych. Dla wyłącznika C20, wartość impedancji pętli zwarcia nie powinna przekraczać 1,15 Ω, aby zapewnić odpowiednią ochronę przed porażeniem prądem elektrycznym. Przykładowo, w instalacjach zasilających do budynków mieszkalnych, regularne pomiary impedancji pętli zwarcia są niezbędne do utrzymania bezpieczeństwa użytkowników.

Pytanie 40

W jaki sposób powinno się podłączyć obwód prądowy oraz obwód napięciowy jednofazowego elektronicznego licznika energii elektrycznej do systemu pomiarowego?

A. Prądowy równolegle, napięciowy szeregowo
B. Prądowy i napięciowy szeregowo
C. Prądowy i napięciowy równolegle
D. Prądowy szeregowo, napięciowy równolegle
Prawidłowe włączenie obwodu prądowego szeregowo oraz obwodu napięciowego równolegle jest kluczowe dla właściwego działania jednofazowego licznika energii elektrycznej. Zastosowanie tego schematu wynika z potrzeby pomiaru prądu płynącego przez odbiornik oraz zjawiska pomiaru napięcia. Obwód prądowy podłączony szeregowo zapewnia, że cały prąd przepływający przez obwód również przepływa przez licznik, co umożliwia dokładny pomiar zużycia energii. Z kolei obwód napięciowy podłączony równolegle do odbiornika gwarantuje, że napięcie na liczniku jest zgodne z napięciem zasilania, co jest niezbędne do prawidłowego wyliczenia wartości energii. Taki sposób podłączenia jest zgodny z normami EN 62053-21 oraz PN-EN 60044-1, które definiują wymagania techniczne dla liczników energii elektrycznej. Przykładem zastosowania tej wiedzy jest instalacja liczników w obiektach komercyjnych, gdzie dokładność pomiarów jest krytyczna dla zarządzania kosztami energii.