Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 1 lutego 2026 11:13
  • Data zakończenia: 1 lutego 2026 11:33

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ile napędów jest zastosowanych w manipulatorze, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 4 napędy.
B. 3 napędy.
C. 6 napędów.
D. 5 napędów.
Odpowiedzi 3, 5 oraz 6 napędów są wynikiem nieprawidłowego rozumienia ilości elementów napędowych w manipulatorze. Niektórzy mogą zinterpretować schemat w sposób, który prowadzi do błędnych wniosków, skupiając się na złożoności układu, a nie na jego rzeczywistych komponentach napędowych. Na przykład, odpowiedź 3 napędy może wynikać z pomyłkowego pominięcia jednego z siłowników lub silnika. Takie zapomnienie może być efektem ogólnego zrozumienia struktur mechanicznych, gdzie niektóre elementy wydają się mniej istotne. Z kolei w przypadku odpowiedzi 5 napędów, możliwe, że dochodzi do mylnego dodania innego elementu, który nie jest napędem, np. przekładni. Odpowiedź 6 napędów sugeruje, że użytkownik może mieć na uwadze dodatkowe komponenty, które jednak nie są napędami w sensie mechanicznym. To prowadzi do typowego błędu myślowego, w którym złożoność układu jest mylona z ilością funkcjonalnych napędów. W branży automatyki kluczowe jest dokładne rozumienie poszczególnych elementów oraz ich funkcji w systemie, co pozwala na efektywne projektowanie i implementację rozwiązań, które są zgodne z najlepszymi praktykami inżynierskimi.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. kasku ochronnego
B. okularów ochronnych
C. rękawic dielektrycznych
D. ochronników słuchu
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 5

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. czujnik termiczny
B. termoelement
C. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem
D. termostat
Regulator temperatury z wyświetlaczem cyfrowym to urządzenie, które monituruje i kontroluje temperaturę, ale nie mierzy jej bezpośrednio. Głównie utrzymuje zadaną temperaturę, kontrolując inne urządzenia, jak grzałki czy wentylatory. Temperatura zazwyczaj pochodzi z czujników, a one same nie są do pomiaru. Termostat też jest urządzeniem sterującym, ale raczej zajmuje się kontrolowaniem ciepła niż pomiarem. Przekaźnik termiczny włącza lub wyłącza obwody elektryczne w zależności od temperatury, ale również nie mierzy temperatury. Często ludzie mylą te funkcje, co prowadzi do błędnych wniosków. W praktyce to, że te urządzenia mogą zarządzać temperaturą, nie znaczy, że potrafią ją zmierzyć. Żeby prawidłowo mierzyć temperaturę, potrzeba dedykowanych urządzeń, jak termoelementy, które są dokładne i niezawodne.

Pytanie 6

Podczas inspekcji urządzenia mechatronicznego zauważono - w trakcie ruchu przewodu - nieszczelność w miejscu przyłącza wtykowego w siłowniku pneumatycznym. Jaką metodę naprawy należy zastosować?

A. dokręcenie przyłącza kluczem dynamometrycznym
B. wymiana uszczelki pomiędzy przyłączem a siłownikiem
C. wymiana przyłącza
D. uszczelnienie przyłącza taśmą teflonową
Użycie taśmy teflonowej do uszczelnienia przyłącza może wydawać się szybkim sposobem na rozwiązanie problemu, ale w rzeczywistości to podejście nie załatwia wszystkich spraw związanych z nieszczelnością w systemach pneumatycznych. Ta taśma jest raczej do uszczelniania połączeń gwintowych, a w przypadku zużytych lub uszkodzonych elementów, jak przyłącza, to tak naprawdę nie rozwiązuje problemu. Może to prowadzić do dodatkowych kłopotów, jak zatykanie przepływu powietrza, co wpływa na całą wydajność systemu. Wymiana uszczelki między przyłączem a siłownikiem też nie jest właściwą odpowiedzią, bo to nie wyeliminuje nieszczelności, jeśli same przyłącze jest uszkodzone. Dokręcanie przyłącza kluczem dynamometrycznym może dać chwilowe rezultaty, ale jeśli siła jest za duża, to jeszcze bardziej uszkodzi elementy, a na dłuższą metę i tak będziesz musiał wymienić całe przyłącze. W inżynierii mechatronicznej ważne jest, żeby korzystać z dobrych komponentów i przestrzegać standardów jakości. Dlatego zawsze lepiej wymienić uszkodzony element na nowy, zgodny z wymaganiami producenta, żeby to rzeczywiście miało sens.

Pytanie 7

Przedstawiony element to

Ilustracja do pytania
A. szybkozłączka elektryczna.
B. złącze grzybkowe.
C. szybkozłączka pneumatyczna.
D. szybkozłączka optyczna.
Szybkozłączka pneumatyczna to element układów pneumatycznych, który umożliwia szybkie i beznarzędziowe łączenie oraz rozłączanie węży i narzędzi pneumatycznych. Jej metalowa konstrukcja oraz obecność gwintów pozwalają na solidne i trwałe połączenie, co jest kluczowe w aplikacjach przemysłowych. Ten typ złącza jest powszechnie stosowany w różnych branżach, takich jak przemysł motoryzacyjny czy budowlany, gdzie wykorzystywane są narzędzia pneumatyczne do wykonywania prac. Zastosowanie szybkozłączek pneumatycznych przyczynia się nie tylko do zwiększenia efektywności pracy, ale także do poprawy bezpieczeństwa operacji, ponieważ umożliwiają one łatwe i szybkie odłączenie narzędzi w razie potrzeby. Dobry dobór szybko złączek w systemie pneumatycznym, zgodny z normami branżowymi, zapewnia optymalną wydajność oraz niezawodność pracy urządzeń.

Pytanie 8

Zestyk K1 oznaczony na schemacie czerwoną ramką odpowiada za

Ilustracja do pytania
A. blokowanie jednoczesnego załączenia cewek przekaźników K1 i K2
B. podtrzymanie zasilania cewek przekaźników K1 i K2
C. wyłączenie zasilania cewek przekaźników K1 i K2
D. włączenie zasilania cewek przekaźników K1 i K2
Zestyk K1, oznaczony na schemacie czerwoną ramką, pełni istotną funkcję podtrzymywania zasilania cewek przekaźników K1 i K2. Po naciśnięciu przycisku S1, cewka przekaźnika K1 zostaje zasilona, co skutkuje zamknięciem zestyku K1. To zamknięcie jest kluczowe, ponieważ pozwala na utrzymanie zasilania cewki K1 nawet po zwolnieniu przycisku S1, co jest zgodne z zasadami działania układów elektromechanicznych. Dzięki temu przekaźnik K2 również uzyskuje zasilanie, co jest niezbędne w wielu aplikacjach automatyki, gdzie wymagane jest zachowanie stanu załączenia po przełączeniu. Takie rozwiązanie jest powszechnie stosowane w systemach sterowania, gdzie stabilność i niezawodność działania są priorytetem. Przykładem zastosowania tej funkcjonalności może być system zabezpieczeń, gdzie podtrzymanie zasilania jest kluczowe dla ciągłości działania alarmu. W branży elektrycznej i automatyki, stosowanie zestyków podtrzymujących zgodnie z normami oraz dobrymi praktykami zapewnia bezpieczeństwo i efektywność operacyjną.

Pytanie 9

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. TIG
B. MIG
C. MAG
D. SAW
Wybór odpowiedzi dotyczących metod TIG, MIG czy SAW wskazuje na pewne nieporozumienia dotyczące zastosowania gazów w procesach spawania. Metoda TIG (Tungsten Inert Gas) opiera się na użyciu tungstenowego elektrody oraz gazu obojętnego, takiego jak argon, co oznacza brak zastosowania gazu chemicznie aktywnego. To sprawia, że metoda TIG nie jest odpowiednia do spawania materiałów podatnych na utlenianie, co czyni ją bardziej skomplikowaną w kontekście spawania stali konstrukcyjnych. Metoda MIG, podobnie jak TIG, także posługuje się gazami obojętnymi, co eliminuje możliwość wpływania aktywnych gazów na proces spawania. Na dodatek, w metodzie SAW (Submerged Arc Welding) stosuje się spawanie pod topnikiem, gdzie gaz nie jest kluczowym elementem procesu, co czyni tę metodę mniej elastyczną w kontekście zastosowań wymagających aktywnych gazów. Zrozumienie różnic między tymi technikami oraz ich odpowiednim zastosowaniem jest kluczowe dla uzyskania wysokiej jakości spoin. W praktyce, wybór odpowiedniej metody spawania powinien być podyktowany specyfiką materiałów oraz wymaganiami technologicznymi danego projektu, co jest zgodne z normami i dobrymi praktykami branżowymi.

Pytanie 10

Na szynie TH35 trzeba zamontować przedstawiony na ilustracji przekaźnik o 4 zestykach przełącznych. Które gniazdo można zastosować do tego montażu?

Ilustracja do pytania
A. Gniazdo 2.
B. Gniazdo 1.
C. Gniazdo 4.
D. Gniazdo 3.
Wybór innego gniazda, jak gniazdo 1., 2. lub 4., może prowadzić do nieprawidłowego działania przekaźnika oraz stanowić zagrożenie dla bezpieczeństwa instalacji. Każde z tych gniazd ma inną konfigurację pinów, co oznacza, że nie będą one w stanie prawidłowo współpracować z przekaźnikiem o 4 zestykach przełącznych. Często błędna decyzja o wyborze gniazda wynika z niewłaściwej interpretacji dokumentacji technicznej lub braku znajomości specyfikacji urządzenia. W praktyce, nieodpowiednie gniazdo może prowadzić do niewłaściwego podłączenia, co skutkuje nieprawidłowym funkcjonowaniem obwodów, a w skrajnych przypadkach do uszkodzenia komponentów elektronicznych. Zastosowanie niewłaściwego gniazda jest częstym błędem, szczególnie w sytuacjach, gdy użytkownicy mylą normy dotyczące różnych typów przekaźników. Aby zminimalizować takie ryzyko, kluczowe jest, aby zawsze dokładnie sprawdzać specyfikacje techniczne oraz upewnić się, że wybierane komponenty są kompatybilne. Zrozumienie różnic między gniazdami oraz ich właściwe zastosowanie jest fundamentalne dla zapewnienia trwałości i bezpieczeństwa instalacji elektrycznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. termoaktywną
B. bawełnianą w formie kombinezonu
C. roboczą trudnopalną
D. roboczą standardową
Odpowiedź "robocze trudnopalne" jest poprawna, ponieważ w procesach związanych z odlewaniem metali, takich jak cynkowo-tytanowa taśma, istnieje wysokie ryzyko wystąpienia pożaru oraz poparzeń. Ubrania robocze trudnopalne są zaprojektowane z myślą o ochronie przed wysokimi temperaturami i płomieniami, co jest szczególnie istotne w środowiskach przemysłowych, gdzie pracownicy mogą być narażeni na kontakt z gorącymi materiałami czy odpryskami. Takie odzież jest wykonana z materiałów, które nie tylko opóźniają zapłon, ale także ograniczają rozwój ognia, co daje pracownikom cenny czas na ewakuację w przypadku zagrożenia. Przykładem może być odzież wykonana z tkanin takich jak Nomex czy Kevlar, które są powszechnie stosowane w przemyśle. Ponadto, stosowanie odzieży roboczej trudnopalnej jest zgodne z normami BHP oraz standardami branżowymi, które wymagają odpowiednich środków ochrony osobistej w środowisku pracy. Dlatego ważne jest, aby operatorzy linii produkcyjnej byli odpowiednio zabezpieczeni, by zminimalizować ryzyko wypadków związanych z ogniem.

Pytanie 16

Przedstawiony na rysunku układ jest symbolem regulatora typu

Ilustracja do pytania
A. PD
B. PID
C. PI
D. I
Wybór odpowiedzi innej niż PID może wynikać z mylnych założeń dotyczących charakterystyki różnych typów regulatorów. Regulator typu I (integralny) koncentruje się jedynie na eliminacji błędu ustalonego, co czyni go niewystarczającym w systemach wymagających szybkiej reakcji i stabilności. Jego działanie polega na ciągłym sumowaniu błędów, co może prowadzić do niestabilności w przypadku systemów z dużymi opóźnieniami. Z kolei regulator PD (proporcjonalno-różniczkujący) nie ma elementu całkującego, co oznacza, że nie radzi sobie z błędem ustalonym, a jedynie reaguje na zmiany błędu. Regulator PI (proporcjonalno-całkujący) eliminuje błąd ustalony, ale brak elementu różniczkującego ogranicza jego zdolność do szybkiej reakcji i stabilizacji, co jest szczególnie istotne w aplikacjach z dynamicznymi zmianami. Te ograniczenia pokazują, że regulator PID, który łączy wszystkie trzy aspekty, jest najbardziej wszechstronnym i skutecznym rozwiązaniem w wielu zastosowaniach, takich jak kontrola temperatury w piecach przemysłowych, gdzie wymagane jest zarówno szybkie reagowanie, jak i eliminacja błędów ustalonych. Niezrozumienie tych różnic prowadzi do niewłaściwego doboru regulatora oraz nieefektywności w systemach regulacji, co może skutkować problemami z wydajnością i stabilnością procesów technologicznych.

Pytanie 17

Na rysunku przedstawiono symbol graficzny siłownika pneumatycznego

Ilustracja do pytania
A. udarowego.
B. mieszkowego.
C. pochającego jednostronnego działania.
D. ciągnącego jednostronnego działania.
Poprawna odpowiedź to siłownik pneumatyczny jednostronnego działania, co jest zgodne z przedstawionym symbolem graficznym. Siłowniki jednostronnego działania są wykorzystywane w aplikacjach, gdzie potrzebna jest siła w jednym kierunku, a powrót do pozycji wyjściowej jest realizowany za pomocą sprężyny. Przykładem zastosowania takich siłowników są systemy automatyki przemysłowej, gdzie często stosuje się je do podnoszenia lub przesuwania elementów. Ich konstrukcja pozwala na efektywną pracę, zmniejszając jednocześnie zużycie energii. W branży pneumatycznej standardy, takie jak ISO 6431, definiują konkretne wymiary i parametry dla takich siłowników, co zapewnia ich wymienność oraz ułatwia projektowanie systemów. Dlatego zrozumienie symboli graficznych siłowników jest kluczowe dla inżynierów pracujących nad projektami związanymi z automatyką i pneumatyka, co podkreśla znaczenie właściwego odczytywania schematów.

Pytanie 18

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Indukcyjnego
B. Rezystancyjnego
C. Pojemnościowego
D. Optycznego
Zastosowanie czujników pojemnościowych, optycznych i indukcyjnych jako czujników zbliżeniowych opiera się na różnych zasadach fizycznych, które są fundamentalne dla ich funkcjonalności. Czujniki pojemnościowe działają na zasadzie zmian pojemności elektrycznej, gdy obiekt zbliża się do ich pola. To sprawia, że są w stanie wykrywać różne materiały, w tym dielektryki, co czyni je bardzo wszechstronnymi w zastosowaniach automatyki. Z kolei czujniki optyczne wykorzystują promieniowanie świetlne do detekcji obecności obiektów, co jest przydatne w wielu aplikacjach, takich jak zliczanie obiektów w linii produkcyjnej czy monitorowanie przepływu materiałów. Czujniki indukcyjne, bazujące na zmianach pola elektromagnetycznego, są idealne do wykrywania metalowych obiektów bez kontaktu, co jest niezwykle istotne w przemyśle, gdzie czystość i nienaruszalność komponentów są kluczowe. Wybór niewłaściwego czujnika, takiego jak rezystancyjny, może prowadzić do istotnych ograniczeń w aplikacjach, gdzie wymagana jest detekcja obiektów w ruchu lub w trudnych warunkach, co podkreśla znaczenie znajomości zasad działania różnych technologii czujnikowych. Dlatego ważne jest, aby zrozumieć różnice między tymi rodzajami czujników oraz ich właściwe zastosowania, aby zminimalizować ryzyko nieefektywności w projektach inżynieryjnych.

Pytanie 19

W sytuacji krwawienia zewnętrznego dłoni pracownika po upadku z wysokości (pracownik jest przytomny, oddycha, tętno jest wyczuwalne, wezwano pogotowie), należy

A. nałożyć opatrunek, a po chwili zmienić go sprawdzając, czy krwawienie ustąpiło
B. zatamować krew stosując opaskę poniżej rany i zabezpieczyć ranę bandażem
C. zatamować krew używając opaski powyżej rany i owinąć ranę bandażem
D. przygotować jałowy opatrunek i mocno nacisnąć go na ranę
Zastosowanie opaski powyżej rany lub poniżej rany w kontekście krwotoku zewnętrznego jest nieprawidłowe z kilku powodów. Głównym celem opatrunku w przypadku krwawienia jest bezpośrednie uciskanie rany, co pozwala na fizyczne zatrzymanie krwi. Zakładanie opaski powyżej rany, czyli na zdrową tkankę, może nie tylko nie pomóc w zatrzymaniu krwawienia, ale także spowodować uszkodzenie tkanek w wyniku ucisku. Takie podejście jest zgodne z nieprawidłowymi założeniami, które skupiają się na lokalizacji opaski, zamiast na bezpośrednim działaniu na ranę. Z kolei zastosowanie opaski poniżej rany również nie przynosi pożądanych efektów, ponieważ krew nadal będzie płynąć do rany, co może prowadzić do dalszej utraty krwi. Dodatkowo, zmiana opatrunku w krótkim czasie bez odpowiedniego ucisku na ranie jest błędem, ponieważ może prowadzić do wznowienia krwawienia. W kontekście standardów pierwszej pomocy, niezwykle ważne jest, aby skupić się na ucisku na miejscu krwawienia i zastosowaniu jałowego opatrunku, co stwarza warunki do skutecznej interwencji. Praktyka pokazuje, że odpowiednie działania powinny być oparte na zrozumieniu anatomii i mechanizmów krwawienia, a także na stosowaniu sprawdzonych metod, które zwiększają szanse na zatrzymanie krwawienia i udzielenie skutecznej pomocy przedmedycznej.

Pytanie 20

Silnik zębaty przedstawiono na rysunku

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Silnik zębaty, przedstawiony na rysunku D, jest kluczowym elementem stosowanym w wielu aplikacjach mechanicznych, gdzie wymagana jest precyzyjna kontrola napędu. Jego konstrukcja oparta na zębatych kołach pozwala na efektywne przekazywanie momentu obrotowego między różnymi komponentami. Zębate koła, które widzimy na rysunku, są fundamentalne dla działania tego typu silników, ponieważ umożliwiają synchronizację ruchu oraz redukcję luzów, co jest szczególnie istotne w aplikacjach wymagających wysokiej dokładności. W praktyce, silniki zębate znajdują zastosowanie w robotyce, automatyce przemysłowej oraz w pojazdach, gdzie ich zdolność do przenoszenia obciążeń w połączeniu z kompaktową budową sprawia, że są one niezastąpione. Dodatkowo, zgodnie z normami branżowymi, silniki zębate powinny być projektowane z uwzględnieniem parametrów takich jak trwałość, efektywność energetyczna oraz minimalizacja hałasu, co wpływa na ich wydajność i długowieczność.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Na podstawie tabeli określ, które czynności konserwacyjne powinny być wykonywane tylko raz w roku.

CzynnośćCykle
ŁożyskaKontrolowanie temperaturyCo godzinę
SmarowanieDwa razy w roku
CzyszczenieRaz w roku
Kontrola stanu
DławnicaKontrolowanie temperaturyCo godzinę
Kontrolowanie swobody ruchuDwa razy w roku
Smarowanie śrub i nakrętek
WyciekiKontrolaCo godzinę
CiśnieniomierzOdczyt stanuCo godzinę
KalibracjaRaz w roku
PrzepływomierzOdczyt stanuCo godzinę
KalibracjaRaz w roku
A. Kontrola ciśnienia i natężenia przepływu.
B. Kalibracja przyrządów pomiarowych.
C. Smarowanie łożysk.
D. Kontrola temperatury dławnicy i łożysk.
Kalibracja przyrządów pomiarowych, takich jak ciśnieniomierze czy przepływomierze, jest kluczowym elementem zapewnienia dokładności pomiarów w różnych procesach przemysłowych. Czynność ta powinna być przeprowadzana raz w roku, aby upewnić się, że urządzenia działają zgodnie z określonymi normami. W przypadku instrumentów pomiarowych, nieprawidłowe wskazania mogą prowadzić do poważnych konsekwencji, takich jak błędne monitorowanie ciśnienia lub przepływu, co z kolei może wpływać na efektywność produkcji lub bezpieczeństwo operacji. Przy kalibracji często stosuje się wzorce odniesienia, które spełniają międzynarodowe standardy, aby zapewnić, że wyniki są wiarygodne. Przykładowo, w przemyśle chemicznym, regularna kalibracja przyrządów pomiarowych jest wymagana przez standardy ISO, co zapewnia zgodność z regulacjami i minimalizuje ryzyko niezgodności produkcji.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Maksymalne natężenie przepływu dla pompy hydraulicznej, której dane katalogowe zamieszczono w ramce, wynosi

Dane techniczne pompy hydraulicznej
Objętość geometryczna:60 cm3
Maksymalne natężenie przepływu Q:120 dm3/min
Natężenie przepływu przy 1000 obr./min:80 dm3/min
Maksymalna prędkość obrotowa:5000 obr/min
Maksymalne ciśnienie ciągłe:600 barów
Zakres temperatury pracy:-5 ÷ 60 °C
Lepkość oleju hydraulicznego:10 ÷ 400 cSt
A. 40 dm3/min
B. 200 dm3/min
C. 80 dm3/min
D. 120 dm3/min
Maksymalne natężenie przepływu dla pompy hydraulicznej wynoszące 120 dm3/min jest kluczowym parametrem, który określa zdolność pompy do transportu cieczy. Wartość ta została określona na podstawie danych katalogowych, które są istotne przy doborze pompy do konkretnego zastosowania. Pompy hydrauliczne stosowane są w różnych aplikacjach, takich jak zasilanie systemów hydraulicznych w maszynach przemysłowych czy konstrukcjach budowlanych. Zrozumienie maksymalnego natężenia przepływu pozwala inżynierom i technikom na odpowiednie dimensionowanie systemów hydraulicznych, zapewniając ich efektywność oraz bezpieczeństwo operacyjne. W praktyce, wybierając pompę, należy uwzględnić również inne parametry, takie jak ciśnienie, moc oraz charakterystyka cieczy, co pozwala na osiągnięcie optymalnych wyników pracy w danej aplikacji. W branży hydraulicznej standardy, takie jak ISO 4413, podkreślają znaczenie doboru odpowiednich elementów hydraulicznych, co ma kluczowe znaczenie dla wydajności i trwałości systemów.

Pytanie 26

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. zawór dławiąco zwrotny
B. przełącznik obiegu
C. zawór szybkiego spustu
D. zawór podwójnego sygnału
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania
A. Czujnika optycznego.
B. Falownika.
C. Sterownika PLC.
D. Silnika.
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 29

Z tabeli wynika, że orientacyjna siła siłownika o średnicy tłoka 12 mm, tłoczyska 6 mm, przy ciśnieniu roboczym 4 bar uzyskiwana podczas powrotu wynosi

Orientacyjna siła uzyskana na siłowniku w zależności od zadanego ciśnienia
Średnica tłokaŚrednica tłoczyskaPowierzchnia pracy mm²Ciśnienie robocze (bar)
12345678910
siła w N
ø12ø6wysuw = 1131123344557687990102113
powrót = 858172534425159687685
ø16ø8wysuw = 20120406080100121141161181201
powrót = 151153045607590106121136151
ø20ø10wysuw = 314316394126157188220251283314
powrót = 23624477194118141165189212236
ø25ø10wysuw = 4914998147196245295344393442491
powrót = 4124182124165206247289330371412
A. 80 N
B. 34 N
C. 45 N
D. 60 N
Poprawna odpowiedź wynosi 34 N, co jest wartością uzyskaną bezpośrednio z tabeli. W przypadku siłownika o średnicy tłoka 12 mm i tłoczyska 6 mm przy ciśnieniu roboczym 4 bar, siła uzyskiwana podczas powrotu jest kluczowym parametrem do określenia wydajności oraz skuteczności systemu pneumatycznego. W praktyce, znajomość siły uzyskiwanej przez siłownik jest niezbędna przy projektowaniu urządzeń automatyki, w których siłowniki są stosowane do wykonywania pracy mechanicznej. Na przykład, w systemach transportu wewnętrznego, siłowniki pneumatyczne mogą być używane do podnoszenia i przesuwania różnych elementów, dlatego tak ważne jest, aby dobrać odpowiednie parametry do wymagań aplikacji. Wartość ta powinna być również zgodna z normami i standardami branżowymi, które definiują dopuszczalne wartości sił dla danych konstrukcji siłowników. Zrozumienie tych parametrów pozwala na efektywne projektowanie oraz optymalizację procesów w automatyce przemysłowej.

Pytanie 30

Pokazany na rysunku sposób montowania podzespołów elektronicznych, na płytce obwodu drukowanego, to

Ilustracja do pytania
A. spawanie.
B. zgrzewanie.
C. klejenie.
D. lutowanie.
Lutowanie jest standardową metodą łączenia podzespołów elektronicznych na płytkach obwodów drukowanych (PCB). Proces ten polega na użyciu stopu lutowniczego, który po podgrzaniu w płynnej formie wypełnia szczeliny między elementami a płytką, a następnie po schłodzeniu tworzy trwałe połączenie. Zaletą lutowania jest jego zdolność do zapewnienia nie tylko solidnego połączenia elektrycznego, ale również wytrzymałości mechanicznej, co jest kluczowe w zastosowaniach elektronicznych. W praktyce lutowanie stosowane jest w produkcji urządzeń elektronicznych, takich jak komputery, telewizory czy telefony. Istnieją różne techniki lutowania, w tym lutowanie ręczne, lutowanie na fali czy lutowanie w piecu, które są dostosowane do różnych potrzeb produkcyjnych i typów urządzeń. Warto zaznaczyć, że lutowanie powinno być przeprowadzane zgodnie z normami IPC (Institute for Printed Circuits), które określają wymagania dotyczące jakości i niezawodności połączeń lutowanych.

Pytanie 31

Połączenia nitowe metalowej obudowy urządzenia należy wykonać przy użyciu narzędzia przedstawionego na rysunku

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Nitownica ręczna, oznaczona literą B, jest kluczowym narzędziem w procesie wykonywania połączeń nitowych w metalowych obudowach urządzeń. Jej konstrukcja pozwala na precyzyjne i efektywne wprowadzenie nitów w miejsca wymagające solidnego połączenia. W praktyce nitownice ręczne znajdują zastosowanie w wielu branżach, takich jak motoryzacja, budownictwo oraz produkcja mebli metalowych. Dobrze wykonane połączenie nitowe gwarantuje trwałość oraz odporność na działanie różnych czynników mechanicznych i chemicznych. Przy prawidłowym użyciu, nitownica pozwala na uzyskanie połączeń o wysokiej wytrzymałości, co jest zgodne z normami jakościowymi, takimi jak ISO 9001. Warto także pamiętać, że nitownice ręczne są dostępne w różnych rozmiarach, co umożliwia ich użycie w różnych aplikacjach, w zależności od grubości materiału i wymagań dotyczących obciążenia.

Pytanie 32

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. zegarów czasowych
B. rejestrów licznikowych
C. filtrów komparatorowych
D. przerzutników
Przerzutniki są podstawowymi elementami w systemach automatyki, które umożliwiają przechowywanie i przetwarzanie sygnałów impulsowych na sygnały długotrwałe. Działają poprzez zmianę swojego stanu na podstawie sygnałów wejściowych, co pozwala na samopodtrzymanie stanu wyjściowego. Na przykład, w aplikacjach przemysłowych, przerzutniki D mogą być używane do włączania silników na określony czas po otrzymaniu impulsu startowego, co jest szczególnie przydatne w systemach transportowych czy w procesach produkcyjnych. W kontekście standardów branżowych, przerzutniki często występują w projektach zgodnych z normami IEC 61131-3, które definiują programowanie PLC, co zapewnia ich szeroką zastosowalność i kompatybilność. Warto również zauważyć, że przerzutniki są kluczowymi elementami w tworzeniu bardziej złożonych systemów automatyki, takich jak sekwencjonery czy sygnalizatory. Zapewniają one stabilność działania systemu oraz pozwalają na elastyczne zarządzanie procesami, co czyni je niezastąpionymi w nowoczesnej automatyce przemysłowej.

Pytanie 33

Element przedstawiony na rysunku uzyskano w wyniku

Ilustracja do pytania
A. toczenia.
B. walcowania.
C. frezowania.
D. tłoczenia.
Odpowiedź "tłoczenia" jest jak najbardziej trafna. To, co widzimy na rysunku, naprawdę pasuje do obróbki plastycznej zwanej tłoczeniem. W dużym skrócie, chodzi o to, że materiał formuje się pod wpływem siły, co pozwala na wyprodukowanie różnych kształtów i detali, jak wgłębienia czy wypukłości, które są widoczne na tym obrazku. Tłoczenie to super metoda, którą często wykorzystuje się w przemyśle, na przykład w motoryzacji, elektronice czy przy produkcji części do konstrukcji. Te branże potrzebują bardzo precyzyjnych i powtarzalnych efektów, więc tłoczenie się świetnie sprawdza. No i warto wspomnieć, że można je stosować zarówno na zimno, jak i na gorąco, co daje jeszcze większe możliwości, jeśli chodzi o różne materiały, jak stal, aluminium czy różne tworzywa sztuczne.

Pytanie 34

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. termometru
B. pirometru
C. tachometru
D. tensometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Ile urządzeń sieciowych można maksymalnie podłączyć do sterownika, wykorzystując jeden dodatkowy moduł CSM 1277 o parametrach podanych w tabeli?

WłaściwościCSM 1277 switch
Typ interfejsuEthernet / Profinet
Ilość interfejsów4 x RJ45
Szybkość transmisji danych10/100 Mbit/s
Typ switchaniezarządzalny
Zasilanie24 V DC
Max. długość kabla bez wzmacniacza100 m
Straty mocy1,6 W
Stopień ochronyIP 20
A. 1 urządzenie.
B. 4 urządzenia.
C. 2 urządzenia.
D. 3 urządzenia.
Wybór niewłaściwej odpowiedzi może wynikać z błędnego zrozumienia liczby dostępnych interfejsów w module CSM 1277. Istnieje mylne przekonanie, że wszystkie 4 interfejsy są dostępne do podłączenia urządzeń, co prowadzi do wniosków, że można podłączyć np. 4 lub 2 urządzenia. To podejście ignoruje kluczowy fakt, że jeden interfejs jest zarezerwowany dla połączenia z sterownikiem. Zatem, w przypadku wyboru odpowiedzi wskazującej na większą liczbę urządzeń, np. 4, użytkownik pomija fundamentalną zasadę dotycząca alokacji zasobów w sieciach. Warto również zauważyć, że niektóre odpowiedzi, takie jak 1 urządzenie, wskazują na zbyt restrykcyjne podejście do zasobów dostępnych w module. Dobrą praktyką jest zawsze mieć na uwadze, ile interfejsów jest faktycznie dostępnych po uwzględnieniu połączeń z innymi urządzeniami. Na przykład w sytuacjach, gdzie zasoby sieciowe są ograniczone, projektanci muszą podejmować decyzje oparte na rzeczywistej dostępności portów, aby uniknąć problemów z komunikacją oraz przeładowaniem sieci. W związku z tym, kluczowe jest nie tylko zapoznanie się z parametrami technicznymi, ale także zrozumienie zasad działania sieci i ich struktury. Tylko w ten sposób można skutecznie projektować i wdrażać systemy, które będą funkcjonowały zgodnie z oczekiwaniami i wymaganiami branżowymi.

Pytanie 37

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wysuniętym tłoczysku siłownika i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 1 i I3 = 0
B. I2 = 0 i I3 = 1
C. I2 = 0 i I3 = 0
D. I2 = 1 i I3 = 1
W Twojej odpowiedzi wskazałeś, że I2 = 0 i I3 = 1, co jest poprawne. W kontekście działania czujników w układzie, kiedy tłoczek siłownika jest wysunięty, czujnik B2 jest aktywowany, co przekłada się na stan logiczny I3 równy 1. Z kolei czujnik B1 pozostaje nieaktywny, ponieważ jego aktywacja zachodzi tylko w przypadku, gdy tłoczek jest w pozycji cofniętej, co powoduje, że I2 = 0. Takie działanie układu jest zgodne z podstawowymi zasadami automatyki i sterowania, gdzie odpowiednie aktywowanie czujników ma kluczowe znaczenie dla poprawnej funkcji systemów. W praktyce, zrozumienie stanów logicznych w kontekście czujników jest istotne w projektowaniu i diagnostyce układów automatyki przemysłowej, ponieważ pozwala na efektywne monitorowanie i kontrolę procesów. Umiejętność interpretacji stanów logicznych jest również niezbędna w kontekście bezpieczeństwa operacyjnego i zapewnienia zgodności z procedurami eksploatacyjnymi.

Pytanie 38

Element oznaczony cyfrą 1

Ilustracja do pytania
A. ogranicza wartość natężenia prądu w układzie.
B. likwiduje zjawisko stroboskopowe.
C. poprawia współczynnik mocy świetlówki.
D. skraca czas zapłonu świetlówki.
Wybór odpowiedzi, która sugeruje, że element oznaczony cyfrą 1 poprawia współczynnik mocy świetlówki, jest mylny, ponieważ funkcja rezystora nie ma bezpośredniego związku z poprawą współczynnika mocy. Współczynnik mocy odnosi się do efektywności wykorzystania energii elektrycznej przez urządzenie, a jego poprawa zazwyczaj wymaga zastosowania innych komponentów, takich jak kondensatory, które kompensują bierne obciążenie. Kolejne nieporozumienie wynika z twierdzenia, że rezystor likwiduje zjawisko stroboskopowe. Zjawisko to związane jest z nieliniowością w odpowiedzi świetlówek na zmiany napięcia, a nie z natężeniem prądu, które jest ograniczane przez rezystory. Użycie rezystora w obwodzie nie wpływa na eliminację efektów stroboskopowych, które mogą być spowodowane przez falowanie napięcia zasilającego. Ponadto, błędne jest stwierdzenie, że rezystor skraca czas zapłonu świetlówki. Czas zapłonu świetlówki zależy od konstrukcji samego źródła światła oraz warunków zasilania, a nie od oporu w obwodzie. Takie rozumienie funkcji rezystorów może prowadzić do nieefektywnych rozwiązań i błędów w projektowaniu układów, co podkreśla znaczenie dokładnego zrozumienia ich roli w systemach elektrycznych.

Pytanie 39

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z litego materiału magnetycznego anizotropowego
B. z pakietu blach elektrotechnicznych nie izolowanych od siebie
C. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie
D. z litego materiału magnetycznego izotropowego
Rdzeń wirnika silnika indukcyjnego wykonany jest z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie, co jest powszechną praktyką w projektowaniu maszyn elektrycznych. Taki zabieg ma na celu minimalizację strat energetycznych, które występują w wyniku prądów wirowych. Wysokiej jakości blachy elektrotechniczne, produkowane zgodnie z normami, takimi jak EN 10106, charakteryzują się niską stratnością magnetyczną oraz wysoką przewodnością magnetyczną. Dzięki ich zastosowaniu, rdzeń wirnika jest bardziej efektywny w generowaniu pola magnetycznego, co przekłada się na lepsze parametry pracy silnika, mniejsze straty ciepła oraz wyższą efektywność energetyczną. Przykładem zastosowania tej technologii są silniki asynchroniczne, które są powszechnie wykorzystywane w przemyśle, automatyce oraz napędach elektrycznych. Prawidłowe wykonanie rdzenia wirnika z blach elektrotechnicznych ma kluczowe znaczenie dla żywotności i niezawodności silnika.

Pytanie 40

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. szczotek
B. łożysk
C. komutatora
D. uzwojenia
Kiedy mówimy o naprawach silnika komutatorowego, wybór odpowiednich komponentów do wymiany jest kluczowy dla przywrócenia jego sprawności. Odpowiedzi takie jak łożyska, komutator czy szczotki, mimo że mogą być istotnymi elementami silnika, nie są odpowiednie w kontekście problemu z zwarciami międzyzwojowymi. W przypadku łożysk, ich zadaniem jest jedynie umożliwienie swobodnego obrotu wirnika, a ich uszkodzenie nie prowadzi bezpośrednio do zwarć w uzwojeniu. Z kolei komutator, który przekształca prąd stały na prąd zmienny, również nie jest bezpośrednią przyczyną takich awarii. Jeśli komutator jest uszkodzony, może to prowadzić do niewłaściwego działania silnika, ale nie jest to bezpośredni skutek przeciążenia uzwojenia. Wymiana szczotek, które są elementami stykowymi, również nie rozwiąże problemu przyczynowego, jakim są zwarcia w uzwojeniach. Te pomyłki wynikają często z braku zrozumienia roli poszczególnych elementów w silniku komutatorowym oraz ich wpływu na ogólną funkcjonalność urządzenia. Aby skutecznie naprawić silnik, konieczne jest zrozumienie, że uzwojenie w przypadku uszkodzeń związanych z przeciążeniem wymaga szczególnej uwagi, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.