Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 grudnia 2025 16:26
  • Data zakończenia: 7 grudnia 2025 16:50

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest właściwe IP dla maski 255.255.255.0?

A. 192.168.1.1
B. 122.168.1.0
C. 192.168.1.255
D. 122.0.0.255
Adres 192.168.1.1 jest poprawny dla maski podsieci 255.255.255.0, ponieważ mieści się w zakresie adresów prywatnych zdefiniowanych przez standard RFC 1918. Maski podsieci określają, jak adres IP jest dzielony na część sieciową i część hosta. W przypadku maski 255.255.255.0, pierwsze trzy oktety (192.168.1) stanowią adres sieciowy, a ostatni oktet (1) oznacza adres konkretnego hosta w tej sieci. Oznacza to, że adres 192.168.1.0 określa sieć, a 192.168.1.255 to adres rozgłoszeniowy (broadcast) dla tej podsieci, co oznacza, że nie mogą być przypisane jako adresy hostów. W praktyce adres 192.168.1.1 jest często używany jako domyślny adres bramy w routerach domowych, co czyni go kluczowym w konfiguracji lokalnych sieci komputerowych. Znajomość tego, jak działają adresy IP i maski podsieci, jest niezbędna dla administratorów sieci, którzy muszą zarządzać lokalnymi i rozległymi sieciami przez prawidłowe przypisanie adresów IP dla różnorodnych urządzeń.

Pytanie 2

Jakie narzędzie pozwala na zarządzanie menadżerem rozruchu w systemach Windows od wersji Vista?

A. LILO
B. GRUB
C. BCDEDIT
D. AFFS
BCDEDIT to naprawdę przydatne narzędzie w Windowsie, zwłaszcza od wersji Vista. Dzięki niemu można dość łatwo ogarnąć ustawienia związane z uruchamianiem systemu – to znaczy, że można ustawić, ile czasu system ma czekać na wybór, czy zmienić parametry startowe. To jest mega ważne, gdy działa się z wieloma systemami operacyjnymi. Na przykład, jeżeli chcesz uruchomić system w trybie awaryjnym albo dodać jakieś nowe opcje do rozruchu, BCDEDIT jest złotym środkiem. Z mojego doświadczenia, regularne sprawdzanie i dopasowywanie tych ustawień to klucz do stabilności i wydajności systemu. Dobrze też, że to narzędzie trzyma się zasad Microsoftu, co sprawia, że zarządzanie rozruchem w różnych wersjach Windowsa jest spójne.

Pytanie 3

Składnikiem systemu Windows 10, który zapewnia ochronę użytkownikom przed zagrożeniami ze strony złośliwego oprogramowania, jest program

A. Windows Defender
B. Windows PowerShell
C. Microsoft Security Essentials
D. Microsoft Hyper-V
Windows Defender to taki wbudowany program antywirusowy w Windows 10. Jego główną rolą jest ochrona w czasie rzeczywistym, co oznacza, że ciągle sprawdza system i pliki, żeby wykrywać jakieś zagrożenia jak wirusy czy trojany. Używa fajnych technologii, takich jak analiza heurystyczna i chmura, żeby szybko rozpoznać nowe zagrożenia. Na przykład, Windows Defender automatycznie skanuje system, gdy uruchamiamy komputer, a także regularnie aktualizuje definicje wirusów, co zapewnia stałą ochronę. Można też dostosować ustawienia skanowania, żeby przeprowadzać pełne skanowania wybranych folderów czy dysków. To całkiem w porządku, bo pomaga w bezpieczeństwie, a takie aktywne rozwiązania to najlepsza obrona przed zagrożeniami. Dodatkowo, Windows Defender współpracuje z innymi funkcjami w systemie, jak kontrola aplikacji czy zapora sieciowa, tworząc spójną ochronę.

Pytanie 4

Zaprezentowane narzędzie jest wykorzystywane do

Ilustracja do pytania
A. zaciskania wtyków RJ11 oraz RJ45
B. lokalizacji uszkodzeń włókien światłowodowych
C. zdejmowania izolacji okablowania
D. spawania przewodów światłowodowych
Narzędzie przedstawione na zdjęciu to lokalizator uszkodzeń włókien światłowodowych. Jest to urządzenie, które emituje widoczne światło laserowe poprzez włókna światłowodowe w celu identyfikacji miejsc uszkodzeń lub pęknięć. W praktyce, gdy światłowód jest uszkodzony światło laserowe wycieka przez uszkodzenie co ułatwia technikom zlokalizowanie problemu. Lokalizatory uszkodzeń są nieocenionym narzędziem w szybkim diagnozowaniu i naprawie sieci optycznych minimalizując czas przestoju. Są zgodne z dobrymi praktykami branżowymi w zakresie utrzymania infrastruktury telekomunikacyjnej. Często stosuje się je podczas instalacji konserwacji oraz testów sieci optycznych. Zastosowanie tego typu urządzenia pozwala na szybkie i efektywne wykrycie źródła problemu co jest istotne w środowisku, w którym niezawodność i szybkość działania są kluczowe. Praca z lokalizatorem wymaga jednak ostrożności ze względu na intensywność światła laserowego która może być szkodliwa dla oczu dlatego zaleca się przestrzeganie zasad bezpieczeństwa.

Pytanie 5

Instalacja serwera stron www w rodzinie systemów Windows Server jest możliwa dzięki roli

A. usług pulpitu zdalnego
B. usług plików
C. serwera sieci Web
D. serwera aplikacji
Serwer sieci Web w systemie Windows Server to rola, która umożliwia hostowanie aplikacji internetowych oraz stron WWW. W praktyce oznacza to, że administrator może zainstalować i skonfigurować serwer IIS (Internet Information Services), co jest standardem dla hostingu stron w środowiskach Windows. IIS jest nie tylko łatwy w użyciu, ale również oferuje wiele zaawansowanych funkcji, takich jak zarządzanie certyfikatami SSL, obsługa ASP.NET, czy integracja z bazami danych. Warto zaznaczyć, że standardowa konfiguracja serwera sieci Web pozwala na efektywne zarządzanie ruchem, monitorowanie wydajności oraz zabezpieczanie zasobów. Dzięki prawidłowej konfiguracji, przedsiębiorstwa mogą świadczyć usługi online, co wpisuje się w aktualne trendy digitalizacji i transformacji cyfrowej. Dodatkowo, administratorzy mogą korzystać z narzędzi takich jak Web Deploy do automatyzacji wdrożeń, co znacznie usprawnia proces aktualizacji aplikacji na serwerze.

Pytanie 6

Aby stworzyć archiwum danych w systemie operacyjnym Ubuntu, należy użyć programu

A. awk
B. tar
C. set
D. sed
Program tar, będący skrótem od "tape archive", jest standardowym narzędziem w systemach Unix i Linux, w tym Ubuntu, do tworzenia oraz zarządzania archiwami danych. Jego główną funkcją jest łączenie wielu plików i katalogów w jeden plik archiwum, co upraszcza przechowywanie i transport danych. Tar umożliwia również kompresję danych za pomocą różnych algorytmów, takich jak gzip czy bzip2, co nie tylko zmniejsza rozmiar archiwum, ale także przyspiesza transfer plików. Osoby pracujące z systemami operacyjnymi opartymi na Unixie często wykorzystują tar do tworzenia kopii zapasowych oraz przenoszenia systemów i aplikacji. Przykładowe polecenie do utworzenia archiwum to: tar -cvf nazwa_archiwum.tar /ścieżka/do/katalogu, gdzie -c oznacza tworzenie archiwum, -v wyświetla postęp operacji, a -f wskazuje nazwę pliku archiwum. Dobre praktyki sugerują tworzenie archiwów w regularnych odstępach czasu oraz ich przechowywanie w bezpiecznych lokalizacjach, aby zabezpieczyć ważne dane.

Pytanie 7

Przy zmianach w rejestrze Windows w celu zapewnienia bezpieczeństwa należy najpierw

A. sprawdzić obecność błędów na dysku
B. zweryfikować, czy na komputerze nie ma wirusów
C. wyeksportować klucze rejestru do pliku
D. utworzyć kopię zapasową ważnych plików
Podejmowanie działań związanych z bezpieczeństwem systemu Windows wymaga zrozumienia, jakie kroki są rzeczywiście kluczowe przed wprowadzeniem jakichkolwiek modyfikacji w rejestrze. Wykonanie kopii zapasowej ważnych dokumentów, choć istotne, nie odnosi się bezpośrednio do bezpieczeństwa operacji w rejestrze. Dokumenty mogą być utracone w wyniku awarii systemu, ale nie mają związku z samymi zmianami w rejestrze. Sprawdzanie błędów na dysku oraz skanowanie komputera w poszukiwaniu wirusów, choć może być częścią rutynowego utrzymania systemu, nie są bezpośrednio związane z modyfikacją rejestru. Problemy z dyskiem twardym mogą wprawdzie wpłynąć na działanie systemu, ale nie ma to związku z zapobieganiem konsekwencjom błędnych modyfikacji rejestru. Typowym błędem myślowym w tym kontekście jest zakładanie, że zabezpieczenie dokumentów czy zdrowia dysku wystarczy do ochrony przed potencjalnymi błędami w rejestrze. W praktyce, kompleksowa strategia zabezpieczeń powinna obejmować zarówno ochronę danych użytkowników, jak i zapewnienie integralności samego systemu operacyjnego, co czyni eksport kluczy rejestru niezbędnym krokiem w kontekście każdej poważnej modyfikacji systemu.

Pytanie 8

```echo off```\necho ola.txt >> ala.txt\npause\nJakie będzie skutki wykonania podanego skryptu?

A. zostanie dopisany tekst ola.txt do pliku ala.txt
B. zawartość pliku ala.txt zostanie przeniesiona do pliku ola.txt
C. zostanie dodany tekst ala.txt do pliku ola.txt
D. zawartość pliku ola.txt zostanie przeniesiona do pliku ala.txt
Niepoprawne odpowiedzi sugerują błędne zrozumienie działania polecenia "echo" oraz operatorów do zapisu w plikach. Przykładowo, pierwsza z niepoprawnych odpowiedzi twierdzi, że zawartość pliku "ola.txt" zostanie skopiowana do "ala.txt", co sugeruje, że program wykonuje operację kopiowania. W rzeczywistości, polecenie "echo" nie kopiuje zawartości pliku, lecz po prostu zapisuje wskazany tekst w pliku docelowym. Kolejna odpowiedź błędnie stwierdza, że zawartość "ala.txt" zostanie skopiowana do "ola.txt", co jest niemożliwe, ponieważ skrypt nie wykonuje żadnej operacji na "ola.txt", poza tym że wypisuje do innego pliku. Ostatnia fałszywa koncepcja, która mówi o wpisywaniu tekstu "ala.txt" do "ola.txt", całkowicie myli kierunki operacji zapisu, ponieważ żadne z wykonanych poleceń nie sugeruje, aby tekst z jednego pliku był przenoszony do drugiego. Istnieje wiele typowych błędów myślowych, które mogą prowadzić do takich niepoprawnych odpowiedzi, w tym brak zrozumienia różnicy między operacjami zapisu a kopiowania oraz nieprawidłowe wyobrażenie o funkcjonowaniu polecenia "echo". Aby zrozumieć ten temat, warto zgłębić dokumentację systemu operacyjnego oraz sposób, w jaki różne polecenia manipulują danymi w plikach.

Pytanie 9

W dokumentacji systemu operacyjnego Windows XP opisano pliki o rozszerzeniu .dll. Czym jest ten plik?

A. uruchamialnego
B. inicjalizacyjnego
C. dziennika zdarzeń
D. biblioteki
Wybór odpowiedzi związanych z dziennikiem zdarzeń, plikami inicjalizacyjnymi czy uruchamialnymi wskazuje na pewne nieporozumienia dotyczące funkcji i charakterystyki plików w systemie Windows. Dzienniki zdarzeń są odpowiedzialne za rejestrowanie działań systemowych i nie mają związku z dynamicznymi bibliotekami, które są z natury współdzielonymi zasobami programowymi. Pliki inicjalizacyjne, takie jak .ini, pełnią rolę konfiguracji aplikacji, a nie zawierają kodu wykonywalnego, co jest fundamentalną cechą bibliotek .dll. Z kolei pliki uruchamialne, takie jak .exe, są bezpośrednio wykonywane przez system operacyjny, w przeciwieństwie do .dll, które muszą być załadowane przez inne aplikacje. Istotnym błędem jest łączenie tych terminów, ponieważ każdy z nich odnosi się do innych ról i funkcji w ekosystemie systemu operacyjnego. Aby prawidłowo zrozumieć te zagadnienia, warto zgłębić funkcje różnych typów plików oraz ich interakcje w kontekście architektury systemu, co wykazuje znaczenie plików .dll jako centralnych elementów elastyczności i efektywności działania aplikacji w środowisku Windows.

Pytanie 10

Okablowanie wertykalne w sieci strukturalnej łączy

A. główny punkt dystrybucji z pośrednimi punktami dystrybucji
B. dwa gniazda abonentów
C. główny punkt dystrybucji z gniazdem abonenta
D. pośredni punkt dystrybucji z gniazdem abonenta
Wybór opcji, która łączy dwa gniazda abonenckie, jest nieprawidłowy, ponieważ nie uwzględnia istoty okablowania pionowego, które ma na celu połączenie różnych segmentów sieci w bardziej złożoną strukturę. Okablowanie pionowe nie jest jedynie łączeniem gniazd, lecz tworzy ramy dla całej architektury sieci, umożliwiając przesyłanie danych między głównymi i pośrednimi punktami rozdzielczymi. Wybór opcji łączącej główny punkt rozdzielczy z gniazdem abonenckim pomija kluczowe elementy struktury sieci, które są niezbędne do efektywnego zarządzania i organizacji infrastruktury. Ta odpowiedź nie uwzględnia również faktu, że gniazda abonenckie są zazwyczaj końcowymi punktami, a ich bezpośrednie połączenie z głównymi punktami rozdzielczymi nie zapewnia odpowiedniego zarządzania siecią ani nie wsparcia dla ewentualnych rozbudów. Z kolei łączenie głównego punktu rozdzielczego z pośrednimi punktami umożliwia skalowanie i integrację różnych technologii, co jest zgodne z dobrymi praktykami branżowymi. Ignorowanie tego aspektu prowadzi do konstrukcji sieci, która nie jest elastyczna ani dostosowana do potrzeb użytkowników. Dlatego ważne jest, aby dobrze zrozumieć hierarchię i strukturę okablowania, aby stworzyć wydajną i przyszłościową sieć.

Pytanie 11

Jakie medium transmisyjne używają myszki Bluetooth do interakcji z komputerem?

A. Promieniowanie ultrafioletowe
B. Fale radiowe w paśmie 2,4 GHz
C. Promieniowanie podczerwone
D. Fale radiowe w paśmie 800/900 MHz
Myszki Bluetooth wykorzystują fale radiowe w paśmie 2,4 GHz do komunikacji z komputerem. To pasmo jest szeroko stosowane w technologii Bluetooth, która została zaprojektowana z myślą o krótkozasięgowej łączności bezprzewodowej. Warto zauważyć, że technologia Bluetooth operuje w tak zwanym zakresie ISM (Industrial, Scientific and Medical), co oznacza, że jest przeznaczona do użytku ogólnego i nie wymaga specjalnych pozwoleń na użytkowanie. Dzięki działaniu w paśmie 2,4 GHz, myszki Bluetooth są w stanie zapewnić stabilne połączenie z komputerem na odległość do około 10 metrów, co czyni je idealnym rozwiązaniem dla osób korzystających z laptopów lub komputerów stacjonarnych w różnych warunkach. W praktyce, umożliwia to użytkownikom wygodne korzystanie z urządzeń bezprzewodowych, eliminując problem splątanych kabli i zapewniając większą mobilność. Ponadto, wiele nowoczesnych urządzeń, takich jak smartfony, tablety i głośniki, również wykorzystuje technologię Bluetooth, co pozwala na łatwe parowanie i współdzielenie danych bez potrzeby skomplikowanej konfiguracji, co jest zgodne z dobrymi praktykami w zakresie ergonomii i funkcjonalności w projektowaniu urządzeń elektronicznych.

Pytanie 12

Switch sieciowy w standardzie Fast Ethernet pozwala na przesył danych z maksymalną prędkością

A. 100 MB/s
B. 10 MB/s
C. 10 Mbps
D. 100 Mbps
No to tak, odpowiedź '100 Mbps' jest jak najbardziej na miejscu. Fast Ethernet, czyli ten standard sieciowy, pozwala na przesył danych z prędkością do 100 megabitów na sekundę. Wprowadzono go jako następcę 10Base-T i jest częścią tej całej rodziny Ethernet 802.3. W praktyce, to rozwiązanie jest mega popularne w sieciach lokalnych, bo naprawdę poprawia wydajność w porównaniu do starszych standardów. Przykładowo, w biurach, gdzie podłącza się różne urządzenia jak komputery czy drukarki, Fast Ethernet sprawia, że wszystko działa sprawnie i szybko. Co ważne, migracja do 100 Mbps nie wymagała dużych wydatków na nowy sprzęt, bo może się dobrze zgrywało ze starą infrastrukturą 10 Mbps. Ostatecznie, Fast Ethernet to był fundament dla innych technologii, jak Gigabit Ethernet, które zaś wprowadziły jeszcze szybsze prędkości, ale zasada działania pozostała podobna.

Pytanie 13

Jakie urządzenie elektroniczne ma zdolność do magazynowania ładunku elektrycznego?

A. rezystor
B. tranzystor
C. kondensator
D. dioda
Kondensator jest elementem elektronicznym, który zdolny jest do gromadzenia ładunku elektrycznego. Działa na zasadzie gromadzenia ładunków na dwóch przewodzących okładkach, które są oddzielone dielektrykiem. W momencie podłączenia kondensatora do źródła zasilania, jeden z okładek gromadzi ładunek dodatni, a drugi ładunek ujemny, co wytwarza pole elektryczne. Zastosowanie kondensatorów jest szerokie; znajdują one zastosowanie w filtrach sygnału, zasilaczach, układach czasowych oraz w elektronice analogowej i cyfrowej. W kontekście standardów, kondensatory są kluczowe w układach zgodnych z normą IEC, a ich parametry, jak pojemność czy napięcie pracy, muszą być zgodne z wymaganiami aplikacji. Ich umiejętne użycie przyczynia się do poprawy efektywności działania obwodów elektronicznych oraz stabilności sygnału.

Pytanie 14

Aby podłączyć drukarkę z interfejsem równoległym do komputera, który ma jedynie porty USB, należy użyć adaptera

A. USB na LPT
B. USB na RS-232
C. USB na COM
D. USB na PS/2
Adapter USB na LPT jest właściwym rozwiązaniem w przypadku podłączania urządzenia z portem równoległym (LPT) do komputera wyposażonego jedynie w porty USB. Ethernet w standardzie LPT (Line Printer Terminal) to złącze stosowane do komunikacji z drukarkami i innymi urządzeniami peryferyjnymi, które wymagają większej przepustowości niż tradycyjne złącza szeregowe. Adaptery USB na LPT konwertują sygnały USB na sygnały równoległe, co umożliwia integrację starszych urządzeń z nowoczesnymi komputerami. W praktyce, po podłączeniu adaptera, system operacyjny zazwyczaj automatycznie wykrywa drukarkę i instaluje odpowiednie sterowniki, co czyni proces prostym i intuicyjnym. Warto również zauważyć, że zgodność z normami USB i LPT zapewnia stabilność połączenia oraz minimalizuje ryzyko utraty danych, co jest istotne w kontekście wydajności zadań drukarskich. W związku z tym, jeśli korzystasz z drukarki starszego typu z portem LPT, wybór adaptera USB na LPT jest najlepszym rozwiązaniem, aby zapewnić prawidłowe działanie urządzenia przy zachowaniu wszystkich standardów branżowych.

Pytanie 15

Błąd typu STOP w systemie Windows (Blue Screen), który występuje w momencie, gdy system odwołuje się do niepoprawnych danych w pamięci RAM, to

A. PAGE_FAULT_IN_NONPAGE_AREA
B. UNMONTABLE_BOOT_VOLUME
C. UNEXPECTED_KERNEL_MODE_TRAP
D. NTFS_FILE_SYSTEM
Odpowiedź 'PAGE_FAULT_IN_NONPAGE_AREA' jest poprawna, ponieważ odnosi się do sytuacji, w której system operacyjny Windows napotyka problem podczas próby odwołania się do danych, które powinny znajdować się w pamięci operacyjnej, ale ich tam nie ma. Błąd ten jest często spowodowany uszkodzeniem pamięci RAM lub problemami z systemem plików. Niekiedy może to być wynikiem wadliwych sterowników lub niekompatybilnych aplikacji. W praktyce, aby zdiagnozować tego typu problem, administratorzy systemów mogą używać narzędzi diagnostycznych, takich jak Windows Memory Diagnostic, aby sprawdzić pamięć RAM, oraz CHKDSK do analizy i naprawy problemów z systemem plików. Zarządzanie pamięcią i zapewnienie integralności danych w systemie operacyjnym są kluczowymi aspektami wydajności i stabilności systemu, co podkreśla znaczenie monitorowania i konserwacji sprzętu oraz oprogramowania. Dbanie o regularne aktualizacje sterowników i systemu operacyjnego zgodnie z najlepszymi praktykami branżowymi może znacząco zredukować występowanie takich błędów.

Pytanie 16

W systemie Linux plik messages zawiera

A. informacje dotyczące uwierzytelnienia
B. ogólne informacje o zdarzeniach systemowych
C. kody błędów systemowych
D. komunikaty odnoszące się do uruchamiania systemu
Wiele osób może mylić zawartość pliku messages z innymi rodzajami logów systemowych, co prowadzi do nieporozumień. Na przykład, kody błędów systemowych, które są zapisywane w innych lokalizacjach, zazwyczaj dotyczą konkretnych aplikacji lub zadań, a nie ogólnych zdarzeń systemowych. Z kolei dane dotyczące uwierzytelnienia, takie jak logi z procesu logowania, są gromadzone w plikach takich jak `/var/log/auth.log` lub `/var/log/secure`, w zależności od dystrybucji systemu. Komunikaty związane z inicjacją systemu są również rejestrowane w odrębnych plikach, takich jak `boot.log`, co czyni je nieodpowiednimi do klasyfikacji jako „ogólne informacje o zdarzeniach systemowych”. Typowym błędem jest także założenie, że wszystkie ważne informacje mogą być scentralizowane w jednym miejscu, co w praktyce rzadko się zdarza, z uwagi na różnorodność usług oraz różne etapy cyklu życia systemu operacyjnego, które generują swoje własne logi. Właściwe zrozumienie struktury logowania w systemie Linux oraz rozróżnianie między różnymi typami logów jest kluczowe dla skutecznego zarządzania systemem i jego bezpieczeństwem, a także dla szybkiego diagnozowania problemów. Użytkownicy powinni być świadomi, że każdy rodzaj logu pełni specyficzną funkcję i nie można ich mylić ani traktować wymiennie.

Pytanie 17

Norma EN 50167 odnosi się do rodzaju okablowania

A. szkieletowego
B. pionowego
C. poziomego
D. kampusowego
Odpowiedzi odnoszące się do okablowania pionowego, szkieletowego oraz kampusowego są błędne, ponieważ nie dotyczą bezpośrednio normy EN 50167, która koncentruje się na okablowaniu poziomym. Okablowanie pionowe, w przeciwieństwie do poziomego, jest zaprojektowane dla łączenia różnych stref w budynku, na przykład pomiędzy różnymi piętrami. To typowe dla budynków wielopiętrowych, gdzie przesył sygnału odbywa się poprzez pionowe kanały. Z kolei okablowanie szkieletowe odnosi się do szerokiej infrastruktury sieciowej, która może łączyć różne budynki w kampusie lub dużych obiektach, a także obejmuje sieci WAN. W kontekście kampusowym, okablowanie jest bardziej złożone i wymaga innych podejść do zarządzania, co nie jest tematem normy EN 50167. Często błędne zrozumienie tej normy wynika z mylenia różnych typów okablowania oraz ich zastosowania w specyficznych środowiskach. Dla profesjonalistów istotne jest, aby dokładnie rozumieć, jakie normy odnoszą się do poszczególnych elementów infrastruktury sieciowej i jak te normy wpływają na jakość oraz wydajność instalacji.

Pytanie 18

Jakie kanały są najodpowiedniejsze dla trzech sieci WLAN 2,4 GHz, aby zminimalizować ich wzajemne interferencje?

A. 1, 6, 11
B. 1, 3, 12
C. 3, 6, 12
D. 2, 5, 7
Wybór kanałów 1, 6 i 11 dla trzech sieci WLAN działających w paśmie 2,4 GHz jest zgodny z najlepszymi praktykami, ponieważ te kanały są fizycznie odseparowane od siebie. W paśmie 2,4 GHz istnieje 13 kanałów, ale tylko 3 z nich (1, 6, 11) są wystarczająco oddalone, aby zminimalizować wzajemne zakłócenia. Każdy z tych kanałów ma swoją szerokość pasma, co sprawia, że ich fale radiowe zachodzą na siebie tylko w minimalnym stopniu. Przykładowo, aby uzyskać optymalne pokrycie i jakość sygnału w środowiskach wielodostępnych, takich jak biura czy domy wielorodzinne, zaleca się unikanie sąsiadujących kanałów jak 2, 3, 4, itd., co może prowadzić do interferencji. Wykorzystanie kanałów 1, 6 i 11 jest standardem zalecanym przez IEEE 802.11 oraz wielu specjalistów w dziedzinie sieci bezprzewodowych, co czyni je praktycznym wyborem w celu zapewnienia stabilnego i niezawodnego połączenia.

Pytanie 19

Okablowanie pionowe w systemie strukturalnym łączy się

A. w głównym punkcie rozdziału z gniazdem abonenckim
B. w pośrednim punkcie rozdziału z gniazdem abonenckim
C. w głównym punkcie rozdziału z pośrednimi punktami rozdziału
D. w gnieździe abonenckim
Okablowanie pionowe w sieciach strukturalnych powinno łączyć różne punkty w sieci, ale widać, że nie do końca to rozumiesz. Połączenie w gnieździe abonenckim nie wystarczy, bo one są tylko końcowymi punktami dla użytkowników, a nie miejscem do zarządzania sygnałem. Gdy mówimy o połączeniu głównego punktu z gniazdem abonenckim, zapominasz o pośrednich punktach, które są naprawdę potrzebne do rozkładu sygnału w większych sieciach. Nie bierzesz też pod uwagę standardów, które mówią, że trzeba mieć te pośrednie punkty, co może prowadzić do problemów z wydajnością. Jak dla mnie, trzeba zrozumieć rolę głównego punktu i pośrednich punktów, żeby mieć skuteczną sieć. Projektując takie sieci, warto trzymać się standardów, żeby uniknąć kłopotów z wydajnością.

Pytanie 20

Na przedstawionym zdjęciu złącza pozwalają na

Ilustracja do pytania
A. zapewnienie zasilania dla urządzeń PATA
B. zapewnienie zasilania dla urządzeń SATA
C. zapewnienie dodatkowego zasilania dla kart graficznych
D. zapewnienie zasilania dla urządzeń ATA
Złącza przedstawione na fotografii to standardowe złącza zasilania SATA. SATA (Serial ATA) to popularny interfejs używany do podłączania dysków twardych i napędów optycznych w komputerach. Złącza zasilania SATA charakteryzują się trzema napięciami: 3,3 V 5 V i 12 V co umożliwia zasilanie różnorodnych urządzeń. Standard SATA jest używany w większości nowoczesnych komputerów ze względu na szybki transfer danych oraz łatwość instalacji i konserwacji. Zasilanie SATA zapewnia stabilną i efektywną dystrybucję energii do dysków co jest kluczowe dla ich niezawodnej pracy. Dodatkowym atutem jest kompaktowy design złącza które ułatwia zarządzanie przewodami w obudowie komputera co jest istotne dla przepływu powietrza i chłodzenia. Przy projektowaniu systemów komputerowych zaleca się zwracanie uwagi na jakość kabli zasilających aby zapewnić długowieczność i stabilność podłączonych urządzeń. Wybierając zasilacz komputerowy warto upewnić się że posiada on wystarczającą ilość złącz SATA co pozwoli na przyszłą rozbudowę systemu o dodatkowe napędy czy dyski.

Pytanie 21

Na wskazanej płycie głównej możliwe jest zainstalowanie procesora w obudowie typu

Ilustracja do pytania
A. SECC
B. PGA
C. LGA
D. SPGA
Wybierając niepoprawny typ gniazda można łatwo wpaść w pułapki niewłaściwego rozumienia architektury płyty głównej i procesora. PGA czyli Pin Grid Array to typ gniazda w którym piny znajdują się na procesorze a nie na płycie głównej jak w przypadku LGA. Procesory AMD często wykorzystują ten typ gniazda co może prowadzić do błędnych skojarzeń że każdy procesor może pasować do dowolnego gniazda. SECC czyli Single Edge Contact Cartridge to starszy typ obudowy procesora używany w procesorach Intel Pentium II i III gdzie procesor znajdował się w specjalnej kasecie co jest już rzadkością we współczesnych systemach i nie jest kompatybilne z nowoczesnymi płytami głównymi. SPGA czyli Staggered Pin Grid Array jest wariantem PGA z pinami ułożonymi w nieco inny sposób w celu zwiększenia ich liczby. Każda z tych opcji ma swoje specyficzne zastosowania i ograniczenia w zależności od producenta i modelu procesora. Zrozumienie różnic w konstrukcji gniazd procesorów jest kluczowe do prawidłowego doboru komponentów komputerowych co wpływa na ogólną wydajność stabilność i możliwości rozbudowy systemu komputerowego. Niezależnie od wyboru kluczowe jest aby zawsze dopasować procesor do odpowiedniego gniazda co zapewnia kompatybilność i optymalną pracę całego systemu komputerowego. Dlatego znajomość budowy i specyfikacji technicznych płyt głównych oraz procesorów jest niezbędna dla każdego technika IT.

Pytanie 22

Według KNR (katalogu nakładów rzeczowych) montaż 4-parowego modułu RJ45 oraz złącza krawędziowego to 0,07 r-g, natomiast montaż gniazd abonenckich natynkowych wynosi 0,30 r-g. Jak wysoki będzie koszt robocizny za zamontowanie 10 pojedynczych gniazd natynkowych z modułami RJ45, jeśli wynagrodzenie godzinowe montera-instalatora wynosi 20,00 zł?

A. 120,00 zł
B. 74,00 zł
C. 60,00 zł
D. 14,00 zł
W przypadku błędnych odpowiedzi, często pojawia się nieporozumienie związane z obliczeniami czasowymi i kosztami robocizny. Na przykład, jeśli ktoś obliczy koszt montażu gniazd bez uwzględnienia modułów RJ45, może dojść do wniosku, że koszt robocizny wynosi 60,00 zł, co jest błędne, ponieważ nie uwzględnia pełnego zakresu prac. Również rozważając montaż tylko modułów RJ45, można obliczyć koszt na 14,00 zł, co jest również niepoprawne w kontekście całego zadania. Kluczowym błędem w tych podejściach jest nieuwzględnianie wszystkich komponentów potrzebnych do wykonania instalacji. Dobrą praktyką jest szczegółowe rozplanowanie poszczególnych kroków montażowych oraz ich czasochłonności, co pozwala na dokładniejsze oszacowanie całkowitych kosztów. Często również występuje pomylenie jednostek roboczogodzin z jednostkami pieniężnymi, co prowadzi do błędnych wniosków co do kosztów. Obliczanie kosztów robocizny powinno zawsze obejmować pełny obraz prac, co w tym przypadku oznacza zarówno montaż gniazd, jak i modułów RJ45. Zrozumienie tych zasad jest kluczowe dla każdej osoby pracującej w branży instalacyjnej oraz dla skutecznego zarządzania projektami.

Pytanie 23

Aby podłączyć 6 komputerów do sieci przy użyciu światłowodu, potrzebny jest kabel z co najmniej taką ilością włókien:

A. 12
B. 6
C. 3
D. 24
Niektóre podejścia do podłączania komputerów do sieci światłowodowej opierają się na błędnym założeniu, że każdy komputer potrzebuje jedynie jednego włókna. Użytkownicy mogą mylnie zakładać, że przy konfiguracji sieci wystarczy pojedyncze włókno dla każdego urządzenia, co prowadzi do nieprawidłowych wniosków. Odpowiedzi takie jak 6 lub 3 włókna bazują na mylnym przekonaniu, że każda maszyna może działać w trybie półduplex, gdzie transmisja i odbiór odbywają się na tym samym włóknie, co w rzeczywistości ogranicza wydajność sieci oraz może prowadzić do kolizji sygnałów. Z kolei wybór 24 włókien również może być uznany za nadmiarowy w wielu przypadkach, co zwiększa koszty bez istotnej potrzeby. W standardowych projektach sieciowych, takich jak lokalne sieci LAN, najlepszą praktyką jest zastosowanie pełnodupleksowych połączeń, co wymaga co najmniej 12 włókien – dwóch na każdy komputer, co poprawia wydajność i zapewnia lepszą jakość sygnału. Zatem kluczowym błędem jest niewłaściwe rozumienie wymaganej liczby włókien w kontekście pełnej funkcjonalności i przyszłych potrzeb rozbudowy.

Pytanie 24

Jak nazywa się magistrala, która w komputerze łączy procesor z kontrolerem pamięci i składa się z szyny adresowej, szyny danych oraz linii sterujących?

A. AGP – Accelerated Graphics Port
B. ISA – Industry Standard Architecture
C. FSB – Front Side Bus
D. PCI – Peripheral Component Interconnect
W przypadku PCI, chodzi o magistralę, która umożliwia podłączanie różnych komponentów do płyty głównej, takich jak karty dźwiękowe czy sieciowe. PCI nie jest bezpośrednio odpowiedzialne za komunikację między procesorem a pamięcią, lecz służy do rozszerzenia funkcjonalności systemu. Innym przykładem jest AGP, który został zaprojektowany specjalnie do obsługi kart graficznych, a jego działanie koncentruje się na zapewnieniu wysokiej przepustowości dla danych graficznych, co nie ma zastosowania w kontekście komunikacji procesora z kontrolerem pamięci. Natomiast ISA to starszy standard, który również dotyczy podłączania urządzeń peryferyjnych, ale w praktyce jest obecnie rzadko stosowany ze względu na swoje ograniczenia w porównaniu do nowszych technologii. Często mylenie tych magistrali z FSB wynika z ich podobieństw w kontekście komunikacji w systemie komputerowym, lecz każda z nich ma swoje specyficzne zastosowania i funkcje. Dlatego ważne jest zrozumienie różnicy między nimi, aby nie mylić ich ról w architekturze komputera. Kluczowe jest, aby przy rozwiązywaniu problemów lub projektowaniu systemów mieć świadomość, jakie magistrale pełnią konkretne funkcje i jak współdziałają z innymi komponentami.

Pytanie 25

Jakie urządzenie powinno się zastosować do podłączenia żył kabla skrętki do gniazda Ethernet?

A. Zaciskarkę RJ-11
B. Zaciskarkę BNC
C. Wciskacz LSA
D. Zaciskarkę RJ-45
Wciskacz LSA to naprawdę fajne narzędzie, które pomaga podłączyć żyły kablowe skrętki do gniazd Ethernet. Dzięki swojej konstrukcji idealnie wciśniesz żyły w terminalach gniazd LSA, co powoduje, że połączenie jest mocne i daje mniejsze ryzyko zakłóceń sygnału. Używanie go jest zgodne z normami w branży telekomunikacyjnej, jak TIA/EIA-568, które mówią, jak powinno wyglądać okablowanie. W praktyce, korzystając z wciskacza LSA, bez problemu podłączysz 8 żył kabla RJ-45, co jest ważne dla dobrej wydajności sieci. Pamiętaj, że dobrze zrobione połączenie to klucz do stabilnej i niezawodnej transmisji danych, a to ma duże znaczenie w pracy oraz w sytuacjach, gdzie liczy się wysoka prędkość transferu. No i jeszcze jedno - używając złych narzędzi, można narazić się na problemy z zakłóceniami elektromagnetycznymi i innymi kłopotami z siecią.

Pytanie 26

Komputer stracił łączność z siecią. Jakie działanie powinno być podjęte w pierwszej kolejności, aby naprawić problem?

A. Sprawdzić adres IP przypisany do karty sieciowej
B. Przelogować się na innego użytkownika
C. Zaktualizować system operacyjny
D. Zaktualizować sterownik karty sieciowej
Zaktualizowanie systemu operacyjnego, przelogowanie się na innego użytkownika oraz zaktualizowanie sterownika karty sieciowej to podejścia, które mogą być użyteczne w innych kontekstach, ale nie są one pierwszymi krokami w rozwiązywaniu problemów z połączeniem sieciowym. Aktualizacja systemu operacyjnego jest zazwyczaj zalecana w celu poprawy bezpieczeństwa oraz dodania nowych funkcji, jednak w przypadku utraty połączenia to działanie nie jest priorytetowe. Często system operacyjny jest już odpowiednio skonfigurowany do obsługi sieci, więc aktualizacja nic nie wniesie do rozwiązania problemu. Przelogowanie się na innego użytkownika może pomóc w sytuacji, gdy problem jest związany z kontem użytkownika, ale nie jest to standardowa praktyka w rozwiązywaniu problemów sieciowych. Z kolei aktualizacja sterownika karty sieciowej, choć może być użyteczna, często nie jest konieczna, jeśli karta funkcjonowała poprawnie przed utratą połączenia. Typowym błędem jest zakładanie, że problemy z siecią zawsze wymagają skomplikowanych działań; w wielu przypadkach najprostsze kroki, takie jak sprawdzenie adresu IP, mogą szybko zidentyfikować źródło problemu. Kluczowe jest zrozumienie, że diagnozowanie problemów sieciowych powinno zaczynać się od podstawowej analizy, co pozwala oszczędzić czas i zasoby.

Pytanie 27

PoE to norma

A. uziemienia urządzeń w sieciach LAN
B. zasilania aktywnych urządzeń przez sieć LAN
C. zasilania aktywnych urządzeń przez sieć WLAN
D. zasilania aktywnych urządzeń przez sieć WAN
Zrozumienie standardu PoE i jego zastosowań w sieci LAN jest kluczowe dla efektywnego projektowania i wdrażania infrastruktury sieciowej. Wybierając odpowiedzi dotyczące zasilania urządzeń, warto zwrócić uwagę na koncepcje dotyczące różnych sieci. Na przykład, zasilanie poprzez sieć WAN (Wide Area Network) jest nieprawidłowe, ponieważ WAN obejmuje szersze obszary geograficzne i nie jest przystosowany do przesyłania energii elektrycznej. Zasilanie przez sieć WLAN (Wireless Local Area Network) również nie jest zasadne, ponieważ WLAN odnosi się do sieci bezprzewodowych, gdzie urządzenia takie jak punkty dostępu mogą być zasilane, ale nie poprzez połączenie bezprzewodowe, co jest fizycznie niemożliwe. Podobnie, idea uziemienia urządzeń w sieci LAN jest mylna; chociaż uziemienie jest istotne z punktu widzenia bezpieczeństwa, nie ma związku z procesem zasilania, który realizowany jest przez PoE. Typowe błędy myślowe w tej dziedzinie obejmują mylenie różnych typów sieci i ich funkcji, co prowadzi do nieporozumień na temat sposobu zasilania urządzeń. PoE działa wyłącznie w kontekście sieci LAN, co czyni go skutecznym narzędziem w zarządzaniu zasilaniem urządzeń w lokalnych sieciach.

Pytanie 28

Jak brzmi pełna wersja adresu IPv6 2001:0:db8::1410:80ab?

A. 2001:1000:0db8:0000:0000:0000:1410:80ab
B. 2001:0000:0db8:0000:0000:0000:1410:80ab
C. 2001:0000:db80:0000:0000:0000:1410:80ab
D. 2001:0001:0db8:0000:0000:0000:1410:80ab
Odpowiedzi, które nie są poprawne, wykazują typowe nieporozumienia związane z przedstawianiem adresów IPv6. Wiele osób myli zasady dotyczące wiodących zer, sądząc, że można je całkowicie pominąć w każdej sytuacji. Adresy IPv6 składają się z ośmiu grup czterech znaków szesnastkowych, a ich pełne reprezentacje są nie tylko wymagane w standardach, ale również zalecane w praktyce. Odpowiedzi, które dodają zbyt wiele zer w nieodpowiednich miejscach, jak w przypadku 2001:1000:0db8:0000:0000:0000:1410:80ab, są wynikiem błędnego zrozumienia zasad formatu. W tym przypadku pierwsza część adresu nie jest dokładna w stosunku do oryginalnego adresu, który zaczynał się od 2001:0, co przekłada się na różne lokalizacje w sieci. Dodatkowo, w odpowiedziach takich jak 2001:0001:0db8:0000:0000:0000:1410:80ab, zmiana wartości w grupie znaku prowadzi do całkowicie innego adresu, co może skutkować poważnymi problemami w komunikacji sieciowej. Ważne jest, aby zrozumieć, że adresy IPv6 są kluczowe w globalnej infrastrukturze internetowej i ich poprawna reprezentacja ma kluczowe znaczenie dla prawidłowego działania sieci. Typowe błędy myślowe, takie jak zbytnie uproszczenie zasad lub ignorowanie standardów, mogą prowadzić do poważnych konsekwencji, takich jak problemy z połączeniem czy trudności w identyfikacji urządzeń w sieci.

Pytanie 29

Na diagramie element odpowiedzialny za dekodowanie poleceń jest oznaczony liczbą

Ilustracja do pytania
A. 3
B. 1
C. 2
D. 6
CU czyli jednostka sterująca odpowiada za dekodowanie instrukcji w procesorze Jest to kluczowy element architektury procesora który interpretuje instrukcje maszynowe pobierane z pamięci i przekształca je w sygnały sterujące dla innych elementów procesora takich jak ALU rejestry czy pamięć operacyjna Jednostka sterująca odczytuje instrukcje jedna po drugiej i analizuje ich format oraz wykonuje odpowiednie kroki do ich realizacji Współczesne procesory często stosują złożone mechanizmy dekodowania aby zwiększyć wydajność i efektywność wykonywania instrukcji Praktycznym przykładem zastosowania wiedzy o jednostce sterującej jest projektowanie systemów cyfrowych oraz optymalizacja kodu maszynowego w celu zwiększenia wydajności działania aplikacji Znajomość CU jest również niezbędna przy rozwoju nowych architektur procesorów oraz przy implementacji systemów wbudowanych gdzie dekodowanie instrukcji może być krytycznym elementem umożliwiającym realizację złożonych operacji w czasie rzeczywistym Zrozumienie roli jednostki sterującej pozwala na lepsze projektowanie i implementację efektywnych algorytmów wykonujących się na poziomie sprzętowym

Pytanie 30

Jak nazywa się topologia fizyczna, w której wszystkie urządzenia końcowe są bezpośrednio połączone z jednym punktem centralnym, takim jak koncentrator lub przełącznik?

A. gwiazdy
B. pierścienia
C. siatki
D. magistrali
Wybór topologii siatki, magistrali lub pierścienia zamiast gwiazdy może prowadzić do nieporozumień w zakresie projektowania i administracji sieci. Topologia siatki, chociaż zapewnia wysoką odporność na awarie, ponieważ każde urządzenie jest połączone z wieloma innymi, staje się złożona w zarządzaniu i kosztowna w implementacji. W przypadku topologii magistrali, wszystkie urządzenia są podłączone do jednego wspólnego kabla, co stwarza ryzyko, że awaria kabla spowoduje przerwanie komunikacji w całej sieci. Ponadto, trudności w diagnostyce i konserwacji są znacznie większe niż w topologii gwiazdy, gdzie każde urządzenie można zidentyfikować i rozwiązać problemy lokalnie. Topologia pierścienia łączy urządzenia w zamkniętą pętlę, co może prowadzić do problemów z wydajnością oraz awarii całej sieci w przypadku uszkodzenia jednego z połączeń. Zrozumienie tych różnic jest kluczowe dla efektywnego projektowania sieci. W praktyce, topologia gwiazdy jest często preferowana w wielu zastosowaniach, takich jak biura czy szkoły, gdzie elastyczność i łatwość rozbudowy są kluczowe dla efektywności operacyjnej.

Pytanie 31

Co się stanie, jeśli w systemie operacyjnym komputera zainstalowany zostanie program określany jako Trojan?

A. wykonywanie niepożądanych działań poza kontrolą użytkownika
B. wspomaganie działania użytkownika
C. optymalizację działania systemu operacyjnego
D. ochronę systemu operacyjnego przed działaniem wirusów
Trojan to coś w rodzaju złośliwego oprogramowania, które jak już dostanie się do systemu, to może robić różne nieprzyjemne rzeczy. Na przykład kradzież danych, instalowanie innych złośliwych programów, czy nawet udostępnianie dostępu do systemu innym osobom. Zwykle Trojany są schowane w legalnych aplikacjach, więc użytkownicy często nie zdają sobie sprawy, że coś jest nie tak. Przykładem może być Trojan, który działa jak keylogger i rejestruje naciśnięcia klawiszy, przez co można stracić hasła i inne ważne info. Dlatego warto pamiętać o bezpieczeństwie – dobrze jest na bieżąco aktualizować oprogramowanie antywirusowe i regularnie skanować system. Również, pobierając aplikacje, warto być ostrożnym i unikać instalacji czegokolwiek z nieznanych źródeł, bo to naprawdę może zmniejszyć ryzyko związane z Trojanami.

Pytanie 32

Jaki jest główny cel stosowania maski podsieci?

A. Rozdzielenie sieci na mniejsze segmenty
B. Ochrona danych przed nieautoryzowanym dostępem
C. Zwiększenie przepustowości sieci
D. Szyfrowanie transmisji danych w sieci
Stwierdzenie, że maska podsieci zwiększa przepustowość sieci, to częsty błąd wynikający z niezrozumienia jej funkcji. Maska podsieci nie wpływa bezpośrednio na przepustowość. Jej zadaniem jest logiczny podział sieci na mniejsze segmenty, co może pośrednio poprawić zarządzanie ruchem, ale nie zwiększa fizycznej przepustowości łączy. Kolejny błędny pogląd to przypisywanie masce podsieci roli w ochronie danych przed nieautoryzowanym dostępem. Maska sama w sobie nie zapewnia żadnych zabezpieczeń. Jej działanie polega tylko na zarządzaniu adresacją sieciową. Ochrona danych wymaga zastosowania innych metod, takich jak firewalle, szyfrowanie oraz polityki dostępu. Natomiast myśl, że maska podsieci zajmuje się szyfrowaniem transmisji danych, wynika z mylenia pojęć związanych z bezpieczeństwem sieci. Szyfrowanie to zupełnie odrębna funkcjonalność, realizowana przez protokoły takie jak SSL/TLS czy IPsec, i nie ma związku z funkcją maski podsieci. Maski podsieci są narzędziem do zarządzania przestrzenią adresową i organizacji sieci, a nie do szyfrowania czy zabezpieczania danych.

Pytanie 33

W sekcji zasilania monitora LCD, powiększone kondensatory elektrolityczne mogą prowadzić do uszkodzenia

A. inwertera oraz podświetlania matrycy
B. układu odchylania poziomego
C. przycisków umiejscowionych na panelu monitora
D. przewodów sygnałowych
Spuchnięte kondensatory elektrolityczne w sekcji zasilania monitora LCD są jednym z najczęstszych problemów, które mogą prowadzić do uszkodzenia inwertera oraz podświetlania matrycy. Kondensatory te mają za zadanie stabilizację napięcia i filtrację szumów w obwodzie zasilania. Gdy kondensator ulega uszkodzeniu, jego pojemność spada, co prowadzi do niestabilnego zasilania. W przypadku monitora LCD, niestabilne napięcie może zaburzyć pracę inwertera, który jest odpowiedzialny za zasilanie lamp podświetlających matrycę. Efektem tego może być całkowity brak podświetlenia lub nierównomierne jego rozłożenie, co znacząco wpływa na jakość wyświetlanego obrazu. W praktyce, regularne sprawdzanie kondensatorów w zasilaczach monitorów jest zalecane, a ich wymiana na nowe, o odpowiednich parametrach, powinna być przeprowadzana zgodnie z zasadami BHP oraz standardami branżowymi, co wydłuża żywotność urządzenia.

Pytanie 34

Jaki adres IP w formacie dziesiętnym odpowiada adresowi IP 10101010.00001111.10100000.11111100 zapisanym w formacie binarnym?

A. 171.14.159.252
B. 170.14.160.252
C. 171.15.159.252
D. 170.15.160.252
Wybór niepoprawnej odpowiedzi często wynika z niedostatecznej wiedzy na temat konwersji adresów IP między systemami binarnym a dziesiętnym. Należy zwrócić uwagę, że każdy oktet adresu IP składa się z 8 bitów, a jego wartość w systemie dziesiętnym oblicza się poprzez sumowanie wartości bitów, które mają ‘1’. Na przykład, dla oktetu 10101010, błędne podejście do obliczenia wartości mogłoby prowadzić do uznania błędnych cyfr za aktywne, co skutkuje niewłaściwą interpretacją. Podobnie, w przypadku 00001111, jeśli ktoś zignoruje znaczenie zer, może zaniżyć wartość do 14 lub 16, co również doprowadzi do błędnych wniosków. Dodatkowo, w kontekście adresowania IP, zrozumienie, jak różne wartości oktetów wpływają na cały adres, jest kluczowe. Zastosowanie niewłaściwych wartości w obliczeniach, jak w przypadku odpowiedzi 171.14.159.252, może wynikać z mylnego przekształcenia jednej z sekcji adresu, prowadząc do niezgodności z rzeczywistym adresem. Tego typu błędy są powszechne wśród osób, które mają ograniczone doświadczenie z systemami binarnymi. Kluczowe jest, aby upewnić się, że każdy bit jest poprawnie oceniany i obliczany, co jest fundamentalnym elementem w zarządzaniu infrastrukturą sieciową oraz w zapewnieniu, że urządzenia komunikują się ze sobą w sposób efektywny i bezpieczny.

Pytanie 35

Które stwierdzenie opisuje profil tymczasowy użytkownika?

A. Po wylogowaniu się użytkownika, zmiany dokonane przez niego w ustawieniach pulpitu oraz w plikach nie będą zachowane
B. Jest tworzony przez administratora systemu i zapisywany na serwerze, tylko administrator systemu ma prawo wprowadzać w nim zmiany
C. Umożliwia używanie dowolnego komputera w sieci z ustawieniami i danymi użytkownika przechowywanymi na serwerze
D. Jest generowany przy pierwszym logowaniu do komputera i przechowywany na lokalnym dysku twardym
Profil tymczasowy użytkownika jest szczególnym przypadkiem, który ma na celu zapewnienie elastyczności i bezpieczeństwa w korzystaniu z komputerów, zwłaszcza w środowiskach wspólnych, takich jak szkolne labolatoria czy biura. Główna cecha tego typu profilu polega na tym, że wszystkie zmiany wprowadzone przez użytkownika podczas sesji są przechowywane tylko tymczasowo. Oznacza to, że po wylogowaniu się z systemu, wszystkie personalizacje, takie jak zmiany ustawień pulpitu, instalacja aplikacji czy modyfikacja plików, nie zostaną zapisane. Dzięki temu, nowi użytkownicy mogą korzystać z systemu bez obaw o modyfikację ustawień dotyczących innych użytkowników. W praktyce, takie podejście jest szczególnie przydatne w instytucjach, gdzie komputery są używane przez wielu użytkowników i gdzie konieczne jest zachowanie spójności systemu oraz bezpieczeństwa danych. Przykładowo, w szkołach, uczniowie mogą korzystać z tych samych komputerów bez ryzyka, że ich działania wpłyną na konfigurację dla innych uczniów. To zapewnia zarówno ochronę prywatności, jak i integralność systemu operacyjnego. W kontekście stosowania dobrych praktyk IT, profile tymczasowe są zgodne z zasadą najmniejszych uprawnień, co zwiększa bezpieczeństwo systemu.

Pytanie 36

Czym wyróżniają się procesory CISC?

A. niewielką ilością trybów adresowania
B. ograniczoną wymianą danych pomiędzy pamięcią a procesorem
C. wysoką liczbą instrukcji
D. prostą i szybką jednostką kontrolną
Wybór odpowiedzi, które sugerują, że procesory CISC mają prostą i szybką jednostkę sterującą, jest mylący. W rzeczywistości, procesory CISC są zaprojektowane z myślą o złożoności zestawu instrukcji, co często prowadzi do bardziej skomplikowanej jednostki sterującej. Złożoność ta wynika z konieczności dekodowania wielu różnych instrukcji, co może wprowadzać opóźnienia w wykonaniu. W kontekście architektury CISC, jednostka sterująca jest znacznie bardziej złożona niż w architekturze RISC (Reduced Instruction Set Computing), gdzie skupia się na prostocie i szybkości. Ponadto, stwierdzenie o niewielkiej liczbie trybów adresowania nie odnosi się do rzeczywistości, gdyż procesory CISC często oferują wiele trybów adresowania, co zwiększa ich elastyczność w operacjach na danych. Ograniczona komunikacja pomiędzy pamięcią a procesorem jest również niepoprawnym założeniem, ponieważ w architekturze CISC, ilość danych przesyłanych pomiędzy pamięcią a procesorem może być znacząca, biorąc pod uwagę złożoność instrukcji. Zrozumienie tych różnic jest kluczowe dla prawidłowego rozpoznawania zalet i wad różnych architektur procesorów oraz ich zastosowań w praktyce, co jest istotne w kontekście projektowania systemów komputerowych.

Pytanie 37

Aby zainstalować openSUSE oraz dostosować jego ustawienia, można skorzystać z narzędzia

A. YaST
B. Brasero
C. Evolution
D. Gedit
YaST (Yet another Setup Tool) to potężne narzędzie do zarządzania systemem operacyjnym openSUSE, które umożliwia użytkownikom łatwe instalowanie, konfigurowanie oraz zarządzanie różnymi aspektami systemu. Dzięki YaST można zainstalować nowe oprogramowanie, zarządzać użytkownikami, konfigurować sieci oraz aktualizować system. Na przykład, podczas instalacji openSUSE, YaST prowadzi użytkownika przez proces wyboru komponentów systemowych, partycjonowania dysku oraz ustawień regionalnych. To narzędzie jest zgodne z dobrymi praktykami branżowymi, umożliwiając jednocześnie graficzny oraz tekstowy interfejs użytkownika, co czyni je dostępnym zarówno dla początkujących, jak i zaawansowanych użytkowników. Warto również podkreślić, że YaST integruje wiele funkcji w jednym miejscu, co znacząco upraszcza proces administracji systemem. W kontekście openSUSE, korzystanie z YaST jest nie tylko zalecane, ale wręcz uznawane za standard, co potwierdza jego szerokie zastosowanie w społeczności użytkowników tego systemu.

Pytanie 38

Jaką ochronę zapewnia program antyspyware?

A. programom antywirusowym
B. programom typu robak
C. programom szpiegującym
D. atakom typu DoS i DDoS (Denial of Service)
Program antyspyware jest dedykowany do wykrywania i usuwania programów szpiegujących, które mają na celu monitorowanie działań użytkowników bez ich wiedzy. Programy te mogą zbierać dane osobowe, takie jak hasła, informacje o logowaniu, czy dane finansowe, a ich obecność na systemie stanowi poważne zagrożenie dla prywatności. Przykłady zastosowania programu antyspyware obejmują regularne skanowanie systemu w celu identyfikacji i eliminacji nieautoryzowanych aplikacji, które mogą infiltracyjnie zbierać informacje. W branży IT, stosowanie oprogramowania antyspyware jest częścią szerszej strategii ochrony, która obejmuje także zabezpieczenia antywirusowe i zapory sieciowe. Dobry program antyspyware powinien być regularnie aktualizowany, aby móc skutecznie wykrywać nowe zagrożenia zgodnie z najlepszymi praktykami w zakresie cyberbezpieczeństwa. Rekomendowane jest także przeprowadzanie edukacji użytkowników na temat bezpiecznego korzystania z internetu, aby minimalizować ryzyko zakażenia systemu przez spyware.

Pytanie 39

Zjawisko przesłuchu w sieciach komputerowych polega na

A. opóźnieniach w propagacji sygnału w torze transmisyjnym
B. przenikaniu sygnału pomiędzy sąsiadującymi w kablu parami przewodów
C. niejednorodności toru wynikającej z modyfikacji geometrii par przewodów
D. utratach sygnału w torze transmisyjnym
Zjawiska, takie jak niejednorodność toru spowodowana zmianą geometrii par przewodów, straty sygnału w torze transmisyjnym oraz opóźnienia propagacji sygnału, nie są tożsame z przesłuchami, chociaż mogą wpływać na jakość transmisji. Niejednorodność toru, wynikająca ze zmian geometrii, odnosi się do różnic w impedancji, które mogą prowadzić do odbić sygnału. Ten sam efekt, choć nieco związany, nie definiuje mechanizmu przesłuchu, który koncentruje się na interakcji między sąsiadującymi parami przewodów. Straty sygnału w torze transmisyjnym dotyczą ogólnej utraty mocy sygnału na skutek oporu, co jest innym zagadnieniem w kontekście transmisji danych. Opóźnienia propagacji sygnału związane są z czasem, potrzebnym na przebycie sygnału przez medium transmisyjne, co także nie odnosi się bezpośrednio do problemu przesłuchu, ale raczej do parametrów czasu i jakości sygnału. Przesłuch w sieciach komputerowych ma swoje źródło w fizycznych właściwościach przewodów i ich wzajemnych oddziaływaniach, a błędne zrozumienie tego zjawiska może prowadzić do nieefektywnego projektowania i implementacji sieci, w której jakość sygnału i wydajność są kluczowe.

Pytanie 40

W przypadku wpisania adresu HTTP w przeglądarkę internetową pojawia się błąd "403 Forbidden", co oznacza, że

A. nie istnieje plik docelowy na serwerze
B. użytkownik nie ma uprawnień do dostępu do żądanego zasobu
C. karta sieciowa ma niepoprawnie przydzielony adres IP
D. wielkość przesyłanych danych przez klienta została ograniczona
W przypadku kodu błędu 403 Forbidden, mylenie go z innymi kodami odpowiedzi HTTP prowadzi do nieporozumień. Pierwszym błędnym założeniem jest to, że brak pliku docelowego na serwerze powoduje ten błąd, podczas gdy w rzeczywistości, jeśli plik nie istnieje, serwer zwróci kod 404 Not Found. Zatem, gdy użytkownik napotyka błąd 403, oznacza to, że żądany plik jest dostępny, ale dostęp do niego jest zablokowany. Kwestia nieprawidłowego adresu IP karty sieciowej również nie jest związana z kodem 403; ten błąd dotyczy uprawnień, a nie problemów z łącznością. Inna niepoprawna koncepcja dotyczy ograniczeń na wielkość wysyłanych danych przez klienta, które są związane z innymi kodami błędów, takimi jak 413 Payload Too Large, a nie 403. W rzeczywistości, przed podjęciem działań naprawczych, ważne jest zrozumienie, że kod 403 jest wynikiem polityki bezpieczeństwa lub konfiguracji serwera, a nie problemu technicznego z infrastrukturą sieciową. Ostatecznie, kluczowe jest, aby użytkownicy rozumieli, że błąd 403 wynika z braku autoryzacji, a nie z problemów z plikami czy łącznością sieciową.