Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 18 listopada 2025 22:50
  • Data zakończenia: 18 listopada 2025 23:01

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po wymianie dolnego przedniego wahacza zawieszenia w samochodzie osobowym konieczne jest sprawdzenie

A. sił tłumienia
B. sił hamowania
C. geometrii kół
D. oporów toczenia
Choć siły hamowania, opory toczenia oraz siły tłumienia są ważnymi aspektami pracy zawieszenia i układu jezdnego, nie stanowią one kluczowych parametrów, które należy sprawdzić bezpośrednio po wymianie wahacza. Siły hamowania w kontekście regulacji geometrii kół są związane raczej z działaniem układu hamulcowego, który nie ulega zmianie po wymianie wahacza. Po wymianie wahacza nie można stwierdzić, że hamulce będą działały mniej efektywnie, ponieważ nie zmienia to ich konstrukcji ani parametrów. Opory toczenia są natomiast związane z oporem, jaki stawiają opony w czasie jazdy, co jest bardziej związane z właściwościami opon niż z samym zawieszeniem. Siły tłumienia, z kolei, dotyczą pracy amortyzatorów i wpływu na komfort jazdy, a także stabilność pojazdu, ale nie są bezpośrednio związane z geometrią kół. Zrozumienie, że po wymianie wahacza najważniejsze jest sprawdzenie geometrii kół, jest kluczowe dla zapewnienia bezpieczeństwa i prawidłowego zachowania pojazdu na drodze. Ignorowanie tego aspektu może prowadzić do problemów z prowadzeniem pojazdu, co może również skutkować zwiększonym zużyciem opon oraz obniżeniem komfortu jazdy.

Pytanie 2

Jakie miejsce jest odpowiednie do przeprowadzenia pomiarów geometrii kół?

A. na wypoziomowanym stanowisku lub podnośniku
B. na podnośniku pneumatycznym
C. na podnośniku dwukolumnowym
D. na podstawkach
Pomiar geometrii kół powinien być przeprowadzany na wypoziomowanym stanowisku lub podnośniku, ponieważ zapewnia to stabilność i precyzyjność pomiarów. Właściwe wypoziomowanie jest kluczowe, aby uniknąć błędów wynikających z nachyleń, które mogą wpływać na wyniki pomiarów. W warunkach warsztatowych, wypoziomowane stanowisko daje pewność, że wszystkie elementy są w odpowiedniej płaszczyźnie, co jest szczególnie istotne przy pomiarze parametrów takich jak zbieżność, kąt nachylenia czy odległości między kołami. Przykładowo, w przypadku regulacji zbieżności kół, precyzyjne wyniki pomiarów są niezbędne dla zapewnienia bezpieczeństwa i komfortu jazdy. W branży motoryzacyjnej stosowane są urządzenia pomiarowe, takie jak laserowe systemy do pomiaru geometrii, które wymagają idealnie płaskiej i stabilnej powierzchni, co czyni wypoziomowane stanowisko najlepszym rozwiązaniem. Dobre praktyki wskazują również na regularne sprawdzanie poziomu urządzeń pomiarowych, co zwiększa ich dokładność i żywotność.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jeśli wymiar czopów głównych wału korbowego przekracza ostatni wymiar naprawczy, jakie działania należy podjąć w stosunku do tych czopów?

A. regeneracji poprzez napawanie wibrostykowe
B. regeneracji poprzez metalizację natryskową
C. szlifowaniu na wymiar naprawczy
D. regeneracji poprzez chromowanie elektrolityczne
Odpowiedzi dotyczące regeneracji czopów głównych poprzez napawanie wibrostykowe, metalizację natryskową oraz chromowanie elektrolityczne nie są adekwatne w kontekście tego pytania. Napawanie wibrostykowe to technika, która polega na nanoszeniu materiału w postaci stopu na powierzchnię uszkodzonego elementu. Choć może być skuteczna w niektórych zastosowaniach, nie jest standardowo stosowana do czopów głównych wału korbowego, ponieważ może prowadzić do lokalnych deformacji i niejednorodności struktury materiału. Metalizacja natryskowa również nie jest optymalna w tym przypadku, ponieważ stosuje się ją w sytuacjach, gdy wymagana jest ochrona przed korozją lub poprawa właściwości tribologicznych, a nie do przywracania wymiarów. Chromowanie elektrolityczne, chociaż skuteczne w poprawie odporności na zużycie powierzchni, nie rozwiązuje problemu przerośnięcia wymiaru czopów. W każdym z tych przypadków istnieje ryzyko, że regenerowane elementy nie spełnią standardów jakości, co może prowadzić do dalszych uszkodzeń w silniku. Zastosowanie niewłaściwych metod regeneracji może także prowadzić do zwiększenia kosztów naprawy, wydłużenia czasu przestoju maszyny oraz obniżenia jej niezawodności.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

W jakich sytuacjach stosuje się spawanie jako metodę naprawy?

A. W trakcie naprawy gładzi cylindra
B. Przy usuwaniu pęknięć w bloku silnika
C. Przy naprawie uszkodzonych gwintów w kadłubie silnika
D. Podczas eliminacji odkształceń na powierzchni uszczelniającej głowicy
Spawanie jest jedną z kluczowych metod naprawy w kontekście usuwania pęknięć bloku silnika. Blok silnika jest elementem krytycznym dla prawidłowego funkcjonowania jednostki napędowej, a pęknięcia mogą prowadzić do poważnych awarii, takich jak utrata ciśnienia oleju czy problemy z chłodzeniem. Proces spawania polega na połączeniu dwóch lub więcej elementów metalowych poprzez ich stopienie i utworzenie jednorodnego połączenia. W przypadku naprawy bloku silnika stosuje się najczęściej metodę TIG (Tungsten Inert Gas) lub MIG (Metal Inert Gas), które zapewniają precyzyjne i trwałe łączenie materiałów. Właściwe przygotowanie powierzchni, dobór odpowiednich materiałów spawalniczych oraz kontrola parametrów spawania są kluczowe dla uzyskania wysokiej jakości naprawy. Przykładem zastosowania spawania w praktyce jest użycie spawania do rekonstrukcji pęknięć w bloku silnika V8, gdzie precyzyjna kontrola temperatury jest niezbędna, aby uniknąć dalszych odkształceń. Dobre praktyki w tej dziedzinie obejmują również stosowanie technik badań nieniszczących, takich jak ultradźwięki, aby potwierdzić jakość naprawy.

Pytanie 7

Krzywa charakterystyki zewnętrznej silnika oznaczona symbolem "X" obrazuje

Ilustracja do pytania
A. moc silnika N.
B. moment obrotowy silnika Mo
C. sekundowe zużycie paliwa ge
D. jednostkowe zużycie paliwa Ge
Odpowiedzi, takie jak "jednostkowe zużycie paliwa Ge", "moment obrotowy silnika Mo" oraz "sekundowe zużycie paliwa ge", są niepoprawne, ponieważ mylą kluczowe pojęcia związane z charakterystykami silnika. Jednostkowe zużycie paliwa Ge odnosi się do ilości paliwa zużywanego na jednostkę mocy, co nie jest bezpośrednio związane z mocą silnika, lecz raczej z jego efektywnością. Moment obrotowy Mo, z kolei, definiuje siłę, z jaką silnik może obracać wał, co jest różnym parametrem technicznym, który wpływa na przyspieszenie pojazdu, ale nie obrazuje bezpośrednio jego mocy. Sekundowe zużycie paliwa ge porusza się w podobnym zakresie, jako że odnosi się do ilości paliwa zużywanego w danym czasie, a nie do wydajności silnika jako takiej. Typowe błędy prowadzące do takich nieprawidłowych odpowiedzi obejmują mylenie terminów technicznych oraz brak zrozumienia zależności między mocą, momentem obrotowym a zużyciem paliwa. Dla inżynierów oraz techników istotne jest rozróżnienie tych parametrów, aby móc skutecznie projektować i oceniać silniki pod kątem ich zastosowań oraz efektywności, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej oraz mechanicznej.

Pytanie 8

Do narzędzi warsztatowych nie wliczamy

A. podnośnika hydraulicznego.
B. kanału najazdowego.
C. miernika.
D. prasy.
Kanał najazdowy nie jest uważany za urządzenie warsztatowe, ponieważ pełni funkcję infrastrukturalną, a nie narzędziową. Jego głównym zastosowaniem jest umożliwienie dostępu do pojazdów w celu ich serwisowania lub naprawy. W odróżnieniu od urządzeń takich jak prasy, mierniki czy podnośniki hydrauliczne, które są narzędziami wykorzystywanymi bezpośrednio w procesach obróbczych, kanał najazdowy jest strukturą, która wspiera pracę w warsztacie. Przykładowo, gdy mechanik chce wymienić olej w silniku pojazdu, korzysta z kanału najazdowego, aby uzyskać lepszy dostęp do spodu pojazdu. W standardach branżowych, takich jak ISO 9001, podkreśla się znaczenie infrastruktury w kontekście jakości usług, jednak sama infrastruktura nie jest klasyfikowana jako narzędzie produkcyjne ani warsztatowe. Dobre praktyki w warsztatach samochodowych zakładają właściwe zagospodarowanie przestrzeni roboczej, gdzie kanały najazdowe są integralnym elementem, ale nie są uznawane za urządzenia robocze.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W silnikach chłodzonych wykorzystuje się cylindry użebrowane oraz głowice

A. cieczą
B. płynem hamulcowym
C. powietrzem
D. olejem
Odpowiedzi związane z chłodzeniem silników za pomocą płynu hamulcowego, oleju czy cieczy pokazują, że jest tu sporo nieporozumień. Chłodzenie płynem hamulcowym jest raczej bez sensu, bo on ma inny cel - przenoszenie siły w układach hamulcowych, a nie schładzanie silnika. Olej też głównie smaruje, a nie chłodzi, i czasem nawet podnosi temperaturę silnika, co wymaga dodatkowych systemów chłodzenia. Silniki chłodzone cieczą, mimo że są popularne, nie używają użebrowanych cylindrów i głowic tak jak te chłodzone powietrzem. W ich przypadku zamiast użebrowania, montuje się chłodnice, które lepiej przenoszą ciepło. Warto zrozumieć, że wybór metody chłodzenia silnika musi być dopasowany do jego specyfiki i zastosowania, bo każda metoda ma swoje plusy i minusy.

Pytanie 11

W przypadku, gdy zużycie gładzi tulei cylindrowej jest mniejsze niż kolejny wymiar naprawczy, poddaje się ją regeneracji poprzez

A. hartowanie
B. roztaczanie
C. azotowanie
D. nawęglanie
Nawęglanie, azotowanie i hartowanie to techniki obróbcze, które nie są odpowiednie do regeneracji tulei cylindrowych, zwłaszcza gdy ich zużycie jest mniejsze od kolejnego wymiaru naprawczego. Nawęglanie polega na wzbogaceniu powierzchni materiału w węgiel, co zwiększa twardość, ale nie przywraca oryginalnych wymiarów. Proces ten stosuje się w przypadku osiągania podwyższonej odporności na zużycie, jednak dla regeneracji elementów wymagających precyzyjnego dopasowania jest niewłaściwy. Azotowanie z kolei polega na wprowadzeniu azotu do powierzchni stali, co również ma na celu poprawę twardości i odporności na korozję, ale w żadnym wypadku nie koryguje wymiarów. Hartowanie to proces obróbczy, który polega na nagrzewaniu materiału, a następnie szybkim chłodzeniu, co prowadzi do osiągnięcia wysokiej twardości. Mimo że hartowanie może zwiększyć wytrzymałość materiału, nie ma zastosowania w kontekście przywracania wymiarów zużytych elementów. Typowym błędem myślowym w takich przypadkach jest mylenie procedur twardnienia z procesami regeneracji, co prowadzi do nieprawidłowych wniosków i wyboru niewłaściwej metody. Regeneracja wymaga precyzyjnego podejścia i zrozumienia specyfiki materiałów oraz wymagań obróbczych, co jest kluczowe dla zapewnienia długotrwałej funkcjonalności elementów maszyn.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Termin DOHC odnosi się do układu

A. górnozaworowego z jednym wałkiem rozrządu umieszczonym w kadłubie
B. dolnozaworowego z jednym wałkiem rozrządu w kadłubie
C. górnozaworowego z pojedynczym wałkiem rozrządu w głowicy
D. górnozaworowego z dwoma wałkami rozrządu zainstalowanymi w głowicy
Odpowiedź, że DOHC oznacza górnozaworowy układ z dwoma wałkami rozrządu w głowicy, jest prawidłowa. Skrót DOHC pochodzi od angielskiego 'Dual Overhead Camshaft', co dosłownie oznacza 'podwójny wałek rozrządu w górze'. Taki układ rozrządu pozwala na bardziej precyzyjne sterowanie procesem otwierania i zamykania zaworów, co wpływa na lepsze osiągi silnika, zarówno w zakresie mocy, jak i efektywności paliwowej. Zastosowanie dwóch wałków rozrządu umożliwia jednoczesne działanie na zawory dolotowe i wydechowe, co zwiększa przepływ powietrza do komory spalania oraz poprawia odprowadzanie spalin. Przykładem zastosowania DOHC są silniki w samochodach sportowych i wyższej klasy, gdzie optymalizacja osiągów silnika jest kluczowa. W branży motoryzacyjnej standardem staje się także wzbogacenie układów rozrządu o systemy zmiennych faz rozrządu, co further enhances the performance of DOHC engines in practical applications, emphasizing their growing importance in modern automotive engineering.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Czas wymiany dwóch sworzni zwrotnic w pojeździe osobowym wynosi 2 godziny. Jakie będą koszty wymiany sworzni oraz ustawienia zbieżności przy założeniu, że:
- cena jednego sworznia to 60 zł brutto,
- stawka za roboczogodzinę wynosi 80 zł brutto,
- opłata za pomiar i ustawienie zbieżności wynosi 100 zł brutto?

A. 240 zł
B. 380 zł
C. 320 zł
D. 300 zł
Aby obliczyć całkowity koszt wymiany dwóch sworzni zwrotnic oraz regulacji zbieżności, należy uwzględnić wszystkie elementy kosztowe. Koszt sworzni wynosi 60 zł za sztukę, a ponieważ wymieniamy dwa, suma wynosi 120 zł (60 zł x 2). Następnie, czas pracy mechanika na wymianę sworzni wynosi 2 godziny. Przy stawce 80 zł za roboczogodzinę, koszt robocizny wynosi 160 zł (80 zł x 2). Ostatnim elementem jest koszt regulacji zbieżności, który wynosi 100 zł. Zatem całkowity koszt wynosi: 120 zł (sworznie) + 160 zł (robocizna) + 100 zł (regulacja) = 380 zł. W praktyce, poprawna regulacja zbieżności jest kluczowa dla prawidłowego zachowania się pojazdu na drodze, co przekłada się na bezpieczeństwo jazdy oraz komfort użytkowania. Warto zawsze korzystać z usług doświadczonych mechaników, którzy stosują się do standardów branżowych, aby zapewnić wysoką jakość wykonania usług.

Pytanie 16

Stetoskop prętowy to urządzenie diagnostyczne używane do

A. oceny dymienia silnika
B. wykrywania nieszczelności w płaszczu wodnym silnika
C. oceny ciśnienia sprężania w silniku
D. wykrywania stuków silnika
Stetoskop prętowy to naprawdę fajne narzędzie, które pomaga mechanikom w diagnozowaniu silników. Działa na zasadzie przenoszenia drgań akustycznych z różnych części silnika, co pozwala zauważyć nieprawidłowości, takie jak na przykład luzowanie czy problemy z łożyskami. To szczególnie ważne, bo szybka diagnoza może uratować silnik przed poważniejszymi uszkodzeniami. Używa się go często podczas przeglądów i to nie tylko w warsztatach, ale też w sytuacjach kryzysowych. Standardy branżowe podkreślają, jak istotne jest korzystanie z tego narzędzia w diagnostyce. Co ciekawe, stetoskop prętowy pozwala na słuchanie dźwięków z bliska, co naprawdę zwiększa dokładność diagnozy. Gdy już wiesz, jak go używać, to może to znacząco poprawić jakość napraw i bezpieczeństwo pojazdów. W skrócie, to narzędzie ma swoje zasługi w szybkiej i skutecznej diagnozie usterek.

Pytanie 17

W trakcie analizy hamulców na stanowisku rolkowym przeprowadza się przede wszystkim pomiar

A. opóźnienia przy hamowaniu
B. dystansu hamowania
C. siły hamowania
D. siły tarcia
Pomiar siły hamowania na stanowisku rolkowym jest kluczowym elementem oceny efektywności systemu hamulcowego pojazdu. Siła hamowania, mierzona w niutonach (N), określa, jaką moc hamulce są w stanie wygenerować w momencie działania, co bezpośrednio wpływa na bezpieczeństwo i skuteczność hamowania. W praktyce, podczas testów na stanowisku rolkowym, pojazd jest umieszczany na rolkach, a następnie przy użyciu pedału hamulca generowana jest siła, która jest następnie rejestrowana. Pomiar ten pozwala na ocenę stanu technicznego hamulców, co jest zgodne z normami, takimi jak UNECE Regulation No. 13, które regulują wymagania dotyczące hamulców pojazdów. Dobre praktyki w zakresie diagnostyki hamulców obejmują regularne kontrole oraz analizę wyników pomiarów, co umożliwia wczesne wykrywanie ewentualnych usterek oraz zapewnia bezpieczeństwo użytkowników dróg. Zrozumienie siły hamowania oraz jej wpływu na drogę hamowania i opóźnienie jest kluczowe dla inżynierów i techników zajmujących się pojazdami.

Pytanie 18

Jakie elementy można naprawić stosując metodę lutowania?

A. zużyte łożysko ślizgowe wału korbowego
B. uszkodzoną końcówkę drążka kierowniczego
C. nieszczelną chłodnicę
D. pęknięty wał napędowy
Lutowanie to super metoda, jeśli chodzi o naprawę nieszczelnych chłodnic. Dzięki temu można skutecznie połączyć różne elementy metalowe, bo materiał lutowniczy się topi i załatwia sprawę. Chłodnice zazwyczaj są z aluminium albo miedzi, więc lutowanie naprawdę daje radę w naprawie wycieków płynu chłodzącego. Z mojego doświadczenia ważne jest, żeby najpierw dokładnie oczyścić uszkodzone miejsce, a potem nałożyć topnik. To zapewnia lepsze trzymanie się lutowia. Potem całość musi się podgrzać, co topi materiał i łączy elementy. Dobrze zrobione lutowanie jest trwałe i wytrzymuje wysokie ciśnienie oraz temperaturę, co jest mega istotne w układach chłodzenia w samochodach. Warto mieć na uwadze, że są standardy, jak ISO 14731, które wskazują, jak ogarniać lutowanie, by mieć pewność, że połączenia są na najwyższym poziomie. Regularne kontrolowanie nieszczelności chłodnic też nie zaszkodzi – lepiej zapobiegać problemom niż je potem łatać.

Pytanie 19

Prawidłowy kierunek przepływu oleju w filtrze olejowym silnika, przedstawionym na rysunku, jest

Ilustracja do pytania
A. zależny od ciśnienia w układzie smarowania.
B. przeciwny do kierunku wskazywanego przez strzałki.
C. zgodny z kierunkiem wskazywanym przez strzałki.
D. zależny od natężenia przepływu w układzie smarowania.
Prawidłowy kierunek przepływu oleju w filtrze olejowym jest istotnym elementem układu smarowania silnika. Strzałki wskazujące kierunek na rysunku odzwierciedlają standardowe normy projektowe, które są powszechnie stosowane w przemyśle motoryzacyjnym. W filtrach olejowych zastosowane są z reguły technologie, które zapewniają odpowiedni przepływ oleju w kierunku zgodnym z tym, co pokazują strzałki. W efekcie, olej silnikowy, zanim trafi do silnika, przechodzi przez filtr, co pozwala na zatrzymanie zanieczyszczeń i poprawę jakości smarowania. Zgodność kierunku przepływu z oznaczeniami na filtrze jest kluczowa dla prawidłowego funkcjonowania silnika, ponieważ nieprawidłowy kierunek mógłby prowadzić do zatykania filtra, co w konsekwencji może skutkować awarią silnika. Przykładem zastosowania tej wiedzy jest regularna kontrola filtra olejowego podczas wymiany oleju, aby upewnić się, że został on zamontowany w prawidłowy sposób, co jest zalecane przez producentów pojazdów.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Element przedstawiony na ilustracji jest częścią układu

Ilustracja do pytania
A. hamulcowego.
B. paliwowego.
C. zapłonowego.
D. rozruchowego.
Element przedstawiony na zdjęciu to pompa paliwa, kluczowy komponent układu paliwowego pojazdu. Pompa paliwa ma za zadanie transportować paliwo z baku do silnika, co jest fundamentalne dla zapewnienia jego prawidłowej pracy. W nowoczesnych pojazdach standardem jest używanie pomp elektrycznych, które charakteryzują się wysoką efektywnością i niezawodnością. Zgodnie z dobrymi praktykami, pompy paliwa powinny być regularnie sprawdzane, aby zapobiegać problemom z zasilaniem silnika, co może prowadzić do jego zgaśnięcia w trakcie jazdy. W przypadku awarii pompy, objawy mogą obejmować trudności w uruchomieniu silnika, spadki mocy oraz nierówną pracę jednostki napędowej. Ważne jest, aby mechanicy byli dobrze zaznajomieni z tym elementem, aby mogli szybko diagnozować i naprawiać ewentualne usterki. W kontekście standardów, stosowanie wysokiej jakości elementów i regularna konserwacja zapewniają długowieczność układu paliwowego.

Pytanie 22

Miganie lampki MIL na desce rozdzielczej pojazdu oznacza

A. wystąpienie usterki mogącej doprowadzić do uszkodzenia układu oczyszczania spalin
B. niemożność realizacji monitorów w trakcie jazdy
C. zakaz uruchamiania silnika
D. wykonanie manewru parkowania w pojeździe z funkcją parkowania automatycznego
Lampka MIL (Malfunction Indicator Lamp) to wskaźnik, który informuje kierowcę o problemach związanych z silnikiem lub układem oczyszczania spalin. Miganie tej lampki wskazuje na poważną usterkę, która może prowadzić do uszkodzenia układu oczyszczania spalin, co z kolei może skutkować większymi kosztami naprawy oraz negatywnym wpływem na środowisko. Przykładowo, usterki takie jak awaria katalizatora, czujnika tlenu lub uszkodzenie systemu recyrkulacji spalin mogą wywołać miganie lampki MIL. W sytuacji, gdy lampka zaczyna migać, zaleca się natychmiastowe zatrzymanie pojazdu oraz skonsultowanie się z wykwalifikowanym mechanikiem celem diagnostyki. Dobre praktyki wskazują, że ignorowanie tych sygnałów może prowadzić do poważniejszych uszkodzeń silnika oraz naruszenia norm emisji spalin. Zrozumienie znaczenia lampki MIL jest kluczowe dla utrzymania pojazdu w dobrym stanie oraz minimalizacji negatywnego wpływu na środowisko.

Pytanie 23

Przyczyną "strzelania" silnika do układu wydechowego nie jest

A. brak zapłonu w jednym z cylindrów
B. zapieczone wtryskiwacze paliwowe
C. nieszczelność zaworu wydechowego
D. zbyt bogata mieszanka paliwowo-powietrzna
Jak brak zapłonu na jednym z cylindrów, to może się zdarzyć strzelanie w tłumik. Dlaczego? Bo wtedy robi się niewłaściwe spalanie paliwa. Kiedy jeden cylinder nie działa, reszta musi to jakoś nadrobić, co może skutkować bogatszą mieszanką paliwa i powietrza. Niewypalone paliwo, które nie spala się w cylindrze, przechodzi do układu wydechowego i tam się zapala, co doprowadza do strzałów w tłumiku. Nieszczelność zaworu wydechowego też może być przyczyną - źle działający zawór wpuszcza spaliny do wydechu, co stwarza warunki do zapłonu paliwa. Zbyt bogata mieszanka paliwowo-powietrzna, przez różne czynniki jak źle ustawione wtryskiwacze czy problemy z czujnikami, także może przyczynić się do tego efektu. Dlatego, żeby uniknąć strzelania, warto regularnie robić przeglądy silnika, zwłaszcza układu zapłonowego i trzymać rękę na pulsie, jeśli chodzi o stan wtryskiwaczy i wydechu.

Pytanie 24

Co może być przyczyną nadmiernego zużycia zewnętrznych krawędzi bieżnika jednej z opon?

A. Nieprawidłowa zbieżność kół
B. Zbyt wysokie ciśnienie w oponie
C. Nieodpowiedni kąt nachylenia koła
D. Zbyt niskie ciśnienie w oponie
Zbyt niskie ciśnienie w oponie jest jedną z najczęstszych przyczyn nadmiernego zużycia bieżnika, zwłaszcza na jego zewnętrznych krawędziach. Kiedy ciśnienie jest niższe od zalecanego, opona ma tendencję do deformacji i nadmiernego kontaktu z nawierzchnią drogi, co prowadzi do zwiększonego tarcia. W efekcie zewnętrzne krawędzie bieżnika ulegają szybszemu zużyciu. Regularne sprawdzanie ciśnienia w oponach jest niezwykle istotne, nie tylko dla przedłużenia ich żywotności, ale także dla bezpieczeństwa jazdy oraz efektywności paliwowej pojazdu. Standardy branżowe, takie jak te określone przez Europejskie Stowarzyszenie Producentów Opon (ETRMA), zalecają kontrolowanie ciśnienia co miesiąc oraz przed dłuższymi podróżami. Utrzymywanie prawidłowego ciśnienia pomaga zapewnić równomierne zużycie opon oraz optymalne osiągi pojazdu, co jest kluczowe w kontekście bezpieczeństwa na drodze.

Pytanie 25

Siłą hamowania hamulca zasadniczego określamy

A. różnicę siły hamowania pomiędzy kołami tylnej osi
B. różnicę siły hamowania pomiędzy kołami przedniej osi
C. suma sił hamowania w jednej sekcji
D. suma sił hamowania wszystkich kół pojazdu względem jego masy dopuszczalnej
Współczynnik siły hamowania hamulca zasadniczego to kluczowy parametr w ocenie skuteczności systemu hamulcowego pojazdu. Oznacza on stosunek sumy sił hamowania wszystkich kół do masy dopuszczalnej pojazdu. Taki współczynnik jest istotny dla zapewnienia bezpieczeństwa na drodze, ponieważ pozwala na określenie, czy pojazd jest w stanie zatrzymać się w odpowiednim czasie. W praktyce, im wyższy współczynnik, tym lepsza skuteczność hamulców. Na przykład, w pojazdach osobowych standardowy współczynnik siły hamowania wynosi zazwyczaj od 0,5 do 0,7, co oznacza, że pojazd może zatrzymać się w znacznie krótszym czasie niż wynosi jego długość. Przykładowo, jeżeli masa pojazdu wynosi 1500 kg, a suma sił hamowania wynosi 9000 N, to współczynnik siły hamowania wynosi 6, co sugeruje bardzo dobrą efektywność. Dobrze zrozumiany i obliczony współczynnik siły hamowania jest niezbędny w procesie projektowania hamulców oraz oceny ich wydajności zgodnie z normami branżowymi, takimi jak ECE R13 czy FMVSS 105, które regulują wymagania dotyczące systemów hamulcowych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Do diagnostyki stosuje się lampę stroboskopową w przypadku

A. systemu zapłonowego
B. systemu napędowego
C. systemu kierowniczego
D. systemu hamulcowego
Lampa stroboskopowa jest narzędziem diagnostycznym, które umożliwia ocenę działania układu zapłonowego silnika spalinowego. Jej działanie opiera się na emitowaniu błysków świetlnych w regularnych odstępach czasu, co pozwala na wizualizację ruchu elementów silnika, takich jak wałek rozrządu czy zapłon. Dzięki stroboskopowi mechanik może ocenić synchronizację zapłonu oraz ewentualne opóźnienia, co jest kluczowe dla prawidłowego funkcjonowania silnika. Przykładem praktycznego zastosowania lampy stroboskopowej jest analiza działania pojedynczego cylindra w silniku, co umożliwia wykrycie problemów z iskrownikiem lub cewką zapłonową. Dobrym standardem w branży jest przeprowadzanie diagnozy przy użyciu lampy stroboskopowej w trakcie regulacji zapłonu, aby upewnić się, że osiągnięto optymalne ustawienia dla maksymalnej efektywności silnika. Regularne użycie tego narzędzia w warsztatach samochodowych przyczynia się do poprawy jakości usług oraz zadowolenia klientów.

Pytanie 28

Podczas przeglądu technicznego samochodu stwierdzono potrzebę wymiany oleju silnikowego oraz klocków hamulcowych w kwocie 120,00 zł za komplet. Koszt 4 l oleju z filtrem olejowym wyniósł 160,00 zł, a wartość robocizny to 320,00 zł. Całkowity koszt usługi po uwzględnieniu 10% rabatu wyniósł

A. 540,00 zł
B. 480,00 zł
C. 560,00 zł
D. 600,00 zł
Aby obliczyć łączny koszt usługi po uwzględnieniu zniżki, należy zsumować wszystkie koszty związane z wymianą oleju oraz klocków hamulcowych. Koszt wymiany klocków hamulcowych wynosi 120,00 zł, a koszt oleju silnikowego i filtra to 160,00 zł. Koszt robocizny wynosi 320,00 zł. Łączny koszt usługi przed zniżką wynosi 120,00 zł + 160,00 zł + 320,00 zł = 600,00 zł. Następnie należy obliczyć 10% zniżkę, co daje 60,00 zł. Po odjęciu zniżki od pierwotnego kosztu, otrzymujemy 600,00 zł - 60,00 zł = 540,00 zł. Przykład ten ilustruje ważność znajomości procedur przeglądów okresowych oraz umiejętności kalkulacji kosztów, co jest kluczowe w profesjonalnym zarządzaniu pojazdami. W praktyce, wiele warsztatów stosuje podobne podejście do kalkulacji kosztów usług, aby zapewnić transparentność i zrozumiałość dla klienta, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 29

W pojeździe, w którym występuje szarpanie podczas ruszania, należy przede wszystkim zweryfikować stopień zużycia

A. elementów sprzęgła
B. synchronizatora pierwszego biegu
C. silnika w związku z "wypadaniem zapłonów"
D. układu hamulcowego (blokowanie kół)
Elementy sprzęgła są kluczowym układem w pojazdach, który umożliwia płynne przekazywanie momentu obrotowego z silnika na skrzynie biegów. Szarpanie podczas ruszania z miejsca często wskazuje na problemy z tym układem, takie jak zużycie tarcz sprzęgłowych lub niewłaściwe ustawienie pedału sprzęgła. W przypadku zużycia tarcz, ich niewłaściwe zgrzewanie może prowadzić do szarpania, ponieważ tarcze nie zaciskają się równomiernie. W praktyce, diagnozując problemy ze sprzęgłem, mechanicy często sprawdzają grubość tarcz, a także działanie łożyska oporowego, które także może wpłynąć na komfort ruszania. Dobre praktyki w diagnostyce obejmują również testowanie działania sprzęgła w różnych warunkach, co pozwala na dokładne zidentyfikowanie problemu. Warto również pamiętać o regularnym przeglądzie układu sprzęgłowego, co może zapobiec poważnym awariom w przyszłości.

Pytanie 30

W głównej przekładni mostu napędowego najczęściej wykorzystuje się przekładnie

A. walcową.
B. hipoidalną.
C. cierną.
D. ślimakową.
Przekładnie hipoidalne są najczęściej stosowane w przekładniach głównych mostów napędowych ze względu na ich unikalne właściwości. Ich konstrukcja pozwala na efektywne przenoszenie momentu obrotowego przy jednoczesnym zapewnieniu kompaktowych rozmiarów. Przekładnie te charakteryzują się zębatkami, które są ustawione pod kątem, co umożliwia większy kąt zębatki w porównaniu do przekładni walcowych. Dzięki temu, hipoidalne przekładnie oferują lepsze właściwości w zakresie redukcji hałasu oraz zmniejszenia wibracji. W praktyce, wykorzystywane są w pojazdach osobowych, ciężarowych oraz w maszynach przemysłowych, gdzie wymagana jest wysoka wydajność przeniesienia mocy. Te przekładnie są zgodne z normami branżowymi, co zapewnia ich niezawodność i trwałość. Dodatkowo, ich projektowanie opiera się na doskonałych praktykach inżynieryjnych, które pozwalają na optymalizację osiągów i ekonomii eksploatacji.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Aby zdemontować łożyska z piast kół samochodu, jakie narzędzie powinno być wykorzystane?

A. szczypiec uniwersalnych
B. prasy hydraulicznej
C. rozpieraka
D. zbieraka
Demontaż łożysk z piast kół pojazdów przy użyciu szczypiec uniwersalnych, zbijaka czy rozpieraka jest niewłaściwą metodą, która może prowadzić do licznych problemów technicznych. Szczypce uniwersalne, choć przydatne w wielu zadaniach, nie zapewniają odpowiedniej siły i precyzji niezbędnej do skutecznego usunięcia łożyska. Używanie ich do tego celu wiąże się z ryzykiem uszkodzenia zarówno łożyska, jak i samej piasty, co może prowadzić do konieczności wymiany tych elementów. Z kolei zbijak, który jest narzędziem przeznaczonym do uderzeń, nie jest w stanie równomiernie aplikować siły na łożysko, co zwiększa ryzyko pęknięcia lub deformacji komponentów. Rozpierak, pomimo swojego zastosowania w niektórych sytuacjach, również nie jest odpowiednim narzędziem do demontażu łożysk, ponieważ jego działanie może prowadzić do niekontrolowanego rozdzielania elementów, co również niesie ze sobą ryzyko uszkodzeń. W praktyce, należy unikać takich nieodpowiednich metod, które mogą prowadzić do błędów myślowych związanych z przeświadczeniem, że nie każde narzędzie można zastosować do każdego zadania. Zastosowanie niewłaściwych narzędzi nie tylko wydłuża czas pracy, ale również zwiększa koszty naprawy i może wpływać na bezpieczeństwo użytkowania pojazdu.

Pytanie 34

Reaktor katalityczny stanowi część systemu

A. wylotowego
B. zasilania
C. napędowego
D. dolotowego
Reaktor katalityczny jest kluczowym komponentem układu wylotowego w pojazdach z silnikami spalinowymi. Jego głównym zadaniem jest redukcja emisji szkodliwych substancji, takich jak tlenki azotu, węglowodory i tlenek węgla, poprzez katalityczną konwersję ich w mniej szkodliwe związki, takie jak azot i dwutlenek węgla. Przykładem zastosowania reaktora katalitycznego jest jego rola w układzie wydechowym, gdzie zachodzi reakcja chemiczna na powierzchni katalizatora. W praktyce, reaktory te współpracują z systemem monitorowania emisji, co pozwala na spełnienie norm ekologicznych, takich jak te określone w normach Euro. Dobre praktyki branżowe zalecają regularne kontrole stanu reaktora katalitycznego, aby zapewnić jego efektywność i długowieczność, co z kolei wpływa na zmniejszenie kosztów eksploatacyjnych pojazdów oraz ograniczenie ich wpływu na środowisko. Współczesne technologie wytwarzania katalizatorów, w tym rozwój katalizatorów na bazie platyny, palladu czy rod, pozwalają na osiąganie coraz lepszych parametrów redukcji emisji, co czyni reaktory katalityczne niezbędnym elementem nowoczesnych układów wydechowych.

Pytanie 35

Wstępna ocena organoleptyczna stanu technicznego amortyzatora, obejmuje

A. analizę wzrokową stopnia zużycia opon pojazdu
B. analizę zużycia sprężyn zawieszenia
C. analizę stanu zużycia drążków kierowniczych
D. analizę stanu zużycia tulei wahaczy
Wstępna, organoleptyczna ocena stanu technicznego amortyzatora obejmuje przede wszystkim wzrokową ocenę zużycia opon samochodu, ponieważ opony są kluczowym elementem układu zawieszenia i mają bezpośredni wpływ na bezpieczeństwo oraz komfort jazdy. Ich stan może wskazywać na problemy z amortyzacją, takie jak nierównomierne zużycie, co może być efektem niewłaściwego działania amortyzatorów. Przykładem praktycznym może być sytuacja, w której opony mają widoczne nierówności lub deformacje, co jest sygnałem, że zawieszenie i amortyzatory mogą wymagać dokładniejszej inspekcji. W branży motoryzacyjnej standardem jest regularna kontrola stanu opon oraz zawieszenia, co pozwala na wczesne wykrycie potencjalnych problemów. Technik powinien być w stanie ocenić opony pod kątem ich wieku, głębokości bieżnika oraz ewentualnych uszkodzeń. Taka ocena jest zgodna z dobrymi praktykami oraz zaleceniami producentów pojazdów, co przekłada się na bezpieczeństwo użytkowników dróg.

Pytanie 36

Który z podanych komponentów zawieszenia ma funkcję sprężynującą?

A. Tłumik
B. Zakończenie drążka kierowniczego
C. Resor piórowy
D. Łącznik stabilizatora
Resor piórowy jest kluczowym elementem zawieszenia, który pełni funkcję sprężynującą w pojazdach. Jego zadaniem jest absorpcja sił działających na pojazd podczas jazdy, co poprawia komfort podróżowania oraz stabilność pojazdu. Resory piórowe składają się z kilku warstw sprężystych, które rozkładają obciążenia na większą powierzchnię, co przyczynia się do ich efektywności. W praktyce, resory piórowe są często stosowane w pojazdach użytkowych oraz w samochodach terenowych, gdzie wymagane są wysokie osiągi w trudnych warunkach. Dobrą praktyką jest regularne sprawdzanie stanu resorów, ponieważ ich zużycie może prowadzić do pogorszenia właściwości jezdnych oraz zwiększenia ryzyka awarii. W standardach branżowych, jak ISO 9001, zaleca się prowadzenie systematycznej konserwacji oraz wymiany elementów zawieszenia w celu zapewnienia bezpieczeństwa i wydajności pojazdu.

Pytanie 37

Na przedstawionym rysunku numerem 14 oznaczony jest pierścień

Ilustracja do pytania
A. uszczelniający.
B. zgarniający.
C. sworznia tłokowego.
D. odprowadzający temperaturę.
Analizując błędne odpowiedzi na to pytanie, warto zwrócić uwagę na kluczowe różnice w funkcji poszczególnych elementów silnika. Sworzeń tłokowy, który mógł się pojawić w odpowiedzi, pełni zupełnie inną rolę w mechanizmie pracy silnika, będąc elementem, który łączy tłok z korbowodem, a jego zadaniem jest przenoszenie ruchu tłoka na korbowód, co nie ma związku z zarządzaniem olejem w cylindrze. Podobnie, pierścień uszczelniający, który jest często mylony z pierścieniem zgarniającym, służy głównie do utrzymywania ciśnienia w komorze spalania oraz zapobiegania wyciekom gazów, a nie do usuwania nadmiaru oleju. Z kolei pierścień odprowadzający temperaturę, choć istotny w kontekście zarządzania ciepłem silnika, nie ma bezpośredniego wpływu na ilość oleju w komorze cylindrowej. Główne nieporozumienie wynika z nieznajomości ról, jakie poszczególne elementy odgrywają w silniku, co skutkuje błędnymi wnioskami. Kluczowe jest zrozumienie, że pierścień zgarniający w sposób aktywny reguluje ilość oleju, co jest niezbędne do prawidłowej pracy silnika, podczas gdy inne wymienione pierścienie pełnią zupełnie różne funkcje, które nie mają odzwierciedlenia w tym kontekście. W praktyce, błędne zrozumienie tych ról może prowadzić do problemów z eksploatacją silnika, jego wydajnością oraz trwałością.

Pytanie 38

Do technik defektoskopowych wykorzystywanych w ocenie komponentów nie zalicza się techniki

A. ultradźwiękowej
B. rentgenowskiej
C. magnetycznej
D. objętościowej
Zastosowanie metod defektoskopowych w weryfikacji części jest kluczowe w zapewnieniu jakości i bezpieczeństwa produktów przemysłowych. Odpowiedzi, które wskazują na metody magnetyczną, rentgenowską oraz ultradźwiękową, są jednym z najczęściej stosowanych podejść w przemyśle, co może wprowadzać w błąd osoby, które nie są zaznajomione z pełnym zakresem metod badań. Metoda magnetyczna, bazująca na właściwościach ferromagnetycznych materiałów, wykorzystuje pole magnetyczne do wykrywania wad powierzchniowych i podpowierzchniowych. Z kolei badania rentgenowskie wykorzystują promieniowanie elektromagnetyczne do analizy strukturalnej materiałów, co pozwala na identyfikację wewnętrznych nieciągłości. Metoda ultradźwiękowa, która polega na wysyłaniu fal dźwiękowych o wysokiej częstotliwości, umożliwia detekcję defektów w materiałach o różnej gęstości i strukturze. Wybór odpowiedniej metody jest kluczowy w zależności od rodzaju materiału oraz charakterystyki wad, co wymaga zrozumienia ich właściwości oraz zastosowania w praktyce. Wybierając nieprawidłową odpowiedź, można wpaść w pułapkę myślenia, że każda metoda defektoskopowa jest równoznaczna w kontekście badań różnych materiałów, co jest dalekie od prawdy. Kluczowe jest zatem świadome podejście do analizy, które uwzględnia specyfikę każdego z podejść oraz ich zastosowanie w praktyce, co jest niezbędne dla zapewnienia skutecznej detekcji wad.

Pytanie 39

Po zakończeniu wymiany zaworów dolotowych w silniku należy

A. zweryfikować twardość sprężyn zaworowych
B. sprawdzić szczelność zaworów
C. usunąć zabezpieczenie trzonka zaworu
D. frezować gniazda zaworowe
Sprawdzanie szczelności zaworów jest kluczowym krokiem po wymianie zaworów dolotowych silnika. Zawory są odpowiedzialne za regulację przepływu mieszanki paliwowo-powietrznej do cylindrów oraz za wydobywanie spalin. Nieszczelność zaworów może prowadzić do znacznych strat mocy silnika, zwiększonego zużycia paliwa oraz nieprawidłowego działania jednostki napędowej. W praktyce, podczas sprawdzania szczelności zaworów, można wykorzystać metody takie jak próba ciśnieniowa, która polega na wprowadzeniu powietrza do cylindra i obserwacji, czy ciśnienie utrzymuje się na odpowiednim poziomie. Dobrą praktyką jest również użycie specjalistycznych narzędzi, takich jak zestawy do testowania szczelności, które umożliwiają dokładne określenie ewentualnych wycieków. Należy pamiętać, że zgodnie z normami branżowymi, regularne sprawdzanie szczelności zaworów powinno być częścią rutynowej konserwacji silnika, co pozwala na utrzymanie jego optymalnej wydajności oraz przedłużenie żywotności komponentów.

Pytanie 40

Dzięki lampie stroboskopowej możliwe jest wykonanie pomiaru

A. ustawień świateł.
B. kąta wyprzedzenia zapłonu.
C. ciśnienia sprężania.
D. zbieżności kół.
Wybór odpowiedzi dotyczący ustawienia świateł, ciśnienia sprężania czy zbieżności kół to typowe pułapki myślowe, które mogą prowadzić do nieporozumień w diagnostyce pojazdów. Ustawienie świateł dotyczy ich właściwej orientacji i poziomu, co jest ważne dla bezpieczeństwa na drodze, ale nie ma związku z pomiarem kąta wyprzedzenia zapłonu. Ciśnienie sprężania to parametr silnika, który można mierzyć za pomocą manometru, a nie lampy stroboskopowej. Pomiar tego ciśnienia ma na celu ocenę stanu technicznego silnika, ale nie dotyczy on ustawienia zapłonu. Zbieżność kół to z kolei problem związany z geometrią zawieszenia pojazdu, który wpływa na jego prowadzenie, ale nie jest bezpośrednio związany z działaniem silnika czy zapłonu. Błędne myśli prowadzące do tych odpowiedzi mogą wynikać z mylenia podstawowych pojęć związanych z diagnostyką. Każdy z tych parametrów wymaga innych narzędzi i technik pomiarowych, co powinno być dobrze zrozumiane przez specjalistów zajmujących się obsługą i diagnostyką pojazdów. Dlatego kluczowe jest posługiwanie się odpowiednimi narzędziami w odpowiednich kontekstach oraz dogłębne zrozumienie, jakie aspekty pojazdu można mierzyć za pomocą konkretnego sprzętu.