Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 00:55
  • Data zakończenia: 17 grudnia 2025 01:10

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. buty ochronne
B. kask ochronny
C. maskę przeciwpyłową
D. okulary ochronne
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 2

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. utlenianie
B. gęstość
C. smarność
D. lepkość
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Gaussotron.
B. Termistor.
C. Warystor.
D. Tensometr.
Warystor to element elektroniczny, którego rezystancja gwałtownie spada po przekroczeniu określonego napięcia, znanego jako napięcie nominalne. Ten mechanizm jest zjawiskiem nieliniowym, co oznacza, że warystor działa jako izolator, gdy napięcie jest poniżej tego poziomu, ale staje się przewodnikiem, gdy napięcie przekracza tę granicę. Warystory są często stosowane w obwodach ochronnych, aby zabezpieczać urządzenia przed przepięciami, na przykład w zasilaczach oraz w systemach zabezpieczeń. Gdy napięcie wzrasta, warystor skutecznie 'odprowadza' nadmiar energii, co zapobiega uszkodzeniu innych komponentów w obwodzie. Z punktu widzenia norm i dobrych praktyk, warystory są zalecane w projektach, gdzie występuje ryzyko przepięć, zgodnie z normami IEC 61000-4-5 dotyczącymi odporności na przepięcia. Dodatkowo, ich zastosowanie w ochronie obwodów elektronicznych staje się kluczowe w kontekście wzrastającej liczby urządzeń narażonych na zakłócenia sieciowe oraz zmienność napięcia.

Pytanie 5

Jaki rodzaj klucza należy zastosować do przykręcenia pokazanej na rysunku śruby?

Ilustracja do pytania
A. Torx.
B. Nasadowy.
C. Imbusowy.
D. Płaski.
Odpowiedź imbusowy jest prawidłowa, ponieważ śruba na zdjęciu wyposażona jest w sześciokątny otwór, charakterystyczny dla kluczy imbusowych. Klucze te, znane także jako klucze sześciokątne, są powszechnie stosowane w różnych dziedzinach, od mechaniki po meblarstwo. Dzięki swojej konstrukcji, klucze imbusowe umożliwiają łatwe i skuteczne przykręcanie oraz odkręcanie śrub nawet w trudno dostępnych miejscach. W praktyce, klucze te są niezwykle przydatne w montażu mebli, naprawie rowerów czy w budowie strukturalnej, gdzie potrzebna jest wysoka dokładność. Warto również zauważyć, że stosowanie kluczy imbusowych zgodnych z odpowiednimi normami (np. ISO 2936) zapewnia długowieczność zarówno narzędzia, jak i śrub, co przekłada się na efektywność pracy oraz bezpieczeństwo użytkowania. Pamiętaj, aby zawsze dobierać odpowiedni rozmiar klucza imbusowego do śruby, aby uniknąć uszkodzeń. Używanie nieodpowiedniego klucza może prowadzić do uszkodzenia otworu w głowie śruby, co może skutkować problemami przy jej późniejszym odkręcaniu.

Pytanie 6

Który symbol graficzny oznacza sterowanie ręczne dźwignią?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Symbol graficzny oznaczający sterowanie ręczne dźwignią, przedstawiony przy odpowiedzi A, jest powszechnie stosowany w różnych dziedzinach inżynierii, w tym w automatyce i hydraulice. Dźwignie ręczne są kluczowym elementem w wielu urządzeniach, takich jak podnośniki, maszyny budowlane oraz systemy transportowe. Ich zrozumienie jest niezbędne dla inżynierów i techników, aby skutecznie projektować i obsługiwać urządzenia. W praktyce, dźwignia umożliwia użytkownikowi manualne sterowanie procesem, co jest istotne w sytuacjach, gdzie automatyzacja jest niewystarczająca. Symbol ten jest również zgodny z normami ISO, które regulują oznakowanie urządzeń i ich funkcji. Przy odpowiedniej interpretacji tego symbolu, operatorzy są w stanie skutecznie i bezpiecznie korzystać z urządzeń, co przekłada się na zwiększenie wydajności pracy oraz minimalizację ryzyka błędów. Zrozumienie tych symboli jest kluczowe w kontekście szkoleń BHP oraz przy wprowadzaniu nowych pracowników do procedur obsługi maszyn.

Pytanie 7

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i przeprowadzić sztuczne oddychanie
B. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
C. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
D. przeprowadzić reanimację poszkodowanego i wezwać pomoc
Dobrze, że wybrałeś odpowiedź, która mówi o wezwaniu pomocy i udrożnieniu dróg oddechowych. Wiesz, że w sytuacji, gdy ktoś jest nieprzytomny i nie oddycha, to właśnie drożność dróg oddechowych jest kluczowa? Zgodnie z wytycznymi ERC, najpierw powinniśmy upewnić się, że drogi oddechowe są drożne, co można zrobić na przykład metodą 'tilt-chin' albo 'jaw-thrust'. Jak już upewnimy się, że wszystko jest ok, wtedy dzwonimy po pomoc i kontynuujemy resuscytację. Przykład? Wyobraź sobie wypadek samochodowy – pierwsze co, to musimy zadbać, by poszkodowany mógł oddychać, inaczej może dojść do niedotlenienia mózgu. I pamiętaj, według aktualnych wytycznych, nie należy robić sztucznego oddychania, zanim nie udrożnimy dróg, bo inaczej powietrze nie dotrze do płuc i tylko pogorszy sytuację.

Pytanie 8

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. przewlekanego
B. zaciskowego
C. skręcanego
D. powierzchniowego
Skrót THT (Through-Hole Technology) odnosi się do technologii montażu komponentów elektronicznych, w której elementy są umieszczane w otworach wykonanych w płytce drukowanej. Ta technika montażu jest szczególnie popularna w przypadku komponentów o większych rozmiarach, takich jak kondensatory elektrolityczne, złącza czy elementy pasywne. Przykładem zastosowania THT są urządzenia elektroniczne, które wymagają wysokiej wytrzymałości mechanicznej, takie jak zasilacze czy moduły czołowe w systemach audio. W praktyce, podczas montażu THT, komponenty są najpierw wstawiane do otworów, a następnie lutowane od spodu płytki, co zapewnia trwałe i solidne połączenie. W branży stosuje się standardy IPC (Institute for Interconnecting and Packaging Electronic Circuits), które określają zasady dotyczące jakości i trwałości takich połączeń. Technologia THT, mimo rosnącej popularności montażu powierzchniowego (SMT), pozostaje kluczowa w wielu aplikacjach, gdzie wymagane są wytrzymałe połączenia oraz łatwość naprawy lub wymiany komponentów.

Pytanie 9

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. zwarciem jednej fazy z obudową.
B. przerwą w jednej z faz.
C. zwarciem dwóch faz.
D. błędną sekwencją faz.
Kolejność faz w trójfazowym silniku indukcyjnym to naprawdę istotna sprawa, bo ma duży wpływ na to, w którą stronę silnik się obraca. Te silniki działają dzięki wirującemu polu magnetycznemu, które powstaje właśnie przez różnice między fazami w przewodach. Kiedy zamieniasz miejscami fazy A, B i C, pole zmienia kierunek, no i silnik obraca się w drugą stronę. To ma znaczenie w wielu miejscach, jak na przykład przy taśmociągach w fabrykach, gdzie wszystko musi działać jak należy, żeby nie tracić czasu. Jak już coś nie gra z podłączeniem, to można szybko sprawdzić sytuację z miernikiem fazowym, który pokaże, jak to wygląda. Dlatego warto przestrzegać zasad przy podłączaniu silników, bo to ważne dla ich działania i bezpieczeństwa. Bez tego, mogą się pojawić poważne problemy.

Pytanie 10

W procesie TIG stosuje się technikę spawania

A. strumieniem elektronów
B. elektrodą wolframową w osłonie argonowej
C. łukiem plazmowym
D. elektrodą topliwą w osłonie dwutlenku węgla
Metoda TIG (Tungsten Inert Gas) to technika spawania, w której wykorzystuje się elektrodę wolframową, a osłona gazowa pochodzi z argonu. Wolfram charakteryzuje się wysoką temperaturą topnienia, co pozwala na uzyskanie stabilnego łuku elektrycznego, niezbędnego do spawania metali. Proces ten jest niezwykle precyzyjny i doskonały dla spawania cienkowarstwowego, co czyni go idealnym do zastosowania w branżach takich jak lotnictwo, motoryzacja czy medycyna, gdzie wymagana jest wysoka jakość i wytrzymałość spoin. Przykładem może być spawanie elementów konstrukcyjnych w lekkich pojazdach lub komponentów silników, gdzie każdy detal ma kluczowe znaczenie dla bezpieczeństwa oraz wydajności. Metoda TIG umożliwia również spawanie różnych materiałów, takich jak stal nierdzewna, aluminium czy tytan, co sprawia, że jest niezwykle wszechstronna. Dobre praktyki w tej metodzie obejmują odpowiednie przygotowanie powierzchni spawanych elementów oraz właściwe ustawienie parametrów spawania, co wpływa na jakość i trwałość spoiny.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Ilustracja przedstawia proces

Ilustracja do pytania
A. szlifowania.
B. cięcia plazmą.
C. spawania łukowego.
D. zgrzewania.
Cięcie plazmą to zaawansowana technologia obróbcza, która wykorzystuje wysokotemperaturową plazmę do precyzyjnego cięcia metali. Na przedstawionej ilustracji dostrzegamy charakterystyczny wygląd procesu, gdzie jasna plazmowa wiązka koncentruje się na materiale, umożliwiając jego szybkie i dokładne przecięcie. Ta metoda jest szczególnie ceniona w przemyśle, gdzie wymagana jest wysoka jakość cięcia oraz minimalne zniekształcenie krawędzi. Cięcie plazmowe charakteryzuje się dużą prędkością pracy, co pozwala na oszczędność czasu podczas produkcji i obróbki. Technologia ta jest często wykorzystywana w maszynach CNC, co dodatkowo zwiększa jej precyzję i powtarzalność. Standardy branżowe, takie jak ISO 9013, opisują wymagania dotyczące jakości cięcia plazmowego, co czyni tę metodę nie tylko skuteczną, ale i zgodną z międzynarodowymi normami. Warto zaznaczyć, że cięcie plazmą znajduje zastosowanie w wielu branżach, od produkcji stalowej, przez przemysł motoryzacyjny, aż po konstrukcje budowlane.

Pytanie 14

Z jaką maksymalną dokładnością można wykonać pomiar za pomocą suwmiarki przedstawionej na rysunku?

Ilustracja do pytania
A. 0,20 mm
B. 0,10 mm
C. 0,02 mm
D. 0,01 mm
Pomiar wykonany za pomocą suwmiarki o najmniejszym podziale równym 0,02 mm jest jak najbardziej poprawny. Oznacza to, że ten instrument pomiarowy jest w stanie zrealizować dokładność na poziomie dwóch setnych milimetra, co jest niezbędne w wielu zastosowaniach inżynieryjnych i mechanicznych. Przykładowo, w przemyśle motoryzacyjnym, gdzie precyzyjne wymiary komponentów są kluczowe dla ich funkcjonowania, suwmiarki o tak wysokiej dokładności są niezwykle cenione. Dobrze skalibrowana suwmiarka powinna być stosowana do pomiarów takich jak grubość materiałów, średnice rur czy elementy do montażu, gdzie tolerancje wynoszą często kilka setnych milimetra. Standard ISO 13385 określa wymagania dotyczące pomiarów wykonanych przy użyciu takich narzędzi, co podkreśla znaczenie stosowania precyzyjnych przyrządów w kontrolach jakości oraz procesach produkcyjnych. Warto również pamiętać o regularnej kalibracji i konserwacji suwmiarki, aby zapewnić stałą dokładność pomiarów.

Pytanie 15

Który z poniższych czujników mierzących powinien być użyty do określenia wartości ciśnienia w zbiorniku sprężonego powietrza oraz do przesłania danych do sterownika PLC z analogowymi wejściami?

A. Czujnik ultradźwiękowy
B. Czujnik piezorezystancyjny
C. Czujnik manometryczny
D. Czujnik termoelektryczny
Czujnik piezorezystancyjny jest idealnym rozwiązaniem do pomiaru ciśnienia w zbiorniku sprężonego powietrza z kilku powodów. Po pierwsze, jego zasada działania opiera się na zmianie oporu elektrycznego materiału piezorezystancyjnego w odpowiedzi na zmieniające się ciśnienie. Dzięki temu, czujniki te charakteryzują się wysoką dokładnością oraz szybkim czasem reakcji, co jest kluczowe w aplikacjach przemysłowych. Piezorezystancyjne czujniki ciśnienia można zintegrować z systemem PLC za pomocą analogowych sygnałów, co umożliwia ciągły monitoring i kontrolę procesów. Przykładowo, w systemach automatyki przemysłowej często wykorzystuje się je do kontrolowania ciśnienia w układach pneumatycznych, co pozwala na precyzyjne zarządzanie pracą urządzeń. Dodatkowo, czujniki te są zgodne z międzynarodowymi normami, co zapewnia ich niezawodność i bezpieczeństwo działania w trudnych warunkach. W kontekście stosowania czujników piezorezystancyjnych, warto również wspomnieć o ich zdolności do pracy w szerokim zakresie ciśnień oraz temperatur, co czyni je uniwersalnym narzędziem w wielu aplikacjach przemysłowych.

Pytanie 16

Który rodzaj sprężarki powietrza przedstawiono na rysunku?

Ilustracja do pytania
A. Spiralną.
B. Śrubową.
C. Tłokową.
D. Membranową.
Sprężarka tłokowa, przedstawiona na rysunku, jest jednym z najpopularniejszych rodzajów sprężarek powietrza używanych w różnych branżach. Wykorzystuje ruch tłoków w cylindrach do sprężania powietrza, co pozwala na znaczne zwiększenie ciśnienia. Tego typu sprężarki są często stosowane w warsztatach, zakładach przemysłowych, a także w systemach klimatyzacyjnych i chłodniczych. Ich zaletą jest prostota konstrukcji oraz możliwość osiągania wysokich ciśnień. Sprężarki tłokowe są zgodne z wieloma międzynarodowymi standardami jakości, takimi jak ISO 9001, co potwierdza ich niezawodność i efektywność. Przykładem zastosowania sprężarek tłokowych są urządzenia pneumatyczne, narzędzia wiertnicze oraz systemy automatyzacji przemysłowej, gdzie wymagana jest stała i wydajna dostawa sprężonego powietrza. Warto zaznaczyć, że poprawne użytkowanie oraz konserwacja sprężarek tłokowych, zgodnie z zaleceniami producentów, mają kluczowe znaczenie dla ich długowieczności i efektywności operacyjnej.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie urządzenie można zastosować do pomiaru siły nacisku generowanej przez prasę pneumatyczną?

A. szczelinomierz
B. tensometr
C. pirometr
D. hallotron
Tensometr to urządzenie służące do pomiaru deformacji materiałów, co czyni go idealnym narzędziem do pomiaru siły nacisku wytwarzanej przez prasę pneumatyczną. Działa na zasadzie pomiaru zmiany oporu elektrycznego, który jest proporcjonalny do deformacji ciała stałego. W praktyce, tensometry są często stosowane w przemyśle do monitorowania obciążeń w różnych maszynach, w tym prasach hydraulicznych i pneumatycznych. Dzięki zastosowaniu tensometrów można na bieżąco kontrolować siłę nacisku, co jest niezwykle ważne dla zapewnienia bezpieczeństwa oraz efektywności procesów produkcyjnych. W standardach branżowych, takich jak ISO, zaleca się regularne stosowanie tensometrów w aplikacjach związanych z kontrolą jakości i monitorowaniem wydajności maszyn. Dodatkowo, zrozumienie działania tensometrów pozwala inżynierom na efektywniejsze projektowanie i optymalizację systemów mechanicznych.

Pytanie 19

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Gięcia przewodów elektrycznych.
B. Łączenia przewodów hydraulicznych.
C. Cięcia przewodów pneumatycznych.
D. Usuwania izolacji z przewodów elektrycznych.
Narzędzie przedstawione na rysunku to nożyk do przewodów z tworzyw sztucznych, które są powszechnie wykorzystywane w instalacjach pneumatycznych. Jego konstrukcja umożliwia precyzyjne cięcie różnych typów przewodów pneumatycznych, co jest niezwykle istotne w branży automatyki i pneumatyki. Przewody te często stosowane są w systemach transportu sprężonego powietrza, gdzie ich integralność i odpowiednie dopasowanie mają kluczowe znaczenie dla sprawności całego układu. Dzięki zastosowaniu tego narzędzia, możliwe jest uzyskanie gładkich krawędzi bez uszkodzenia struktury materiału, co minimalizuje ryzyko przecieków i awarii. Warto zwrócić uwagę, że zgodnie z najlepszymi praktykami w branży, cięcie przewodów powinno być przeprowadzane w sposób zabezpieczający przed odkształceniem ich końców, co zapewnia prawidłowe działanie systemów pneumatycznych. Dobrej jakości nożyk do przewodów jest niezbędnym wyposażeniem każdego technika zajmującego się instalacjami pneumatycznymi.

Pytanie 20

Aby sprawdzić stan bezpieczników, znaleźć niedokręcone złącza oraz zidentyfikować przegrzane elementy instalacji bez konieczności wyłączania zasilania, należy wykorzystać

A. kamerę termowizyjną
B. miernik RLC
C. miernik parametrów instalacji
D. miernik uniwersalny
Kamera termowizyjna jest specjalistycznym narzędziem, które pozwala na bezdotykowe monitorowanie temperatury obiektów w instalacjach elektrycznych. Dzięki wykrywaniu różnic temperatur, możliwe jest szybkie zlokalizowanie przegrzanych elementów, takich jak zwarcia, przeciążenia czy niedokręcone złącza, co może prowadzić do potencjalnych awarii. W praktyce, technicy często używają kamer termograficznych do regularnych przeglądów instalacji, co umożliwia wczesne wykrywanie problemów zanim dojdzie do uszkodzenia sprzętu czy pożaru. W branży energetycznej oraz budowlanej, zgodnie z normą NFPA 70E, regularne inspekcje termograficzne są kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych. Zastosowanie kamery termograficznej jest zatem zgodne z najlepszymi praktykami konserwacyjnymi, a także przyczynia się do zmniejszenia kosztów eksploatacyjnych poprzez minimalizację ryzyka awarii.

Pytanie 21

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. mostek tensometryczny
B. potencjometr obrotowy
C. czujnik termoelektryczny
D. prądnica tachometryczna
Prądnica tachometryczna jest urządzeniem wykorzystywanym do pomiaru prędkości obrotowej wału silnika, które działa na zasadzie indukcji elektromagnetycznej. Jej działanie opiera się na generacji napięcia proporcjonalnego do prędkości obrotowej, co czyni ją niezwykle przydatną w monitorowaniu pracy maszyn. Prądnice tachometryczne znajdują zastosowanie w różnych dziedzinach, takich jak automatyka przemysłowa, kontrola procesów technologicznych oraz systemy napędowe. Dzięki nim można dokładnie kontrolować prędkość obrotową silników, co jest kluczowe dla utrzymania stabilności pracy urządzeń oraz minimalizacji zużycia energii. Współczesne prądnice tachometryczne są często zintegrowane z systemami sterowania, co pozwala na automatyzację procesów i zwiększenie efektywności produkcji. Używane są także w aplikacjach wymagających precyzyjnego pomiaru, takich jak robotyka czy systemy CNC, gdzie dokładność i niezawodność pomiarów są krytyczne.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Symbolem K1 oznaczono

Ilustracja do pytania
A. sprężarkę.
B. pompę hydrauliczną.
C. silnik pneumatyczny.
D. pompę próżniową.
Pompa hydrauliczna z symbolem K1 to naprawdę ważny element w systemach hydraulicznych. Działa tak, że zamienia energię mechaniczną na hydrauliczną, co jest mega istotne przy zasilaniu różnych mechanizmów. Widziałem to na różnych budowach czy w maszynach do podnoszenia, gdzie pompy hydrauliczne są w użyciu. Warto też zwrócić uwagę, że najczęściej pompa jest zasilana przez silnik elektryczny (symbol M), co sprawia, że wszystko działa sprawnie i niezawodnie. Jak patrzymy na schematy, to umiejętność rozpoznawania tych symboli jest kluczowa, zwłaszcza dla inżynierów. Ostatnio czytałem, że nowoczesne systemy hydrauliczne mogą być zintegrowane z elektronicznym sterowaniem, co dodatkowo zwiększa ich precyzję. Bez znajomości tych symboli i ich funkcji trudno byłoby pracować w tej branży.

Pytanie 24

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. tensometru
B. tachometru
C. pirometru
D. termometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 25

Jak często należy sprawdzać poziom oleju sprężarki tłokowej, której wskaźnik poziomu oleju przedstawiono na rysunku?

Ilustracja do pytania
A. Raz do roku.
B. Po 50 godzinach pracy sprężarki.
C. Każdego dnia przed pierwszym uruchomieniem.
D. Raz na 2 lata.
Sprawdzanie poziomu oleju w sprężarce tłokowej każdego dnia przed jej pierwszym uruchomieniem jest kluczowym elementem zapewnienia jej prawidłowego funkcjonowania. Olej pełni istotną funkcję w smarowaniu ruchomych części, co zmniejsza tarcie i zapobiega przegrzewaniu się jednostki. Regularna kontrola poziomu oleju pozwala na wczesne wykrycie ewentualnych wycieków oraz utraty smarności, co mogłoby prowadzić do poważnych uszkodzeń sprężarki. W praktyce, wiele firm zajmujących się konserwacją sprzętu zaleca takie codzienne sprawdzenie jako standardową procedurę operacyjną. Standardy ISO 9001 czy normy branżowe ASHRAE podkreślają znaczenie regularnych przeglądów i konserwacji urządzeń, co jest niezbędne do zachowania ich efektywności i wydajności. Dzięki nawykowi codziennego sprawdzania poziomu oleju można uniknąć nieprzewidzianych przestojów produkcyjnych oraz kosztownych napraw, co w dłuższej perspektywie przynosi oszczędności.

Pytanie 26

Siłownik hydrauliczny o parametrach znamionowych zamieszczonych w tabeli, w warunkach nominalnych zasilany jest czynnikiem roboczym o ciśnieniu

Parametry siłownika hydraulicznego
TłokØ 25 mm ÷ Ø 500 mm
TłoczyskoØ 16 mm ÷ Ø 250 mm
Skokdo 5000 mm
Ciśnienie nominalnePn = 35 MPa (350 bar)
Ciśnienie próbnePp = 1,5 x Pn
Prędkość przesuwu tłokaVmax = 0,5 m/s
Temperatura czynnika roboczego-25°C ÷ +200°C (248 K ÷ 473 K)
Temperatura otoczenia-20°C ÷ +100°C (253 K ÷ 373 K)
A. 70 bar
B. 525 bar
C. 35 bar
D. 350 bar
Wybór odpowiedzi 350 bar jako poprawnej opiera się na danych przedstawionych w tabeli parametrów siłownika hydraulicznego. Według tych danych, ciśnienie nominalne (Pn) wynosi 35 MPa, co jest równoważne 350 bar. Zastosowanie siłowników hydraulicznych o odpowiednich parametrach ciśnienia jest kluczowe w wielu branżach, takich jak budownictwo, przemysł motoryzacyjny czy robotyka, gdzie precyzyjne działanie i niezawodność są niezbędne. W praktyce, jeśli siłownik jest zasilany ciśnieniem przekraczającym jego parametry nominalne, może to prowadzić do uszkodzenia urządzenia, a w rezultacie do awarii systemu. Często w zastosowaniach inżynieryjnych zaleca się stosowanie marginesu bezpieczeństwa, aby uniknąć sytuacji, w której ciśnienie robocze zbliża się do maksymalnych wartości znamionowych. Dobrą praktyką jest również regularne monitorowanie stanu siłowników oraz ich parametrów, aby zapewnić ich prawidłową pracę i wydajność. Znajomość specyfikacji technicznych i właściwości materiałów, z których wykonane są siłowniki, ma bezpośredni wpływ na ich długowieczność i efektywność w działaniu.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Parametr określający zakres roboczy działania siłownika to

A. teoretyczna siła pchająca
B. maksymalne ciśnienie
C. średnica cylindra
D. skok siłownika
Skok siłownika jest kluczowym parametrem w określaniu obszaru roboczego działania siłownika. Definiuje on maksymalną odległość, na jaką tłok siłownika może się poruszać, co bezpośrednio wpływa na zakres ruchu, który siłownik może wykonać. W praktyce oznacza to, że im większy skok, tym większa możliwość wykonania zadań, takich jak podnoszenie, przesuwanie czy wciskanie elementów. Przykładem może być zastosowanie siłowników hydraulicznych w maszynach budowlanych, gdzie skok siłownika wpływa na wysokość podnoszenia ładunków. W branży automatyki przemysłowej odpowiedni dobór skoku siłownika do aplikacji ma kluczowe znaczenie, aby zapewnić efektywność i precyzję operacji. W standardach branżowych, takich jak ISO 6020, zwraca się uwagę na konieczność odpowiedniego doboru skoku siłownika w kontekście jego zastosowania oraz oczekiwanych parametrów roboczych, co przekłada się na zwiększoną efektywność systemów automatyzacji.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Aby zdemontować stycznik zamocowany na szynie, należy wykonać czynności w odpowiedniej kolejności:

A. odłączyć napięcie, odkręcić przewody, zdjąć stycznik z szyny
B. odłączyć napięcie, zdjąć stycznik z szyny, odkręcić przewody
C. zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
D. odkręcić przewody, zdjąć stycznik z szyny, odłączyć napięcie
Poprawna odpowiedź, która wskazuje na odłączenie napięcia, odkręcenie przewodów, a następnie odpięcie stycznika z szyny, jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Pierwszym krokiem powinno być zawsze odłączenie zasilania. To kluczowe, aby uniknąć porażenia prądem oraz zapobiec uszkodzeniu sprzętu. Po odłączeniu zasilania można bezpiecznie przystąpić do odkręcania przewodów, co minimalizuje ryzyko zwarcia. Na końcu, po bezpiecznym odłączeniu przewodów, można zdemontować stycznik z szyny. Taki porządek działań jest zgodny z zaleceniami norm międzynarodowych, takich jak IEC 60204-1, które podkreślają znaczenie bezpieczeństwa podczas prac elektrycznych. Wiedza na temat prawidłowego demontażu urządzeń elektrycznych jest nie tylko istotna dla zapewnienia bezpieczeństwa, ale również dla efektywności i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 31

Pompa hydrauliczna z tłokowymi elementami roboczymi jest przestawiona na rysunku

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Rysunek oznaczony literą "D" przedstawia pompę hydrauliczną z tłokowymi elementami roboczymi, co można zidentyfikować dzięki charakterystycznym cechom konstrukcyjnym. Tłokowe pompy hydrauliczne działają na zasadzie przetłaczania cieczy za pomocą ruchu tłoków, które poruszają się w cylindrach. Tego rodzaju pompy są powszechnie stosowane w różnych aplikacjach przemysłowych, takich jak systemy hydrauliczne w maszynach budowlanych czy pojazdach ciężarowych, gdzie wymagana jest wysoka moc i efektywność. Ponadto, tłokowe elementy robocze charakteryzują się dużą zdolnością do wytwarzania wysokiego ciśnienia, co czyni je idealnym wyborem dla systemów wymagających precyzyjnego sterowania. Ważnym aspektem jest również ich trwałość oraz możliwość pracy w trudnych warunkach, co jest istotne w kontekście norm branżowych, takich jak ISO 9001, które podkreślają znaczenie niezawodności i efektywności operacyjnej. Zrozumienie działania tłokowych elementów roboczych jest kluczowe dla inżynierów i techników pracujących w obszarze hydrauliki, ponieważ pozwala na odpowiedni dobór komponentów i ich zastosowanie w praktyce.

Pytanie 32

Który przyrząd pozwoli przed podłączeniem silnika trójfazowego do napięcia zasilającego na określenie kierunku obrotów wirnika?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Falownik, będący przyrządem widocznym na zdjęciu A, jest kluczowym elementem w systemach automatyki, szczególnie w kontekście zarządzania silnikami trójfazowymi. Jego główną funkcją jest regulacja zarówno prędkości, jak i kierunku obrotów silnika poprzez zmianę częstotliwości zasilania. Dzięki zastosowaniu falownika, operator ma możliwość przed podłączeniem silnika do zasilania określić kierunek obrotów wirnika, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy maszyn. W praktyce, falowniki są powszechnie wykorzystywane w różnorodnych aplikacjach, od prostych systemów napędowych po skomplikowane linie produkcyjne. Zgodnie z normami IEC 61800, falowniki powinny być wykorzystywane z uwzględnieniem odpowiednich parametrów technicznych, co zapewnia ich niezawodność i długotrwałe działanie. W związku z tym, zrozumienie roli falowników oraz umiejętność ich stosowania w praktyce jest niezwykle ważne dla każdego specjalisty zajmującego się automatyką i mechatroniką.

Pytanie 33

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. wzrostu obrotów silnika
B. zmniejszenia reaktancji uzwojeń silnika
C. obniżenia wartości napięcia zasilania
D. spadku obrotów silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 34

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAD
B. CAM
C. CAE
D. SCADA
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest prawidłowa, ponieważ jest to system informatyczny służący do nadzorowania i kontrolowania procesów przemysłowych w czasie rzeczywistym. Systemy SCADA umożliwiają monitoring i zarządzanie urządzeniami zdalnymi, takimi jak pompy, maszyny czy systemy elektryczne, a także zbierają dane z tych urządzeń, które następnie przetwarzane są w celu analizy wydajności oraz optymalizacji procesów. Przykłady zastosowania SCADA obejmują przemysł petrochemiczny, energetykę oraz wodociągi, gdzie konieczne jest nieprzerwane monitorowanie parametrów operacyjnych. Kluczowe dla systemów SCADA jest ich zdolność do integracji z innymi technologiami, takimi jak PLC (Programowalne Sterowniki Logiczne) i HMI (Interfejsy Człowiek-Maszyna), co pozwala na stworzenie kompleksowego środowiska do zarządzania procesami. Wdrażanie standardów takich jak ISA-95 w kontekście integrowania SCADA z systemami zarządzania przedsiębiorstwem (ERP) jest również istotnym aspektem ich efektywności i nowoczesności. Dobrze zaprojektowane systemy SCADA są niezbędne dla zapewnienia bezpieczeństwa operacji i redukcji ryzyka awarii.

Pytanie 35

Którą z czynności regulacyjnych należy wykonać, aby tłoczysko siłownika 1A1 wsuwało się wolniej niż wysuwało?

Ilustracja do pytania
A. Zmniejszyć przepływy na zaworze 1V3.
B. Zmniejszyć równomiernie przepływy na zaworach 1V2 i 1V3.
C. Zmniejszyć przepływy na zaworze 1V2.
D. Zwiększyć równomiernie przepływy na zaworach 1V2 i 1V3.
Aby tłoczysko siłownika 1A1 wsuwało się wolniej niż wysuwało, kluczowym zagadnieniem jest zrozumienie zasad działania zaworów hydraulicznych. Zawór 1V2 kontroluje przepływ oleju do komory tłoczyska, a poprzez zmniejszenie tego przepływu zmniejszamy prędkość, z jaką tłoczysko się wsuwasz. Praktycznym zastosowaniem tej wiedzy może być sytuacja, w której chcemy precyzyjnie kontrolować ruch siłownika, na przykład w aplikacjach montażowych, gdzie zbyt szybkie wsuwanie mogłoby prowadzić do uszkodzeń lub błędów w procesie. Ponadto, zgodnie z zasadami efektywności energetycznej, odpowiednia regulacja przepływu oleju nie tylko zapewnia lepszą kontrolę, ale także zmniejsza zużycie energii w systemie hydraulicznym. W praktyce, technicy często korzystają z manometrów i wskaźników przepływu, aby dostosować parametry pracy siłowników, co jest zgodne z najlepszymi praktykami w branży hydrauliki siłowej.

Pytanie 36

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Przesunięcie kątowe
B. Moment obrotowy
C. Ciśnienie
D. Przyspieszenie
Enkoder absolutny jednoobrotowy służy do pomiaru przesunięcia kątowego, co oznacza, że pozwala na określenie dokładnej pozycji obiektu w zakresie jednego obrotu. Działa na zasadzie rejestrowania unikalnej wartości kodu dla każdej pozycji kątowej, co sprawia, że jest niezwykle precyzyjny. Zastosowanie tego typu enkodera w aplikacjach takich jak robotyka, automatyka przemysłowa czy mechatronika jest powszechne, gdyż pozwala na dokładne określenie położenia elementów ruchomych. Przykładem zastosowania może być kontrola położenia silnika krokowego, gdzie dokładne informacje o kącie obrotu są kluczowe dla precyzyjnego sterowania ruchem. Enkodery absolutne jednoobrotowe są również zgodne z normami branżowymi, takimi jak IEC 61131, co zapewnia ich wysoką jakość i niezawodność. Dzięki swojej konstrukcji, eliminują problem utraty pozycji po wyłączeniu zasilania, co jest istotne w wielu aplikacjach przemysłowych.

Pytanie 37

Który element sprężarki przepływowej osiowej przedstawiono na rysunku?

Ilustracja do pytania
A. Zawór ssawny.
B. Zawór zwrotny.
C. Koło łopatkowe.
D. Filtr ssawny.
Koło łopatkowe jest kluczowym elementem sprężarki przepływowej osiowej, którego podstawową funkcją jest przyspieszanie i kierowanie przepływu gazu roboczego. Jego konstrukcja opiera się na łopatkach, które są zamocowane na obwodzie koła, co pozwala na efektywne wykorzystanie energii mechanicznej do przekształcania jej w energię kinetyczną gazu. Takie sprężarki są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających dużych przepływów powietrza lub gazów, takich jak systemy chłodzenia, klimatyzacji oraz w procesach przemysłowych. Zgodnie z normami ISO 5801, które dotyczą badań wentylatorów i sprężarek, koła łopatkowe muszą spełniać określone standardy wydajności i efektywności energetycznej. Przykładem zastosowania koła łopatkowego może być sprężarka w silniku odrzutowym, gdzie przyspiesza powietrze przed jego wprowadzeniem do komory spalania, co znacząco zwiększa wydajność całego układu.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakiego rodzaju łożysko zostało przedstawione na rysunku?

Ilustracja do pytania
A. Baryłkowe.
B. Kulkowe.
C. Walcowe.
D. Wałeczkowe.
Odpowiedź "Kulkowe." jest poprawna, ponieważ na przedstawionym rysunku widoczne są kulki jako elementy toczne, co jest charakterystyczne dla łożysk kulkowych. Łożyska kulkowe są powszechnie stosowane w wielu urządzeniach mechanicznych, takich jak silniki, przenośniki czy maszyny przemysłowe, gdzie istotna jest niska odporność na tarcie i wysoka precyzja ruchu. Dzięki zastosowaniu kulek, które toczą się między wewnętrzną a zewnętrzną pierścieniową powierzchnią, możliwe jest uzyskanie wyjątkowo płynnego obrotu, co przekłada się na dłuższą żywotność maszyn i mniejsze zużycie energii. Standardy branżowe, takie jak ISO 281, definiują parametry i metody testowania łożysk kulkowych, co potwierdza ich znaczenie w inżynierii mechanicznej. Dodatkowo, łożyska kulkowe są dostępne w różnych rozmiarach oraz wykonaniach, co pozwala na ich szeroką adaptację do różnych zastosowań, zwiększając ich wszechstronność.

Pytanie 40

Na której ilustracji przedstawiono prawidłowe zaciśnięcie końcówki przewodu w obszarze z izolacją?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 3.
C. Na ilustracji 1.
D. Na ilustracji 2.
Prawidłowe zaciśnięcie końcówki przewodu w obszarze z izolacją, przedstawione na ilustracji 4, jest kluczowe dla zapewnienia trwałego i bezpiecznego połączenia elektrycznego. Na tej ilustracji widać, że zacisk obejmuje zarówno izolację, jak i przewody, co jest zgodne z najlepszymi praktykami w branży. Takie podejście zapobiega odsłonięciu przewodów, co mogłoby prowadzić do zwarć lub uszkodzeń. Prawidłowe zaciśnięcie jest również zgodne z normami, takimi jak IEC 60947, które definiują wymagania dla urządzeń i elementów stosowanych w instalacjach elektrycznych. Prawidłowo wykonane połączenie gwarantuje nie tylko bezpieczeństwo, ale także efektywność działania instalacji. W praktyce, zapewnienie odpowiedniego zacisku może wpłynąć na żywotność urządzeń oraz zmniejszenie ryzyka awarii. Dlatego istotne jest, aby osoby zajmujące się instalacjami elektrycznymi miały świadomość tych standardów oraz umiejętność ich stosowania w codziennej pracy, co przyczynia się do ogólnego bezpieczeństwa i jakości instalacji elektrycznych.