Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 17 grudnia 2025 16:04
  • Data zakończenia: 17 grudnia 2025 16:24

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który typ klucza potrzebny jest do odkręcenia śrub pokazanych na rysunku?

Ilustracja do pytania
A. PH
B. HEX
C. PZ
D. TORX
Odpowiedź "TORX" jest poprawna, ponieważ na zdjęciu widoczne są śruby z sześcioramiennym gwiazdkowym wcięciem, które jest charakterystyczne dla kluczy TORX. Klucz TORX, opracowany w latach 60-tych XX wieku, zapewnia lepsze dopasowanie do śruby i redukuje ryzyko uszkodzenia zarówno klucza, jak i samej śruby. W zastosowaniach przemysłowych, gdzie wymagane są wysokie momenty obrotowe, klucze TORX są powszechnie stosowane, ponieważ minimalizują poślizg i umożliwiają efektywne przenoszenie siły. Klucze te są standardem w wielu branżach, takich jak motoryzacja, elektronika i budownictwo, co czyni je niezbędnym narzędziem w pracy technika. Warto również zauważyć, że wprowadzenie kluczy TORX zwiększyło bezpieczeństwo konstrukcji, ponieważ wiele z tych śrub jest zabezpieczonych przed manipulacjami za pomocą standardowych narzędzi. Klucze HEX, PH i PZ, mimo że również używane w różnych zastosowaniach, mają odmienne kształty i przeznaczenie, które nie pasują do charakterystyki śrub widocznych na zdjęciu.

Pytanie 2

Układ DMA stosowany w mikrokomputerach pozwala na

A. realizowanie podwójnych poleceń
B. podwójne zwiększenie częstotliwości zegara systemu
C. wstrzymywanie CPU w każdym momencie
D. używanie pamięci RAM bez pośrednictwa CPU
Pierwsza odpowiedź dotyczy podwajania częstotliwości zegara systemowego, co jest koncepcją błędną, ponieważ DMA nie ma żadnego wpływu na częstotliwość pracy procesora. Częstotliwość zegara jest determinowana przez parametry sprzętowe oraz ustawienia systemowe, a nie przez technologię dostępu do pamięci. Zatrzymywanie CPU w dowolnym momencie, jak sugeruje kolejna odpowiedź, jest również nieprawidłowe. DMA działa równolegle do CPU, ale nie przerywa jego pracy; zamiast tego efektywnie zarządza dostępem do pamięci w sposób, który nie wymaga zatrzymywania procesora. Ponadto, wykonanie podwójnych rozkazów jest terminologią, która nie odnosi się do funkcji DMA. DMA nie jest zaprojektowane do realizowania rozkazów, lecz do transferowania danych między urządzeniami bez angażowania CPU. Typowym błędem myślowym jest mylenie funkcji DMA z operacjami, które są stricte związane z architekturą procesora. Pojęcie DMA dotyczy uproszczenia i optymalizacji procesów I/O, a nie wpływania na samą architekturę CPU czy jego taktowanie. W związku z powyższym, rozumienie specyfiki funkcji DMA jest kluczowe dla właściwego podejścia do projektowania systemów komputerowych i ich wydajności. Znajomość tego mechanizmu pomaga uniknąć powszechnych nieporozumień dotyczących interakcji między CPU a pamięcią.

Pytanie 3

Wzrost efektywnej pojemności torów przesyłowych dla kabla UTP wskazuje na

A. przerwanie jednej z żył
B. zbyt dużą rezystancję pętli
C. uszkodzenie izolacji
D. błędne podłączenie kabla
Zbyt duża rezystancja pętli nie jest bezpośrednio związana ze wzrostem pojemności skutecznej torów transmisyjnych. Wysoka rezystancja w rzeczywistości może wskazywać na problemy z przewodnictwem, takie jak korozja lub nieodpowiednie połączenia, ale nie prowadzi do zwiększenia pojemności. Przerwanie jednej z żył również nie jest odpowiedzialne za wzrost pojemności, lecz za całkowite zablokowanie sygnału, co uniemożliwia transmisję danych. Izolacja kabla, która uległa uszkodzeniu, może wprowadzać dodatkowe pojemności w obwodzie, a przerwanie żyły skutkuje brakiem transmisji sygnału. Nieprawidłowe podłączenie kabla może prowadzić do problemów z połączeniem, jednak nie należy mylić tego z pojemnością. Każdy z tych problemów może być mylnie interpretowany jako przyczyna wzrostu pojemności, co prowadzi do błędnych wniosków. Zrozumienie różnicy między rezystancją, pojemnością i ich wpływem na transmisję danych jest kluczowe dla diagnostyki sieci. Właściwe podejście do analizy stanu kabelków wymaga uwzględnienia wszystkich aspektów ich budowy oraz środowiska, w którym funkcjonują, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej.

Pytanie 4

Która z poniższych czynności nie należy do konserwacji instalacji urządzeń elektronicznych?

A. Regulacja parametrów
B. Programowanie
C. Czyszczenie
D. Pomiary sprawdzające
Czyszczenie, regulacja parametrów i pomiary to takie podstawowe czynności, które pomagają w utrzymaniu urządzeń elektronicznych w dobrym stanie. Na przykład, czyszczenie płyty głównej czy złączy to kluczowa sprawa, bo kurz może powodować przegrzewanie się sprzętu i różne problemy z prądem. Regulacja parametrów, jak w urządzeniach analogowych, pozwala na dostosowanie pracy do warunków, co jest naprawdę ważne. Pomiary, jak napięcie czy prąd, są istotne do sprawdzania, czy coś działa jak powinno. Wiele osób myli jednak konserwację z programowaniem i myśli, że zmiana oprogramowania to część dbania o sprzęt. Ale to nie jest to samo! Programowanie to rozwój oprogramowania, a konserwacja to coś innego, mającego na celu utrzymanie sprzętu w dobrym stanie. Znalezienie różnicy między tymi dwoma rzeczami jest naprawdę ważne, bo inaczej można wpaść w kłopoty.

Pytanie 5

Przyczyną chwilowego znikania obrazu (zamrożenia) podczas odbioru sygnału z satelity mogą być

A. nieprawidłowości w synchronizacji
B. uszkodzenia systemu odchylania
C. warunki atmosferyczne
D. awarie układu synchronizacji
Warunki atmosferyczne są jednym z najważniejszych czynników wpływających na jakość sygnału satelitarnego. W szczególności opady deszczu, śniegu oraz intensywne chmury mogą powodować osłabienie sygnału, co może prowadzić do czasowego zaniku obrazu. Zjawisko to jest znane jako „attenuacja”, czyli osłabienie sygnału, które zwiększa się przy zwiększonej wilgotności powietrza lub podczas wystąpienia burz. W praktyce, techniki takie jak stosowanie większych anten satelitarnych, które mogą lepiej odbierać sygnał w trudnych warunkach, są powszechnie przyjęte w branży. Zgodnie z dobrymi praktykami, zaleca się również monitorowanie prognoz pogody i dostosowywanie systemów do zmieniających się warunków. Użytkownicy powinni być świadomi, że podczas intensywnych opadów lub burz mogą wystąpić czasowe zakłócenia w odbiorze, a zrozumienie tego zjawiska może pomóc w lepszym planowaniu korzystania z technologii satelitarnych.

Pytanie 6

Jak powinna przebiegać prawidłowa sekwencja uruchamiania instalacji telewizyjnej?

A. podłączyć kabel antenowy, zaprogramować kanały, uruchomić odbiornik TV
B. uruchomić odbiornik TV, zaprogramować kanały, podłączyć kabel antenowy
C. zaprogramować kanały, uruchomić odbiornik TV, podłączyć kabel antenowy
D. podłączyć kabel antenowy, uruchomić odbiornik TV, zaprogramować kanały
Prawidłowa kolejność uruchomienia instalacji telewizyjnej to podłączenie kabla antenowego, uruchomienie odbiornika TV, a następnie zaprogramowanie kanałów. Zaczynając od podłączenia kabla antenowego, zapewniamy odbiornikowi dostęp do sygnału telewizyjnego, co jest kluczowe, ponieważ bez tego nie będzie on w stanie odebrać żadnych transmisji. Po upewnieniu się, że kabel antenowy jest prawidłowo podłączony, należy uruchomić odbiornik telewizyjny. W momencie włączenia urządzenia, system operacyjny TV inicjuje potrzebne procesy, które umożliwiają dalszą konfigurację. Ostatecznie, programowanie kanałów jest krokiem, który pozwala na dostosowanie odbiornika do preferencji użytkownika i lokalnych dostępnych stacji. Ta sekwencja działa zgodnie z najlepszymi praktykami instalacyjnymi, ponieważ zapewnia logiczny i efektywny proces konfiguracji, co jest zgodne z zaleceniami producentów sprzętu telewizyjnego. Prawidłowe podejście do instalacji wpływa na ogólne doświadczenia użytkownika oraz funkcjonalność urządzenia, co podkreśla znaczenie przestrzegania ustalonych procedur.

Pytanie 7

Osoba doznała poparzenia dłoni substancją żrącą. Udzielając pierwszej pomocy poszkodowanemu, należy jak najszybciej

A. oczyścić jałową gazą.
B. nałożyć maść.
C. nałożyć krem.
D. obmyć strumieniem zimnej wody.
Posmarowanie oparzonej dłoni kremem, maścią czy przetarcie jałową gazą jest niewłaściwe w przypadku oparzenia substancją żrącą. Takie działania mogą prowadzić do poważnych konsekwencji, ponieważ aplikacja jakiegokolwiek preparatu na uszkodzoną skórę może zablokować dalsze wydostawanie się substancji chemicznej oraz spowodować pogorszenie stanu skóry poprzez wprowadzenie dodatkowych zanieczyszczeń. Kremy i maści często zawierają substancje, które mogą reagować z chemikaliami, prowadząc do pogłębienia oparzenia. Z kolei przetarcie jałową gazą może powodować uszkodzenia już i tak wrażliwej skóry, co w efekcie przyczyni się do większego bólu i ryzyka infekcji. Warto pamiętać, że oparzenia chemiczne wymagają natychmiastowego schłodzenia i neutralizacji, co nie jest możliwe poprzez stosowanie kremów czy maści. W takich sytuacjach kluczowym błędem jest przekonanie, że stosowanie preparatów mogących "ukoić" ból jest działaniem wystarczającym. Takie myślenie często wynika z braku wiedzy na temat odpowiednich procedur w udzielaniu pierwszej pomocy. W przypadku oparzeń chemicznych zawsze należy pamiętać o pierwszym kroku, jakim jest spłukanie oparzonego miejsca wodą, aby zminimalizować skutki działania substancji. Dopiero po tym kroku można myśleć o dalszej pomocy medycznej.

Pytanie 8

Silne pole elektrostatyczne wywołuje

A. wzrost temperatury otoczenia
B. zakłócenia w funkcjonowaniu aparatury kontrolno-pomiarowej
C. wzrost wilgotności powietrza
D. rozdzielenie laminatu, używanego jako podłoże płytki drukowanej
Zwiększenie wilgotności powietrza, rozwarstwienie laminatu stosowanego jako podłoże płytki drukowanej oraz zwiększenie temperatury otoczenia to zjawiska, które nie są bezpośrednio związane z działaniem silnego pola elektrostatycznego. Wilgotność powietrza jest zjawiskiem meteorologicznym, które jest wynikiem parowania wody i nie ma bezpośredniego powiązania z polem elektrostatycznym. Często występuje nieporozumienie, że pole elektrostatyczne może wpływać na warunki atmosferyczne, co jest błędne, ponieważ te zjawiska są niezależne. Co więcej, rozwarstwienie laminatu jest problemem mechanicznym, który zwykle jest spowodowany niewłaściwą obróbką materiałów czy ich złym składem chemicznym, a nie działaniem pola elektrostatycznego. W kontekście elektroniki, rozwarstwienie laminatu może prowadzić do uszkodzenia układów elektronicznych, ale nie jest wynikiem działania pola elektrostatycznego. Zwiększenie temperatury otoczenia również nie jest bezpośrednio związane z polem elektrostatycznym. W rzeczywistości, zmiany temperatury są skutkiem wielu różnych czynników, takich jak źródła ciepła, warunki pogodowe, a nie działania pól elektrostatycznych. Często osoby podejmujące takie błędne wnioski oparte są na niepełnym zrozumieniu mechanizmów fizycznych rządzących tymi zjawiskami, co prowadzi do mylnych przekonań, że pole elektrostatyczne ma szerszy wpływ na otoczenie, niż ma to miejsce w rzeczywistości.

Pytanie 9

Przedstawione w tabeli parametry techniczne dotyczą

Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
BateriaCR123A3V
Czas pracy na bateriido 3 lat
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Zakres temperatur pracy-10°C ÷ +55°C
Maksymalna wilgotność93±3%
Wymiary obudowy czujki26 x 112 x 29 mm
Wymiary obudowy magnesu do montażu powierzchniowego26 x 13 x 19 mm
Wymiary podkładki pod magnes do montażu powierzchniowego26 x 13 x 3,5 mm
Wymiary obudowy magnesu do montażu wpuszczanego28 x 10 x 10 mm
Masa56 g
A. bariery podczerwieni.
B. czujki kontaktronowej.
C. czujki dymu.
D. czujki zalania.
Wybór czujki zalania, czujki dymu lub bariery podczerwieni jako odpowiedzi na to pytanie może wynikać z nieporozumienia dotyczącego charakterystyki i zastosowania tych urządzeń. Czujki zalania są zaprojektowane do detekcji wody i są wykorzystywane głównie w miejscach narażonych na zalanie, takich jak piwnice czy łazienki. Ich działanie opiera się na odczycie zmian poziomu wody, a nie mechanizmie działania bazującym na obwodach magnetycznych. Z kolei czujki dymu są przeznaczone do wykrywania dymu w powietrzu, co jest kluczowe w kontekście ochrony przeciwpożarowej. Ich działanie opiera się na zmianach w poziomie światła lub ciepła, a nie na mechanizmie kontaktronowym. Bariery podczerwieni natomiast używają technologii detekcji ruchu, co oznacza, że reagują na zmiany w promieniowaniu podczerwonym, co jest zupełnie innym zjawiskiem niż wykrywanie otwarcia drzwi czy okien. Użytkownicy często popełniają błąd, zakładając, że różne typy czujek mogą mieć podobne zastosowania, co prowadzi do mylnych wniosków. W kontekście systemów zabezpieczeń ważne jest, aby stosować odpowiednie urządzenia dostosowane do konkretnych potrzeb i warunków, co jest kluczowe dla skuteczności całego systemu zabezpieczeń.

Pytanie 10

Jaką liczbę wyjść ma konwerter TWIN?

A. osiem wyjść
B. cztery wyjścia
C. dwa wyjścia
D. jedno wyjście
Konwerter TWIN to urządzenie, które zapewnia dwa wyjścia, co jest istotne w kontekście jego zastosowania w systemach automatyki oraz w rozdzielniach elektrycznych. Posiadanie dwóch wyjść pozwala na jednoczesne zasilanie dwóch różnych obwodów, co zwiększa elastyczność w projektowaniu instalacji. Na przykład, w przypadku systemów zasilania awaryjnego, jedno wyjście może być przeznaczone do zasilania krytycznych obciążeń, a drugie do mniej istotnych urządzeń. Dzięki takiemu rozwiązaniu możliwe jest zoptymalizowanie zużycia energii oraz minimalizacja ryzyka przeciążeń. W praktyce, konwertery tego typu są wykorzystywane w różnorodnych aplikacjach, takich jak zasilanie systemów oświetleniowych, urządzeń HVAC, a także w automatyce przemysłowej. Dobrą praktyką jest również regularne monitorowanie parametrów pracy konwertera, co umożliwia wczesne wykrywanie potencjalnych usterek i zapewnia niezawodność systemu elektrycznego.

Pytanie 11

Aby ograniczyć niepożądany wpływ zewnętrznych pól elektromagnetycznych na przesył sygnałów cyfrowych przez kable, należy

A. umieścić kable w rurkach z PVC
B. wykorzystać kable z wzmocnioną izolacją
C. zastosować przewody ekranowane
D. zakopać kable w ziemi na głębokości minimum 0,6 m
Zastosowanie przewodów ekranowanych jest kluczowe dla minimalizowania negatywnego wpływu pól elektromagnetycznych na transmisję sygnałów cyfrowych. Ekranowanie polega na otoczeniu przewodów warstwą materiału przewodzącego, który działa jak bariera dla zewnętrznych pól elektromagnetycznych. Dzięki temu, sygnał wewnętrzny jest chroniony przed zakłóceniami, co pozwala na utrzymanie wysokiej jakości transmisji. Ekrany mogą być wykonane z różnych materiałów, takich jak miedź czy aluminium, co wpływa na skuteczność ochrony. Przykładowo, w zastosowaniach przemysłowych, gdzie przewody są narażone na silne pola elektromagnetyczne, stosowanie przewodów ekranowanych zgodnych z normą IEC 60227 jest standardem, który zapewnia niezawodność i stabilność działania systemów. W praktyce, przewody te znalazły zastosowanie w systemach komunikacyjnych, automatyce przemysłowej oraz w aplikacjach audio-wideo, gdzie jakość sygnału jest priorytetem.

Pytanie 12

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. zmniejszenie pasma przenoszenia
B. spadek mocy wyjściowej
C. wzrost mocy wyjściowej
D. podwyższenie napięcia zasilającego
Zrozumienie wpływu rezystancji obciążenia na wzmacniacze rezystancyjne jest kluczowe w projektowaniu i użytkowaniu systemów elektronicznych. Wybór odpowiedzi sugerujących, że zwiększenie rezystancji obciążenia prowadzi do zwiększenia napięcia zasilania lub wzrostu mocy wyjściowej, opiera się na nieprawidłowym rozumieniu podstawowych zasad działania wzmacniaczy. W rzeczywistości, napięcie zasilania jest na stałym poziomie, które jest dostosowane do wymagań układu. Zwiększenie rezystancji obciążenia nie wpływa na to napięcie; zamiast tego, zmiana ta wpływa na ilość prądu, który może przepływać przez obciążenie. Wzrost rezystancji oznacza spadek prądu, co w konsekwencji prowadzi do zmniejszenia mocy wyjściowej, a nie jej wzrostu. Odpowiedzi sugerujące zmniejszenie pasma przenoszenia także są mylące. Pasmo przenoszenia wzmacniacza zależy głównie od jego topologii oraz użytych komponentów, a nie tylko od rezystancji obciążenia. W praktyce, niewłaściwe połączenie lub zła wartość rezystancji obciążenia mogą prowadzić do nieoptymalnego działania urządzenia, co jest często wynikiem braku zrozumienia związku pomiędzy rezystancją a parametrami wyjściowymi wzmacniacza. Takie błędne myślenie może prowadzić do nieefektywnego projektowania systemów audio czy pomiarowych, co podkreśla znaczenie znajomości teorii w praktyce inżynieryjnej.

Pytanie 13

Jakie urządzenie sieciowe działa w trzeciej warstwie modelu OSI, pełni rolę węzła w sieci komunikacyjnej i odpowiada za proces zarządzania ruchem?

A. gniazdo RJ-45.
B. hub.
C. ruter.
D. repeater.
Wybór hubu, repeatera lub gniazda RJ-45 jako urządzenia pełniącego funkcję kierowania ruchem w sieci prowadzi do nieporozumień dotyczących rol i funkcji, jakie pełnią te urządzenia. Hub, będący urządzeniem pracującym na pierwszej warstwie modelu OSI, działa jako prosty rozdzielacz sygnału, który nie podejmuje żadnych decyzji dotyczących trasowania danych. Hub przesyła pakiety do wszystkich portów, co może prowadzić do zwiększenia ruchu w sieci i kolizji danych, a tym samym do obniżenia wydajności. Z kolei repeater, również funkcjonujący na pierwszej warstwie, ma za zadanie jedynie wzmacnianie sygnału, umożliwiając transmisję na większe odległości bez analizy czy kierowania ruchem. Gniazdo RJ-45 to złącze, które służy do fizycznego połączenia urządzeń w sieci, a nie do ich kierowania. Zrozumienie różnic między tymi urządzeniami jest kluczowe dla projektowania i zarządzania sieciami komputerowymi. W kontekście branżowych standardów, warto pamiętać, że stosowanie odpowiednich urządzeń do odpowiednich warstw modelu OSI jest fundamentem dobrych praktyk w inżynierii sieciowej. Zastosowanie rutera jest niezbędne do efektywnego zarządzania ruchem w sieci, w przeciwieństwie do urządzeń działających na niższych warstwach, które nie są przystosowane do tej funkcji.

Pytanie 14

Którego rodzaju kabel dotyczy termin STP?

A. Światłowodowego
B. Skrętki nieekranowanej
C. Skrętki ekranowanej
D. Koncentrycznego
Oznaczenie STP odnosi się do skrętki ekranowanej (Shielded Twisted Pair), która jest rodzajem kabla wykorzystywanego w sieciach komputerowych do przesyłania danych. Skrętki ekranowane są wyposażone w dodatkową warstwę ekranu, która chroni sygnały przed zakłóceniami elektromagnetycznymi pochodzącymi z otoczenia, co czyni je bardziej odpornymi na różnego rodzaju interferencje. STP znajduje zastosowanie w sytuacjach, gdzie istnieje duże ryzyko zakłóceń, na przykład w środowiskach przemysłowych lub blisko urządzeń elektrycznych. Przykładowe zastosowania obejmują sieci lokalne (LAN) w biurach czy zakładach produkcyjnych, gdzie stabilność sygnału jest kluczowa. Standardy takie jak TIA/EIA-568 określają wymagania dotyczące jakości kabli STP, co pozwala na osiągnięcie najwyższej wydajności transmisji danych. Wiedza na temat różnych typów kabli oraz ich zastosowania jest istotna, aby móc odpowiednio dobrać rozwiązania do konkretnych potrzeb sieciowych.

Pytanie 15

Przedstawiony na rysunku sposób podłączenia komputerów nazywany jest topologią

Ilustracja do pytania
A. pierścienia.
B. gwiazdy.
C. siatki.
D. magistrali.
Topologia gwiazdy to jeden z najpopularniejszych sposobów łączenia urządzeń w sieci komputerowej, charakteryzujący się centralnym punktem, którego rolę pełni hub, switch lub router. W tej konfiguracji wszystkie urządzenia końcowe, takie jak komputery czy serwery, są podłączone bezpośrednio do centralnego urządzenia. Dzięki temu, w przypadku awarii jednego z komputerów, pozostałe urządzenia w sieci mogą nadal funkcjonować, co zwiększa jej niezawodność. Przykładem zastosowania topologii gwiazdy są biura i małe firmy, gdzie sieci lokalne są często projektowane w taki sposób, aby uprościć procesy zarządzania oraz ułatwić diagnostykę problemów. Ponadto, w standardach, takich jak Ethernet, topologia gwiazdy zyskała uznanie ze względu na elastyczność i łatwość w rozbudowie sieci. W miarę wzrostu liczby urządzeń w sieci, można łatwo dodać nowe komputery, a ich integracja nie wymaga skomplikowanych zmian w infrastrukturze sieciowej. Ostatecznie, topologia gwiazdy jest zgodna z dobrymi praktykami w projektowaniu sieci, co czyni ją preferowanym wyborem w wielu zastosowaniach.

Pytanie 16

Na ekranie odbiornika OTV widoczna jest bardzo jasna linia pozioma, podczas gdy reszta ekranu pozostaje ciemna. W którym module odbiornika doszło do awarii?

A. W module odchylania pionowego
B. W module odchylania poziomego
C. W dekoderze kolorów
D. We wzmacniaczu p.cz. różnicowym fonii
Poprawna odpowiedź to blok odchylania pionowego, ponieważ opisany objaw, czyli jasna linia pozioma na ekranie, sugeruje problem w obszarze odpowiedzialnym za kontrolę odchylania obrazu w kierunku pionowym. W przypadku awarii tego bloku, sygnał odchylania pionowego nie jest prawidłowo przetwarzany, co prowadzi do niemożności skanowania obrazu w pionie, co z kolei skutkuje wyświetlaniem tylko poziomej linii. Tego typu problem jest typowy dla uszkodzeń w układach analogowych, gdzie niewłaściwe napięcia lub przerwy w obwodzie mogą całkowicie zablokować sygnał. W praktyce, diagnostyka takich usterek wymaga użycia oscyloskopu do analizy sygnałów odchylających oraz pomiaru napięć w kluczowych punktach obwodu, co pozwala na szybkie zlokalizowanie problemu. W branży elektronicznej standardowe procedury naprawcze zalecają wymianę uszkodzonych komponentów, takich jak kondensatory czy tranzystory, aby przywrócić prawidłowe działanie odbiornika.

Pytanie 17

Podczas wykonywania montażu kabla krosowego w złączach gniazd należy unikać rozkręcania par przewodów na długości przekraczającej 13 mm, ponieważ

A. dojdzie do zmniejszenia impedancji kabla
B. kabel będzie generował silniejsze pole elektromagnetyczne
C. może to prowadzić do obniżenia odporności na zakłócenia
D. zwiększy się impedancja kabla
Rozkręcenie par przewodów na odcinku większym niż 13 mm może prowadzić do znaczącego obniżenia odporności na zakłócenia elektromagnetyczne. W instalacjach sieciowych, takich jak Ethernet, kluczowe jest zachowanie odpowiedniej struktury kabla, co zapobiega zjawiskom takim jak crosstalk, czyli wzajemne zakłócanie się sygnałów w sąsiadujących parach. Standardy, takie jak TIA/EIA-568, podkreślają znaczenie zachowania odpowiedniego skręcenia i ograniczenia rozkręcenia par, aby zapewnić optymalną wydajność sieci. Praktyczne przykłady zastosowania tej zasady można znaleźć w lokalnych sieciach komputerowych, gdzie nieprawidłowe skręcenie może prowadzić do spadku szybkości transferu danych oraz zwiększenia błędów transmisji. Dlatego istotne jest, aby technicy przestrzegali tych zasad podczas montażu kabli, co przyczyni się do długoterminowej stabilności i wydajności sieci.

Pytanie 18

Napięcie spadające pomiędzy zasilaczem a urządzeniem zasilanym nieznacznie przekracza maksymalnie dozwoloną wartość. Jakie działania może podjąć instalator w takiej sytuacji?

A. Wykorzystać przewód aluminiowy o identycznym przekroju
B. Połączyć dwie żyły (lub więcej) równolegle
C. Zrezygnować z realizacji połączenia
D. Użyć przewodu o mniejszym przekroju
Rezygnacja z połączenia, kiedy spadek napięcia jest za duży, to nie najlepszy pomysł. Takie podejście może tylko unikać problemów, zamiast je rozwiązywać. Możliwe, że stracisz energię, a to wpłynie na sprzęt, który jest zasilany. Użycie mniejszego przewodu to również zły krok, bo to zwiększa opór, a problem z napięciem tylko się pogłębia. Wydaje się, że wybór przewodu aluminiowego za niższą cenę jest dobry, ale pamiętaj, że aluminium jest znacznie gorsze w przewodnictwie niż miedź, co prowadzi do większego oporu i spadku napięcia. Kiedy projektujesz instalacje, musisz naprawdę zrozumieć, jak kluczowe jest dobre dobranie przewodów i ich przekrojów, żeby wszystko działało bezpiecznie i efektywnie. Ignorowanie tych zasad może prowadzić do poważnych awarii, a nawet grozić pożarem, co czyni takie podejścia ryzykownymi. Dlatego lepiej trzymać się standardów branżowych, jak PN-IEC 60364, bo to podstawa dobrego projektowania i budowy instalacji elektrycznych.

Pytanie 19

Zidentyfikowanie usterek w urządzeniach elektronicznych powinno rozpocząć się od weryfikacji

A. bezpieczników
B. elementów biernych
C. tranzystorów
D. diod zabezpieczających
Zaczynając od sprawdzenia tranzystorów, diod zabezpieczających lub elementów biernych, można wpaść w pułapkę, która prowadzi do nieefektywnej diagnostyki. Tranzystory są kluczowymi elementami aktywnymi w układach elektronicznych, ale zaczynanie diagnostyki od nich bez uprzedniego sprawdzenia bezpieczników może być mylące. W przypadku, gdy bezpieczniki są przepalone, tranzystory mogą również ulec uszkodzeniu, a ich testowanie bez wcześniejszej oceny stanu bezpieczników może prowadzić do fałszywych wniosków na temat ich funkcjonalności. Dodatkowo, diody zabezpieczające pełnią istotną rolę w ochronie obwodów, jednak ich uszkodzenie zazwyczaj występuje w wyniku wcześniejszych awarii w obwodzie, więc ich sprawdzanie na początku diagnostyki może być nieproduktywne. Elementy bierne, takie jak rezystory czy kondensatory, są mniej prawdopodobnymi źródłami problemów, jeśli obwód nie jest aktywny. Błędne podejście do lokalizacji uszkodzeń może prowadzić do długotrwałych i kosztownych napraw, dlatego kluczowe jest przestrzeganie dobrych praktyk, takich jak najpierw sprawdzenie bezpieczników, co pozwala szybko zidentyfikować potencjalne źródła problemów w układzie.

Pytanie 20

Miernik cęgowy przedstawiony na rysunku służy do pomiaru

Ilustracja do pytania
A. rezystancji.
B. mocy czynnej.
C. natężenia prądu elektrycznego.
D. napięcia elektrycznego.
Miernik cęgowy to specjalistyczne narzędzie, które znajduje zastosowanie w pomiarze natężenia prądu elektrycznego, co czyni go niezbędnym w pracy elektryków i techników. Dzięki zastosowaniu cęgów, miernik ten pozwala na pomiar prądu w przewodach bez konieczności ich odłączania, co jest niezwykle praktyczne podczas pracy w istniejących instalacjach. Miernik cęgowy działa na zasadzie wykrywania pola magnetycznego generowanego przez przepływający prąd, co umożliwia bezkontaktowy pomiar wartości natężenia prądu przemiennego (AC). Tego typu pomiar jest zgodny z zasadami bezpieczeństwa, ponieważ minimalizuje ryzyko porażenia prądem. W praktyce, urządzenia te są wykorzystywane w różnych branżach, od instalacji elektrycznych po konserwację maszyn. Warto również wspomnieć, że klasyczne multimetery, które mierzą napięcie czy rezystancję, wymagają przerywania obwodu, co nie jest wymagane przy użyciu miernika cęgowego. Dlatego cęgowy miernik prądu jest narzędziem, które powinno znajdować się w wyposażeniu każdego specjalisty zajmującego się elektryką.

Pytanie 21

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. czasów narastania i opadania impulsów
B. przesunięcia fazy między dwoma sygnałami sinusoidalnymi
C. współczynnika zniekształceń nieliniowych
D. bitowej stopy błędów
Kiedy analizujesz funkcje oscyloskopu, to trochę błędne jest myślenie, że może on mierzyć przesunięcie fazowe między sygnałami sinusoidalnymi czy jakość transmisji danych. Oscyloskop w swojej podstawowej wersji jest tak naprawdę stworzony do wizualizacji sygnałów w czasie, a nie do badania ich fazy czy jakości. Przesunięcie fazowe to sprawa, która potrzebuje bardziej zaawansowanego sprzętu, jak analizatory widma, które mogą analizować różnice fazowe między sygnałami. Jeśli chodzi o bitową stopę błędów, oscyloskop sam w sobie nie oceni jakości przesyłania danych cyfrowych, bo to wymaga analizy statystycznej błędów, niestety jego to nie obejmuje. Z kolei współczynnik zniekształceń nieliniowych także wymaga lepszej analizy, co zwykle robią analizatory sygnałów, które mogą się skupić na analizie harmonicznych. Zrozumienie, co dany sprzęt potrafi zmierzyć, jest kluczowe, żeby nie popełniać błędów przy diagnostyce problemów i odpowiednim doborze narzędzi.

Pytanie 22

Przewód przedstawiony na fotografii jest stosowany w instalacjach

Ilustracja do pytania
A. domofonowych.
B. sieci przemysłowych.
C. kontroli dostępu.
D. antenowych.
Odpowiedź "antennowych" jest poprawna, ponieważ przewód przedstawiony na fotografii to koncentryczny kabel antenowy, który jest kluczowy w systemach transmisji sygnałów telewizyjnych oraz radiowych. Tego typu kabel charakteryzuje się strukturalnym układem, w którym wewnętrzny przewodnik otoczony jest dielektrykiem oraz zewnętrznym oplotem, co pozwala na efektywne przesyłanie sygnałów przy minimalnych stratach. W praktyce, kable koncentryczne są wykorzystywane w instalacjach telewizyjnych do podłączenia anten do odbiorników, a także w systemach CCTV. Zgodne z normami branżowymi, takie jak standardy IEC 61196, ważne jest, aby kable te spełniały określone parametry, takie jak tłumienie, impedancja oraz odporność na zakłócenia, co ma kluczowe znaczenie dla jakości odbieranego sygnału. W efekcie, ich zastosowanie w domach, biurach oraz obiektach przemysłowych jest niezwykle powszechne, co podkreśla ich znaczenie w nowoczesnych instalacjach telekomunikacyjnych.

Pytanie 23

Na zdjęciu przedstawiono odgałęźnik telewizyjny

Ilustracja do pytania
A. 3-krotny.
B. 6-krotny.
C. 2-krotny.
D. 4-krotny.
Wybór odpowiedzi innej niż "4-krotny" wskazuje na nieporozumienie dotyczące podstawowych właściwości odgałęźników telewizyjnych. Odgałęźniki te są kluczowymi elementami systemów antenowych, których głównym zadaniem jest podział sygnału z jednego źródła na kilka odbiorników. Odpowiedzi wskazujące na 2-krotny, 3-krotny lub 6-krotny odgałęźnik sugerują, że użytkownik może nie rozumieć oznaczeń na urządzeniach tego typu. Przykładowo, odgałęźnik 2-krotny służy do podłączenia dwóch odbiorników, co oznacza, że przy trzech odbiornikach konieczne byłoby użycie dwóch takich urządzeń. Odpowiedzi 3-krotne i 6-krotne nie są zgodne z rzeczywistością, ponieważ nie ma standardowych odgałęźników o takich oznaczeniach. W praktyce, stosowanie nieprawidłowych typów odgałęźników może prowadzić do problemów z jakością sygnału, a w konsekwencji do obniżenia komfortu oglądania. Ważnym aspektem jest też zrozumienie, że każdy odgałęźnik ma swoje właściwe parametry techniczne, takie jak tłumienie i izolacja, które są kluczowe dla utrzymania jakości sygnału. Użytkownicy powinni być świadomi, że dobór odpowiedniego odgałęźnika do konkretnej instalacji jest kluczowy dla prawidłowego funkcjonowania systemu telewizyjnego.

Pytanie 24

Na fotografii przedstawiono kompas elektroniczny składający się z dwu geodezyjnych odbiorników GPS umieszczonych na jednej osi oraz oprogramowania służącego do zapisywania danych pomiarowych. Urządzeniem tym nie można zmierzyć

Ilustracja do pytania
A. azymutu.
B. prędkości wiatru.
C. kąta elewacji.
D. wysokości.
Odpowiedź 'prędkości wiatru' jest prawidłowa, ponieważ kompas elektroniczny, zbudowany na bazie geodezyjnych odbiorników GPS, jest wyposażony w technologie umożliwiające pomiar azymutu, kąta elewacji oraz wysokości. Odbiorniki GPS analizują sygnały satelitarne, co pozwala na precyzyjne określenie pozycji na ziemi oraz związanych z nią kątów. Przykładowo, w zastosowaniach geodezyjnych, takie urządzenie może być używane do wyznaczania granic działek, analizy terenu czy w geoinżynierii. Pomiar wysokości, dzięki współrzędnym GPS, jest istotny przy projektach budowlanych i inżynieryjnych, gdzie precyzja ma kluczowe znaczenie. Warto również zauważyć, że pomiar azymutu jest niezbędny w nawigacji oraz w planowaniu tras, co czyni ten sprzęt niezbędnym narzędziem w wielu dziedzinach. Jednakże, aby zmierzyć prędkość wiatru, konieczne byłyby dodatkowe sensory, takie jak anemometry, które są zaprojektowane do monitorowania ruchu powietrza, a standardowy kompas elektroniczny nie jest w nie wyposażony.

Pytanie 25

Jakie złącze służy do podłączenia projektora multimedialnego do komputera PC?

A. LPT
B. VGA
C. PS-2
D. SATA
Złącze VGA (Video Graphics Array) jest standardowym interfejsem stosowanym do przesyłania sygnału wideo z komputera do projektora multimedialnego. To złącze, wprowadzone w 1987 roku, stało się powszechnie stosowanym rozwiązaniem w branży komputerowej i audiowizualnej. Jego główną zaletą jest możliwość przesyłania analogowego sygnału wideo w rozdzielczości do 640x480 pikseli, co w praktyce wystarcza do wyświetlania obrazu w wielu zastosowaniach, w tym prezentacjach czy wykładach. VGA korzysta z 15-pinowego złącza D-sub, które umożliwia łatwe podłączenie do różnych urządzeń. Warto również zwrócić uwagę, że wiele nowoczesnych projektorów i monitorów nadal obsługuje standard VGA, co czyni go kompatybilnym rozwiązaniem w wielu środowiskach. Chociaż technologia ta zaczyna ustępować miejsca nowocześniejszym standardom, takim jak HDMI czy DisplayPort, to VGA wciąż odgrywa istotną rolę w wielu sytuacjach, gdzie wymagana jest prostota i łatwość podłączenia.

Pytanie 26

Wyłącznik nadmiarowoprądowy zabezpiecza instalację zasilającą urządzenie elektroniczne przed skutkami

A. przeciążenia instalacji elektrycznej
B. przepięć w sieci energetycznej
C. wyładowań atmosferycznych
D. zaniku napięcia
Wyłącznik nadmiarowoprądowy to istotny element systemu zabezpieczeń instalacji elektrycznych, którego głównym zadaniem jest ochrona przed skutkami przeciążenia. W sytuacji, gdy prąd płynący przez instalację przekracza dopuszczalne wartości, co zazwyczaj ma miejsce przy podłączeniu zbyt wielu urządzeń do jednego obwodu, wyłącznik ten automatycznie odłącza zasilanie. Dzięki temu chroni zarówno urządzenia elektroniczne, jak i samą instalację przed uszkodzeniami. W praktyce, zastosowanie wyłącznika nadmiarowoprądowego jest standardem w budynkach mieszkalnych i obiektach komercyjnych, ponieważ pozwala na zminimalizowanie ryzyka wystąpienia pożaru, który mógłby być spowodowany przegrzewaniem się przewodów. Ponadto, wyłączniki te są zgodne z normami PN-EN 60947-2, które definiują wymagania techniczne dla urządzeń rozdzielczych. Ważne jest, aby użytkownicy byli świadomi znaczenia tych urządzeń oraz regularnie kontrolowali ich sprawność, co jest kluczowe dla bezpieczeństwa ich instalacji elektrycznych.

Pytanie 27

Schemat, którego generatora przedstawiono na rysunku?

Ilustracja do pytania
A. Hartleya w konfiguracji wspólny emiter.
B. Hartleya w konfiguracji wspólna baza.
C. Meissnera w konfiguracji wspólna baza.
D. Meissnera w konfiguracji wspólny emiter.
Generator Hartleya, który został przedstawiony w schemacie, jest jednym z popularnych typów generatorów sinusoidalnych. Kluczowym elementem jego konstrukcji jest cewka z odczepem, co można zauważyć w układzie L2 i L3. Te odczepy pozwalają na uzyskanie odpowiednich warunków rezonansowych, co jest niezbędne dla stabilności generowanego sygnału. W konfiguracji wspólny emiter połączenie emitera tranzystora z masą przez rezystor RE oraz kondensator CE jest charakterystyczne dla tego typu układów, co pozwala na uzyskanie wysokiej wydajności i amplitudy sygnału. W praktyce, generatory Hartleya są wykorzystywane w różnych aplikacjach, takich jak oscylatory w radiotechnice, generatory sygnałów w systemach komunikacyjnych oraz w układach automatyki. Zastosowanie takiego generatora pozwala na generację stabilnych sygnałów o określonej częstotliwości, co jest kluczowe w wielu dziedzinach inżynierii elektronicznej. Dodatkowo, ze względu na prostotę konstrukcji, generatory te są często wykorzystywane w projektach edukacyjnych, gdzie studenci mogą zrozumieć zasady działania układów rezonansowych i podstawowych elementów elektronicznych.

Pytanie 28

Przyrząd przedstawiony na zdjęciu przeznaczony jest do

Ilustracja do pytania
A. pomiaru indukcyjności.
B. pomiaru pojemności.
C. wykrywania przewodów.
D. wykrywania zwarć.
Przyrząd przedstawiony na zdjęciu to detektor przewodów, który jest kluczowym narzędziem w branży budowlanej i elektrotechnicznej. Model D-tect 100 Professional od firmy Bosch jest zaprojektowany do wykrywania zarówno metalowych, jak i niemetalowych przewodów ukrytych pod powierzchnią, co czyni go niezastąpionym w trakcie prac remontowych i instalacyjnych. Użycie detektora pozwala na uniknięcie uszkodzeń podczas wiercenia czy kładzenia instalacji, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i higieny pracy. Przykładowo, przed rozpoczęciem jakichkolwiek prac w ścianach, gdzie mogą znajdować się przewody elektryczne, stosowanie tego urządzenia jest nie tylko zalecane, ale wręcz wymagane. Właściwe jego użycie zwiększa bezpieczeństwo wykonawców oraz minimalizuje ryzyko awarii lub zagrożeń związanych z porażeniem prądem. Dodatkowo, detektory przewodów wspierają użytkowników w ocenie stanu instalacji, co może być przydatne podczas przeglądów technicznych lub konserwacji.

Pytanie 29

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. EUROSCART
B. S-VHS
C. JACK
D. DIN 5
Złącze S-VHS jest przeznaczone głównie do przesyłania sygnału wideo w wyższej jakości niż standardowy sygnał kompozytowy, ale nie obsługuje zintegrowanego przesyłania kolorów R, G, B ani sygnału audio. S-VHS, z uwagi na swoją konstrukcję, skupia się jedynie na jakości obrazu, co ogranicza jego zastosowanie w kontekście przesyłania pełnego sygnału multimedialnego. Odpowiedź JACK, znana głównie jako złącze audio, również nie jest właściwa, ponieważ jest to złącze mono lub stereo, które nie może obsługiwać sygnałów wideo. Podobnie, złącze DIN 5, mimo że może być używane do różnych zastosowań audio, nie jest przystosowane do przesyłania zarówno sygnałów wideo, jak i audio w formie, która zintegrowałaby wszystkie wymienione sygnały. Wybór niewłaściwego złącza często wynika z nieporozumienia dotyczącego jego funkcji i zastosowania. Aby uniknąć takich błędów, kluczowe jest zrozumienie specyfikacji oraz możliwości każdego złącza, a także ich funkcji w kontekście całego systemu audio-wideo.

Pytanie 30

Całkowity koszt wykonania instalacji alarmowej, przy wartości materiałów wynoszącej 2 000 zł netto oraz kosztach robocizny w wysokości 1 000 zł netto, wyniesie ile, jeżeli materiały są objęte 23% a usługa 8% podatkiem VAT?

A. 3 540 zł
B. 3 240 zł
C. 3 460 zł
D. 3 080 zł
Aby obliczyć łączny koszt instalacji alarmowej, należy najpierw ustalić wartość materiałów i robocizny, a następnie doliczyć odpowiednie stawki podatku VAT. W tym przypadku wartość materiałów wynosi 2 000 zł netto. Stawka VAT dla materiałów wynosi 23%, co daje kwotę 460 zł (2 000 zł x 0,23). Z kolei koszt robocizny wynosi 1 000 zł netto, a stawka VAT dla robocizny wynosi 8%, co daje kwotę 80 zł (1 000 zł x 0,08). Łączny koszt materiałów z VAT to 2 000 zł + 460 zł = 2 460 zł, natomiast łączny koszt robocizny z VAT to 1 000 zł + 80 zł = 1 080 zł. Sumując te wartości, otrzymujemy całkowity koszt instalacji wynoszący 2 460 zł + 1 080 zł = 3 540 zł. Takie obliczenia są zgodne z obowiązującymi przepisami VAT i są kluczowe w branży budowlanej oraz instalacyjnej, gdzie precyzyjne kalkulacje kosztów mają istotne znaczenie dla rentowności projektów.

Pytanie 31

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. zwiększyć
B. wyzerować
C. zmniejszyć
D. wyrównać
Aby poprawić jakość obrazu w słabych warunkach oświetleniowych, kluczowe jest zwiększenie odstępu sygnału do szumu (S/N) wytwarzanego przez układy elektroniczne kamery. Wysoki stosunek S/N oznacza, że sygnał, który jest istotny dla reprodukcji obrazu, jest znacznie silniejszy od szumów, które mogą wprowadzać zakłócenia. Przykładowo, w zastosowaniach takich jak monitoring nocny, zwiększenie czułości matrycy kamery pozwala na uzyskanie lepszej jakości w trudnych warunkach oświetleniowych. W praktyce można to osiągnąć poprzez zastosowanie większych pikseli matrycy, co zwiększa zbieranie światła, lub przez poprawę algorytmów redukcji szumów. Standardy branżowe, takie jak ISO w fotografii, wskazują, że wyższe wartości ISO, które często towarzyszą poprawionemu S/N, mogą doprowadzić do jaśniejszego obrazu w ciemności, choć mogą także wprowadzać szumy. Dlatego ważne jest, aby znaleźć równowagę pomiędzy czułością a jakością obrazu, co jest kluczowe dla uzyskania zadowalających rezultatów.

Pytanie 32

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. zaciśniacz
B. który służy do lutowania
C. spawarka
D. zgrzewarka
Wybór narzędzi do łączenia włókien optycznych może być mylący, szczególnie gdy rozważa się zastosowanie zaciskarki, lutownicy czy zgrzewarki. Zaciskarka jest narzędziem używanym do łączenia kabli elektrycznych i nie ma zastosowania w kontekście włókien optycznych. Jej mechanizm opiera się na zgrzewaniu metalowych przewodów, co jest całkowicie nieodpowiednie dla delikatnych włókien optycznych, które wymagają precyzyjnego połączenia bez narażania ich na uszkodzenia. Lutownica, natomiast, jest narzędziem stosowanym w elektronice do łączenia komponentów elektronicznych, a jej zasada działania polega na topnieniu cyny, co w przypadku włókien optycznych jest niewłaściwe, ponieważ nie ma możliwości skutecznego lutowania materiałów optycznych. Zgrzewarka także nie znajduje zastosowania w tej dziedzinie, ponieważ jej działanie opiera się na łączeniu materiałów przez wysokotemperaturowe zgrzewanie, co w przypadku włókien może prowadzić do ich zniszczenia. Aby połączyć włókna optyczne w sposób efektywny i bezpieczny, niezbędne jest zrozumienie różnic pomiędzy tymi technologiami oraz ich zastosowań w praktyce. Właściwe podejście do łączenia włókien optycznych, które zapewnia minimalizację strat sygnału i wysoką jakość połączenia, opiera się na wiedzy o technicznych aspektach używania spawarek światłowodowych, co podkreśla znaczenie właściwego wyboru narzędzi w branży telekomunikacyjnej.

Pytanie 33

Element pasywny w sieciach telekomunikacyjnych oraz komputerowych, który posiada gniazda po stronie zewnętrznej oraz styki do montażu kabla od wewnątrz, określamy mianem

A. kanału kablowego
B. panelu krosowniczego
C. złączki
D. skréty
Wybór odpowiedzi innej niż panel krosowniczy może prowadzić do nieporozumień dotyczących właściwych funkcji i zastosowania elementów w sieciach telekomunikacyjnych oraz komputerowych. Złączka, na przykład, to element używany do łączenia dwóch przewodów, ale nie oferuje funkcji zarządzania połączeniami w skomplikowanej infrastrukturze sieciowej, jak robi to panel krosowniczy. Złączki są bardziej użyteczne w prostych połączeniach, gdzie nie ma potrzeby dla centralizacji i łatwego dostępu do kabli. Kanał kablowy z kolei pełni rolę ochronną dla kabli, ale nie ma styku do konwersji sygnałów ani możliwości zarządzania połączeniami. Jego głównym celem jest organizacja i zabezpieczenie przewodów, a nie ich łączenie. Skrętka, definiowana najczęściej jako przewód Ethernet, to typ kabla stosowanego w sieciach komputerowych, ale nie jest elementem infrastruktury pasywnej, który zapewnia dostęp do wielu połączeń w jednym miejscu. Wybierając nieprawidłowe odpowiedzi, można zlekceważyć istotną rolę paneli krosowniczych w systemach zarządzania kablami oraz ich znaczenie w zapewnieniu niezawodności i elastyczności sieci. Zrozumienie tych różnic jest kluczowe dla poprawnego projektowania i wdrażania nowoczesnych rozwiązań sieciowych.

Pytanie 34

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 100 mV
B. 150 mV
C. 300 mV
D. 1000 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 35

Jakie elementy chłodzące urządzeń powinny być poddane czyszczeniu w trakcie konserwacji?

A. Symetryzatora antenowego
B. Zwrotnicy antenowej
C. Zasilacza komputerowego
D. Czujnika kontaktronowego
Kiedy wybierasz elementy, które nie potrzebują czyszczenia, pokazuje to, że nie do końca rozumiesz, jak działają urządzenia elektroniczne. Zwrotnice antenowe czy symetryzatory antenowe zarządzają sygnałem, a ich budowa zwykle nie pozwala na gromadzenie się kurzu. Dlatego nie musisz ich tak często czyścić, jak zasilaczy. Konserwacja w ich przypadku bardziej polega na sprawdzaniu, czy wszystko działa jak należy. A jeżeli chodzi o czujniki kontaktronowe, to też nie mają chłodzenia, więc ich konserwacja to głównie dbanie o to, by dobrze reagowały na zmiany w otoczeniu. Często mylimy te urządzenia z tymi, które wymagają aktywnego chłodzenia, przez co źle rozumiemy, jak ważne jest czyszczenie. Warto pamiętać, że każde z tych urządzeń ma inne wymagania konserwacyjne niż zasilacze, więc dobrze znać ich specyfikę, aby zadbać o odpowiednią konserwację.

Pytanie 36

Jaką funkcję pełni czasza w antenie satelitarnej?

A. skierowanie konwertera w stronę wybranego satelity
B. umożliwienie odbioru konkretnych częstotliwości sygnału
C. odbicie fal i skierowanie ich do konwertera
D. umożliwienie zamontowania konwertera pod właściwym kątem
Wybór odpowiedzi, która sugeruje, że czasza anteny satelitarnej ma na celu skierowanie konwertera na wybranego satelitę, jest nieprawidłowy, ponieważ myli rolę czaszy z funkcją montażu konwertera. Czasza sama w sobie nie odpowiada za orientację konwertera; jest to element, który działa w sposób pasywny, odbijając fale elektromagnetyczne do konwertera. Ponadto, odpowiedź stwierdzająca, że czasza umożliwia odbiór określonych częstotliwości sygnału, jest również błędna. Czasza nie selekcjonuje częstotliwości, ale raczej zbiera fale z określonego kierunku i skupia je na konwerterze, który następnie przetwarza sygnały na odpowiednie częstotliwości dla systemu odbiorczego. W kontekście montażu, choć czasza musi być zamontowana pod odpowiednim kątem, to nie jest to jej główna funkcja. Kluczowe jest, aby zrozumieć, że czasza jest elementem odbiorczym, a nie kierującym czy selektywnym w kontekście częstotliwości. Typowe błędy myślowe polegają na myleniu fizycznych funkcji różnych komponentów systemu satelitarnego, co prowadzi do nieprawidłowego zrozumienia zasad działania anten.

Pytanie 37

Jaka jest prawidłowa kolejność wlutowywania elementów elektronicznych na płytkę obwodu drukowanego przedstawionego na rysunku podczas montażu przewlekanego?

Ilustracja do pytania
A. Kondensatory elektrolityczne, kondensatory ceramiczne, rezystory, układ scalony.
B. Rezystory, układ scalony, kondensatory ceramiczne, kondensatory elektrolityczne.
C. Rezystory, kondensatory ceramiczne, kondensatory elektrolityczne, układ scalony.
D. Układ scalony, kondensatory elektrolityczne, kondensatory ceramiczne, rezystory.
Niepoprawne odpowiedzi wynikały z niepełnego zrozumienia zasad montażu elementów elektronicznych na płytkach drukowanych. Montowanie kondensatorów elektrolitycznych przed rezystorami lub innymi elementami, które są mniej wrażliwe na temperaturę, jest niewłaściwe. Kondensatory elektrolityczne są bardziej podatne na uszkodzenia termiczne, co czyni je niewłaściwymi do wlutowywania na początku procesu. Dla układów scalonych, ich wrażliwość na wysokie temperatury oznacza, że powinny być montowane jako ostatnie, aby uniknąć uszkodzeń, co również nie zostało uwzględnione w niektórych odpowiedziach. W praktyce, niewłaściwa kolejność montażu może prowadzić do uszkodzenia komponentów oraz obniżenia niezawodności i trwałości całego obwodu. Należy również zwrócić uwagę na zagadnienia związane z zarządzaniem ciepłem podczas lutowania - elementy o różnych właściwościach termicznych wymagają odpowiedniego podejścia, aby zminimalizować ryzyko ich uszkodzenia. Nieprzestrzeganie tej zasady jest powszechnym błędem, który często wynika z braku doświadczenia lub niedostosowania się do ustalonych standardów w inżynierii elektronicznej.

Pytanie 38

Jakie urządzenia wykorzystuje się do pomiaru mocy czynnej?

A. waromierze
B. wariometry
C. woltomierze
D. watomierze
Watomierz jest urządzeniem pomiarowym, które służy do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, mierzona w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonania pracy, w przeciwieństwie do mocy biernej, która nie ma wpływu na wykonanie pracy, a jedynie oscyluje w obwodzie. Watomierze działają na zasadzie pomiaru napięcia, prądu oraz kąta fazowego między nimi, co pozwala na dokładne określenie mocy czynnej. W zastosowaniach przemysłowych, gdzie monitorowanie zużycia energii jest kluczowe dla efektywności energetycznej, watomierze stanowią nieocenione narzędzie. Standardowe watomierze mogą być wykorzystywane w różnych instalacjach elektrycznych, zarówno w domowych, jak i przemysłowych, co sprawia, że ich znajomość oraz umiejętność ich zastosowania są niezbędne dla inżynierów i techników. Dobre praktyki w zakresie pomiarów mocy zawsze uwzględniają wykorzystanie watomierzy, które są kalibrowane zgodnie z normami międzynarodowymi, co zapewnia ich dokładność i powtarzalność wyników.

Pytanie 39

Podczas montażu komponentów elektronicznych metodą lutu miękkiego nie powinno się

A. ustalać czasu lutowania do poszczególnych miejsc na płytce
B. przenosić lutowia na końcówce grota
C. dostosowywać temperatury lutowania do konkretnej lokalizacji na płytce
D. zajmować się czystością grota
Dbanie o czystość grota lutownicy, dobieranie temperatury oraz czasu grzania do konkretnego miejsca na płytce to kluczowe elementy prawidłowego procesu lutowania, które zapewniają wysoką jakość wykonania. Czystość grota lutownicy ma bezpośredni wpływ na efektywność przenoszenia ciepła oraz przyczepność lutowia do podłoża. Zanieczyszczony grot może prowadzić do nieefektywnego lutowania, a w skrajnych przypadkach nawet do uszkodzenia elementów elektronicznych. Odpowiednia temperatura grzania jest niezbędna, aby uniknąć zarówno niedogrzania, które skutkuje słabym spoiwem, jak i przegrzania, które może uszkodzić delikatne komponenty. Ponadto, czas grzania powinien być dostosowany do rodzaju materiałów, z którymi pracujemy, co jest istotne w kontekście uniknięcia deformacji elementów oraz zapewnienia ich trwałości. Brak uwagi na te aspekty może prowadzić do typowych błędów, takich jak 'cold joints', które są niepewnymi połączeniami i mogą skutkować awarią całego układu. Dlatego tak istotne jest, aby stosować się do dobrych praktyk i standardów branżowych w zakresie lutowania, aby zapewnić wysoką jakość wykonania oraz niezawodność finalnych produktów.

Pytanie 40

Do realizacji instalacji odbiorczej paneli fotowoltaicznych należy użyć kabla rodzaju

A. RG58
B. YDY
C. YTKSY
D. UTP
Kable UTP, RG58 oraz YTKSY nie są odpowiednie do realizacji instalacji odbiorczej ogniw fotowoltaicznych, ponieważ ich zastosowanie i właściwości różnią się od wymagań stawianych przez systemy fotowoltaiczne. Kabel UTP (Unshielded Twisted Pair) jest typowo stosowany w sieciach komputerowych do przesyłania danych, a jego konstrukcja nie jest przystosowana do zasilania urządzeń elektrycznych, co sprawia, że nie można go używać w obwodach niskonapięciowych do paneli słonecznych. Z kolei RG58 jest kablem koncentrycznym, który jest używany głównie w systemach komunikacyjnych, takich jak anteny radiowe czy telewizyjne, a jego zastosowanie w instalacjach elektrycznych nie spełnia norm dotyczących bezpieczeństwa i wydajności. Natomiast kabel YTKSY, znany z zastosowania w telekomunikacji, również nie jest odpowiedni do użycia w systemach fotowoltaicznych, ponieważ jego konstrukcja nie zapewnia wymaganej elastyczności i odporności na czynniki zewnętrzne, co jest kluczowe w kontekście instalacji na otwartym terenie. Użycie niewłaściwego rodzaju kabla w instalacji fotowoltaicznej może prowadzić do awarii systemu, zwiększenia ryzyka uszkodzeń oraz nieefektywnego działania, dlatego ważne jest, aby dobierać materiały zgodnie z ich przeznaczeniem i wymaganiami technicznymi.