Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 1 listopada 2025 20:45
  • Data zakończenia: 1 listopada 2025 21:02

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który standard protokołu IEEE 802.3 powinien być użyty w środowisku z zakłóceniami elektromagnetycznymi, gdy dystans między punktem dystrybucji a punktem abonenckim wynosi 200 m?

A. 10Base2
B. 100Base–T
C. 100Base–FX
D. 1000Base–TX
Standard 100Base-FX jest odpowiedni w środowiskach, gdzie występują zakłócenia elektromagnetyczne, zwłaszcza w sytuacjach wymagających przesyłania sygnału na odległość do 200 m. Ten standard wykorzystuje światłowody, co znacząco zwiększa odporność na zakłócenia elektromagnetyczne w porównaniu do standardów opartych na miedzi, takich jak 100Base-T. W praktyce oznacza to, że w miejscach, gdzie instalacje elektryczne mogą generować zakłócenia, 100Base-FX jest idealnym rozwiązaniem. Przykładem zastosowania tego standardu mogą być instalacje w biurach znajdujących się w pobliżu dużych maszyn przemysłowych lub w środowiskach, gdzie wykorzystywane są silne urządzenia elektryczne. 100Base-FX obsługuje prędkość przesyłu danych do 100 Mb/s na dystansie do 2 km w kablu światłowodowym, co czyni go bardzo elastycznym rozwiązaniem dla różnych aplikacji sieciowych. Ponadto, stosowanie światłowodów przyczynia się do zminimalizowania strat sygnału, co jest kluczowe w przypadku dużych sieci korporacyjnych.

Pytanie 2

Jakie oprogramowanie do wirtualizacji jest dostępne jako rola w systemie Windows Server 2019?

A. VMware
B. Virtual PC
C. Virtual Box
D. Hyper-V
Wybór VMware, Virtual PC i Virtual Box jako oprogramowania do wirtualizacji dostępnego w Windows Serwer 2019 wynika z pewnych nieporozumień co do charakterystyki i przeznaczenia tych rozwiązań. VMware to ogólny termin odnoszący się do różnych produktów wirtualizacyjnych tej firmy, z których wiele działa niezależnie od systemu Windows, co sprawia, że nie może być uznawane za rolę w samej platformie Windows Server 2019. Virtual PC, z kolei, to starsza technologia wirtualizacji stworzona przez Microsoft, która nie jest już rozwijana i nie oferuje funkcji dostępnych w nowoczesnych rozwiązaniach jak Hyper-V, co czyni ją mało praktycznym wyborem w kontekście nowoczesnych środowisk serwerowych. Virtual Box, stworzony przez Oracle, także nie jest zintegrowany z Windows Server 2019 w sposób, który pozwalałby na jego użycie jako roli systemowej. Wybór tych technologii może wynikać z braku zrozumienia ich funkcji oraz ograniczeń, które może prowadzić do nieoptymalnych decyzji w zakresie zarządzania infrastrukturą IT. Dla organizacji, które chcą zapewnić wysoką dostępność oraz efektywność operacyjną, kluczowe jest, aby w pełni zrozumieć różnice między tymi rozwiązaniami a Hyper-V. Ignorowanie tych różnic może prowadzić do problemów z wydajnością oraz trudności w zarządzaniu zasobami, co jest niezgodne z dobrymi praktykami zarządzania infrastrukturą IT.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Poniżej przedstawiono wynik polecenia ipconfig /all Jaką bramę domyślną ma diagnozowane połączenie?

Connection-specific DNS Suffix  . : 
Description . . . . . . . . . . . : Karta Intel(R) PRO/1000 MT Desktop Adapter #2
Physical Address. . . . . . . . . : 08-00-27-69-1E-3D
DHCP Enabled. . . . . . . . . . . : No
Autoconfiguration Enabled . . . . : Yes
Link-local IPv6 Address . . . . . : fe80::d41e:56c7:9f70:a3e5%13(Preferred)
IPv4 Address. . . . . . . . . . . : 70.70.70.10(Preferred)
Subnet Mask . . . . . . . . . . . : 255.0.0.0
IPv4 Address. . . . . . . . . . . : 172.16.0.100(Preferred)
Subnet Mask . . . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . . . : 70.70.70.70
DHCPv6 IAID . . . . . . . . . . . : 319291431
DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-28-11-7D-57-08-00-27-EB-E4-76
DNS Servers . . . . . . . . . . . : 8.8.8.8
NetBIOS over Tcpip. . . . . . . . : Enabled
A. fe80::d41e:56c7:9f70:a3e5%13
B. 70.70.70.70
C. 08-00-27-69-1E-3D
D. 172.16.0.100
Bramą domyślną w sieci jest adres IP, który router wykorzystuje do kierowania pakietów do internetu lub do innych sieci. W wyniku polecenia ipconfig /all dla karty Intel(R) PRO/1000 MT Desktop Adapter na ilustracji widoczny jest adres 70.70.70.70 jako brama domyślna. Jest to standardowy sposób identyfikacji urządzeń w sieci lokalnej oraz ich punktów dostępowych do innych sieci. Użycie polecenia ipconfig /all jest kluczowe dla administratorów sieci, gdyż umożliwia uzyskanie szczegółowych informacji o konfiguracji sieci, takich jak adres IP, maska podsieci, brama domyślna oraz serwery DNS. W praktyce, znajomość bramy domyślnej jest niezbędna do rozwiązywania problemów z połączeniem z internetem oraz przy konfigurowaniu urządzeń w sieci. Ponadto, znajomość i umiejętność analizy wyników polecenia ipconfig /all jest jedną z podstawowych umiejętności administracyjnych w kontekście zarządzania siecią, co jest zgodne z najlepszymi praktykami w branży IT.

Pytanie 5

Jednostką przenikania zdalnego FEXT, dotyczącego okablowania strukturalnego, jest

A. s
B. V
C. dB
D. Ω
FEXT, czyli far-end crosstalk, to zjawisko zakłócenia sygnału w systemach okablowania strukturalnego, które występuje, gdy sygnał z jednego toru kablowego wpływa na tor inny, znajdujący się w dalszej odległości. Jednostką przeniku zdalnego FEXT jest dB (decybel), co oznacza, że mierzy się go w logarytmicznej skali, co pozwala na łatwiejsze porównanie poziomów sygnału i zakłóceń. W praktyce, zrozumienie i mierzenie FEXT jest kluczowe w projektowaniu i eksploatacji systemów komunikacyjnych, zwłaszcza w sieciach Ethernet oraz w technologii DSL. Przykładowo, w standardach takich jak ISO/IEC 11801, zagadnienia dotyczące FEXT są regulowane, a ich wartości graniczne są określone, aby zapewnić minimalizację zakłóceń i poprawę jakości sygnału. Właściwe projektowanie systemów okablowania, w tym odpowiednia separacja torów kablowych oraz dobór materiałów, przyczynia się do zmniejszenia przeniku FEXT i zwiększenia efektywności komunikacji.

Pytanie 6

ARP (Adress Resolution Protocol) to protokół, którego zadaniem jest przekształcenie adresu IP na

A. nazwę domenową
B. nazwę urządzenia
C. adres poczty elektronicznej
D. adres sprzętowy
ARP (Address Resolution Protocol) jest kluczowym protokołem w komunikacji sieciowej, który umożliwia odwzorowanie adresu IP na adres sprzętowy (MAC). Gdy komputer chce wysłać dane do innego urządzenia w sieci lokalnej, musi znać jego adres MAC. Protokół ARP działa na poziomie warstwy 2 modeli OSI, co oznacza, że jest odpowiedzialny za komunikację w obrębie lokalnych sieci Ethernet. Proces rozpoczyna się od wysłania przez komputer zapytania ARP w formie broadcastu, aby dowiedzieć się, kto posiada dany adres IP. Odpowiedź na to zapytanie zawiera adres MAC docelowego urządzenia. Dzięki ARP, protokół IP może skutecznie współdziałać z warstwą sprzętową, co jest niezbędne dla prawidłowego funkcjonowania sieci TCP/IP. Przykładem zastosowania ARP jest sytuacja, gdy użytkownik przegląda zasoby w sieci, a jego komputer musi wysłać pakiet do serwera, którego adres IP został wcześniej ustalony, ale adres MAC jest mu nieznany. Poprawne działanie ARP zapewnia, że dane dotrą do właściwego odbiorcy.

Pytanie 7

W ustawieniach haseł w systemie Windows Server aktywowana jest opcja hasło musi spełniać wymagania dotyczące złożoności. Ile minimalnie znaków powinno mieć hasło użytkownika?

A. 10 znaków
B. 12 znaków
C. 5 znaków
D. 6 znaków
Hasło użytkownika w systemie Windows Server musi składać się z co najmniej 6 znaków, aby spełniać wymagania dotyczące złożoności. Złożoność hasła ma na celu zwiększenie bezpieczeństwa systemu, redukując ryzyko nieautoryzowanego dostępu. Wymaganie minimalnej długości hasła to jedna z podstawowych praktyk w zarządzaniu bezpieczeństwem, która pomaga zabezpieczyć konta użytkowników przed atakami typu brute force. Przykładowo, stosując hasła o długości 6 znaków, zaleca się użycie kombinacji wielkich i małych liter, cyfr oraz znaków specjalnych, co znacznie podnosi poziom ochrony. Dla porównania, hasła składające się z zaledwie 5 znaków są mniej bezpieczne, ponieważ łatwiej je złamać przy użyciu odpowiednich narzędzi. Zgodnie z wytycznymi NIST (National Institute of Standards and Technology), złożoność haseł oraz ich długość są kluczowe dla ochrony danych, a stosowanie haseł o minimalnej długości 6 znaków jest powszechnie przyjętą praktyką w branży IT.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Norma PN-EN 50174 nie obejmuje wytycznych odnoszących się do

A. zapewnienia jakości instalacji kablowych
B. montażu instalacji na zewnątrz budynków
C. realizacji instalacji w obrębie budynków
D. uziemień systemów przetwarzania danych
Norma PN-EN 50174 rzeczywiście nie zawiera wytycznych dotyczących uziemień instalacji urządzeń przetwarzania danych, co czyni tę odpowiedź poprawną. Uziemienie jest kluczowym elementem bezpieczeństwa w instalacjach elektrycznych, szczególnie w kontekście urządzeń przetwarzania danych, które są narażone na różne zakłócenia elektromagnetyczne oraz mogą generować potencjalnie niebezpieczne napięcia. W praktyce, dla prawidłowego zabezpieczenia tych instalacji, często stosuje się normy takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące uziemień. Użycie odpowiednich systemów uziemiających minimalizuje ryzyko uszkodzeń sprzętu oraz zapewnia bezpieczeństwo użytkowników. Warto zaznaczyć, że uziemienie powinno być projektowane z uwzględnieniem specyfiki budynku oraz urządzeń, co w praktyce oznacza, że każdy przypadek powinien być analizowany indywidualnie przez specjalistów. Zrozumienie tych kwestii jest niezbędne dla skutecznego projektowania i utrzymania systemów IT.

Pytanie 10

W protokole FTPS litera S odnosi się do ochrony danych przesyłanych przez

A. logowanie
B. autoryzację
C. szyfrowanie
D. uwierzytelnianie
Odpowiedź 'szyfrowanie' jest prawidłowa, ponieważ litera 'S' w protokole FTPS (FTP Secure) odnosi się do zabezpieczania danych przesyłanych przez protokół FTP za pomocą szyfrowania. FTPS rozszerza klasyczny protokół FTP o metody zapewniające bezpieczeństwo, w tym SSL (Secure Sockets Layer) i TLS (Transport Layer Security). Szyfrowanie danych to kluczowy element, który chroni przed przechwyceniem informacji przez nieautoryzowane osoby. Dzięki tym technologiom, dane są kodowane podczas transmisji, co sprawia, że nawet w przypadku ich przechwycenia, są one nieczytelne dla intruzów. W praktyce, FTPS jest często stosowany w scenariuszach wymagających przesyłania wrażliwych danych, takich jak dane osobowe, finansowe czy medyczne, zgodnie z regulacjami prawnymi, takimi jak RODO. Zastosowanie protokołu FTPS pozwala nie tylko na szyfrowanie, ale również na zachowanie integralności danych, co jest niezbędne w kontekście współczesnych standardów bezpieczeństwa informacyjnego.

Pytanie 11

Technologia oparta na architekturze klient-serwer, która umożliwia połączenie odległych komputerów w sieci poprzez szyfrowany tunel, nazywa się

A. WLAN
B. VPN
C. VLAN
D. WAN
Technologia VPN (Virtual Private Network) umożliwia bezpieczne połączenie zdalnych komputerów w sieci przez szyfrowany tunel. Dzięki temu użytkownicy mogą przesyłać dane w sposób chroniony przed podsłuchiwaniem i dostępem nieautoryzowanych osób. VPN jest powszechnie stosowany w firmach, które umożliwiają pracownikom zdalny dostęp do zasobów sieciowych, zapewniając jednocześnie ochronę danych. Przykładem może być pracownik, który korzystając z publicznej sieci Wi-Fi w kawiarni, łączy się z siecią firmową przez VPN, co uniemożliwia hakerom przechwycenie jego danych. Standardy bezpieczeństwa, takie jak IPsec (Internet Protocol Security) oraz SSL/TLS (Secure Sockets Layer/Transport Layer Security), są często wykorzystywane w implementacjach VPN, co czyni tę technologię zgodną z najlepszymi praktykami branżowymi.

Pytanie 12

Jakie urządzenie pozwala na podłączenie drukarki bez karty sieciowej do sieci lokalnej komputerów?

A. Punkt dostępu
B. Koncentrator
C. Regenerator
D. Serwer wydruku
Podłączenie drukarki nieposiadającej karty sieciowej do lokalnej sieci komputerowej za pomocą koncentratora jest nieefektywne i nieodpowiednie. Koncentrator, znany również jako hub, to podstawowe urządzenie sieciowe, które jedynie rozdziela sygnały pomiędzy podłączone urządzenia, ale nie zapewnia im inteligentnego zarządzania ani kontroli dostępu. Nie ma możliwości, aby koncentrator umożliwił komunikację drukarki z siecią, jeśli nie ma w niej wbudowanej karty sieciowej. Z kolei regenerator, który służy do wzmacniania sygnałów w długich liniach komunikacyjnych, nie ma żadnego wpływu na połączenie drukarki do sieci, gdyż jego zadaniem jest jedynie poprawa jakości przesyłanego sygnału. Punkt dostępu jest urządzeniem, które łączy urządzenia bezprzewodowe z siecią, ale również nie zapewnia wsparcia dla drukarek, które nie mają wbudowanej funkcji sieciowej. W praktyce, błędne przekonanie o możliwości wykorzystania tych urządzeń do podłączenia drukarki nieposiadającej karty sieciowej może prowadzić do frustracji użytkowników oraz marnotrawienia zasobów. W kontekście standardów branżowych, kluczowym zagadnieniem jest wybór odpowiednich rozwiązań, które rzeczywiście odpowiadają na potrzeby użytkowników i umożliwiają prawidłowe funkcjonowanie urządzeń w sieci.

Pytanie 13

Planowanie wykorzystania przestrzeni dyskowej komputera do przechowywania i udostępniania informacji, takich jak pliki i aplikacje dostępne w sieci oraz ich zarządzanie, wymaga skonfigurowania komputera jako

A. serwer plików
B. serwer DHCP
C. serwer aplikacji
D. serwer terminali
Serwer plików jest dedykowanym systemem, którego główną rolą jest przechowywanie, udostępnianie oraz zarządzanie plikami w sieci. Umożliwia on użytkownikom dostęp do plików z różnych lokalizacji, co jest istotne w środowiskach biurowych oraz edukacyjnych, gdzie wiele osób współdzieli dokumenty i zasoby. Przykłady zastosowania serwera plików obejmują firmy, które chcą centralizować swoje zasoby, umożliwiając pracownikom łatwy dostęp do dokumentów oraz aplikacji. Serwery plików mogą być konfigurowane z wykorzystaniem różnych protokołów, takich jak SMB (Server Message Block) dla systemów Windows czy NFS (Network File System) dla systemów Unix/Linux, co pozwala na interoperacyjność w zróżnicowanych środowiskach operacyjnych. Warto także wspomnieć o znaczeniu bezpieczeństwa i praw dostępu, co jest kluczowe w zarządzaniu danymi, aby zapewnić, że tylko uprawnione osoby mają dostęp do wrażliwych informacji. Dobrą praktyką jest również regularne wykonywanie kopii zapasowych danych znajdujących się na serwerze plików, co chroni przed ich utratą.

Pytanie 14

Czy po zainstalowaniu roli Hyper-V na serwerze Windows można

A. upraszczanie i automatyzowanie zarządzania kluczami licencji zbiorczych
B. tworzenie maszyn wirtualnych oraz ich zasobów i zarządzanie nimi
C. szybkie zdalne wdrażanie systemów operacyjnych Windows na komputerach w sieci
D. centralne zarządzanie oraz wsparcie dla rozproszonych aplikacji biznesowych
Odpowiedź wskazuje na kluczową funkcjonalność Hyper-V, która polega na tworzeniu i zarządzaniu maszynami wirtualnymi (VM). Hyper-V to wirtualizacyjna platforma oferowana przez Microsoft, która pozwala na uruchamianie wielu instancji systemów operacyjnych na tym samym fizycznym serwerze. Użytkownicy mogą tworzyć maszyny wirtualne z różnymi konfiguracjami sprzętowymi, co umożliwia testowanie aplikacji, uruchamianie serwerów plików, baz danych czy aplikacji webowych w izolowanym środowisku. Przykładem zastosowania może być wykorzystanie Hyper-V do symulacji środowiska produkcyjnego w celu przeprowadzenia testów przed wdrożeniem nowych rozwiązań. Dodatkowo, wirtualizacja za pomocą Hyper-V pozwala na lepsze wykorzystanie zasobów fizycznych, zmniejszenie kosztów operacyjnych i zapewnienie elastyczności w zarządzaniu infrastrukturą IT. W kontekście dobrych praktyk branżowych, używanie Hyper-V jest zgodne z podejściem do wirtualizacji zasobów, które zwiększa skalowalność i redukuje czas przestojów serwerów.

Pytanie 15

The Dude, Cacti oraz PRTG to przykłady aplikacji wykorzystujących protokół SNMP (ang. Simple Network Management Protocol), używanego do

A. sprawdzania wydajności sieci
B. przechwytywania i analizy danych pakietowych
C. udostępniania zasobów w sieci
D. monitorowania oraz zarządzania urządzeniami sieciowymi
Odpowiedź "monitoringu i zarządzania urządzeniami sieciowymi" jest prawidłowa, ponieważ SNMP (Simple Network Management Protocol) to standardowy protokół używany głównie do zbierania informacji o stanie urządzeń sieciowych, takich jak routery, przełączniki, serwery i inne komponenty infrastruktury IT. Protokół ten pozwala administratorom na monitorowanie wydajności urządzeń, takich jak obciążenie CPU, wykorzystanie pamięci RAM, stan interfejsów sieciowych i wiele innych metryk. Na przykład, oprogramowanie takie jak PRTG Network Monitor wykorzystuje SNMP do regularnego zbierania danych z urządzeń w sieci, co pozwala na wczesne wykrywanie problemów oraz ich szybsze rozwiązywanie. Dobre praktyki zarządzania siecią zalecają wykorzystanie SNMP do automatyzacji procesów monitorowania, co zwiększa efektywność i niezawodność zarządzania infrastrukturą sieciową. Protokół ten jest również zgodny z różnymi standardami, takimi jak IETF RFC 1157, co zapewnia jego szeroką akceptację w branży.

Pytanie 16

Usługi na serwerze konfiguruje się za pomocą

A. serwer kontrolujący domenę
B. Active Directory
C. panel administracyjny
D. role i funkcje
Zrozumienie, że konfiguracja usług na serwerze nie może być ograniczona do samych narzędzi, jest kluczowe dla efektywnego zarządzania infrastrukturą IT. Active Directory, na przykład, jest systemem zarządzania tożsamościami i dostępem, który umożliwia centralne zarządzanie użytkownikami i zasobami w sieci. Choć ważne, to jednak nie jest narzędziem do samej konfiguracji usług, lecz bardziej do autoryzacji i uwierzytelniania, co jest tylko jednym z aspektów zarządzania serwerem. Podobnie, panel sterowania to interfejs użytkownika, który pozwala na wygodne zarządzanie różnymi ustawieniami, jednak nie odnosi się bezpośrednio do definiowania czy przypisywania ról i funkcji. Kontroler domeny, z drugiej strony, jest serwerem odpowiedzialnym za uwierzytelnianie użytkowników i komputery w sieci, lecz także nie pełni roli w konfiguracji usług w sensie przypisywania ich do serwera. Wiele osób myli rolę narzędzi administracyjnych z samą konfiguracją serwera, co może prowadzić do nieefektywnego zarządzania zasobami czy problemów z bezpieczeństwem. Kluczowym błędem jest mylenie tych pojęć i niezrozumienie, że każda usługa wymaga przypisania odpowiedniej roli, aby mogła funkcjonować prawidłowo, a sama konfiguracja jest bardziej złożona niż wybór jednego narzędzia czy funkcji.

Pytanie 17

Jaką funkcję pełni protokół ARP (Address Resolution Protocol)?

A. Nadzoruje przepływ pakietów w obrębie systemów autonomicznych
B. Zarządza grupami multicastowymi w sieciach działających na protokole IP
C. Wysyła informacje zwrotne dotyczące problemów w sieci
D. Określa adres MAC na podstawie adresu IP
Protokół ARP (Address Resolution Protocol) jest kluczowym elementem komunikacji w sieciach komputerowych, odpowiedzialnym za ustalanie adresów MAC (Media Access Control) na podstawie adresów IP (Internet Protocol). Działa on na poziomie drugiego poziomu modelu OSI (warstwa łącza danych), umożliwiając urządzeniom w sieci lokalnej zamianę logicznych adresów IP na adresy fizyczne, co jest niezbędne do skutecznej wymiany danych między urządzeniami. Przykładowo, gdy komputer chce wysłać dane do innego urządzenia w sieci, najpierw potrzebuje znaleźć jego adres MAC. W tym celu wysyła zapytanie ARP do sieci, a odpowiedź zwrotna zawiera poszukiwany adres MAC. Dzięki temu procesowi, komunikacja w ramach lokalnych sieci Ethernet staje się możliwa. Standard ARP jest opisany w RFC 826 i stanowi podstawę dla wielu protokołów komunikacyjnych. Umożliwienie tej zamiany adresów jest kluczowe dla funkcjonowania protokołów wyższych warstw, takich jak TCP/IP, co jest podstawą działania Internetu.

Pytanie 18

Podczas analizy ruchu sieciowego z użyciem sniffera zaobserwowano, że urządzenia komunikują się za pośrednictwem portów
20 oraz 21. Można stwierdzić, przy założeniu standardowej konfiguracji, że monitorowanym protokołem jest protokół

A. DHCP
B. SSH
C. FTP
D. SMTP
Odpowiedź FTP (File Transfer Protocol) jest prawidłowa, ponieważ porty 20 i 21 są standardowo przypisane do tego protokołu. Port 21 jest używany do inicjowania połączeń, podczas gdy port 20 jest wykorzystywany do przesyłania danych w trybie aktywnym. FTP jest szeroko stosowany do transferu plików między komputerami w sieci, co czyni go kluczowym narzędziem w administracji systemami oraz na serwerach. Z perspektywy praktycznej, FTP znajduje zastosowanie w zarządzaniu plikami na serwerach, takich jak przesyłanie aktualizacji stron internetowych, pobieranie plików z serwerów FTP oraz synchronizacja plików między różnymi urządzeniami. Warto również zwrócić uwagę, że istnieją różne warianty FTP, takie jak FTPS (FTP Secure) oraz SFTP (SSH File Transfer Protocol), które oferują dodatkowe funkcje zabezpieczeń, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa informacji.

Pytanie 19

Wynik wykonania którego polecenia widoczny jest na fragmencie zrzutu z ekranu?

Network DestinationNetmaskGatewayInterfaceMetric
0.0.0.00.0.0.0192.168.0.1192.168.0.6550
127.0.0.0255.0.0.0On-link127.0.0.1331
127.0.0.1255.255.255.255On-link127.0.0.1331
127.255.255.255255.255.255.255On-link127.0.0.1331
169.254.0.0255.255.0.0On-link169.254.189.240281
169.254.189.240255.255.255.255On-link169.254.189.240281
169.254.255.255255.255.255.255On-link169.254.189.240281
192.168.0.0255.255.255.0On-link192.168.0.65306
192.168.0.65255.255.255.255On-link192.168.0.65306
192.168.0.255255.255.255.255On-link192.168.0.65306
192.168.56.0255.255.255.0On-link192.168.56.1281
192.168.56.1255.255.255.255On-link192.168.56.1281
192.168.56.255255.255.255.255On-link192.168.56.1281
224.0.0.0240.0.0.0On-link127.0.0.1331
224.0.0.0240.0.0.0On-link192.168.56.1281
224.0.0.0240.0.0.0On-link192.168.0.65306
224.0.0.0240.0.0.0On-link169.254.189.240281
255.255.255.255255.255.255.255On-link127.0.0.1331
255.255.255.255255.255.255.255On-link192.168.56.1281
255.255.255.255255.255.255.255On-link192.168.0.65306
255.255.255.255255.255.255.255On-link169.254.189.240281
A. ipconfig /all
B. netstat -a
C. netstat -r
D. ipconfig
Wykorzystanie poleceń jak 'ipconfig /all', 'ipconfig' czy 'netstat -a' może czasem wprowadzać w błąd, jeśli chodzi o analizę routingu w sieciach. 'ipconfig' na przykład, jest przydatne do pokazania konfiguracji interfejsów sieciowych w Windows, takich jak adres IP czy brama domyślna. Ale nie daje żadnych informacji o trasach, więc nie nadaje się w tym kontekście. 'ipconfig /all' trochę to rozszerza, ale znów nie mówi nic o trasach, więc też nie pasuje. A 'netstat -a' skupia się bardziej na aktywnych połączeniach i portach, a nie na tabeli routingu. Dlatego, jeśli chodzi o sprawdzenie, które trasy są aktywne i jak dane są kierowane, to 'netstat -r' jest kluczowym narzędziem. Warto zawsze mieć na uwadze, żeby wybierać odpowiednie narzędzia do tego, co chcemy osiągnąć, bo złe wybory mogą prowadzić do błędnych wniosków i straty czasu na rozwiązywanie problemów z siecią.

Pytanie 20

W jakiej usłudze serwera możliwe jest ustawienie parametru TTL?

A. DNS
B. DHCP
C. FTP
D. HTTP
TTL, czyli Time To Live, to parametr stosowany w systemach DNS (Domain Name System), który określa czas, przez jaki dane rekordy DNS mogą być przechowywane w pamięci podręcznej przez resolvera lub serwer DNS. Ustawienie odpowiedniego TTL jest kluczowe dla efektywności zarządzania ruchem sieciowym oraz aktualizacją rekordów. Na przykład, jeśli TTL jest ustawiony na 3600 sekund (czyli 1 godzinę), to po upływie tego czasu resolver będzie musiał ponownie zapytać o rekord DNS, co zapewnia, że zmiany wprowadzone na serwerze DNS będą propagowane w odpowiednim czasie. W praktyce, krótszy czas TTL może być użyteczny w sytuacjach, gdy często zmieniają się adresy IP lub konfiguracje serwera, natomiast dłuższy TTL może zmniejszyć obciążenie serwera i przyspieszyć odpowiedzi dla użytkowników. Dobrą praktyką jest dostosowywanie wartości TTL w zależności od specyfiki danego zastosowania oraz dynamiki zmian konfiguracji sieciowej. Znalezienie odpowiedniego kompromisu pomiędzy szybkością aktualizacji a wydajnością jest kluczowe w administracji sieciami. Dlatego TTL jest niezwykle istotnym parametrem w kontekście zarządzania DNS.

Pytanie 21

Który ze wskaźników okablowania strukturalnego definiuje stosunek mocy testowego sygnału w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu przewodu?

A. Przenik zdalny
B. Suma przeników zbliżnych i zdalnych
C. Suma przeników zdalnych
D. Przenik zbliżny
Przenik zbliżny to parametr okablowania strukturalnego, który odnosi się do stosunku mocy sygnału testowego w jednej parze przewodów do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu kabla. W praktyce oznacza to, że przenik zbliżny jest miarą wpływu sygnałów z jednej pary na sygnały w innej parze, co jest szczególnie istotne w systemach telekomunikacyjnych i sieciach komputerowych. Zrozumienie tego parametru jest kluczowe dla zapewnienia wysokiej jakości sygnału oraz minimalizacji zakłóceń między parami przewodów. Przykładowo, w instalacjach Ethernet o wysokiej prędkości, niski przenik zbliżny jest niezbędny do zapewnienia integralności danych, co jest zgodne z normami TIA/EIA-568 oraz ISO/IEC 11801. W celu minimalizacji przeniku zbliżnego stosuje się odpowiednie techniki ekranowania oraz skręcania par, co w praktyce pozwala na uzyskanie lepszej wydajności i niezawodności w komunikacji.

Pytanie 22

W jakiej topologii fizycznej sieci każde urządzenie ma dokładnie dwa połączenia, z których jedno prowadzi do najbliższego sąsiada, a dane są przesyłane z jednego komputera do następnego w formie pętli?

A. Siatka.
B. Pierścień.
C. Drzewo.
D. Gwiazda.
Topologia pierścienia charakteryzuje się tym, że każde urządzenie sieciowe, zwane węzłem, jest połączone z dokładnie dwoma innymi węzłami. Taki układ tworzy zamkniętą pętlę, przez którą dane są przesyłane w jednym kierunku, co znacząco upraszcza proces transmisji. Główną zaletą topologii pierścienia jest to, że pozwala na ciągłe przekazywanie informacji bez potrzeby skomplikowanego routingu. Przykładem zastosowania tej topologii mogą być sieci token ring, które były popularne w latach 80. i 90. XX wieku. W takich sieciach stosowano tokeny, czyli specjalne ramki, które kontrolowały dostęp do medium transmisyjnego, co pozwalało uniknąć kolizji danych. Warto wspomnieć, że w przypadku uszkodzenia jednego z węzłów, sieć może przestać działać, co jest istotnym ograniczeniem tej topologii. Aby zwiększyć niezawodność, często stosuje się różne mechanizmy redundancji, takie jak dodatkowe połączenia zapewniające alternatywne ścieżki dla danych. W nowoczesnych aplikacjach sieciowych znajomość i umiejętność konfiguracji różnych topologii jest kluczowa, zwłaszcza w kontekście zapewnienia odpowiedniej wydajności i bezpieczeństwa sieci.

Pytanie 23

Czy okablowanie strukturalne można zakwalifikować jako część infrastruktury?

A. pasywnej
B. dalekosiężnej
C. czynnej
D. terenowej
Wybór infrastruktury terytorialnej to chyba nieporozumienie, bo to nie do końca pasuje do roli okablowania strukturalnego. Ta terytorialna infrastruktura dotyczy głównie geograficznego zasięgu sieci, a nie jej wnętrza. A jak mówimy o infrastrukturze aktywnej, to mamy na myśli urządzenia jak switche czy routery, które przetwarzają i zarządzają danymi – więc to zupełnie inny temat niż pasywne okablowanie. Okablowanie strukturalne, jako część infrastruktury pasywnej, nie jest w to zaangażowane, tylko tworzy ramy dla tych aktywnych elementów. Jakby wybierać infrastrukturę dalekosiężną, to można by pomyśleć, że okablowanie strukturalne obsługuje wszystko na dużych odległościach, a to tak nie działa, bo zależy to od tych aktywnych technologii, które mogą korzystać z pasywnych połączeń. Najważniejsze jest zrozumienie, że pasywne elementy okablowania są podstawą całej sieci, a ich dobra instalacja i zarządzanie są kluczowe, żeby system działał niezawodnie i efektywnie.

Pytanie 24

Jakie jest standardowe port do przesyłania poleceń (command) serwera FTP?

A. 110
B. 25
C. 20
D. 21
Port 21 to ten standardowy port, z którego korzysta FTP, czyli protokół do przesyłania plików. Służy on do nawiązywania połączeń oraz wymiany poleceń między klientem a serwerem. FTP jest super popularny, czy to przy małych transferach między znajomymi, czy w dużych firmach. Według dokumentacji, port 21 jest określony w dokumencie RFC 959 jako port, na którym wszystko się zaczyna. Żeby przesyłać pliki, musisz najpierw połączyć się z serwerem na tym porcie, żeby się autoryzować i uzyskać dostęp do plików. Gdy już połączenie jest nawiązane przez port 21, prawdziwe dane lecą na innym porcie, zazwyczaj 20, bo to port do przesyłania danych. Dobrze jest to wiedzieć, bo to pomaga przy ustawianiu zapór ogniowych i serwerów FTP, co jest ważne dla bezpieczeństwa transferów.

Pytanie 25

Jakie polecenie w systemie operacyjnym Linux pozwala na przypisanie istniejącego konta użytkownika nowak do grupy technikum?

A. useradd -g technikum nowak
B. groups -g technikum nowak
C. usermod -g technikum nowak
D. usergroup -g technikum nowak
Odpowiedź usermod -g technikum nowak jest poprawna, ponieważ polecenie 'usermod' jest przeznaczone do modyfikacji już istniejących kont użytkowników w systemie Linux. Flaga '-g' pozwala przypisać użytkownika do określonej grupy, w tym przypadku do grupy 'technikum'. W praktyce, aby wykonać to polecenie, użytkownik musi mieć odpowiednie uprawnienia, zwykle jako administrator lub superużytkownik (root). Dobrą praktyką jest zawsze sprawdzić aktualne przypisania grupowe za pomocą komendy 'groups nowak', aby upewnić się, jakie grupy są aktualnie przypisane do użytkownika przed wprowadzeniem zmian. Przykład użycia: po wykonaniu polecenia, możemy zweryfikować, czy nowak został poprawnie dodany do grupy technikum, używając polecenia 'groups nowak', które wyświetli listę grup, do których należy użytkownik. Ważne jest, aby pamiętać, że modyfikowanie grup użytkowników wpływa na ich uprawnienia i dostęp do zasobów systemowych, co jest kluczowe w zarządzaniu bezpieczeństwem systemu i dostępem do danych.

Pytanie 26

W specyfikacji sieci Ethernet 1000Base-T maksymalna długość segmentu dla skrętki kategorii 5 wynosi

A. 1000 m
B. 500 m
C. 250 m
D. 100 m
Odpowiedź 100 m jest prawidłowa, ponieważ w standardzie Ethernet 1000Base-T, który obsługuje transmisję danych z prędkością 1 Gbps, maksymalna długość segmentu dla kabla skrętki kategorii 5 (Cat 5) wynosi właśnie 100 metrów. Ta długość obejmuje zarówno odcinek kabla, jak i wszelkie połączenia oraz złącza, co jest kluczowe dla zapewnienia stabilności i jakości sygnału. W praktyce, dla sieci lokalnych (LAN), stosuje się kable Cat 5 lub lepsze, takie jak Cat 5e czy Cat 6, aby osiągnąć wysoką wydajność przy minimalnych zakłóceniach. Warto zauważyć, że przekroczenie tej długości może prowadzić do degradacji sygnału, co z kolei wpłynie na prędkość i niezawodność połączenia. Standardy IEEE 802.3, które regulują kwestie związane z Ethernetem, podkreślają znaczenie zachowania tych limitów, aby zapewnić efektywne funkcjonowanie sieci. Dlatego też, przy projektowaniu lub rozbudowie infrastruktury sieciowej, należy przestrzegać tych wytycznych, aby uniknąć problemów z wydajnością.

Pytanie 27

Jak wygląda konwencja zapisu ścieżki do zasobu sieciowego według UNC (Universal Naming Convention)?

A. \nazwa_komputera azwa_zasobu
B. \nazwa_zasobu azwa_komputera
C. //nazwa_komputera/nazwa_zasobu
D. //nazwa_zasobu/nazwa_komputera
Odpowiedź \nazwa_komputera\nazwa_zasobu jest prawidłowa, ponieważ zapis ścieżki do udziału sieciowego zgodny z Konwencją Uniwersalnego Nazewnictwa (UNC) przyjmuje formę \\nazwa_komputera\nazwa_zasobu. UNC jest standardem stosowanym w systemach operacyjnych Windows, który pozwala na jednoznaczne zidentyfikowanie zasobów sieciowych, takich jak foldery czy pliki, w sieci lokalnej. Przykładowo, jeśli mamy komputer o nazwie "serwer" oraz folder udostępniony o nazwie "dokumenty", poprawna ścieżka UNC do tego folderu będzie brzmiała \\serwer\dokumenty. Używanie UNC w praktyce ułatwia dostęp do zdalnych zasobów bez potrzeby mapowania ich jako dysków lokalnych, co jest praktyką rekomendowaną w wielu środowiskach biznesowych, zwłaszcza w zdalnym dostępie do zasobów. Dodatkowo, korzystanie z tej konwencji minimalizuje ryzyko błędów związanych z różnymi literami dysków oraz zapewnia większą elastyczność w dostępie do zasobów sieciowych.

Pytanie 28

Który z poniższych adresów jest adresem prywatnym zgodnym z dokumentem RFC 1918?

A. 172.16.0.1
B. 172.32.0.1
C. 171.0.0.1
D. 172.0.0.1
Adres 172.16.0.1 jest poprawnym adresem prywatnym, definiowanym przez dokument RFC 1918, który ustanawia zakresy adresów IP przeznaczonych do użytku w sieciach lokalnych. Adresy prywatne nie są routowane w Internecie, co oznacza, że mogą być używane w sieciach wewnętrznych bez obawy o kolizje z adresami publicznymi. Zakres adresów prywatnych dla klasy B obejmuje 172.16.0.0 do 172.31.255.255, zatem 172.16.0.1 znajduje się w tym zakresie. Przykładowo, firmy często wykorzystują te adresy do budowy sieci lokalnych (LAN), co pozwala urządzeniom w sieci na komunikację bez potrzeby posiadania publicznego adresu IP. W praktyce, urządzenia takie jak routery lokalne przydzielają adresy prywatne w ramach sieci, a następnie wykorzystują translację adresów sieciowych (NAT) do komunikacji z Internetem, co zwiększa bezpieczeństwo i efektywność przydziału adresów.

Pytanie 29

Którego z elementów dokumentacji lokalnej sieci komputerowej nie uwzględnia dokumentacja powykonawcza?

A. Wyników pomiarów oraz testów
B. Opisu systemu okablowania
C. Norm i wytycznych technicznych
D. Kosztorysu wstępnego
Wybór odpowiedzi dotyczącej wyników pomiarów i testów, opisu okablowania lub norm i zaleceń technicznych nie jest adekwatny, ponieważ te elementy są kluczowymi składnikami dokumentacji powykonawczej. Wyniki pomiarów i testów są niezbędne do oceny, czy sieć działa zgodnie z wymaganiami. Zawierają one istotne dane, które pozwalają na identyfikację ewentualnych problemów oraz na weryfikację, czy instalacja spełnia normy techniczne. Opis okablowania jest równie ważny, jako że precyzyjne informacje o typach kabli, ich długościach oraz sposobach ich ułożenia są konieczne do dalszej konserwacji i serwisowania systemu. Normy i zalecenia techniczne zapewniają, że projektowana sieć jest zgodna z aktualnymi standardami branżowymi, co ma kluczowe znaczenie dla bezpieczeństwa i wydajności instalacji. Często zdarza się, że osoby odpowiadające na tego typu pytania mylą dokumentację projektową z powykonawczą, co prowadzi do błędnych wyborów. Kluczowe jest zrozumienie, że dokumentacja powykonawcza obejmuje elementy dotyczące rzeczywistej realizacji projektu, a kosztorys wstępny odnosi się jedynie do fazy planowania i budżetowania, co sprawia, że nie jest częścią dokumentacji powykonawczej.

Pytanie 30

Rezultatem wykonania komendy ```arp -a 192.168.1.1``` w systemie MS Windows jest przedstawienie

A. sprawdzenia połączenia z komputerem o wskazanym IP
B. wykazu aktywnych zasobów sieciowych
C. fizycznego adresu urządzenia o wskazanym IP
D. parametrów TCP/IP interfejsu sieciowego
Polecenie <i>arp -a 192.168.1.1</i> jest używane w systemach operacyjnych MS Windows do wyświetlania tabeli ARP (Address Resolution Protocol), która mapuje adresy IP na adresy fizyczne (MAC) urządzeń w sieci lokalnej. W odpowiedzi na to polecenie, system zwraca adres fizyczny urządzenia, które odpowiada podanemu adresowi IP, co jest niezwykle przydatne w diagnostyce sieci. Na przykład, jeśli administrator sieci chciałby zidentyfikować, do jakiego urządzenia należy dany adres IP, może użyć polecenia ARP, aby uzyskać adres MAC. W praktyce, znajomość adresów MAC jest kluczowa w zarządzaniu siecią, ponieważ pozwala na identyfikację i monitorowanie urządzeń, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieci. Warto również dodać, że ARP jest protokołem stateless, co oznacza, że nie wymaga utrzymywania stanu sesji, co przyspiesza wymianę informacji w sieci. Ogólnie rzecz biorąc, poprawne zrozumienie działania polecenia ARP jest istotne zarówno dla administratorów, jak i dla wszystkich osób zajmujących się zarządzaniem sieciami komputerowymi.

Pytanie 31

Wskaź na prawidłowe przyporządkowanie usługi warstwy aplikacji z domyślnym numerem portu, na którym działa.

A. SMTP – 80
B. DHCP – 161
C. DNS – 53
D. IMAP – 8080
Odpowiedzi 'SMTP – 80', 'IMAP – 8080' i 'DHCP – 161' mają sporo błędów, jeśli chodzi o przypisanie usług do portów. SMTP, czyli Simple Mail Transfer Protocol, odpowiada za przesyłanie e-maili i działa na porcie 25, a nie 80, bo ten port jest zarezerwowany dla HTTP. To może być problematyczne, bo jak źle przypiszesz port, to e-maile mogą nie działać. IMAP, czyli Internet Message Access Protocol, używa portu 143, nie 8080, który jest raczej dla alternatywnego HTTP. A jeśli chodzi o DHCP, to ten protokół działa na porcie 67 dla serwerów i 68 dla klientów, a nie 161, który należy do SNMP. Źle przypisane porty mogą naprawdę skomplikować komunikację w sieci. Wiedza o tym, jakie porty do jakich protokołów pasują, jest super ważna, żeby dobrze zarządzać sieciami i dbać o ich bezpieczeństwo.

Pytanie 32

Które urządzenie sieciowe jest widoczne na zdjęciu?

Ilustracja do pytania
A. Karta sieciowa.
B. Most.
C. Modem.
D. Przełącznik.
Przełącznik, widoczny na zdjęciu, to kluczowe urządzenie w sieciach komputerowych, które umożliwia efektywne zarządzanie ruchem danych pomiędzy różnymi urządzeniami w sieci lokalnej (LAN). Działa na warstwie drugiej modelu OSI, co oznacza, że operuje na adresach MAC i potrafi inteligentnie kierować dane tylko do tych portów, które są rzeczywiście potrzebne, co znacznie zwiększa wydajność sieci. Przełączniki pozwalają na podłączenie wielu urządzeń, takich jak komputery, drukarki czy serwery, tworząc lokalne sieci, które mogą być następnie połączone z innymi sieciami za pomocą routerów. W praktyce, przełączniki są niezbędne w biurach i instytucjach, gdzie wiele urządzeń wymaga współdzielenia zasobów. W oparciu o standardy IEEE 802.3, nowoczesne przełączniki mogą obsługiwać różne prędkości transmisji danych, co czyni je elastycznym rozwiązaniem. Zrozumienie roli przełącznika jest kluczowe dla każdego, kto zajmuje się projektowaniem lub zarządzaniem infrastrukturą sieciową.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Do ilu sieci należą komputery o adresach IPv4 przedstawionych w tabeli?

NazwaAdres IPMaska
Komputer 110.11.161.10255.248.0.0
Komputer 210.12.161.11255.248.0.0
Komputer 310.13.163.10255.248.0.0
Komputer 410.14.163.11255.248.0.0
A. Trzech.
B. Dwóch.
C. Jednej.
D. Czterech.
Wybór odpowiedzi wskazującej na więcej niż jedną sieć opiera się na nieporozumieniu związanym z pojęciem podsieci i zastosowaniem masek sieciowych. Wiele osób może błędnie zakładać, że różne adresy IP automatycznie sugerują obecność różnych sieci. W rzeczywistości to właśnie maska sieciowa określa, które bity adresu IP są używane do identyfikacji sieci, a które do identyfikacji poszczególnych hostów. Jeśli adresy IP mają tę samą maskę, oznacza to, że mogą należeć do tej samej sieci. Kluczowym błędem myślowym jest założenie, że różne adresy IP muszą oznaczać różne sieci, co jest niezgodne z zasadami działania protokołu IP. Zrozumienie działania maski sieciowej oraz sposobu, w jaki różne bity adresu IP są przypisywane do sieci i hostów, jest kluczowe dla właściwego zarządzania i projektowania sieci. W praktyce, projektanci sieci muszą uwzględniać te zasady, aby unikać większych problemów z komunikacją i zarządzaniem ruchem w przyszłości. Wybierając właściwe wartości masek, można efektywniej zarządzać adresowaniem IP i optymalizować działanie sieci, co jest zgodne ze standardami branżowymi.

Pytanie 35

Narzędzie przedstawione na zdjęciu to

Ilustracja do pytania
A. narzędzie uderzeniowe.
B. zaciskarka.
C. nóż monterski.
D. ściągacz izolacji.
Odpowiedź "ściągacz izolacji" jest poprawna, ponieważ narzędzie przedstawione na zdjęciu ma oznaczenia "CABLE STRIPPER/CUTTER", co w tłumaczeniu na język polski oznacza "ściągacz izolacji/przecinak". Narzędzia te są kluczowe w pracy z instalacjami elektrycznymi, gdyż umożliwiają sprawne usuwanie izolacji z przewodów. W praktyce, ściągacz izolacji jest niezbędny przy przygotowywaniu przewodów do połączeń, co jest istotne w kontekście zgodności z normami bezpieczeństwa. Poprawne zdjęcie izolacji zapobiega zwarciom oraz innym problemom związanym z niewłaściwym połączeniem. Użycie ściągacza izolacji minimalizuje ryzyko uszkodzenia żył przewodu, co jest kluczowe dla zapewnienia trwałości połączeń elektrycznych. W wielu krajach, w tym w Polsce, stosowanie odpowiednich narzędzi do obróbki przewodów jest regulowane standardami, które nakładają obowiązek stosowania narzędzi przystosowanych do danej aplikacji, co podkreśla znaczenie tego narzędzia w branży elektrycznej.

Pytanie 36

Który z poniższych adresów IPv4 jest adresem bezklasowym?

A. 202.168.0.1/25
B. 11.0.0.1/8
C. 162.16.0.1/16
D. 192.168.0.1/24
Odpowiedzi 11.0.0.1/8, 162.16.0.1/16 oraz 192.168.0.1/24 są związane z tradycyjnymi klasami adresowymi, co wprowadza pewne ograniczenia w elastyczności zarządzania adresami IP. Adres 11.0.0.1 należy do klasy A, co oznacza, że największa część przestrzeni adresowej jest zarezerwowana dla identyfikacji sieci, a tylko niewielka część dla hostów. Ta klasa była odpowiednia w przeszłości, ale dzisiaj, z uwagi na ograniczone zasoby adresowe, nie jest już zalecana. Adres 162.16.0.1/16 to przykład klasy B, gdzie 16 bitów jest przeznaczone na część sieci, co również ogranicza liczbę dostępnych adresów hostów w porównaniu do CIDR. Z kolei adres 192.168.0.1/24 jest częścią klasy C, która jest często używana w lokalnych sieciach, ale również nie korzysta z elastyczności oferowanej przez CIDR. Tego rodzaju adresy mogą prowadzić do marnotrawstwa przestrzeni adresowej, ponieważ wiele z nich nie jest wykorzystywanych w sposób efektywny. Kluczowym błędem jest przywiązywanie się do tradycyjnych klas adresowych, zamiast przystosowywać się do nowoczesnych rozwiązań, które oferują CIDR i umożliwiają bardziej precyzyjne i ekonomiczne zarządzanie adresacją IP.

Pytanie 37

Podaj zakres adresów IP przyporządkowany do klasy A, który jest przeznaczony do użytku prywatnego w sieciach komputerowych?

A. 127.0.0.0-127.255.255.255
B. 10.0.0.0-10.255.255.255
C. 172.16.0.0-172.31.255.255
D. 192.168.0.0-192.168.255.255
Adresy IP klasy A, które są przeznaczone do adresacji prywatnej, obejmują zakres od 10.0.0.0 do 10.255.255.255. Klasa A to jedna z klas adresowych zdefiniowanych w standardzie IPv4, który dzieli adresy IP na różne klasy w zależności od ich pierwszych bitów. Adresy z tej klasy mogą być używane w dużych sieciach korporacyjnych, ponieważ oferują ogromną przestrzeń adresową. W praktyce, adresy prywatne, takie jak te z zakresu 10.0.0.0/8, są często wykorzystywane w sieciach lokalnych (LAN), co pozwala na oszczędność publicznych adresów IP. Takie podejście jest zgodne z zaleceniami IETF (Internet Engineering Task Force) w dokumentach RFC 1918, które definiują prywatne adresy IP. Umożliwia to organizacjom wdrażanie rozwiązań z zakresu NAT (Network Address Translation), co dodatkowo zwiększa bezpieczeństwo i elastyczność adresacji sieciowej. Wykorzystanie tego zakresu pozwala na jednoczesne korzystanie z wielu adresów IP w różnych oddziałach tej samej firmy bez konfliktów, co jest kluczowe w rozwoju i zarządzaniu złożonymi infrastrukturami IT.

Pytanie 38

Aby oddzielić komputery w sieci, które posiadają ten sam adres IPv4 i są połączone z przełącznikiem zarządzalnym, należy przypisać

A. niewykorzystane interfejsy do różnych VLAN-ów
B. statyczne adresy MAC komputerów do niewykorzystanych interfejsów
C. aktywnych interfejsów do różnych VLAN-ów
D. statyczne adresy MAC komputerów do aktywnych interfejsów
Próba odseparowania komputerów pracujących w sieci o tym samym adresie IPv4 poprzez przypisanie statycznych adresów MAC do używanych interfejsów jest błędnym podejściem, które nie rozwiązuje problemu kolizji adresów IP w sieci. Adresy MAC są unikalnymi identyfikatorami przypisanymi do interfejsów sieciowych, ale nie mają wpływu na logikę routowania czy komunikacji w sieci IP. Przypisanie statycznych adresów MAC nie pozwala na odseparowanie ruchu między komputerami, które mają ten sam adres IP, a co za tym idzie, nadal będzie dochodziło do konfliktów, co może prowadzić do utraty pakietów czy problemów z dostępem do sieci. Z kolei przypisanie nieużywanych interfejsów do różnych VLAN-ów również nie jest właściwe, ponieważ nie można skonfigurować VLAN-ów na interfejsach, które nie są aktywne. W praktyce błędne jest również przypisywanie używanych interfejsów do nieużywanych VLAN-ów, ponieważ uniemożliwia to dostęp do zasobów sieciowych dla komputerów w tych VLAN-ach. Dobrą praktyką jest korzystanie z logicznej separacji za pomocą VLAN-ów, co nie tylko zwiększa bezpieczeństwo, ale również umożliwia lepsze zarządzanie ruchem sieciowym oraz organizację zasobów, zamiast polegać na statycznych konfiguracjach, które mogą prowadzić do błędów i problemów z wydajnością.

Pytanie 39

Administrator sieci planuje zapisać konfigurację urządzenia Cisco na serwerze TFTP. Jakie polecenie powinien wydać w trybie EXEC?

A. copy running-config tftp:
B. backup running-config tftp:
C. restore configuration tftp:
D. save config tftp:
<strong>Pozostałe polecenia, choć na pierwszy rzut oka wydają się logiczne, nie są poprawnymi komendami w systemie Cisco IOS i mogą wprowadzić w błąd osoby mniej doświadczone.</strong> <u>restore configuration tftp:</u> sugeruje przywrócenie konfiguracji z serwera TFTP, a nie jej zapisanie – w Cisco IOS nie istnieje taka komenda, a do przywracania używa się zwykle <code>copy tftp: running-config</code>. To częsty błąd – zamiana kierunków kopiowania, przez co można przypadkowo nadpisać bieżącą konfigurację niewłaściwym plikiem. <u>save config tftp:</u> wygląda bardzo naturalnie, bo wiele systemów operacyjnych czy aplikacji używa polecenia 'save' do zapisu ustawień. Jednak w Cisco IOS nie znajdziemy takiej komendy – zapis konfiguracji odbywa się właśnie przez 'copy' z odpowiednimi argumentami. To jest typowe nieporozumienie, gdy ktoś przenosi przyzwyczajenia z innych środowisk, np. z Linuksa czy Windowsa. <u>backup running-config tftp:</u> również wydaje się intuicyjne i oddaje sens operacji, ale niestety Cisco IOS nie obsługuje polecenia 'backup' w tym kontekście. W rzeczywistości, błędne użycie takich nieistniejących poleceń kończy się komunikatem o nieznanej komendzie, co może być frustrujące dla początkujących administratorów. Z praktyki wiem, że wielu uczniów i kandydatów do pracy w IT myli się właśnie przez zbyt dosłowne tłumaczenie na język angielski tego, co chcą osiągnąć. Branżowa terminologia Cisco jest dość rygorystyczna i warto ją opanować, żeby nie popełniać prostych, ale kosztownych błędów podczas pracy z infrastrukturą sieciową.

Pytanie 40

Jaki jest adres rozgłoszeniowy dla sieci 172.30.0.0/16?

A. 172.30.255.255
B. 172.255.255.255
C. 172.0.255.255
D. 172.30.0.255
Adres rozgłoszeniowy dla sieci 172.30.0.0/16 jest 172.30.255.255, co wynika z zasad obliczania adresów IP w sieciach klasy C. W przypadku notacji CIDR /16 oznacza to, że pierwsze 16 bitów identyfikuje sieć, a pozostałe 16 bitów mogą być użyte do adresowania urządzeń w tej sieci, co daje maksymalnie 65,536 adresów (od 172.30.0.0 do 172.30.255.255). Adres rozgłoszeniowy jest ostatnim adresem w tej przestrzeni adresowej i jest używany do wysyłania pakietów do wszystkich hostów w danej sieci. W praktyce, rozgłoszenia są często wykorzystywane w protokołach takich jak DHCP (Dynamic Host Configuration Protocol) czy ARP (Address Resolution Protocol), gdzie urządzenia muszą komunikować się z wieloma innymi urządzeniami w danej sieci lokalnej. Zrozumienie tego konceptu jest kluczowe dla projektowania i implementacji efektywnych rozwiązań sieciowych, zgodnych z najlepszymi praktykami branżowymi oraz standardami sieciowymi.