Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 17 grudnia 2025 09:53
  • Data zakończenia: 17 grudnia 2025 10:24

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. DIV
B. MUL
C. SUB
D. ADD
Wybór funkcji SUB jako tej odpowiedzialnej za odejmowanie w sterowniku PLC jest trafny. SUB to skrót od 'subtract', co w języku angielskim oznacza odejmowanie. W kontekście programowania PLC, funkcja ta jest używana do odejmowania jednej wartości od drugiej. Może to być przydatne w wielu zastosowaniach przemysłowych, np. gdy trzeba obliczyć różnicę między dwoma pomiarami czujników czy też śledzić zużycie materiałów. Odejmowanie jest jednym z podstawowych działań arytmetycznych, które często są wykorzystywane w automatyce i sterowaniu procesami przemysłowymi. W standardzie IEC 61131-3, który jest często przywoływany w kontekście programowania PLC, funkcje arytmetyczne takie jak ADD, SUB, MUL, DIV są podstawą przy pisaniu algorytmów. W praktyce, dobrze zaprojektowane programy PLC korzystają z tych funkcji, aby realizować precyzyjne operacje matematyczne, co umożliwia osiąganie większej efektywności i dokładności w procesach produkcyjnych. Z mojego doświadczenia, zrozumienie i umiejętność stosowania takich podstawowych operacji jak odejmowanie jest kluczowe dla każdego, kto chce efektywnie pracować z PLC.

Pytanie 2

Dokładna obróbka elementów współpracujących ze sobą polegająca na usuwaniu drobnych cząstek materiału w obecności pasty ściernej to

A. honowanie.
B. szlifowanie.
C. docieranie.
D. struganie.
Docieranie to proces, który pozwala na uzyskanie bardzo dokładnych wymiarów i gładkości powierzchni poprzez delikatne usuwanie materiału. Technika ta jest szczególnie popularna w przemyśle mechanicznym, gdzie precyzyjne dopasowanie elementów jest kluczowe, na przykład w produkcji części optycznych czy narzędzi precyzyjnych. Docieranie polega na użyciu pasty ściernej, która jest rozprowadzana pomiędzy powierzchniami, a następnie poddana kontrolowanemu tarciu. Dzięki temu możliwe jest usunięcie mikroskopijnych nierówności, co w praktyce oznacza doskonałe dopasowanie współpracujących elementów. Moim zdaniem, to trochę jak sztuka, bo wymaga cierpliwości i precyzji. W branży lotniczej i motoryzacyjnej docieranie jest nieodłącznym elementem zapewniającym niezawodność i bezpieczeństwo. Standardy, takie jak ISO 9001, często podkreślają znaczenie tej techniki w zachowaniu jakości produkcji. Warto również wspomnieć, że dobór odpowiedniej pasty ściernej, zależnie od materiału, jest kluczowy dla powodzenia całego procesu.

Pytanie 3

Na rysunku przedstawiono symbol graficzny czujnika

Ilustracja do pytania
A. pojemnościowego.
B. optycznego.
C. magnetycznego.
D. indukcyjnego.
Przedstawiony symbol to czujnik optyczny. Na rysunku widać charakterystyczny symbol diody emitującej światło (LED) oraz odbiornika, najczęściej fototranzystora lub fotodiody. To właśnie ten zestaw elementów odpowiada za działanie czujników optycznych, które wykrywają obiekty poprzez analizę promienia światła – odbitego lub przerwanego. W praktyce czujniki optyczne dzielą się na refleksyjne, bariery i odbiciowe. W automatyce przemysłowej wykorzystuje się je np. do zliczania elementów na taśmie, wykrywania obecności detali, kontroli etykiet lub pomiaru prędkości obrotowej. Ich ogromną zaletą jest bezkontaktowa praca i bardzo szybka reakcja, co pozwala uniknąć zużycia mechanicznego. Moim zdaniem warto zwrócić uwagę na strzałki przy symbolu – pokazują kierunek emisji światła, co pomaga odróżnić czujniki optyczne od innych typów w dokumentacji technicznej.

Pytanie 4

Przedstawione na rysunkach narzędzie służy do montażu

Ilustracja do pytania
A. zabezpieczeń E-ring.
B. kołków rozprężnych.
C. podkładek dystansowych.
D. pierścieni Segera.
Zrozumienie różnicy między różnymi typami narzędzi do montażu zabezpieczeń jest kluczowe dla efektywnej pracy. Pierścienie Segera, znane również jako pierścienie sprężynujące, wymagają specjalnych szczypiec z końcówkami dopasowanymi do ich otworów. Nie są to jednak te same końcówki, co w przypadku narzędzi do E-ringów. Zastosowanie niewłaściwego narzędzia może prowadzić do uszkodzenia pierścienia lub nawet samego mechanizmu. Podobnie, zabezpieczenia typu E-ring różnią się konstrukcją od pierścieni Segera i wymagają innych narzędzi. Kołki rozprężne to całkiem inna kategoria elementów mocujących, które są używane do zamocowania elementów w otworach, zwykle bez użycia dodatkowych narzędzi. Ich montaż zazwyczaj polega na wciśnięciu ich w miejsce docelowe, co nie wymaga użycia specjalnych szczypiec. Podkładki dystansowe służą do zapewnienia odpowiedniego odstępu między elementami, ale nie są montażowym zabezpieczeniem w tradycyjnym tego słowa znaczeniu. Mylenie tych elementów prowadzi często do błędnych wniosków, co może skutkować niewłaściwym doborem narzędzi i materiałów w pracy mechanicznej. Ważne jest, aby przed przystąpieniem do pracy dokładnie zidentyfikować, jakie zabezpieczenia są stosowane i jakie narzędzia są potrzebne do ich montażu.

Pytanie 5

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. silnik prądu stałego.
B. transformator.
C. dławik.
D. silnik prądu zmiennego.
Na zdjęciu widać silnik synchroniczny zasilany prądem zmiennym (AC). Urządzenie opisane jest parametrami: 110 V, 50 Hz, 250 RPM, co jednoznacznie wskazuje, że pracuje w sieci prądu przemiennego o częstotliwości 50 Hz. Silniki tego typu utrzymują stałą prędkość obrotową, zsynchronizowaną z częstotliwością napięcia zasilającego – stąd nazwa „synchroniczny”. W praktyce stosuje się je tam, gdzie wymagana jest precyzyjna i powtarzalna prędkość: w zegarach, napędach urządzeń pomiarowych, gramofonach, a nawet w automatyce przemysłowej do sterowania zaworami. W odróżnieniu od silników prądu stałego nie posiadają komutatora ani szczotek, dzięki czemu są bardziej trwałe i ciche w pracy. Moim zdaniem warto zwrócić uwagę, że na obudowie producent podał zarówno napięcie, jak i częstotliwość – to klasyczny znak, że mamy do czynienia z urządzeniem AC. Silnik synchroniczny pracuje stabilnie dopóki częstotliwość sieci jest stała, dlatego często wykorzystuje się go jako napęd, który nie wymaga dodatkowej regulacji obrotów.

Pytanie 6

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN.
B. rezystancji żył L1, L2, L3, PEN
C. sumy rezystancji izolacji żył L1, L2, L3
D. sumy rezystancji żył L1, L2, L3, PEN
Wydawałoby się, że pomiar rezystancji żył L1, L2, L3, PEN lub ich sumy jest właściwym podejściem do oceny przewodów, ale to nie odnosi się do pomiaru izolacji. Rezystancja przewodów zwykle jest mierzona w celu oceny ich jakości oraz doboru odpowiedniego przekroju dla zminimalizowania strat mocy. Jednak podczas testów izolacji interesuje nas przede wszystkim stan izolacji, a nie samego przewodnika. Kolejnym błędnym podejściem jest założenie, że mierzymy sumę rezystancji izolacji między żyłami. To prowadzi do mylnego wrażenia, że izolacja działa jako jedna całość, podczas gdy w rzeczywistości każda para przewodów musi być izolowana niezależnie. Takie pomiary powinny być wykonywane zgodnie z normami takimi jak IEC 60364, które precyzują metodykę i wymagania dotyczące testów izolacji. Często pomija się fakt, że złe połączenia lub urazy mechaniczne mogą nie wpływać na rezystancję przewodów, ale mają ogromny wpływ na stan izolacji. Dlatego błędne jest skupienie się wyłącznie na rezystancji żył, ponieważ pomija to kluczowy aspekt bezpieczeństwa związany z izolacją. Tego typu pomiary są podstawą konserwacji prewencyjnej, która w dłuższej perspektywie chroni zarówno sprzęt, jak i użytkowników przed niebezpieczeństwami związanymi z elektrycznością.

Pytanie 7

Urządzenie 1-fazowe jest oznaczone symbolem. W celu podłączenia do sieci niezbędne będzie podpięcie do niego przewodów

Ilustracja do pytania
A. L, N
B. N, PE
C. L, N, PE
D. L, PE
Często można się pomylić, myśląc, że wszystkie urządzenia wymagają podłączenia przewodu ochronnego PE. Jednak w przypadku urządzeń oznaczonych symbolem podwójnej izolacji, nie jest to konieczne. Przewód ochronny PE stosuje się, by zabezpieczać przed porażeniem w przypadku awarii izolacji, ale urządzenia z podwójną izolacją już taką ochronę zapewniają z założenia. Tym samym połączenie L i PE czy N i PE jest zbędne. Warto wiedzieć, że urządzenia 1-fazowe działają prawidłowo i bezpiecznie przy połączeniu przewodów L i N. To wynika ze standardów branżowych, które mówią, że takie urządzenia same w sobie są zabezpieczone przed niebezpieczeństwami, które mogłyby wynikać z awarii mechanicznej lub elektrycznej. Właściwe odczytanie symboli oraz zrozumienie zastosowania izolacji to klucz do prawidłowego montażu i użytkowania urządzeń elektrycznych. Pomimo że czasem wydaje się logiczne podłączenie większej liczby przewodów, praktyka pokazuje, że jest to nie tylko zbędne, ale również może prowadzić do niepotrzebnych komplikacji w instalacji.

Pytanie 8

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. sumy rezystancji żył L1, L2, L3, PEN
B. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN
C. sumy rezystancji izolacji żył L1 i L2, L3
D. rezystancji żył L1, L2, L3, PEN
W przypadku pomiaru rezystancji elektrycznej przewodów, często popełnia się błąd, zakładając, że chodzi o rezystancję samych żył przewodów. W rzeczywistości, w kontekście testów izolacji, nie chodzi o rezystancję przewodów (żył), ale o rezystancję izolacji między nimi. Rezystancja żył samych w sobie jest ważna dla określenia strat energii w przewodzie i skuteczności przesyłu prądu, ale kluczowe jest, aby przewody miały wysoką rezystancję izolacji, co chroni przed niepożądanym przepływem prądu między przewodami. Błędne myślenie w tym przypadku może wynikać z koncentracji na parametrach elektrycznych związanych z przesyłem energii, zamiast na bezpieczeństwie. Sumowanie rezystancji żył lub izolacji może prowadzić do błędnych wniosków, ponieważ pomiar dotyczy rzeczywistej rezystancji izolacyjnej, która powinna być możliwie jak najwyższa. Często zapomina się, że normy branżowe, takie jak PN-EN 61557, szczegółowo opisują właściwe metody pomiaru i interpretację wyników, co eliminuje wiele błędów koncepcyjnych. Ostatecznie, zrozumienie, że kluczowym aspektem jest izolacja między żyłami a żyłą PEN, pozwala na uniknięcie niebezpieczeństw związanych z elektrycznością.

Pytanie 9

Na podstawie zamieszczonych w tabeli parametrów technicznych enkodera wskaż wartość napięcia zasilania, pozwalającą na jego prawidłową pracę.

Wybrane parametry techniczne enkodera
Zasilanie5 V DC ±10 %
Pobór prądu≤ 60 mA
Prędkość obrotowa10 000 rpm
Rozdzielczość5 ÷ 6000 imp./obr
Temperatura pracy-25 ÷ +100°C
Średnica osiØ10 mm
Średnica obudowyØ58 mm
A. 4,4 V DC
B. 10,0 V DC
C. 15,0 V DC
D. 5,4 V DC
Poprawna odpowiedź to 5,4 V DC i już tłumaczę dlaczego. Mamy w tabeli podane, że enkoder wymaga napięcia zasilania 5 V DC ±10%. Co to oznacza w praktyce? Oznacza to, że urządzenie może poprawnie pracować w zakresie napięcia od 4,5 V do 5,5 V. Odpowiedź 5,4 V DC mieści się w tym zakresie, więc jest prawidłowa. To ważne, ponieważ nieprawidłowe napięcie zasilania może prowadzić do niepoprawnej pracy enkodera lub nawet jego uszkodzenia. W praktyce, w zastosowaniach przemysłowych, zawsze należy trzymać się specyfikacji producenta, aby zapewnić nie tylko poprawną, ale i długotrwałą pracę urządzenia. Często w systemach automatyki mamy do czynienia z różnymi napięciami zasilania, dlatego tak ważne jest, by trzymać się wskazanych wartości. Moim zdaniem, dobrze jest też zaznajomić się z pojęciem tolerancji napięcia, które jest kluczowe przy doborze zasilania dla urządzeń elektronicznych. Świadomość tego, jak napięcie wpływa na działanie enkodera, może zapobiec wielu problemom w przyszłości.

Pytanie 10

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 10 barów i temperatura 90°C
B. Ciśnienie robocze 0,1 bara i temperatura 50°C
C. Ciśnienie robocze 16 barów i temperatura 50°C
D. Ciśnienie robocze 16 barów i temperatura 90°C
Maksymalne wartości ciśnienia roboczego i temperatury medium w zaworach elektromagnetycznych są kluczowe dla ich prawidłowego funkcjonowania i trwałości. W podanym fragmencie karty katalogowej znajdziemy informację, że ciśnienie robocze wynosi od 0,1 do 16 barów, co oznacza, że zawór może pracować z ciśnieniem nawet do 16 barów. To ważne, bo różne aplikacje w przemyśle wymagają różnych poziomów ciśnienia, a zawory muszą być w stanie spełnić te wymagania. Jeżeli chodzi o temperaturę medium, tutaj maksymalna wartość wynosi 90°C. Oznacza to, że ciecz lub gaz przepływające przez zawór mogą mieć temperaturę do 90°C, co jest istotne przy zastosowaniach w miejscach, gdzie medium może być gorące, na przykład w systemach grzewczych lub przemysłowych procesach chemicznych. Ważne jest, aby zawsze sprawdzać te parametry przed doborem zaworu do konkretnego zastosowania, ponieważ przekroczenie dopuszczalnych wartości może prowadzić do uszkodzenia zaworu i potencjalnych awarii w systemie. Warto też zwrócić uwagę na standardy branżowe, które regulują dobór i zastosowanie zaworów elektromagnetycznych, takie jak normy PN-EN dotyczące armatury przemysłowej.

Pytanie 11

Aby dokręcić nakrętkę z określonym momentem obrotowym, należy zastosować klucz

A. udarowy.
B. przegubowy.
C. dynamometryczny.
D. grzechotkowy.
Klucz dynamometryczny to narzędzie, które pozwala na precyzyjne dokręcenie śruby czy nakrętki z określonym momentem obrotowym. Jego główną zaletą jest to, że umożliwia osiągnięcie dokładnie takiej siły dokręcania, jakiej potrzebujesz, co jest kluczowe w wielu zastosowaniach technicznych, np. w motoryzacji czy przemyśle lotniczym. Użycie klucza dynamometrycznego zapobiega przekręceniu, a co za tym idzie, uszkodzeniu elementów, co mogłoby prowadzić do poważnych awarii. Moment obrotowy jest mierzony w niutonometrach (Nm) i jest to standard przyjęty w branży. Przykładowo, dokręcając głowicę silnika, bardzo ważne jest, aby siła była równomiernie rozłożona na wszystkie śruby, co zapewnia prawidłowe funkcjonowanie silnika. Z mojego doświadczenia wynika, że posiadając wysokiej jakości klucz dynamometryczny, można uniknąć wielu błędów, które często pojawiają się przy używaniu innych narzędzi. Ważne jest też, aby regularnie kalibrować klucz dynamometryczny, co zapewnia jego dokładność i niezawodność. To narzędzie jest często stosowane w warsztatach samochodowych, gdzie specyfikacje producenta wymagają precyzyjnego dokręcania elementów. Pamiętaj, że ignorowanie momentu dokręcania może skutkować niebezpieczeństwem dla użytkownika bądź osób postronnych.

Pytanie 12

Zgodnie z zamieszczonym schematem lampka sygnalizacyjna H1 będzie świecić, gdy

Ilustracja do pytania
A. będzie naciśnięty tylko przycisk S1
B. będą naciśnięte tylko przyciski S1 i S3
C. będą naciśnięte tylko przyciski S1 i S2
D. będzie naciśnięty tylko przycisk S3
Patrząc na ten schemat, widać bardzo typową sytuację w automatyce, gdzie lampka sygnalizacyjna H1 jest włączana poprzez zestaw styków przekaźników. Moim zdaniem, świetny przykład, bo pokazuje, jak istotne jest zrozumienie kolejności załączania poszczególnych elementów sterujących. Gdy naciśniesz tylko S1, zasilasz cewkę K1, więc styki K1 na drodze do lampki się zamykają. Jednak przyciski S2 i S3, które sterują odpowiednio K2 i K3, nie są wciśnięte, co oznacza, że styki K2 i K3 pozostają rozwarte. Zwróć uwagę, że H1 świeci tylko wtedy, gdy przez cały szereg styków K1, K2, K3 popłynie prąd – a to możliwe wyłącznie, gdy wszystkie te styki są zwarte, czyli gdy KAŻDA z cewek jest zasilona. Tutaj jednak kluczowa jest analiza, jak są podpięte styki K1, K2, K3 – a w tym przypadku tylko naciśnięcie S1 daje zamknięcie jednej gałęzi bez blokady przez pozostałe przekaźniki. W praktyce takie układy często spotyka się przy sterowaniu oświetleniem sygnalizacyjnym, np. w szafach sterowniczych, gdzie chcesz, aby lampka zapalała się tylko przy bardzo konkretnej kombinacji stanów. W branży automatyki zawsze warto zwracać uwagę na typ połączeń (równoległe czy szeregowe), bo od tego zależy interpretacja działania. Standardem jest takie planowanie logiki, by uniknąć przypadkowego załączenia sygnalizacji. Moim zdaniem, kto ogarnia takie schematy, świetnie radzi sobie potem z rozbudowanymi układami w praktyce.

Pytanie 13

W systemie automatyki wszystkie połączenia wykonano przewodem oznaczonym jako 15G0,75. Oznacza to, że jest to przewód

Ilustracja do pytania
A. 15 żyłowy, z żyłą ochronną, przekrój 0,75 mm²
B. 15 żyłowy, bez żyły ochronnej, przekrój 0,75 mm²
C. 15 żyłowy, bez żyły ochronnej, przekrój 0,5 mm²
D. 15 żyłowy, z żyłą ochronną, przekrój 0,5 mm²
Oznaczenie 15G0,75 w przewodach jasno wskazuje na kilka istotnych cech tego przewodu. Przede wszystkim liczba 15 oznacza, że przewód posiada 15 żył. Jest to ważne, gdyż wielożyłowe przewody są często używane w systemach automatyki do przesyłania sygnałów sterujących. Litera 'G' w oznaczeniu informuje nas, że przewód posiada żyłę ochronną, co jest kluczowe dla bezpieczeństwa instalacji. Żyła ochronna zapewnia, że w przypadku awarii elektrycznej nadmiarowe napięcie zostanie odprowadzone, minimalizując ryzyko uszkodzenia urządzeń lub porażenia prądem. Z kolei wartość 0,75 mm² określa przekrój pojedynczej żyły, co ma wpływ na jej zdolność do przewodzenia prądu. W praktyce przewody o mniejszych przekrojach stosuje się do przesyłania sygnałów o niskim natężeniu. Przewody takie są zgodne z normami określającymi minimalne wymagania dla zabezpieczenia elektrycznego, co ma krytyczne znaczenie w instalacjach przemysłowych. Wiedza ta pozwala na odpowiedni dobór przewodów w zależności od potrzeb instalacji, co ma bezpośredni wpływ na jej efektywność i bezpieczeństwo.

Pytanie 14

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 3
Ilustracja do odpowiedzi A
B. Miernik 4
Ilustracja do odpowiedzi B
C. Miernik 1
Ilustracja do odpowiedzi C
D. Miernik 2
Ilustracja do odpowiedzi D
Poprawna odpowiedź to miernik numer 3, który ma zakres pomiarowy od –5 do +15 V. Jest to klasyczny woltomierz analogowy do pomiaru napięcia stałego (DC), idealny do sprawdzenia sygnału wyjściowego +Q1 z czujnika analogowego. W schemacie układu pomiarowego widać, że napięcie wyjściowe zawiera się w zakresie 0–10 V, więc miernik o takim zakresie zapewni odpowiednią dokładność i bezpieczeństwo pomiaru. Dodatkowo posiada on podziałkę symetryczną z częścią ujemną, co umożliwia kontrolę również błędnych polaryzacji lub sygnałów odwróconych. W praktyce technicznej takie mierniki stosuje się do diagnostyki czujników, regulatorów PID, przetworników sygnałów oraz wyjść analogowych PLC. Z mojego doświadczenia wynika, że warto używać mierników o zakresie nieco szerszym od mierzonego napięcia – w tym wypadku 15 V zamiast 10 V – żeby nie przeciążyć ustroju pomiarowego. W przemyśle automatyki miernik o takim zakresie jest często montowany w szafie sterowniczej, by umożliwić bieżący podgląd sygnału sterującego zaworem, siłownikiem czy czujnikiem położenia.

Pytanie 15

W dokumentacji powykonawczej nie jest wymagane umieszczać

A. certyfikatów użytych materiałów.
B. faktur lub innych dowodów zakupu z cenami.
C. warunków gwarancji.
D. protokołów pomiarowych.
Faktury i inne dowody zakupu z cenami to dokumenty, które są istotne z punktu widzenia księgowego i finansowego, ale niekoniecznie muszą być częścią dokumentacji powykonawczej. Taka dokumentacja ma na celu przede wszystkim dostarczenie pełnych informacji technicznych dotyczących zrealizowanego projektu budowlanego lub instalacyjnego. Standardy branżowe, jak np. PN-EN 14351 czy PN-EN 1090, koncentrują się na zapewnieniu zgodności wykonanych prac z wymaganiami technicznymi i normami, dlatego też zawierają protokoły pomiarowe, certyfikaty użytych materiałów oraz warunki gwarancji. Te elementy świadczą o jakości wykonania i zgodności z przepisami. Faktury natomiast dotyczą aspektu ekonomicznego projektu i są wymagane raczej przez dział finansowy niż w kontekście odbioru technicznego. Moim zdaniem, znajomość różnicy między dokumentacją techniczną a finansową jest kluczowa w pracy inżynierskiej, ponieważ pozwala na lepsze zrozumienie potrzeb różnych działów w firmie. W codziennej praktyce warto pamiętać, że chociaż faktury są ważne dla rozliczeń, to w kontekście technicznym najważniejsza jest zgodność z projektem i normami.

Pytanie 16

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. cięcia przewodów.
B. ściągania izolacji.
C. zaciskania końcówek tulejkowych.
D. zaciskania wtyków RJ45.
Dobrze, że wybrałeś tę odpowiedź. Narzędzia przedstawione na rysunkach to zaciskarki do końcówek tulejkowych. W praktyce, takie tulejkowe końcówki są używane do zabezpieczenia końcówek przewodów, co zapobiega ich strzępieniu się i zapewnia lepsze połączenie elektryczne. To niezwykle ważne w instalacjach elektrycznych, gdzie zależy nam na trwałości i bezpieczeństwie połączeń. Zaciskarki umożliwiają precyzyjne i mocne zaciśnięcie tulejki na przewodzie, co jest zgodne ze standardami branżowymi, takimi jak normy IEC czy DIN. Prawidłowo zaciśnięta tulejka zapewnia nie tylko mechaniczne, ale i elektryczne bezpieczeństwo połączenia, co jest kluczowe w zapobieganiu awariom i stratom energii. Warto pamiętać, że używanie odpowiednich narzędzi i technik w pracy z przewodami jest jednym z fundamentów profesjonalizmu w branży elektrycznej. Zaciskarki tego typu mogą mieć regulowany mechanizm zaciskowy, co pozwala na dostosowanie do różnych rozmiarów tulejek, a ich ergonomiczna konstrukcja ułatwia pracę nawet w trudnych warunkach.

Pytanie 17

Na ilustracji przedstawiono

Ilustracja do pytania
A. przegub robota.
B. podstawę robota.
C. ramię robota.
D. chwytak robota.
Chwytak robota to kluczowy element w automatyzacji przemysłowej, odpowiada za uchwycenie i manipulację przedmiotami. Właściwe dobranie chwytaka jest kluczowe dla efektywności robota. Na przykład w przemyśle motoryzacyjnym chwytaki mogą być używane do montażu części. Istnieją różne rodzaje chwytaków, jak pneumatyczne, elektryczne czy hydrauliczne, każdy z nich ma swoje specyficzne zastosowanie. Pneumatyczne chwytaki, takie jak ten na ilustracji, są często używane ze względu na swoją szybkość i precyzję. Wybór chwytaka zależy od wielu czynników, takich jak masa i kształt przenoszonego obiektu, wymagana siła chwytu oraz warunki pracy. Istotne jest także, aby chwytak był zgodny z normami bezpieczeństwa, takimi jak ISO 10218 dotycząca bezpieczeństwa robotów przemysłowych. Moim zdaniem, zrozumienie funkcji i zastosowania chwytaków to podstawa do efektywnego projektowania i wdrażania systemów robotycznych.

Pytanie 18

W regulatorze PID symbolem TI oznacza się czas

A. opóźnienia.
B. wyprzedzenia.
C. propagacji.
D. zdwojenia.
Pojęcia takie jak czas propagacji, opóźnienia czy wyprzedzenia mogą być mylące w kontekście regulatorów PID. Czas propagacji odnosi się raczej do opóźnień sygnału w systemach komunikacyjnych i nie ma związku z funkcjonowaniem regulatora PID. Czas opóźnienia to parametr występujący w modelach układów dynamicznych, związany z czasem potrzebnym na reakcję systemu na dany sygnał wejściowy. Może to być czas transportu materiału w procesie, ale nie jest to bezpośrednio związane z parametrami TI regulatora PID. Kolejnym błędnym pojęciem jest czas wyprzedzenia, który w automatyce może dotyczyć członów korekcyjnych stosowanych do kompensacji opóźnień czy poprawy dynamiki układu, lecz nie odnosi się do TI, który jest czasem całkowania. Typowym błędem jest zakładanie, że wszystkie te czasy są wymienne, co prowadzi do nieprawidłowego dostrajania regulatorów i destabilizacji procesu. Rozumienie, że TI to czas zdwojenia, jest kluczowe, bo to on określa, jak szybko regulator skoryguje odchyłki procesu względem zadanej wartości, co jest fundamentem stabilizacji i optymalizacji w systemach sterowania. Warto więc zrozumieć te koncepcje, aby unikać typowych błędów w projektowaniu i stosowaniu regulatorów PID w praktyce inżynierskiej. Właściwe zrozumienie parametrów regulatora pozwala na bardziej efektywne projektowanie i implementację systemów automatyki, co przekłada się na większą niezawodność i wydajność procesów technologicznych. Dlatego też nauka i zrozumienie tych pojęć jest niezbędne dla inżynierów automatyków i technologów procesów. Takie podejście pozwala na zgodność z dobrą praktyką projektową i wymogami norm jakościowych, co w efekcie zwiększa konkurencyjność przedsiębiorstw na rynku."]

Pytanie 19

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. termoelektryczne.
B. rezystancyjne metalowe
C. bimetalowe.
D. rezystancyjne półprzewodnikowe.
Pt100 to popularny typ rezystancyjnego czujnika temperatury, który wykonany jest z platyny (stąd oznaczenie Pt). Często używa się go w aplikacjach przemysłowych ze względu na jego precyzję i stabilność. Charakterystyczne dla czujników Pt100 jest to, że przy 0°C mają one rezystancję równo 100 Ω. Zmiana temperatury powoduje zmianę rezystancji, co pozwala na dokładne pomiary. W systemach automatyki, takich jak ten, używa się przetworników, które konwertują zmiany rezystancji na sygnał prądowy, standardowo 4-20 mA. Dlaczego 4-20 mA? Jest to standard przemysłowy, pozwalający na wykrycie awarii (np. złamany kabel daje prąd poniżej 4 mA). Pt100 są preferowane w wielu branżach, zwłaszcza tam, gdzie wymagana jest duża dokładność pomiaru temperatury, np. w przemyśle chemicznym, spożywczym czy farmaceutycznym. Dzięki zastosowaniu platyny, czujniki te charakteryzują się dużą liniowością i szerokim zakresem pomiaru, co czyni je uniwersalnym wyborem dla inżynierów.

Pytanie 20

Rysunek poglądowy przedstawia budowę przekaźnika. Strzałka wskazuje

Ilustracja do pytania
A. zworę.
B. cewkę.
C. styki.
D. rdzeń.
Zworę w przekaźniku możemy porównać do mostka, który umożliwia przepływ prądu pomiędzy różnymi częściami układu po zadziałaniu cewki. W momencie, gdy przez cewkę przepływa prąd, generuje ona pole magnetyczne, które przyciąga zworę. To powoduje zamknięcie lub otwarcie obwodu elektrycznego, w zależności od typu przekaźnika. Zwora jest kluczowym elementem w przekaźnikach elektromagnetycznych, które są powszechnie stosowane w automatyce przemysłowej. Dzięki niej można sterować większymi obciążeniami przy pomocy niewielkich prądów. Moim zdaniem, znajomość działania zwory jest fundamentem w zrozumieniu pracy przekaźników. W praktyce, przekaźniki są często używane w aplikacjach, gdzie istotne jest odseparowanie obwodów o różnych poziomach napięcia czy mocy. Przestrzeganie standardów branżowych, takich jak EN 61810 dotyczący przekaźników elektromagnetycznych, jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności działania układów automatyki.

Pytanie 21

Który przyrząd pomiarowy należy zastosować do pomiaru amplitudy, częstotliwości i kształtu sygnałów w montowanych urządzeniach automatyki przemysłowej?

A. Mostek RLC.
B. Multimetr.
C. Częstotliwościomierz.
D. Oscyloskop.
Oscyloskop to naprawdę niezastąpione narzędzie w dziedzinie automatyki przemysłowej, szczególnie gdy chodzi o analizę sygnałów elektrycznych. Jest to urządzenie, które pozwala nam precyzyjnie zobaczyć, jak wygląda sygnał w czasie rzeczywistym. Możemy mierzyć zarówno amplitudę, jak i częstotliwość oraz kształt sygnału, co jest kluczowe przy diagnozowaniu układów elektronicznych. W praktyce oznacza to, że możemy dokładnie zidentyfikować, czy na przykład sygnały sterujące w maszynach przemysłowych działają poprawnie. Użycie oscyloskopu pozwala na szybkie wykrywanie zakłóceń i innych problemów w sieci elektrycznej, co jest nieocenione w utrzymaniu ciągłości pracy. Co więcej, oscyloskopy są standardem w laboratoriach i serwisach elektronicznych, co świadczy o ich uniwersalności i niezawodności. Moim zdaniem, kto raz dobrze opanuje pracę z oscyloskopem, zawsze znajdzie zastosowanie dla tego urządzenia. Dodatkowo, nowoczesne oscyloskopy cyfrowe oferują funkcje, które pozwalają na jeszcze bardziej szczegółową analizę sygnałów, takie jak zapis danych i ich szczegółowa analiza na komputerze. Bez tego przyrządu trudno wyobrazić sobie skuteczne diagnozowanie i naprawę skomplikowanych systemów automatyki przemysłowej.

Pytanie 22

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 4.
B. Tabliczka 2.
C. Tabliczka 1.
D. Tabliczka 3.
Twoja odpowiedź jest prawidłowa, ponieważ tabliczka 1 wskazuje na silnik przeznaczony do pracy ciągłej, co opisuje symbol S1. Praca ciągła oznacza, że silnik może działać bez przerw przez długi czas na stałym obciążeniu bez ryzyka przegrzania. To jest istotne w wielu zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe, np. w produkcji masowej lub liniach montażowych. Standard IEC 60034, który jest podany na tabliczce, zapewnia zgodność z międzynarodowymi normami dotyczącymi wydajności i bezpieczeństwa silników elektrycznych. Ważne jest, aby silniki do pracy ciągłej były prawidłowo chłodzone i miały odpowiednią klasę ochrony IP, jak IP54, co oznacza ochronę przed kurzem i rozbryzgami wody. Praktyczne zastosowanie takiego silnika może być widoczne w przypadku ciągłej pracy pomp, wentylatorów czy taśm produkcyjnych, gdzie przestoje mogą prowadzić do strat finansowych. Ważne jest, aby zawsze dobierać silnik odpowiedni do specyfiki pracy, co zwiększa jego trwałość i niezawodność.

Pytanie 23

Na schemacie przedstawiono

Ilustracja do pytania
A. konwerter łącza szeregowego na łącze światłowodowe.
B. przetwornik napięcia AC na prąd AC.
C. regulowany wzmacniacz napięć lub prądów zmiennych.
D. przetwornik pomiarowy prądu lub napięcia AC.
Na schemacie widzimy konwerter, który zamienia klasyczne łącze szeregowe RS-232 na łącze światłowodowe. Po lewej stronie oznaczenia TxD i RxD wskazują na typowy interfejs komunikacji szeregowej, natomiast po prawej znajdują się symbole nadajnika i odbiornika światłowodowego (FO – Fiber Optic). Urządzenie to umożliwia przesyłanie danych w formie impulsów świetlnych, co pozwala na transmisję na duże odległości bez zakłóceń elektromagnetycznych i bez konieczności galwanicznego połączenia między urządzeniami. Zasilanie w szerokim zakresie (24–240 V AC/DC) sugeruje zastosowanie przemysłowe – typowe dla automatyki, sterowników PLC i systemów monitoringu. Moim zdaniem to przykład nowoczesnego podejścia do komunikacji, które łączy prostotę RS-232 z niezawodnością światłowodu. W praktyce takie konwertery montuje się w szafach sterowniczych, by połączyć odległe stanowiska pomiarowe lub serwery. Dzięki nim można znacznie wydłużyć zasięg transmisji (nawet do kilku kilometrów) i uniezależnić się od szumów elektrycznych obecnych w fabrykach.

Pytanie 24

Na rysunku przedstawiono listwę przyłączeniową regulatora temperatury. Do których zacisków regulatora należy podłączyć czujnik termoelektryczny?

Ilustracja do pytania
A. 1 i 2
B. 5 i 6
C. 2 i 3
D. 1 i 3
Wybór innych zacisków niż 2 i 3 prowadzi do błędnego podłączenia czujnika termoelektrycznego. Zaciski 1 i 3 lub 1 i 2 mogą być używane do innych funkcji niż podłączenie termopary, np. dla innych typów czujników lub jako część obwodu sterowania. Często popełnianym błędem jest mylenie zacisków z powodu podobieństwa ich oznaczeń lub konfiguracji fizycznej na listwie. W praktyce, wybór niewłaściwych zacisków skutkuje brakiem odczytu temperatury lub generowaniem błędnych wartości, co może wpływać na działanie całego systemu regulacji temperatury. Zaciski 5 i 6, które także były jedną z opcji, są zazwyczaj używane w innych częściach układu, np. do zasilania bądź jako część innego obwodu. Kluczowe jest, aby zawsze odnosić się do dokumentacji technicznej regulatora temperatury, która precyzyjnie opisuje funkcje poszczególnych zacisków. Zrozumienie, jak działa efekt Seebecka i jak termopary generują sygnały, jest istotne dla prawidłowego podłączania i diagnozowania potencjalnych problemów. Dlatego edukacja w zakresie podstawowych zasad działania czujników i regulatorów jest nieoceniona dla każdego technika zajmującego się automatyką przemysłową.

Pytanie 25

W której przemysłowej sieci komunikacyjnej stosowane jest urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. Profibus
B. DeviceNet
C. Profinet
D. Modbus
To urządzenie to switch przemysłowy, wykorzystywany w sieciach Profinet. Profinet to nowoczesny otwarty standard przemysłowy, który opiera się na technologii Ethernetu. Jest to jeden z najczęściej wykorzystywanych protokołów w automatyce przemysłowej. Umożliwia integrację systemów automatyki z IT, co jest kluczowe w erze Przemysłu 4.0. Switche takie jak ten zarządzają ruchem danych w sieci, co pozwala na szybki i niezawodny przesył informacji między urządzeniami. Dzięki temu można łatwo monitorować i kontrolować procesy produkcyjne. Standard Profinet zapewnia wysoką wydajność i niezawodność, a także łatwość integracji z innymi systemami. Co ciekawe, Profinet obsługuje również przesył danych w czasie rzeczywistym, co jest niezbędne w wielu aplikacjach przemysłowych. Moim zdaniem, znajomość tego standardu to podstawa dla każdego inżyniera automatyki, zwłaszcza w kontekście rosnącego znaczenia sieci przemysłowych.

Pytanie 26

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego wyłączenie TOF
B. licznika impulsów zliczającego w dół CTD
C. licznika impulsów zliczającego w górę CTU
D. timera opóźniającego załączenie TON
Wybrałeś prawidłową odpowiedź, a mianowicie licznik impulsów zliczający w dół (CTD). Liczniki impulsów są niezwykle istotne w automatyce przemysłowej, ponieważ pozwalają na kontrolowanie sekwencji zdarzeń w procesach produkcyjnych. Licznik zliczający w dół będzie zmniejszał swoją wartość przy każdym impulsie, co można wykorzystać do odmierzania czasu bądź ilości cykli, aż do osiągnięcia zera. W takim momencie można wyzwolić różne działania, na przykład zatrzymanie maszyny lub przełączenie na inne zadanie. W kontekście PLC, liczniki CTD są często używane w połączeniu z innymi blokami funkcjonalnymi, jak liczniki CTU czy timery, aby tworzyć bardziej złożone układy logiczne. Licznik CTD w diagramie pokazuje proces, gdzie wartość licznika zmniejsza się za każdym razem, gdy otrzymuje impuls CD, co jest typowym działaniem dla tego typu bloków. W praktyce liczniki te są bardzo przydatne w systemach sortowania, pakowania czy nawet w przemyśle spożywczym, gdzie ilość przetwarzanych elementów musi być precyzyjnie kontrolowana.

Pytanie 27

Który miernik należy zastosować w miejscu oznaczonym literą X na schemacie elektrycznym przedstawionym na rysunku?

Ilustracja do pytania
A. Amperomierz.
B. Częstotliwościomierz.
C. Omomierz.
D. Woltomierz.
Świetnie, wybrałeś amperomierz! To prawidłowy wybór, bo w miejscu oznaczonym literą X chcemy zmierzyć natężenie prądu płynącego przez rezystory R2 i R3, które są połączone szeregowo. Amperomierz to przyrząd, który włączamy w obwód szeregowo, tak aby prąd płynął przez niego, co pozwala na dokładny pomiar. Moim zdaniem, to jedno z podstawowych zastosowań amperomierza, bo często chcemy wiedzieć, jaki prąd płynie przez konkretne elementy obwodu. Ważne jest, aby pamiętać, że amperomierz ma bardzo mały opór własny, co minimalizuje wpływ na obwód. Standardy branżowe, takie jak IEC, podkreślają konieczność właściwego podłączenia amperomierzy, aby uniknąć błędów pomiarowych. W praktyce, amperomierze są nieodzowne w diagnostyce i utrzymaniu systemów elektrycznych, zarówno w elektronice konsumenckiej, jak i w systemach przemysłowych. Dobrze, że o tym pamiętasz!

Pytanie 28

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. HDMI
B. RS-232
C. USB
D. RJ-45
To złącze to RS-232, znane również jako port szeregowy. Jest jednym z najstarszych standardów komunikacji szeregowej i choć dziś nie jest już tak popularne jak kiedyś, wciąż znajduje zastosowanie w pewnych niszowych urządzeniach i systemach. RS-232 jest często używane do połączeń między komputerami a urządzeniami peryferyjnymi, takimi jak modemy, drukarki, a nawet niektóre starsze typy myszy komputerowych. Złącza te zazwyczaj mają dziewięć pinów, jak na ilustracji, chociaż istnieją też wersje z 25 pinami. Jego zaletą jest prostota i niezawodność w przesyłaniu danych na krótkie odległości. Standard RS-232 definiuje sygnały elektryczne, poziomy napięcia oraz czasowanie, co gwarantuje zgodność między urządzeniami różnych producentów. Moim zdaniem, mimo że technologia poszła do przodu, RS-232 jest wciąż interesujący ze względu na swoją trwałość i wszechstronność. Jest to doskonały przykład standardu, który przetrwał próbę czasu, głównie dzięki swojej niezawodności w specyficznych zastosowaniach przemysłowych.

Pytanie 29

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Temperatury.
B. Natężenia przepływu.
C. Ciśnienia.
D. Natlenienia.
Ten przetwornik, jak można zauważyć na zdjęciu, jest używany do pomiaru ciśnienia. Urządzenia tego typu są powszechnie stosowane w różnych branżach, takich jak przemysł chemiczny, naftowy czy wodociągowy. Działają one na zasadzie przetwarzania zmiany ciśnienia na sygnał elektryczny, często w standardzie 4-20 mA, co jest globalnie uznawanym standardem komunikacji w inżynierii procesowej. Przetworniki ciśnienia są kluczowe dla zapewnienia bezpieczeństwa i efektywności procesów technologicznych, ponieważ umożliwiają monitorowanie i kontrolę ciśnienia w rurociągach i zbiornikach. Dzięki temu można uniknąć sytuacji awaryjnych, takich jak wycieki czy eksplozje. Co ważne, przetworniki te muszą być regularnie kalibrowane, aby zapewnić dokładność pomiarów. Ciekawostką jest, że tak precyzyjne urządzenia są często wyposażone w technologie kompensacji temperatury, dzięki czemu działają niezawodnie w różnych warunkach środowiskowych. Warto też wspomnieć, że wybór odpowiedniego przetwornika ciśnienia powinien być oparty na analizie specyfikacji technicznej, takich jak zakres pomiarowy, materiał obudowy czy typ połączenia procesowego.

Pytanie 30

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. zasilacza sterownika PLC.
B. modułu wejściowego.
C. modułu wyjściowego.
D. interfejsu komunikacyjnego.
Urządzenie oznaczone jako ADMC-1801 działa jako moduł wejściowy w systemie PLC. W kontekście automatyki przemysłowej, moduły wejściowe mają kluczowe znaczenie, ponieważ umożliwiają sterownikowi PLC odbieranie sygnałów z otoczenia, takich jak temperatury, ciśnienia lub stanów przełączników. W tym przypadku, ADMC-1801 jest połączony z czujnikiem PT100, co wskazuje na pomiar temperatury. Moduły wejściowe przetwarzają sygnały analogowe lub cyfrowe na format, który może być zrozumiany przez PLC. To zgodne z dobrymi praktykami branżowymi, które zalecają użycie dedykowanych modułów do konkretnych typów sygnałów, co optymalizuje dokładność i niezawodność systemu. W praktyce, umiejętne korzystanie z modułów wejściowych pozwala na precyzyjne sterowanie procesami technologicznymi, co z kolei przekłada się na zwiększoną efektywność produkcji i minimalizację błędów. Moim zdaniem, zrozumienie roli takich modułów to podstawa w automatyce, bo pozwala na lepsze projektowanie i implementowanie systemów automatyki, zgodnie z normami takimi jak IEC 61131.

Pytanie 31

Urządzenie, którego schemat przedstawiono na rysunku, pracuje w sposób oscylacyjny. Który zawór należy zamontować w miejscu oznaczonym X, aby prędkość wysuwania tłoczyska siłownika była większa od prędkości wsuwania?

Ilustracja do pytania
A. Dławiąco-zwrotny.
B. Przełącznik obiegu.
C. Podwójnego sygnału.
D. Progowy.
Odpowiedź dławiąco-zwrotny jest prawidłowa, ponieważ ten zawór pozwala na regulację przepływu cieczy lub powietrza w jednym kierunku, jednocześnie umożliwiając swobodny przepływ w przeciwnym. W kontekście siłowników dwustronnego działania, taki zawór umożliwia precyzyjne dostosowanie prędkości wysuwania tłoczyska, co jest kluczowe w wielu aplikacjach przemysłowych oraz automatyce. Dzięki temu można zwiększyć efektywność i precyzję działania maszyn. Instalacja zaworu dławiąco-zwrotnego to standardowa praktyka w systemach pneumatycznych i hydraulicznych, gdzie kontrola prędkości ruchu jest istotna. Praktyczne zastosowanie takiego rozwiązania można znaleźć w liniach produkcyjnych, gdzie różne fazy operacji muszą być zsynchronizowane. Ten zawór jest również często wykorzystywany w maszynach CNC, gdzie precyzyjne sterowanie elementami roboczymi jest niezbędne. Dzięki zastosowaniu zaworów dławiąco-zwrotnych można również zmniejszyć zużycie energii poprzez optymalizację przepływu, co jest ważne z punktu widzenia ekonomii produkcji i ochrony środowiska.

Pytanie 32

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PI
B. PID
C. PD
D. P
Świetnie, że wskazałeś PID jako poprawną odpowiedź! Ten schemat blokowy rzeczywiście pokazuje regulator PID, który składa się z trzech członów: proporcjonalnego (P), całkującego (I) i różniczkującego (D). Każdy z tych członów odpowiada za określony aspekt działania regulatora. Proporcjonalny człon (Kp) reaguje proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Całkujący człon (1/TiS) eliminuje uchyb ustalony przez sumowanie błędu w czasie, co jest kluczowe, gdy potrzebujemy wysokiej precyzji i dokładności. Różniczkujący człon (TdS) z kolei przewiduje przyszłe zachowanie układu na podstawie szybkości zmiany błędu, co pomaga w tłumieniu oscylacji i nadmiernych przeregulowań. W praktyce, PID jest stosowany w różnych branżach, od przemysłu chemicznego po systemy sterowania temperaturą, ponieważ pozwala na precyzyjne i stabilne sterowanie. Ciekawe jest to, że odpowiednie dostrojenie tych trzech parametrów (Kp, Ti, Td) może znacząco poprawić wydajność systemu. Warto również wspomnieć, że w dziedzinie automatyki istnieją różne metody konfiguracji PID, jak Ziegler-Nichols czy Cohen-Coon, które pomagają w ustalaniu optymalnych wartości tych parametrów.

Pytanie 33

Którą cyfrą na prezentowanej płycie oznaczono diodę prostowniczą?

Ilustracja do pytania
A. 4
B. 2
C. 3
D. 1
Rozpoznanie diody prostowniczej na płytce drukowanej jest kluczowe dla zrozumienia działania układów elektronicznych. W tym przypadku, wybierając niepoprawne odpowiedzi, można było opierać się na błędnych przesłankach. Na przykład, tranzystory czy kondensatory również pełnią ważne role, ale ich funkcje różnią się znacznie od diody prostowniczej. Tranzystor, oznaczony tutaj jako element numer 2, działa jako przełącznik lub wzmacniacz sygnałów. Kondensator, z kolei, jak wskazuje pozycja 4, magazynuje energię i stabilizuje napięcie. Błędem jest zakładanie, że ich oznaczenie jest podobne do diod. Kluczowa różnica to kierunek przepływu prądu; dioda prostownicza przepuszcza prąd w jednym kierunku, co jest podstawą jej zastosowania w prostowaniu sygnałów. Często myli się także kondensatory elektrolityczne z diodami ze względu na podobny kształt i oznaczenie biegunowości. Aby unikać takich pomyłek, warto zwrócić większą uwagę na specyfikację elementów i ich oznaczenia na schematach i płytkach PCB, co jest zgodne z dobrymi praktykami w elektronice.

Pytanie 34

Do montażu przewodów do złączki przedstawionej na zdjęciu należy użyć

Ilustracja do pytania
A. klucza nasadowego.
B. klucza oczkowego.
C. wkrętaka płaskiego.
D. wkrętaka krzyżowego.
Użycie wkrętaka płaskiego do montażu przewodów w złączkach jest standardową procedurą w wielu zastosowaniach elektrycznych. Wkrętak płaski, znany również jako śrubokręt płaski, idealnie pasuje do śrub z prostymi nacięciami, które są często stosowane w tego typu złączkach. Tego typu śruby są powszechnie używane ze względu na swoją prostotę i dostępność. Praktyka ta jest wspierana przez wiele standardów branżowych, które zalecają stosowanie odpowiednich narzędzi do konkretnego typu śrub, aby uniknąć ich uszkodzenia i zapewnić bezpieczne połączenie. Moim zdaniem, warto zainwestować w dobrej jakości wkrętak płaski, który ułatwi pracę i zwiększy jej efektywność. Przykładem mogą być instalacje elektryczne w domu, gdzie często spotykamy się z koniecznością montażu przewodów w rozdzielnicach czy puszkach przyłączeniowych. Dobrze dobrane narzędzie nie tylko przyspiesza pracę, ale również minimalizuje ryzyko uszkodzenia urządzeń czy przewodów.

Pytanie 35

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4 ÷ 20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. bimetalowe.
B. rezystancyjne metalowe.
C. termoelektryczne.
D. rezystancyjne półprzewodnikowe.
Czujniki Pt100 to jedne z najpopularniejszych elementów do pomiaru temperatury w systemach automatyki. Są to czujniki rezystancyjne metalowe, co oznacza, że ich działanie opiera się na zjawisku zmiany rezystancji metalu wraz ze zmianą temperatury. W przypadku Pt100, materiałem czujnika jest platyna, co zapewnia wysoką stabilność i liniowość pomiarów. Stąd nazwa Pt (od platyny) i 100 (rezystancja wynosząca 100 omów w temperaturze 0°C). Przetworniki z sygnałem wyjściowym 4 ÷ 20 mA są standardem przemysłowym, pozwalającym na przesyłanie danych z czujnika do systemu sterującego na duże odległości, przy minimalnych zakłóceniach. Z mojego doświadczenia, takie połączenie daje wysoką dokładność i niezawodność w różnych aplikacjach, od przemysłu spożywczego po energetykę. Przy projektowaniu systemów warto zwrócić uwagę na kalibrację czujników i kompatybilność z używanymi przetwornikami, co może znacznie zwiększyć efektywność i dokładność pomiarów. Warto też pamiętać, że czujniki Pt100 są szeroko stosowane, co ułatwia serwis i dostępność części zamiennych.

Pytanie 36

Którym narzędziem nie można ściągnąć izolacji z przewodów elektrycznych wielożyłowych?

A. Narzędzie 1
Ilustracja do odpowiedzi A
B. Narzędzie 3
Ilustracja do odpowiedzi B
C. Narzędzie 2
Ilustracja do odpowiedzi C
D. Narzędzie 4
Ilustracja do odpowiedzi D
Pierwsze narzędzie widoczne na zdjęciu to obcinak do rur, najczęściej używany przy pracach hydraulicznych – do cięcia rur z tworzyw sztucznych, miedzi lub aluminium. Nie nadaje się do zdejmowania izolacji z przewodów elektrycznych, ponieważ jego ostrze jest zaprojektowane do przecinania grubych, sztywnych materiałów, a nie do precyzyjnego nacinania powłoki przewodów. Gdyby ktoś próbował użyć go do kabli, bardzo łatwo mógłby uszkodzić żyły przewodzące. W przeciwieństwie do niego, pozostałe narzędzia (2, 3 i 4) to ściągacze izolacji, zaprojektowane właśnie do pracy z przewodami jedno- i wielożyłowymi. Mają regulację średnicy, ograniczniki głębokości cięcia i specjalne szczęki zapobiegające przecięciu miedzi. Moim zdaniem to bardzo dobre pytanie praktyczne – w warsztacie czy na budowie zdarza się, że ktoś myli obcinak do rur z ściągaczem, bo oba mają podobny kształt uchwytu. W rzeczywistości jednak to zupełnie inne narzędzia – jedno tnie, drugie tylko usuwa cienką warstwę izolacji, zachowując nienaruszony przewodnik. Profesjonalny elektryk zawsze użyje dedykowanego ściągacza, aby uniknąć ryzyka przegrzania lub zwarcia w przewodzie.

Pytanie 37

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
B. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
C. Tłoczyska obu siłowników pozostaną wsunięte.
D. Tłoczyska obu siłowników wysuną się.
Poprawna odpowiedź to: tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się. Wynika to z analizy położenia zaworów w stanie spoczynku, czyli przy niewzbudzonych cewkach Y1 i Y2. Zawór 1V1 (sterujący siłownikiem 1A1) w pozycji podstawowej blokuje dopływ powietrza do komory wysuwu – dlatego tłoczysko pozostaje schowane. Natomiast zawór 2V1 (sterujący siłownikiem 2A1) w swojej pozycji spoczynkowej podaje ciśnienie na stronę wysuwu, przez co siłownik 2A1 się wysuwa. Sprężyna przy zaworze 2V1 ustawia go w pozycji, w której port 1 jest połączony z portem 2. W praktyce oznacza to, że po podaniu zasilania sprężonym powietrzem, bez aktywacji elektromagnesów, tylko siłownik 2A1 zostaje zasilony od strony tłoczyska i wykonuje ruch. Moim zdaniem to klasyczny przykład układu, który pokazuje znaczenie pozycji spoczynkowej zaworu oraz kierunku działania sprężyn – coś, co często umyka początkującym automatykom. W rzeczywistych aplikacjach takie rozwiązanie stosuje się np. do automatycznego ustawienia elementu w pozycji startowej po uruchomieniu maszyny.

Pytanie 38

Przedstawione na ilustracjach narzędzie służy do montażu

Ilustracja do pytania
A. zabezpieczeń E-ring.
B. kołków rozprężnych.
C. pierścieni Segera.
D. podkładek dystansowych.
Choć na pierwszy rzut oka mogą się mylić, narzędzie przedstawione na ilustracjach nie służy do montażu pierścieni Segera. Pierścienie te, znane również jako pierścienie zabezpieczające, wymagają specjalnych szczypiec z końcówkami dopasowanymi do ich otworów. Bez odpowiedniego narzędzia, montaż i demontaż takich pierścieni jest nie tylko trudny, ale i ryzykowny dla mechanizmów. Podobnie, narzędzie to nie jest przeznaczone do montażu kołków rozprężnych, które działają na zasadzie sił rozszerzających, a ich montaż wymaga najczęściej młotka lub prasy. Podkładki dystansowe z kolei nie wymagają użycia tego rodzaju narzędzi, ponieważ są to płaskie elementy mające na celu regulację odległości pomiędzy częściami, a ich montaż jest manualny. Typowym błędem jest mylenie szczypiec do E-ring z innymi narzędziami z powodu ich zewnętrznego podobieństwa. Jednak funkcja i konstrukcja są specjalnie dostosowane do konkretnego zastosowania. W przypadku E-ringów, kluczowe jest odpowiednie dopasowanie narzędzia, aby zapewnić właściwe działanie zabezpieczenia i uniknąć uszkodzeń mechanicznych. Dlatego zawsze warto dokładnie sprawdzić specyfikację techniczną narzędzia przed jego użyciem.

Pytanie 39

Do demontażu przyłącza przedstawionego na rysunku należy użyć

Ilustracja do pytania
A. wkrętaka krzyżowego.
B. klucza płaskiego.
C. klucza imbusowego.
D. wkrętaka płaskiego.
Poprawna odpowiedź to klucz płaski. Na zdjęciu widać typowe przyłącze pneumatyczne z gwintem zewnętrznym i sześciokątną częścią korpusu, które umożliwia jego montaż lub demontaż za pomocą klucza płaskiego lub oczkowego. Ten kształt sześciokąta jest właśnie po to, by narzędzie dobrze przylegało do powierzchni i nie uszkodziło gwintu ani obudowy. W praktyce technicznej, szczególnie w pneumatyce i hydraulice, takie złącza występują w dużych ilościach, np. przy siłownikach, rozdzielaczach i przewodach ciśnieniowych. Klucz płaski pozwala uzyskać odpowiedni moment dokręcenia bez ryzyka zniszczenia gniazda, co bywa problemem przy użyciu kombinerek czy wkrętaków. Moim zdaniem warto pamiętać, by zawsze dobrać właściwy rozmiar klucza (np. 12 mm, 14 mm), a przed demontażem odłączyć źródło sprężonego powietrza – to drobiazg, ale często pomijany w warsztacie. Dobrą praktyką jest też użycie niewielkiej ilości taśmy teflonowej przy ponownym montażu, żeby zapewnić szczelność połączenia.

Pytanie 40

Mechanizm przedstawiony na rysunku zapewnia członowi napędzanemu (element w kolorze czerwonym)

Ilustracja do pytania
A. ruch ciągły.
B. ruch przerywany.
C. multiplikację przełożenia.
D. multiplikację obrotów.
Mechanizm przedstawiony na rysunku to mechanizm genewski, który zapewnia ruch przerywany. To znany mechanizm w automatyce i mechanice, który przekształca ruch obrotowy w przerywany. Kluczowym elementem jest tutaj krzywka z wycięciami, która okresowo wchodzi w interakcję z czerwonym elementem, nadając mu ruch na krótkie odcinki. Tego rodzaju mechanizmy można znaleźć w zegarach mechanicznych albo maszynach pakujących, gdzie potrzebna jest precyzyjna kontrola czasowa ruchu. Dzięki przerywanemu ruchowi można uzyskać kontrolowane, cykliczne przemieszczenia, co jest kluczowe w wielu zastosowaniach przemysłowych. Mechanizm genewski to doskonały przykład zastosowania prostych zasad mechaniki do rozwiązywania skomplikowanych problemów inżynieryjnych. Z mojego doświadczenia wiem, że jest to też świetne wprowadzenie do nauki o ruchach przerywanych dla studentów technikum.