Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 1 lutego 2026 17:21
  • Data zakończenia: 1 lutego 2026 17:30

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO < Zs ∙ Ia
B. UO > Zs ∙ 2Ia
C. UO > Zs ∙ Ia
D. UO < Zs ∙ 2Ia
Odpowiedź UO > Zs ∙ Ia jest poprawna, ponieważ zgodnie z zasadami ochrony urządzeń elektrycznych, napięcie znamionowe (UO) powinno być większe od iloczynu impedancji pętli zwarciowej (Zs) i wartości prądu, który zapewnia bezzwłoczne zadziałanie urządzenia ochronnego (Ia). To oznacza, że w przypadku zwarcia, napięcie musi być wystarczające, aby zainicjować odpowiednią reakcję urządzenia ochronnego, co zapewnia bezpieczeństwo użytkowników oraz integralność systemu. Zgodnie z normami takimi jak PN-EN 60947-2, które określają wymagania dotyczące zabezpieczeń elektrycznych, ta zasada jest kluczowa w projektowaniu i eksploatacji instalacji elektrycznych. Przykładem zastosowania tej zasady może być proces doboru wyłączników nadprądowych, które muszą odpowiednio reagować na zwarcia, aby zminimalizować ryzyko pożaru lub uszkodzeń urządzeń. Odpowiednie obliczenia impedancji pętli zwarciowej oraz prądu zadziałania są niezbędne w analizie ochrony instalacji, co podkreśla praktyczny aspekt tej wiedzy w codziennej pracy inżynierów elektryków.

Pytanie 2

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zaciskania końcówek tulejkowych.
B. Docinania przewodu.
C. Ściągania izolacji z przewodu.
D. Zaciskania końcówek oczkowych.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.

Pytanie 3

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Wielodrutowy nieuzbrojony.
B. Jednodrutowy nieuzbrojony.
C. Jednożyłowy uzbrojony.
D. Wielożyłowy uzbrojony.
Właściwa odpowiedź to "Wielodrutowy nieuzbrojony", co można łatwo zidentyfikować na podstawie charakterystyki przedstawionego przewodu. Przewody wielodrutowe są powszechnie stosowane w instalacjach elektrycznych, ze względu na ich elastyczność oraz zdolność do prowadzenia prądu. Składają się z wielu cienkich drutów, które są ze sobą splecione, co zwiększa ich wydajność energetyczną i elastyczność. Zastosowanie izolacji zewnętrznej jest kluczowe, aby zapobiec przepływowi prądu do elementów otaczających, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60228, która określa wymagania dotyczące przewodów elektrycznych. W praktyce takie przewody są wykorzystywane w domowych instalacjach elektrycznych, w systemach oświetleniowych oraz w instalacjach przemysłowych, gdzie wymagana jest duża mobilność i odporność na różne warunki atmosferyczne. Ich nieuzbrojona konstrukcja oznacza, że nie posiadają dodatkowych elementów ochronnych, takich jak metalowe osłony, co czyni je idealnymi do użytku w miejscach, gdzie nie ma ryzyka uszkodzeń mechanicznych.

Pytanie 4

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,4 sekundy
B. 1 sekundę
C. 0,2 sekundy
D. 5 sekund
Maksymalny czas samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie obciążenia do 32 A w sieci TN wynoszący 0,4 sekundy jest zgodny z normami obowiązującymi w dziedzinie bezpieczeństwa elektrycznego, takimi jak norma PN-EN 61140. Czas ten określa, jak szybko system ochronny powinien zareagować w przypadku wystąpienia zwarcia lub awarii, aby zminimalizować ryzyko porażenia prądem. W praktyce oznacza to, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe, muszą być zdolne do zadziałania w tym krótkim czasie. Takie szybkie reakcje są kluczowe w warunkach użytkowania, zwłaszcza w środowisku domowym i komercyjnym, gdzie obecność ludzi jest stała. Przykładem zastosowania tej zasady mogą być obwody zasilające w łazienkach oraz innych pomieszczeniach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacznie wyższe. Odpowiednie zabezpieczenia w postaci wyłączników, które działają w ciągu 0,4 sekundy, mogą uratować życie, eliminując zasilanie w przypadku niebezpiecznych sytuacji.

Pytanie 5

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. YDY 500 V 2,5 mm2
B. ALY 500 V 2,5 mm2
C. YLY 500 V 2,5 mm2
D. ADY 500 V 2,5 mm2
No, niestety, nie wszystkie inne odpowiedzi są poprawne. Odpowiedź ALY 500 V 2,5 mm2 ma poważny błąd, bo 'L' sugeruje, że przewód wykonany jest z miedzi, a nie z aluminium. W przypadku YDY 500 V 2,5 mm2, 'Y' mówi, że to przewód jednożyłowy, ale 'D' jest tu problematyczne, bo powinno dotyczyć PVC przy żyłach aluminiowych. Co do YLY 500 V 2,5 mm2, to znowu 'L' sugeruje miedź, co jest sprzeczne z informacjami w pytaniu. Często ludzie popełniają błąd, ignorując materiał żyły, co może prowadzić do różnych problemów w instalacji. Mylimy symbole różnych typów przewodów, co może później skutkować ich niewłaściwym doborem i zwiększa ryzyko awarii. W inżynierii elektrycznej, ogarnięcie tych oznaczeń jest mega ważne, żeby wszystko działało bezpiecznie i sprawnie.

Pytanie 6

Jaki jest prawidłowy sposób postępowania w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego?

A. Natychmiastowe odłączenie zasilania i wymiana przewodu.
B. Kontynuowanie użytkowania do czasu planowanej konserwacji.
C. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu.
D. Owinięcie uszkodzonego miejsca taśmą izolacyjną.
Prawidłowe postępowanie w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego to natychmiastowe odłączenie zasilania i wymiana przewodu. Jest to zgodne z podstawowymi zasadami bezpieczeństwa pracy z urządzeniami i instalacjami elektrycznymi. Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem, zwarcia, a nawet pożar. Dlatego kluczowe jest, aby niezwłocznie usunąć zagrożenie poprzez odłączenie zasilania, co zapobiega dalszemu narażeniu na ryzyko. Następnie uszkodzony przewód powinien zostać wymieniony na nowy, spełniający odpowiednie normy i standardy. Takie podejście jest nie tylko zgodne z zasadami BHP, ale także z dobrą praktyką inżynierską, która kładzie nacisk na prewencję i dbałość o bezpieczeństwo użytkowników oraz sprzętu. Przykładem może być wymiana uszkodzonego przewodu w gospodarstwie domowym; ignorowanie takiego problemu mogłoby doprowadzić do poważnych konsekwencji, dlatego działanie jest kluczowe.

Pytanie 7

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. C.
B. B.
C. A.
D. D.
Odpowiedź C jest prawidłowa, ponieważ odnosi się do kluczowego parametru wyłącznika silnikowego, jakim jest maksymalna moc silnika, która wynosi 1,5 kW. Wyłączniki silnikowe są stosowane w celu ochrony silników przed przeciążeniem oraz zwarciem, a dokładna znajomość ich parametrów jest niezbędna do zapewnienia bezpieczeństwa i efektywności pracy urządzeń elektrycznych. Wyłączniki te są projektowane zgodnie z normami, takimi jak IEC 60947-4-1, które definiują wymagania dotyczące budowy oraz testowania tych urządzeń. W praktyce, wybór odpowiedniego wyłącznika silnikowego jest kluczowy dla zapewnienia optymalnej ochrony silnika, co pozwala uniknąć kosztownych awarii oraz przestojów w produkcji. W przypadku silników o mocy przekraczającej 1,5 kW, konieczne jest zastosowanie innego wyłącznika, który dostosowany jest do wyższych wartości, co podkreśla znaczenie znajomości specyfikacji technicznych w pracy z instalacjami elektrycznymi.

Pytanie 8

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Luźne połączenie w listwie neutralnej
B. Zbyt duży przekrój uszkodzonego przewodu
C. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
D. Zbyt duża moc urządzenia
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 9

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. gG
B. gR
C. aL
D. aM
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 10

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Regulator oświetlenia.
B. Regulator temperatury.
C. Przekaźnik bistabilny.
D. Przekaźnik priorytetowy.
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.

Pytanie 11

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Tworzy nieruchome, stałe pole magnetyczne
B. Generuje moment magnetyczny o stałym kierunku
C. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
D. Redukuje hałas podczas eksploatacji
W odpowiedziach, które nie są poprawne, pojawiają się koncepcje, które mylnie opisują funkcję uzwojenia biegunów komutacyjnych. Na przykład, generowanie jednokierunkowego momentu magnetycznego nie jest właściwym opisem roli tego uzwojenia. Moment magnetyczny w maszynach prądu stałego jest kształtowany głównie przez uzwojenia wirnika i pola magnetyczne wytwarzane przez magnesy lub uzwojenia stojana. Wytwarzanie nieruchomego, stałego pola magnetycznego to również mylne podejście, ponieważ uzwojenie biegunów komutacyjnych nie tworzy statycznego pola, lecz dynamicznie reaguje na zmiany prądu, co ma na celu ułatwienie komutacji. Ponadto, zredukowanie hałasu podczas pracy nie jest celem uzwojenia komutacyjnego, ale może być efektem ubocznym prawidłowego działania całego systemu, związanego z efektywnym komutowaniem prądu. W kontekście projektowania maszyn prądu stałego, nieprawidłowe rozumienie roli uzwojenia biegunów komutacyjnych może prowadzić do problemów z wydajnością energetyczną oraz trwałością komponentów, dlatego kluczowe jest zrozumienie jego rzeczywistej funkcji w konstrukcji maszyny.

Pytanie 12

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. weryfikacja oznaczeń obwodów oraz zabezpieczeń
B. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych
C. pomiar rezystancji uziemienia
D. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
Pomiar rezystancji uziemienia jest kluczowym procesem, który ma na celu zapewnienie odpowiedniej ochrony przed skutkami piorunów i zakłóceń elektrycznych. Uziemienie jest istotnym elementem w instalacjach elektrycznych, który chroni urządzenia oraz osoby przed niebezpieczeństwami związanymi z przepięciami oraz zwarciami. Odpowiednia rezystancja uziemienia powinna być zgodna z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość rezystancji uziemienia nie przekraczała 10 Ω dla urządzeń w warunkach normalnych. W praktyce, pomiar ten może być przeprowadzany przy użyciu specjalistycznych urządzeń, takich jak mierniki rezystancji uziemienia, które pozwalają na szybkie i dokładne określenie wartości rezystancji. Właściwe wykonanie tego pomiaru jest niezbędne do zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznej. Przykładowo, w budynkach użyteczności publicznej, takich jak szpitale czy szkoły, regularne pomiary rezystancji uziemienia są wymagane przynajmniej raz w roku w celu spełnienia norm bezpieczeństwa.

Pytanie 13

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Najwyższy poziom ochrony.
B. Brak ochrony przed wilgocią i pyłem.
C. Wykorzystanie separacji ochronnej.
D. Brak klasy ochronności przed porażeniem.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 14

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Ochrona przed przeciążeniami
B. Zdalne sterowanie obwodami elektrycznymi
C. Kontrola temperatury przewodów
D. Zmniejszenie zużycia energii
W instalacjach elektrycznych przekaźniki nie służą jako ochrona przed przeciążeniami. Funkcję tę pełnią zabezpieczenia nadprądowe, takie jak wyłączniki nadprądowe czy bezpieczniki, które są specjalnie zaprojektowane do wykrywania przeciążeń i zwarć, odłączając zasilanie, aby zapobiec uszkodzeniom sprzętu i instalacji. Zmniejszenie zużycia energii to również nie jest główna funkcja przekaźników. Choć użycie przekaźników może pośrednio wpływać na efektywność energetyczną poprzez optymalizację pracy urządzeń, ich podstawowa rola związana jest z funkcjami sterowania, a nie z ograniczaniem zużycia energii. Kontrola temperatury przewodów to kolejna niepoprawna odpowiedź. Przekaźniki nie są używane do monitorowania temperatury przewodów – tę funkcję mogą pełnić inne urządzenia, takie jak termostaty czy czujniki temperatury, które bezpośrednio mierzą i reagują na zmiany temperatury. Błędne przypisanie tych funkcji przekaźnikowi może wynikać z niepełnego zrozumienia zasad działania różnych komponentów w instalacjach elektrycznych. Zrozumienie konkretnej roli każdego elementu systemu jest kluczowe dla skutecznego projektowania i eksploatacji instalacji elektrycznych.

Pytanie 15

Z instrukcji obsługi przedstawionego na rysunku miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego cyfrą

Ilustracja do pytania
A. 1 przy zwartych przewodach pomiarowych.
B. 1 przy odłączonych przewodach pomiarowych.
C. 2 przy odłączonych przewodach pomiarowych.
D. 2 przy zwartych przewodach pomiarowych.
Poprawna odpowiedź to 2 przy zwartych przewodach pomiarowych. Aby uzyskać dokładny pomiar rezystancji, konieczne jest wyzerowanie omomierza przed przystąpieniem do pomiarów. W tym celu należy ustawić przewody pomiarowe w pozycji zwartej, co eliminuje wpływ ich własnej oporności na pomiar. Użycie pokrętła oznaczonego cyfrą 2 w tej konfiguracji pozwala na precyzyjne ustawienie wskazówki miernika na zerową wartość. W praktyce, przed każdym pomiarem rezystancji, zaleca się przeprowadzanie tego kroku, aby zapewnić rzetelność wyników. W branży elektrycznej i elektronicznej, zgodnie z najlepszymi praktykami, takie działanie minimalizuje błędy pomiarowe i zwiększa dokładność urządzeń pomiarowych. Dokładne wyzerowanie omomierza jest kluczowe, zwłaszcza w aplikacjach wymagających dużej precyzji, jak pomiary w obwodach elektronicznych czy analiza materiałów. Warto również pamiętać, że nieprawidłowe przeprowadzenie tego procesu może prowadzić do błędnych wniosków i dalszych problemów w analizie diagnostycznej.

Pytanie 16

Na rysunku przedstawiono schemat łącznika

Ilustracja do pytania
A. hotelowego.
B. jednobiegunowego.
C. schodowego.
D. dwubiegunowego.
Odpowiedź "schodowego" jest poprawna, ponieważ na przedstawionym schemacie znajduje się symbol łącznika schodowego, który jest kluczowym elementem w systemach oświetleniowych. Łącznik schodowy umożliwia sterowanie oświetleniem z dwóch lub więcej miejsc, co jest szczególnie przydatne w korytarzach, na schodach czy w dużych pomieszczeniach. Istotnym elementem tego rozwiązania są dodatkowe styki krzyżowe, które pozwalają na wygodne przełączanie między różnymi punktami zasilania, co zwiększa komfort użytkowników. Przykładowo, w domach jednorodzinnych, łączniki schodowe są często instalowane na pierwszym i ostatnim piętrze schodów, umożliwiając włączanie i wyłączanie światła bez konieczności przechodzenia przez całe pomieszczenie. Zgodnie z normą PN-EN 60669, projektowanie obwodów oświetleniowych przy użyciu łączników schodowych jest uznawane za standardową praktykę, co dodatkowo potwierdza ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 17

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 10,5 A
B. 11,1 A
C. 11,7 A
D. 12,2 A
Ustawienie wyłącznika silnikowego na wartość niższą od znamionowego prądu silnika, jak 10,5 A czy 11,1 A, prowadzi do nieprawidłowego działania całego układu. Tego rodzaju decyzje są często wynikiem błędnego rozumienia zasad działania wyłączników silnikowych i ich roli w systemach zabezpieczeń. Ustawienie na 10,5 A spowoduje, że silnik będzie narażony na częste wyłączenia w momentach przeciążenia, co może prowadzić do nadmiernego zużycia podzespołów, a ostatecznie do awarii. Ponadto, prąd znamionowy 11,1 A nie powinien być wykorzystywany jako maksymalna wartość dla wyłącznika. Zastosowanie tej wartości może zaszkodzić silnikowi, ponieważ nie da mu możliwości pracy w pełnym zakresie obciążenia. Wyłącznik nastawiony na 11,7 A wciąż nie zapewni wystarczającej ochrony, ponieważ jego wartość bliska prądowi znamionowemu nie uwzględnia bezpiecznego marginesu dla chwilowych obciążeń. W praktyce powinno się zawsze przewidywać krótkotrwałe wzrosty prądu, co wiąże się z potrzebą ustawienia wyłącznika na poziomie o 10% wyższym niż prąd znamionowy. Dlatego kluczowe jest zrozumienie, że zabezpieczeń nie można ustawiać na wartościach zbyt niskich, ponieważ prowadzi to do nieefektywnej pracy silnika oraz zwiększa ryzyko jego uszkodzenia.

Pytanie 18

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. IT
B. TN-S
C. TT
D. TN-C
Odpowiedzi IT, TN-S, i TN-C nie są właściwe w kontekście przedstawionego rysunku pętli zwarciowej. W systemie IT, punkt neutralny nie jest uziemiony, co może prowadzić do niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. W takim układzie występuje ryzyko wystąpienia wysokich napięć na częściach przewodzących, co zagraża bezpieczeństwu użytkowników. Z kolei w systemie TN-S, przewody neutralne i robocze są oddzielone, ale wymagają wspólnego uziemienia, co w sytuacji zwarcia nie zapewnia dostatecznego poziomu bezpieczeństwa. Natomiast TN-C, w którym przewód neutralny i ochronny są połączone, nie może być stosowany w instalacjach wymagających wysokiego poziomu ochrony, szczególnie w miejscach, gdzie występuje ryzyko porażenia prądem, jak w obiektach przemysłowych. Łączenie funkcji ochronnych i roboczych w TN-C zwiększa ryzyko potencjalnych zagrożeń. Typowym błędem myślowym jest mylenie różnych typów systemów uziemienia i ich wpływu na bezpieczeństwo, co może prowadzić do niewłaściwych decyzji projektowych oraz poważnych konsekwencji w eksploatacji instalacji elektrycznych.

Pytanie 19

Który osprzęt przedstawiono na ilustracji?

Ilustracja do pytania
A. Kapturki termokurczliwe.
B. Mufy przelotowe.
C. Dławnice.
D. Złączki skrętne.
Na zdjęciu łatwo się pomylić, bo widać kilka elementów w komplecie: korpus, nakrętkę, wkład uszczelniający, podkładkę. To może sugerować różne rodzaje osprzętu, ale tutaj kluczowa jest funkcja i konstrukcja. Złączki skrętne służą do łączenia żył przewodów ze sobą, najczęściej wewnątrz puszek instalacyjnych. Mają kształt małych kapturków z gwintowanym wnętrzem, do których wkłada się odizolowane końcówki przewodów i skręca. Nie przechodzą przez ścianki obudów, nie mają gwintu montażowego ani nakrętki kontrującej od drugiej strony. Na ilustracji wyraźnie widać elementy z gwintem zewnętrznym oraz osobne nakrętki – to cecha typowa dla dławnic, a nie złączek. Mufy przelotowe kojarzą się z naprawą lub przedłużaniem kabli, szczególnie energetycznych. Zazwyczaj mają podłużny kształt, obejmują miejsce połączenia dwóch odcinków kabla i są wypełniane żywicą, żelem albo wykonane w technologii termokurczliwej. Zapewniają izolację i szczelność na całej długości miejsca łączenia. Na zdjęciu nie ma żadnego podłużnego korpusu obejmującego dwa kable, tylko element montowany w otworze, co całkowicie wyklucza mufę przelotową. Kapturki termokurczliwe to z kolei osłony z tworzywa termokurczliwego zakładane na końcówki kabli, często przy zakończeniach linii. Po nagrzaniu dopasowują się do kształtu żył i izolacji, uszczelniając i zabezpieczając końcówkę przed wilgocią. Są cienkościenne, elastyczne przed obkurczeniem, nie mają gwintów, nakrętek ani uszczelek płaskich. Tymczasem na ilustracji widoczny jest typowy komplet elementów dławnicy: część gwintowana do wkręcenia w obudowę, nakrętka kontrująca, wkład uszczelniający z „zębami” zaciskającymi się na płaszczu kabla. Typowym błędem jest ocenianie tylko ogólnego kształtu i koloru osprzętu, bez zastanowienia się nad sposobem montażu i funkcją. Jeśli element ma gwint do przeprowadzenia przez ściankę i dociska kabel od zewnątrz, to nie jest ani złączka, ani mufka, ani kapturek, tylko klasyczna dławnica kablowa, używana zgodnie z dobrymi praktykami montażu instalacji i obudów elektrycznych.

Pytanie 20

Który układ sterowania przedstawiono na schemacie?

Ilustracja do pytania
A. Do załączenia silnika z opóźnieniem.
B. Do pracy równoległej dwóch styczników.
C. Do rozruchu silnika pierścieniowego.
D. Do pracy zależnej dwóch styczników.
Pytania dotyczące układów sterowania często prowadzą do nieporozumień związanych z interpretacją schematów. Odpowiedzi sugerujące rozruch silnika pierścieniowego lub załączenie silnika z opóźnieniem nie uwzględniają specyfiki przedstawionego układu. Pierwsza z tych koncepcji odnosi się do złożonego procesu uruchamiania silników o dużych momentach rozruchowych, który wymaga zastosowania specjalnych układów sterujących, takich jak styczniki z pierścieniami. Takie układy są złożone i nie mają związku z przedstawionym schematem, który dotyczy pracy zależnej dwóch styczników. Druga koncepcja, dotycząca załączenia z opóźnieniem, również jest błędna, ponieważ w przypadku układu pracy zależnej nie ma mowy o opóźnieniu, a jedynie o synchronizacji działania dwóch styczników. Dodatkowo, opcje dotyczące pracy równoległej dwóch styczników nie uwzględniają zasady, że jeden stycznik wpływa na drugi, co jest kluczowym elementem omawianego schematu. Tego typu błędy myślowe mogą wynikać z braku zrozumienia zasad działania układów sterujących oraz z mylenia różnych typów połączeń w automatyce. Aby poprawnie interpretować schematy, ważne jest, aby dobrze znać zasady działania układów oraz ich zastosowanie w praktyce. Warto zapoznać się z literaturą branżową oraz standardami, które precyzują zasady projektowania i stosowania układów sterujących.

Pytanie 21

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zwarcie w systemie elektrycznym
B. przeciążenie systemu elektrycznego
C. uszkodzenie urządzenia elektrycznego
D. zagrożenie porażeniem prądem elektrycznym
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 22

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 10 szt.
B. 6 szt.
C. 13 szt.
D. 3 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 23

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do prądnic tachometrycznych
B. Do wzmacniaczy maszynowych
C. Do indukcyjnych sprzęgieł dwukierunkowych
D. Do transformatorów
Wybór odpowiedzi spośród wzmacniaczy maszynowych, indukcyjnych sprzęgieł dwukierunkowych czy prądnic tachometrycznych wprowadza w błąd, gdyż te urządzenia pełnią zupełnie inne funkcje i mają odmienną budowę oraz zastosowanie. Wzmacniacze maszynowe są urządzeniami służącymi do wzmacniania sygnałów, co jest kluczowe w procesach automatyzacji i kontroli, ale nie mają bezpośredniego związku z pomiarami prądu. Indukcyjne sprzęgła dwukierunkowe z kolei są stosowane do transmisji momentu obrotowego między dwoma elementami, co również jest oddalone od funkcji przekładników prądowych. Prądnice tachometryczne natomiast są wykorzystywane do pomiaru prędkości obrotowej i koncentrują się na generowaniu sygnałów proporcjonalnych do prędkości obrotowej, co nie ma nic wspólnego z pomiarem prądu elektrycznego. Wybór nieodpowiednich odpowiedzi wynika często z mylnego skojarzenia funkcji tych urządzeń z ich zastosowaniami. Aby zrozumieć różnice, warto zwrócić uwagę na specyfikę działania każdego z tych urządzeń oraz ich zastosowanie w różnych dziedzinach, co jest istotne dla prawidłowego rozumienia i wykorzystania technologii elektrycznej.

Pytanie 24

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
C. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
D. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
Analizując podane odpowiedzi, można zauważyć, że wiele z nich zawiera nieprawidłowe założenia dotyczące funkcji wyłączników różnicowoprądowych i nadprądowych. Na przykład, niektóre z odpowiedzi mylnie klasyfikują wyłącznik nadprądowy jako odłącznik, co jest istotnym błędem w zrozumieniu ich funkcji. Odłącznik instalacyjny nie zabezpiecza przed przeciążeniem ani zwarciem, a jedynie służy do rozłączania obwodu w celach serwisowych. W praktyce, w przypadku awarii, wyłącznik różnicowoprądowy jest kluczowy, ponieważ jego zadaniem jest zapobieganie porażeniom prądem elektrycznym. Dodatkowo, wyłączniki nadprądowe i różnicowoprądowe mają różne mechanizmy działania. Wyłącznik nadprądowy reaguje na nadmierny prąd, natomiast wyłącznik różnicowoprądowy monitoruje równowagę prądów w obwodzie. Te różnice są fundamentalne do prawidłowego doboru i zastosowania tych urządzeń w instalacjach elektrycznych. W związku z tym, zrozumienie tych koncepcji jest kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności instalacji elektrycznych, a także dla unikania zagrożeń związanych z ich niewłaściwym stosowaniem.

Pytanie 25

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. wyzwalanie elektroniczne.
B. wyzwalanie cieplne.
C. cewkę przekaźnika z opóźnionym działaniem.
D. cewkę przekaźnika z opóźnionym odpadaniem.
Wyzwalanie cieplne, przedstawione na schemacie, jest kluczowym elementem w kontekście zabezpieczeń elektrycznych, które ma na celu ochronę przed przeciążeniem. Zgodnie z normą PN-EN 60617, symbol ten odnosi się do mechanizmu, który działa na zasadzie rozszerzalności cieplnej materiałów. Przykładem zastosowania wyzwalania cieplnego są wyłączniki nadprądowe, które automatycznie odłączają obwód, gdy prąd przekracza określony próg przez zbyt długi czas. Dzięki temu zapobiegają uszkodzeniu urządzeń oraz minimalizują ryzyko pożaru. Oprócz wyłączników nadprądowych, wyzwalanie cieplne stosowane jest również w przekaźnikach termicznych, które mogą być używane w silnikach elektrycznych do monitorowania temperatury i zapobiegania przegrzaniu. Zrozumienie działania tego mechanizmu jest fundamentem dla inżynierów pracujących nad projektowaniem systemów zabezpieczeń elektrycznych, co podkreśla znaczenie znajomości symboliki występującej w dokumentacji technicznej.

Pytanie 26

Według przedstawionego schematu instalacji elektrycznej ochronnik przeciwprzepięciowy powinien być włączony między uziemienie oraz

Ilustracja do pytania
A. wyłącznie przewody fazowe.
B. przewody fazowe i przewód neutralny.
C. przewód fazowy i przewód neutralny.
D. wyłącznie przewód neutralny.
Odpowiedź wskazująca na włączenie ochronnika przeciwprzepięciowego między uziemienie a przewody fazowe oraz przewód neutralny jest poprawna, ponieważ zgodnie z normami, takimi jak PN-EN 62305, ochronniki SPD powinny być instalowane w taki sposób, aby efektywnie odprowadzać nadmiar energii spowodowane przepięciami do ziemi. Ochronnik SPD jest kluczowym elementem ochrony instalacji elektrycznych przed skutkami przepięć atmosferycznych oraz wywołanych przez inne źródła. W praktyce oznacza to, że zarówno przewody fazowe, jak i neutralny mogą być narażone na różnego rodzaju zakłócenia, które mogą prowadzić do uszkodzenia sprzętu czy zagrożenia dla użytkowników. Umieszczając ochronnik w opisanej konfiguracji, zapewniamy optymalny poziom bezpieczeństwa. Przykłady zastosowania obejmują instalacje w budynkach mieszkalnych, biurach oraz obiektach przemysłowych, gdzie ochrona przed przepięciami ma kluczowe znaczenie dla ciągłości działania urządzeń elektrycznych oraz bezpieczeństwa ludzi.

Pytanie 27

W jakiej kolejności należy włączać styczniki w układzie przedstawionym na schemacie, aby przeprowadzić prawidłowy rozruch silnika, przy zamkniętym wyłączniku Q1?

Ilustracja do pytania
A. Najpierw K1M i K41M, następnie wyłączyć K41M, a włączyć K42M
B. W odstępach czasu kolejno: K41M, K42M, K1M
C. W odstępach czasu kolejno: K1M, K42M, K41M
D. Najpierw K1M i K42M, następnie wyłączyć K42M, a włączyć K41M
Wybór innej odpowiedzi, która sugeruje inną kolejność włączania styczników w układzie, zawiera poważne błędy koncepcyjne, które mogą prowadzić do nieprawidłowego działania silnika i potencjalnego uszkodzenia systemu. Na przykład, jeżeli stycznik K1M zostanie włączony jako pierwszy, a K41M nie zostanie aktywowany, silnik zacznie pracować w pełnym obciążeniu bez wcześniejszego zmniejszenia prądu rozruchowego. Taki proces może prowadzić do nadmiernego prądu, co z kolei zwiększa ryzyko przegrzania i uszkodzenia uzwojeń silnika. Włączenie stycznika K42M przed K41M nie tylko nie jest zgodne z zasadami bezpieczeństwa, ale także może prowadzić do nieprawidłowego działania silnika w trybie gwiazdy, co neguje jego zalety. W kontekście dobrych praktyk, stosowanie się do ustalonej sekwencji włączania styczników jest kluczowe dla zapewnienia długotrwałej i bezawaryjnej pracy układów elektrycznych. Niewłaściwe podejście do rozruchu silnika może skutkować poważnymi konsekwencjami finansowymi i operacyjnymi, dlatego tak ważne jest przestrzeganie ustalonych procedur, które opierają się na zasadzie minimalizacji ryzyka i maksymalizacji efektywności działania całego układu.

Pytanie 28

Ile wynosi wartość międzyszczytowa przedstawionego przebiegu napięcia?

Ilustracja do pytania
A. 6,0 V
B. 5,0 V
C. 1,5 V
D. 2,5 V
Poprawnie – na przedstawionym wykresie napięcie zmienia się między poziomem bliskim 0 V a poziomem 5 V, więc wartość międzyszczytowa wynosi 5,0 V. Wartość międzyszczytowa (często oznaczana jako Upp, Uppk lub Upk-pk) to po prostu różnica między wartością maksymalną a minimalną sygnału: Upp = Umax − Umin. Na rysunku widać, że dolny poziom przebiegu praktycznie dotyka osi 0 V, a górny poziom jest na wysokości 5 V, więc: Upp = 5 V − 0 V = 5 V. W praktyce pomiarowej, szczególnie przy przebiegach prostokątnych, trójkątnych czy dowolnych niestandardowych, wartość międzyszczytowa jest jednym z podstawowych parametrów opisu sygnału, obok wartości skutecznej i wartości średniej. Oscyloskopy cyfrowe mają nawet dedykowaną funkcję pomiaru Vpp, którą w serwisie i w laboratorium stosuje się praktycznie non stop. Moim zdaniem dobrze jest odruchowo patrzeć na przebieg i automatycznie oceniać, czy podane napięcie jest amplitudą, wartością międzyszczytową, czy może wartością skuteczną. W układach z elektroniką cyfrową, np. z mikrokontrolerami, ten konkretny poziom 5 V jest typowy dla zasilania logiki TTL/CMOS, więc taki prostokąt 0–5 V to typowy sygnał sterujący. Z kolei przy badaniu zasilaczy impulsowych albo generatorów funkcji na oscyloskopie projektant często sprawdza właśnie, czy napięcie międzyszczytowe zgadza się z założeniami katalogowymi i czy nie dochodzi do przesterowania wejść urządzeń. Warto też pamiętać, że dla przebiegów symetrycznych sinusoidalnych wartości międzyszczytowej nie mylimy z amplitudą: dla sinusa Upp = 2·Um, a tutaj prostokąt jest niesymetryczny względem zera, więc sprawa jest prostsza – liczymy zwykłą różnicę między górą i dołem.

Pytanie 29

Z którego z wymienionych materiałów wykonuje się rury elektroinstalacyjne przeznaczone do prowadzenia przewodów na podłożu palnym?

A. Z nierdzewnej stali.
B. Z pleksi.
C. Z bawełny.
D. Z naturalnej gumy.
Prawidłowo wybrany materiał – rura elektroinstalacyjna z nierdzewnej stali – wynika bezpośrednio z wymagań bezpieczeństwa pożarowego. Przy prowadzeniu przewodów po podłożu palnym (np. drewno, płyta OSB, boazeria, niektóre płyty meblowe) kluczowe jest, żeby elementy instalacji nie przyczyniały się do rozprzestrzeniania ognia i wytrzymywały podwyższoną temperaturę. Stal nierdzewna jest materiałem niepalnym, ma wysoką temperaturę topnienia, jest mechanicznie wytrzymała i dobrze chroni przewody przed uszkodzeniami mechanicznymi oraz działaniem ognia. W praktyce takie rury stalowe stosuje się np. w drewnianych domkach letniskowych, na poddaszach z widocznymi drewnianymi belkami, w halach z konstrukcją drewnianą czy w starym budownictwie z boazerią. Moim zdaniem to jedno z bardziej intuicyjnych rozwiązań: jeżeli coś montujemy na materiale łatwopalnym, to sam osprzęt powinien być zdecydowanie niepalny i odporny. Normy i dobre praktyki instalacyjne (np. zapisy wynikające z PN-HD 60364 dotyczące doboru osprzętu do podłoża) mówią wprost, że osprzęt na podłożu palnym musi być tak dobrany, aby w razie zwarcia, przegrzania czy łuku elektrycznego nie powodował zapłonu otoczenia. Rury stalowe spełniają te wymagania dużo lepiej niż jakiekolwiek tworzywa, szczególnie te standardowe, stosowane w zwykłych instalacjach podtynkowych. Dodatkowo, stal nierdzewna jest odporna na korozję, więc w dłuższej perspektywie mamy stabilną, trwałą ochronę przewodów, co w instalacjach wykonywanych na widocznym, palnym podłożu jest bardzo ważne – nikt przecież nie będzie co chwilę tego przebudowywał. W wielu projektach wykonawczych można spotkać wręcz zapis: „Prowadzenie przewodów po podłożu palnym – wyłącznie w rurach metalowych”, co jest takim praktycznym skrótem myślowym do właśnie tego wymagania.

Pytanie 30

Który symbol graficzny na schemacie ideowym projektowanej instalacji elektrycznej oznacza sposób prowadzenia przewodów w tynku?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
W przypadku wybrania innej odpowiedzi, warto przyjrzeć się, dlaczego te alternatywne symbole mogą prowadzić do nieporozumień. Symbole graficzne w schematach elektrycznych mają kluczowe znaczenie, ponieważ przekazują istotne informacje na temat sposobu instalacji oraz zarządzania przewodami. Wiele osób może pomylić sposób prowadzenia przewodów w tynku z innymi symbolami, które mogą sugerować różne metody układania kabli, na przykład w rurach lub podłogach. Każdy z tych symboli ma swoje zastosowanie i znaczenie, które muszą być zrozumiane w kontekście całej instalacji. Często zdarza się, że wybór niewłaściwego symbolu wynika z braku znajomości norm lub nieprzestrzegania dobrych praktyk przy projektowaniu instalacji. Warto zauważyć, że stosowanie niewłaściwych symboli może prowadzić do problemów w trakcie realizacji projektu, takich jak nieodpowiednie prowadzenie przewodów, co w konsekwencji może prowadzić do uszkodzeń instalacji lub zagrożeń dla bezpieczeństwa. Dlatego tak istotne jest, aby przed przystąpieniem do pracy w dziedzinie elektryki, projektanci i instalatorzy byli dobrze zaznajomieni z aktualnymi normami oraz symboliką stosowaną w branży. Zrozumienie, że każdy symbol na schemacie ma swoje dokładne miejsce i zastosowanie, jest kluczem do prawidłowej realizacji projektów elektrycznych.

Pytanie 31

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Wybór odpowiedzi A, B lub C wskazuje na nieporozumienia dotyczące funkcji poszczególnych przyrządów pomiarowych. Miernik grubości powłoki, choć istotny w kontekście badania kondycji materiałów, nie ma zastosowania w lokalizacji przewodów elektrycznych. Jego głównym zadaniem jest pomiar grubości różnych powłok ochronnych, co nie jest pomocne przy planowaniu tras instalacji elektrycznych. Kamera termowizyjna, z kolei, jest używana do wykrywania różnic temperatur na powierzchniach, co może być przydatne przy diagnostyce problemów z instalacjami, ale nie oferuje precyzyjnego wskazania położenia przewodów. Miernik poziomu dźwięku również nie jest narzędziem właściwym do tego celu, ponieważ jego funkcja polega na rejestrowaniu natężenia dźwięku, co nie ma związku z lokalizacją przewodów. Typowe błędy myślowe, które prowadzą do takich wyborów, to utożsamianie przyrządów pomiarowych z ich funkcjami, które nie są bezpośrednio związane z konkretnym zadaniem. Właściwe dobieranie narzędzi do pracy jest kluczowe dla efektywności i bezpieczeństwa instalacji elektrycznych, dlatego warto dokładnie zapoznać się z charakterystyką każdego z nich i ich przeznaczeniem w praktyce.

Pytanie 32

Przyporządkuj rodzaje trzonków świetlówek kompaktowych, w kolejności jak na rysunku.

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Odpowiedź B. jest poprawna, ponieważ zgodnie z przedstawionym rysunkiem, trzonki świetlówek kompaktowych są uporządkowane w oparciu o ich standardy montażowe. Trzonek B22d, który znajduje się w świetlówce nr 2, jest powszechnie stosowany w oświetleniu domowym, ze względu na łatwość w instalacji i szeroką dostępność. Użytkownicy często spotykają się z tym rodzajem trzonka w żarówkach przeznaczonych do lamp sufitowych oraz lamp stołowych. W praktyce, znajomość typów trzonków świetlówek jest kluczowa podczas zakupu nowych źródeł światła, ponieważ błędny wybór może prowadzić do problemów z kompatybilnością. Warto zaznaczyć, że różne trzonki mają różne zastosowania, co wpływa na efektywność i bezpieczeństwo użycia. Trzonek E14, E27 oraz GU10 również mają swoje specyficzne przeznaczenie i zastosowania, dlatego ważne jest, aby zrozumieć ich różnice oraz odpowiednio je dobierać, aby zapewnić optymalne warunki oświetleniowe w różnych przestrzeniach.

Pytanie 33

Na którym rysunku przedstawiono przewód elektroenergetyczny stosowany do wykonywania napowietrznych przyłączy budynków mieszkalnych?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór innej odpowiedzi niż C może wynikać z nieporozumienia dotyczącego klasyfikacji przewodów elektroenergetycznych stosowanych w przyłączach budynków. Przewody napowietrzne, szczególnie te używane do budynków mieszkalnych, muszą spełniać konkretne wymagania techniczne, które obejmują ilość rdzeni oraz ich funkcje. W przypadku przewodów, które nie są czterordzeniowe, mogą występować braki w zapewnieniu odpowiedniego zasilania. Przykładowo, przewody dwu- lub trzyrdzeniowe mogą nie wystarczyć do prawidłowego działania instalacji, ponieważ nie zapewniają odpowiedniej ilości faz, co jest kluczowe w przypadku obiektów wymagających większej mocy. Często spotykane błędy myślowe to mylenie zastosowania przewodów w różnych kontekstach – na przykład przewody stosowane w instalacjach wewnętrznych mogą różnić się od tych zaprojektowanych do pracy na wolnym powietrzu. Niezrozumienie tych różnic prowadzi do wybierania niewłaściwych rozwiązań, co z kolei może skutkować awariami lub ograniczoną efektywnością energetyczną. Znajomość standardów, takich jak PN-EN 60502-1, oraz praktyczne zrozumienie zastosowań przewodów, są kluczowe dla prawidłowego funkcjonowania systemów elektroenergetycznych.

Pytanie 34

Zamieszczony na rysunku zrzut ekranu przyrządu pomiarowego przedstawia wyniki pomiaru

Ilustracja do pytania
A. impedancji pętli zwarcia w sieci trójfazowej.
B. rezystancji izolacji przewodu w sieci jednofazowej.
C. impedancji pętli zwarcia w sieci jednofazowej.
D. rezystancji izolacji przewodu w sieci trójfazowej.
Wybór niepoprawnej odpowiedzi może wynikać z mylnego zrozumienia różnicy między pomiarem rezystancji izolacji a pomiarem impedancji pętli zwarcia. Impedancja pętli zwarcia jest mierzona w kontekście analizy bezpieczeństwa systemu zasilania i odnosi się do oporu, który prąd zwarciowy napotyka w trakcie zwarcia. Wartości impedancji pętli zwarcia są zazwyczaj znacznie niższe, ponieważ obejmują wszystkie elementy obwodu, w tym przewody i urządzenia ochronne. Mierzenie impedancji pętli zwarcia w sieci trójfazowej miałoby zupełnie inny kontekst i byłoby wykonywane z użyciem odmiennych technik oraz z wykorzystaniem innych jednostek miary. Ponadto, rezystancja izolacji, która jest mierzona w megaomach, stanowi kluczowy wskaźnik stanu izolacji przewodów, co jest zupełnie innym procesem niż analiza impedancji pętli zwarcia. W praktyce, technicy często mylą te pojęcia, co prowadzi do niewłaściwego stosowania metod pomiarowych i interpretacji wyników. Zrozumienie podstawowych różnic między tymi pomiarami jest kluczowe dla zapewnienia bezpieczeństwa oraz sprawności instalacji elektrycznych.

Pytanie 35

Który rodzaj sterowania zapewnia układ silnika przedstawiony na schemacie?

Ilustracja do pytania
A. Regulację obrotów przez zmianę napięcia twornika.
B. Hamowanie prądnicowe.
C. Regulację obrotów przez bocznikowanie uzwojenia wzbudzenia.
D. Hamowanie dynamiczne.
W kontekście przedstawionego schematu oraz dostępnych odpowiedzi, wiele osób może błędnie zinterpretować sposób regulacji obrotów silnika. Odpowiedzi związane z hamowaniem prądnicowym i dynamicznym dotyczą zupełnie innych mechanizmów, które nie są odpowiednie w kontekście zmiany napięcia twornika. Hamowanie prądnicowe polega na wykorzystaniu energii kinetycznej wirnika do generowania napięcia, co prowadzi do jego spowolnienia, a nie do regulacji prędkości w sposób ciągły. Z kolei hamowanie dynamiczne, które zazwyczaj polega na podłączeniu rezystorów do obwodu silnika, aby rozproszyć energię, jest techniką używaną głównie do zapewnienia szybkiego zatrzymania, co również nie odpowiada za regulację prędkości obrotowej. Kolejna koncepcja, czyli bocznikowanie uzwojenia wzbudzenia, odnosi się do innego aspektu sterowania silnikami prądu stałego, gdzie zmiana wartości prądu wzbudzenia wpływa na siłę elektromotoryczną, ale nie bezpośrednio na napięcie twornika. Użytkownicy mogą zapominać, że każda z tych metod ma swoje zastosowanie w specyficznych warunkach, co może prowadzić do niepoprawnych wniosków. Kluczowe jest zrozumienie, że regulacja obrotów przez zmianę napięcia twornika pozostaje najskuteczniejszą metodą w wielu zastosowaniach, gdzie płynność i precyzja są najważniejsze.

Pytanie 36

Na podstawie zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania przedstawionych na rysunku wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 12,0 V
B. 11,3 V
C. 11,0 V
D. 12,4 V
Odpowiedzi 11,3 V, 12,4 V i 11,0 V nie są prawidłowe, bo całkowicie pomijają ważne rzeczy dotyczące, jak akumulatory się rozładowują. Z mojego doświadczenia, kluczowe jest zrozumienie, jak prąd obciążenia wpływa na napięcie, bo to mega ważne dla oceny, jak akumulatory się zachowują. Na przykład, 11,3 V może sugerować, że akumulator jest wyczerpany albo że coś jest nie tak z jego pojemnością. Z kolei 12,4 V może wynikać z błędnego zrozumienia wykresu, bo wysoka wartość napięcia nie jest normą przy dużym obciążeniu. Odpowiedź 11,0 V też nie pokazuje realnych wartości, które akumulator powinien mieć w takiej sytuacji. Często zdarzają się błędy w myśleniu, takie jak niepoprawne szacowanie wpływu czasu na napięcie, co prowadzi do mylnych wniosków na temat sprawności akumulatorów. Ważne, by wszyscy, którzy korzystają z akumulatorów, znali ich charakterystyki i potrafili dobrze interpretować dane z wykresów, co pomoże w lepszym ich wykorzystaniu w różnych sytuacjach.

Pytanie 37

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.

Pytanie 38

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. AsXSn
B. GsLGs
C. OMY
D. YKY
Odpowiedź AsXSn jest poprawna, ponieważ odnosi się do przewodów samonośnych, które są szeroko stosowane w instalacjach energetycznych. Przewody te są zaprojektowane z myślą o przenoszeniu energii elektrycznej na dużych odległościach, co wymaga zastosowania materiałów o wysokiej odporności na warunki atmosferyczne oraz wytrzymałości mechanicznej. Oznaczenie AsXSn wskazuje na konstrukcję przewodu, w której zastosowano aluminium (As) oraz stal ocynkowaną (Sn) jako materiał osłonowy, co zapewnia odpowiednie parametry elektryczne oraz mechaniczne. Przewody samonośne są wykorzystywane w liniach energetycznych, gdzie ich konstrukcja pozwala na montaż bez dodatkowych podpór, co zmniejsza koszty instalacji i utrzymania. W branży energetycznej, stosowanie przewodów samonośnych zgodnie z normami PN-EN 50182 i PN-EN 60228 jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności działania sieci energetycznych.

Pytanie 39

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjnego klatkowego.
B. Jednofazowego z kondensatorem pracy.
C. Komutatorowego prądu stałego.
D. Indukcyjnego pierścieniowego.
Wybór nieprawidłowych odpowiedzi wskazuje na pewne nieporozumienia dotyczące różnych typów silników elektrycznych i ich konstrukcji. Silnik indukcyjny pierścieniowy to konstrukcja, która wykorzystuje wirnik z pierścieniami, co jest charakterystyczne dla silników o mocy dużej, używanych głównie w aplikacjach przemysłowych, gdzie wymagana jest wysoka moc startowa. Typowe zastosowanie to napędy dużych maszyn, gdzie istotne są parametry takie jak moment obrotowy. Z kolei silnik komutatorowy prądu stałego charakteryzuje się innym sposobem przekształcania energii - wykorzystuje komutatory do zmiany kierunku prądu w uzwojeniach wirnika, co sprawia, że jest bardziej skomplikowany konstrukcyjnie i wymaga więcej konserwacji. Silniki jednofazowe z kondensatorem pracy używane są głównie w domowych zastosowaniach, takich jak małe pompy czy wentylatory, ale ich budowa i zasada działania znacząco różnią się od silników indukcyjnych klatkowych. Typowe błędy myślowe to mylenie zastosowania tych silników oraz nieodpowiednie przypisywanie ich cech do danej konstrukcji. Wiedza o różnicach między tymi typami silników jest kluczowa dla efektywnego doboru odpowiedniego silnika do konkretnej aplikacji w przemyśle czy gospodarstwie domowym.

Pytanie 40

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. I
B. IV
C. II
D. III
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.