Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 18:57
  • Data zakończenia: 17 grudnia 2025 19:14

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki jest minimalny czas, po którym można zaczynać budowę muru na zaprawie cementowo-wapiennej, nad świeżo wykonaną kondygnacją?

A. 3 dni
B. 5 dni
C. 7 dni
D. 10 dni
Wznoszenie murów na zaprawie cementowo-wapiennej po świeżo wykonanej kondygnacji wymaga zachowania odpowiedniego czasu technologicznego, aby zapewnić odpowiednią wytrzymałość i stabilność konstrukcji. Zgodnie z normami budowlanymi, najkrótszy czas, po którym można rozpocząć wznoszenie murów, wynosi 5 dni. W tym okresie zaprawa powinna osiągnąć wystarczający poziom twardości i wytrzymałości, co jest kluczowe dla dalszych prac budowlanych. Przykładowo, podczas budowy budynku wielorodzinnego, zbyt szybkie wznoszenie murów może prowadzić do pęknięć i osiadania ścian, co z kolei może wpłynąć na bezpieczeństwo całej konstrukcji. Warto również pamiętać, że czynniki takie jak temperatura otoczenia i wilgotność mogą wpływać na czas wiązania zaprawy, dlatego w praktyce budowlanej często wykonuje się testy wytrzymałościowe, aby zweryfikować gotowość materiałów do dalszych prac. Wprowadzenie takiego aspektu do harmonogramu budowlanego jest zgodne z zasadami dobrych praktyk w branży budowlanej.

Pytanie 2

Spoiwa hydrauliczne to zestaw spoiw, które po zmieszaniu z wodą twardnieją i wiążą

A. wyłącznie na powietrzu
B. pod wpływem wzrostu temperatury
C. tylko w czasie polewania wodą
D. na powietrzu i pod wodą
Spoiwa hydrauliczne, takie jak cement czy zaprawy murarskie, są unikalną grupą materiałów budowlanych, które mają zdolność wiązania zarówno w warunkach atmosferycznych, jak i pod wodą. Ta właściwość wynika z ich składników chemicznych, które reagują z wodą, tworząc trwałe i mocne połączenia. Przykładem mogą być zaprawy cementowe stosowane w konstrukcjach hydrotechnicznych, gdzie konieczne jest uzyskanie odpowiedniej wytrzymałości w warunkach stale narażonych na wodę. W praktyce oznacza to, że spoina hydrauliczna nie tylko wiąże w powietrzu, ale także może utwardzać się pod wodą, co jest niezbędne w przypadku budowy tam, mostów czy fundamentów w trudnych warunkach. Stosowanie spoiów hydraulicznych w inżynierii lądowej i wodnej jest zgodne z normami PN-EN 197-1, które określają wymagania dla cementów stosowanych w budownictwie. Wdrożenie tych materiałów zapewnia nie tylko wytrzymałość konstrukcji, ale także ich odporność na działanie wody i innych niekorzystnych warunków atmosferycznych.

Pytanie 3

Zgodnie z zaleceniami producenta, zużycie gipsowej zaprawy tynkarskiej wynosi 6 kg/m2/10 mm. Oblicz, ile
30-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na ścianach o łącznej powierzchni 200 m2.

A. 80 worków
B. 10 worków
C. 40 worków
D. 20 worków
Żeby policzyć, ile gipsowej zaprawy potrzebujemy do tynku grubości 20 mm na powierzchni 200 m², najpierw musimy przeliczyć zużycie zaprawy przy tej grubości. Z tego, co mówi producent, potrzebne jest 6 kg/m² dla 10 mm grubości, więc dla 20 mm będziemy potrzebować już 12 kg/m². Potem mnożymy to przez powierzchnię ścianek: 12 kg/m² * 200 m² daje nam 2400 kg zaprawy. Następnie musimy podzielić tę wagę przez wagę jednego worka, czyli 30 kg: 2400 kg / 30 kg = 80 worków. Przy takich obliczeniach warto pamiętać o zaleceniach producenta i standardach budowlanych, bo to naprawdę kluczowe, żeby tynk był odpowiedniej jakości i trwałości.

Pytanie 4

Przedstawione na rysunku urządzenie służy do

Ilustracja do pytania
A. wyrównania powierzchni zapraw i betonów.
B. mieszania składników zapraw i betonów.
C. nawilżania mieszanki betonowej.
D. zagęszczania mieszanki betonowej.
Poprawna odpowiedź to "mieszania składników zapraw i betonów". Urządzenie przedstawione na rysunku to mieszadło, które ma na celu uzyskanie jednolitej konsystencji mieszanki poprzez dokładne połączenie różnych składników, takich jak cement, piasek, woda i ewentualne dodatki chemiczne. W praktyce, stosowanie mieszadeł jest kluczowe w procesie budowlanym, ponieważ zapewnia równomierne rozprowadzenie wszystkich materiałów, co wpływa na jakość i wytrzymałość finalnego produktu. Zgodnie z normami budowlanymi, dobór odpowiedniego mieszadła jest istotny dla osiągnięcia wymaganej jednorodności mieszanki, co z kolei przekłada się na lepszą przyczepność oraz trwałość zaprawy czy betonu. Warto również wspomnieć, że w przypadku większych projektów budowlanych stosuje się mieszarki stacjonarne, które mogą wpłynąć na efekt skali i wydajność pracy. Dobre praktyki w zakresie mieszania materiałów budowlanych obejmują również regularne kontrolowanie jakości mieszanki oraz przestrzeganie zaleceń producentów materiałów budowlanych.

Pytanie 5

Który z elementów budynku przedstawiono na rysunku?

Ilustracja do pytania
A. Ryzalit.
B. Attykę.
C. Gzyms.
D. Cokół.
Cokół to kluczowy element budynku, który pełni wiele funkcji ochronnych i estetycznych. W kontekście budownictwa, cokół znajduje się poniżej poziomu okien i jest wykonany z materiału odpornego na działanie wilgoci, co zapobiega jej wnikaniu w strukturę budynku. Taki element jest niezwykle istotny, gdyż chroni przed uszkodzeniami mechanicznymi oraz wpływem niekorzystnych warunków atmosferycznych, takich jak deszcz czy śnieg. W praktyce, cokół może być wykonany z różnych materiałów, jak beton, klinkier czy kamień, które są dobierane w zależności od stylu architektonicznego oraz funkcji budynku. Zgodnie z najlepszymi praktykami budowlanymi, jego wysokość powinna wynosić co najmniej 15 cm, aby skutecznie chronić przed wilgocią. Ponadto, cokół może również mieć funkcję dekoracyjną, wpływając na estetykę całej elewacji, dlatego jego wykonanie powinno być starannie przemyślane oraz dopasowane do reszty budynku.

Pytanie 6

Układ cegieł, który zastosowano do wykonania parapetu przedstawionego na rysunku, jest rolką

Ilustracja do pytania
A. leżącą.
B. stojącą.
C. stojącą zazębioną.
D. leżącą zazębioną.
Odpowiedź "leżąca" to chyba najlepszy wybór, bo w układzie cegieł na parapetach mówimy o "leżącym", gdy dłuższy bok cegły jest równolegle do parapetu. Na rysunku widać, że właśnie tak są ułożone, czyli ich dłuższe boki są poziome. Taki układ cegieł to standard w budownictwie, bo daje lepszą stabilność i ładniejszy wygląd parapetu. Ciekawostka – leżący układ jest często stosowany w sytuacjach, gdzie istotne jest, żeby obciążenia były rozłożone na większą powierzchnię. Dzięki temu cegły są bardziej trwałe i nie pękają tak łatwo. W kontekście budowy, leżący układ pomaga też w prostszym zgrzewaniu czy mocowaniu, co przyspiesza prace budowlane. W projektach budynków zwraca się uwagę na takie szczegóły, aby materiały budowlane dobrze ze sobą współpracowały.

Pytanie 7

Masa używana do tynków cienkowarstwowych powinna być wolna od

A. drobnego kruszywa
B. wody i spoiwa
C. zbryleń
D. pigmentów
Gotowa zaprawa do tynków cienkowarstwowych musi być gładka i bez zbryleń. To ważne, bo jak są zbrylenia, to potem na ścianie wychodzą nierówności i ogólnie tynk wygląda słabo. Z własnego doświadczenia wiem, że dobre wymieszanie składników to klucz do sukcesu. Jeśli dobrze się przygotujesz, to unikniesz tych zbryleń. Normy branżowe, jak PN-EN 998-1, mówią, że ważny jest też dobór surowców, takich jak piaski o właściwej granulacji. One razem z odpowiednimi spoiwami dadzą jednorodność mieszanki. Jeśli zaprawa będzie dobrze przygotowana, to nie tylko ładniej wygląda, ale też będzie trwała na różne warunki atmosferyczne. Dlatego warto zwracać uwagę na instrukcje producentów oraz normy, bo to daje pewność, że tynki będą wysokiej jakości.

Pytanie 8

Oblicz wynagrodzenie zatrudnionego za przeprowadzenie obustronnego tynkowania ściany o wymiarach 10 × 3 m, jeśli stawka godzinowa tynkarza wynosi 15,00 zł, a czas pracy na wykonanie 1 m2 tynku zwykłego wynosi 1,4 r-g?

A. 900,00 zł
B. 450,00 zł
C. 1 260,00 zł
D. 630,00 zł
Niepoprawne odpowiedzi mogą wynikać z błędów w obliczeniach lub niepełnego zrozumienia problemu. Przy obliczaniu wynagrodzenia, kluczowe jest dokładne zrozumienie wymagań dotyczących tynkowania. Przykładowo, odpowiedzi takie jak 900,00 zł mogą wynikać z obliczenia kosztów dla jednej strony tynkowania, co jest niepełne, ponieważ pytanie dotyczy obustronnego tynkowania. Inna odpowiedź, 630,00 zł, może być skutkiem błędnego oszacowania liczby roboczogodzin, co prowadzi do nieprawidłowego wyniku. Dodatkowo, odpowiedzi takie jak 450,00 zł mogą sugerować, że osoba dokonująca obliczeń nie uwzględniła stawki godzinowej, co jest kluczowym elementem obliczeń. W przypadku tynkowania, identyfikacja nakładu pracy na metr kwadratowy oraz przeliczenie go na roboczogodziny są niezbędne dla uzyskania zgodnego wyniku. Również, wiedza o standardach branżowych dotyczących pracy budowlanej i normatywów robocizny jest kluczowa, aby uniknąć błędnych wniosków. Takie nieporozumienia mogą prowadzić do nieadekwatnych ofert cenowych oraz problemów z budżetowaniem, co jest istotne w kontekście zarządzania projektami budowlanymi.

Pytanie 9

Na zdjęciu przedstawiono uszkodzenie warstwy zbrojącej (rozerwanie siatki) i warstwy izolacyjnej na elewacji budynku. Aby rozpocząć naprawę tego uszkodzenia, należy

Ilustracja do pytania
A. przykleić fragment rozerwanej siatki do podłoża i uzupełnić fragment uszkodzonego styropianu.
B. wyciąć siatkę i tynk na powierzchni całej ściany, na której znajduje się uszkodzenie.
C. wyciąć uszkodzony fragment ocieplenia i usunąć tynk wokół wyciętego fragmentu pasem o szerokości 10 cm.
D. okleić taśmą papierową miejsce uszkodzenia.
Twoja odpowiedź dotycząca wycięcia uszkodzonego fragmentu ocieplenia i usunięcia tynku w promieniu 10 cm jest zdecydowanie na miejscu. To naprawdę właściwe podejście, bo pozwala na solidne przygotowanie podłoża pod nową warstwę izolacyjną. W praktyce, coś takiego sprawia, że naprawiony fragment lepiej zespoli się z resztą elewacji, co jest kluczowe, jeśli zależy nam na długotrwałych efektach. Dodatkowo, usunięcie tynku wokół uszkodzenia zapobiega dalszym problemom, które mogą się pojawić z powodu złego przylegania materiałów. Jak mówi norma PN-EN 13499, dobre przygotowanie podłoża i używanie odpowiednich materiałów to podstawa, żeby cała konstrukcja dobrze funkcjonowała.

Pytanie 10

Z ilustracji wynika, że szerokość filarka międzyokiennego wynosi 103 cm. Ile pełnych cegieł zmieści się na szerokości filarka?

A. 3
B. 4
C. 2
D. 5
Odpowiedź 4 to strzał w dziesiątkę, bo szerokość filarka, czyli 103 cm, dobrze się dzieli przez standardową szerokość cegły, która wynosi 25 cm. Jak podzielisz 103 przez 25, to dostajesz 4,12. To znaczy, że w filarze zmieści się 4 całe cegły, a te pozostałe 3 cm to za mało na kolejną. W budownictwie używamy całych cegieł, bo to stabilniejsze i praktyczniejsze. Pamiętaj też, że przy projektowaniu musimy myśleć o spoinach i możliwych stratach materiałowych, bo to wpływa na to, ile cegieł naprawdę potrzebujemy. Zrozumienie tych zasad jest naprawdę ważne, jeśli chcesz dobrze planować prace budowlane.

Pytanie 11

Na podstawie danych zawartych w przedstawionej tabeli wskaż, ile piasku należy użyć do przygotowania 1 m3 zaprawy wapiennej o proporcji objętościowej składników 1:3 z użyciem ciasta wapiennego.

Proporcje i ilość składników na 1 m³ zaprawy wapiennej
Stosunek objętościowy wapna do piaskuMarka zaprawy [MPa]Ciasto wapienne [m³]Piasek [m³]Woda [dm³]
1 : 1,50,40,5100,76537
1 : 20,40,4300,86050
1 : 30,20,3200,960100
1 : 3,50,20,2800,980130
1 : 4,50,20,2241,010166
A. 0,980 m3
B. 1,080 m3
C. 0,320 m3
D. 0,960 m3
Odpowiedź 0,960 m3 jest prawidłowa, ponieważ zgodnie z danymi zawartymi w tabeli, dla zaprawy wapiennej o proporcji 1:3, ilość piasku potrzebna do przygotowania 1 m3 zaprawy wynosi dokładnie 0,960 m3. W kontekście przygotowania zaprawy, proporcje składników są kluczowe, ponieważ wpływają na właściwości mechaniczne i trwałość gotowego produktu. Stosowanie właściwych proporcji, jak w tym przypadku, ma na celu osiągnięcie optimlanej konsystencji oraz wytrzymałości zaprawy, co jest zgodne z normami budowlanymi. Dodatkowo, znajomość takich proporcji jest niezbędna w praktyce budowlanej, aby zapewnić odpowiednią jakość materiałów używanych w konstrukcji. Warto również zwrócić uwagę, że dla tej proporcji zaprawy, ilość ciasta wapiennego wynosi 0,320 m3, co również potwierdza prawidłowość wyliczeń. Takie umiejętności są kluczowe dla inżynierów budowlanych oraz techników, którzy muszą podejmować decyzje oparte na danych technicznych i standardach branżowych.

Pytanie 12

Do murowania elementów palenisk wykonanych z ceramiki używa się zaprawy

A. polimerowej
B. szamotowej
C. ciepłochronnej
D. wodoszczelnej
Szamotowa zaprawa jest specjalistycznym rodzajem materiału stosowanym do murowania ceramicznych elementów palenisk, takich jak kominki, piece i inne urządzenia grzewcze. Jej kluczową cechą jest odporność na wysokie temperatury, co jest niezbędne w aplikacjach, gdzie występuje bezpośredni kontakt z ogniem. Szamot, jako materiał ceramiczny, wykazuje doskonałe właściwości termiczne, co minimalizuje ryzyko pęknięć czy deformacji elementów murowych podczas intensywnego nagrzewania. Przykładem zastosowania szamotowej zaprawy może być budowa pieców kaflowych, gdzie materiał ten nie tylko zapewnia trwałość konstrukcji, ale również efektywnie akumuluje ciepło. Stosując szamotowe zaprawy według założeń normy PN-EN 998-2, zapewniamy optymalne warunki dla długoletniej eksploatacji palenisk. Warto podkreślić, że odpowiedni dobór zaprawy wpływa na efektywność energetyczną oraz bezpieczeństwo użytkowania urządzeń grzewczych.

Pytanie 13

Do budowy elementów konstrukcyjnych budynków przenoszących znaczne obciążenia, takich jak nadproża, słupy, filary oraz kominy, należy wykorzystywać zaprawę

A. wapienną
B. cementową
C. wapienno-gipsową
D. gipsową
Zaprawa cementowa jest właściwym materiałem do murowania elementów budowlanych przenoszących duże obciążenia, takich jak nadproża, słupy, filary oraz kominy. Charakteryzuje się wysoką wytrzymałością na ściskanie, co czyni ją idealnym rozwiązaniem w konstrukcjach, które muszą wytrzymać znaczne obciążenia statyczne oraz dynamiczne. Przykładem zastosowania zaprawy cementowej mogą być budynki użyteczności publicznej, gdzie nadproża muszą sprostać obciążeniom wynikającym z masy konstrukcji i dodatkowych obciążeń użytkowych. Ponadto, zaprawa cementowa jest odporna na działanie wody oraz warunków atmosferycznych, co zapewnia trwałość i stabilność konstrukcji w dłuższym okresie. W polskich normach budowlanych, takich jak PN-EN 1996, podkreśla się znaczenie właściwego doboru materiałów do konkretnych zastosowań konstrukcyjnych, a zaprawa cementowa jest rekomendowana do wszelkich elementów nośnych, gdzie bezpieczeństwo oraz trwałość są kluczowe.

Pytanie 14

Wylicz koszt wymiany pięciu okien o wymiarach 120×150 cm każde, jeśli cena jednostkowa tej usługi to 65,00 zł/m.

A. 1560,00 zł
B. 1755,00 zł
C. 1950,00 zł
D. 1404,00 zł
Jak się przyjrzysz błędom w obliczeniach kosztów wymiany okien, to warto pomyśleć o tym, jak ważne jest dobrze policzyć powierzchnię. Wiele osób zakłada, że można po prostu pomnożyć liczbę okien przez koszt jednostkowy i to wszystko, a to wcale nie jest prawda. Ignoruje to bardzo istotny krok, jakim jest pole powierzchni okna. Często ludzie nie rozumieją, jak przeliczać jednostki z centymetrów na metry kwadratowe, co jest kluczowe, żeby móc użyć podanego kosztu. No i jeszcze jest ten temat, że niektórzy nie uwzględniają dodatkowych kosztów, jak montaż, demontaż starych okien, czy inne materiały potrzebne przy montażu. Brak wiedzy o tych rzeczach sprawia, że mogą zaniżać lub zawyżać całkowite koszty. W budownictwie trzeba znać nie tylko ceny jednostkowe, ale też jak dobrze i dokładnie obliczać koszty całkowite, żeby móc sensownie planować budżety. Dobre praktyki w planowaniu finansowym, z uwzględnieniem wszystkich kosztów, są naprawdę ważne dla sukcesu projektów budowlanych.

Pytanie 15

Ilość pracy jednego robotnika przy zalewaniu 1 m3 wieńca na ścianie wynosi 0,8 r-g. Stawka za 1 r-g to 20 zł. Jaką kwotę trzeba zapłacić za robociznę 4 robotników, jeśli każdy z nich wykonał 10 m3 wieńca?

A. 320 zł
B. 800 zł
C. 640 zł
D. 160 zł
Aby obliczyć koszt robocizny dla 4 robotników, każdy z nich musi najpierw wykonać pracę przy zalewaniu wieńca. Nakład pracy na 1 m3 wieńca wynosi 0,8 r-g, co oznacza, że każdy robotnik, który zalewa 10 m3, zużyje 8 r-g (0,8 r-g/m3 * 10 m3). Dla 4 robotników łączny nakład pracy to 32 r-g (4 robotników * 8 r-g). Stawka za 1 r-g wynosi 20 zł, co prowadzi do całkowitego kosztu robocizny równemu 640 zł (32 r-g * 20 zł/r-g). Taki sposób kalkulacji kosztów robocizny jest powszechnie stosowany w branży budowlanej, co pozwala na precyzyjne oszacowanie wydatków na pracę oraz kontrolowanie budżetów. Wartości r-g są standardem w obliczeniach robocizny, dlatego znajomość tych zasad jest ważna dla efektywnego zarządzania projektami budowlanymi i kontraktami.

Pytanie 16

W czasie intensywnych upałów cegłę ceramiczną wypełnioną przed jej użyciem do murowania należy

A. zagruntować gruntownikiem
B. nakryć plandeką
C. zgromadzić pod zadaszeniem
D. zamoczyć w wodzie
Zanurzenie cegły ceramicznej w wodzie przed murowaniem to naprawdę ważny krok, zwłaszcza gdy na dworze jest gorąco. Cegła ceramiczna łatwo wchłania wodę, a jeśli jest zbyt sucha, to może się okazać, że zaprawa nie zwiąże się z nią dobrze. Chodzi o to, żeby cegła miała odpowiednią wilgoć, co sprawia, że połączenie z zaprawą murarską staje się mocniejsze. Kiedy nie nawilżamy cegły, to ona może wciągać wodę z zaprawy, co prowadzi do pęknięć i osłabienia całej ściany. Najlepiej zanurzyć cegły na około 10-15 minut, żeby miały czas na wchłonięcie wody. W branży budowlanej to już praktyka, która jest uważana za standard, co można zobaczyć w normach budowlanych jak PN-EN 771-1. Mówią one o tym, jak ważne jest dobre przygotowanie materiałów przed ich użyciem, więc lepiej tego nie lekceważyć.

Pytanie 17

Jaką izolację wykonano na fragmencie ściany przedstawionej na rysunku?

Ilustracja do pytania
A. Termiczną.
B. Paroszczelną.
C. Przeciwdrganiową.
D. Przeciwwilgociową.
Odpowiedź termiczna jest poprawna, ponieważ na przedstawionym rysunku widoczna jest warstwa materiału izolacyjnego, który jest powszechnie stosowany w budownictwie celu redukcji strat ciepła. Izolacja termiczna ma na celu utrzymanie optymalnej temperatury wewnątrz budynku, co przekłada się na komfort użytkowników oraz oszczędności energetyczne. W praktyce, materiał taki jak wełna mineralna, styropian czy pianka poliuretanowa jest umieszczany w ścianach, dachach i podłogach, aby zminimalizować wymianę ciepła z otoczeniem. Standardy, takie jak norma PN-EN 13162, określają wymagania dotyczące materiałów izolacyjnych, a ich odpowiedni dobór wpływa na efektywność energetyczną budynku. Dobrze zaprojektowana izolacja nie tylko poprawia komfort, ale również zmniejsza koszty ogrzewania i chłodzenia, co jest kluczowe w kontekście zrównoważonego budownictwa.

Pytanie 18

Rysunek przedstawia mury i ściany

Ilustracja do pytania
A. przeznaczone do wyburzenia.
B. wyburzone.
C. projektowane.
D. istniejące.
Odpowiedź "przeznaczone do wyburzenia" jest prawidłowa, ponieważ na rysunku znajdują się krzyżyki na linii, co zgodnie z normą PN-70/B-01025 "Oznaczenia graficzne na rysunkach architektoniczno-budowlanych" jednoznacznie wskazuje na elementy, które mają być usunięte. Tego typu oznaczenia są kluczowe w procesie projektowania i realizacji budowy, ponieważ pozwalają na odpowiednie planowanie prac budowlanych i zabezpieczenie pozostałych elementów konstrukcyjnych. Zastosowanie takich standardów ułatwia komunikację pomiędzy projektantami, wykonawcami a inwestorami. Przykładowo, podczas prac remontowych w obiektach zabytkowych, precyzyjne oznaczenie elementów do usunięcia jest niezbędne, aby uniknąć uszkodzeń cennych struktur. Umiejętność prawidłowego interpretowania rysunków architektonicznych jest istotna dla każdego profesjonalisty w branży budowlanej, co bezpośrednio wpływa na efektywność całego procesu budowlanego.

Pytanie 19

Jakie narzędzie jest używane do aplikacji tynków cienkowarstwowych na ścianie?

A. kaelnia trapezowa
B. kaelnia trójkątna
C. paca ze stali nierdzewnej
D. paca stalowa z ząbkami
Wybór niewłaściwych narzędzi do nakładania tynków cienkowarstwowych może prowadzić do wielu problemów, które negatywnie wpłyną na jakość finalnego wykończenia. Kaelnia trapezowa, mimo że jest stosunkowo popularna w innych zastosowaniach, nie jest odpowiednia do aplikacji tynków cienkowarstwowych. Jej kształt i krawędzie nie pozwalają na uzyskanie gładkiej i równej powierzchni, co jest kluczowe w przypadku tynków. Podobnie, kaelnia trójkątna, która służy głównie do wykończeń i detali, nie zapewnia wymaganej precyzji ani efektywności w procesie nakładania tynku, co może doprowadzić do nieestetycznych nierówności i wad w strukturze. Stalowa paca z ząbkami, z drugiej strony, jest używana do nakładania klejów lub zapraw, a nie tynków, ponieważ ząbki mogą powodować zbyt głębokie wcięcia w tynku, co w rezultacie wpływa na jego przyczepność oraz trwałość. Kluczowym błędem w myśleniu jest przekonanie, że każde narzędzie nadaje się do każdego rodzaju materiału. W rzeczywistości, wybór odpowiednich narzędzi jest ściśle powiązany z technologią oraz rodzajem używanego materiału tynkarskiego. Stosowanie nieodpowiednich narzędzi może prowadzić do konieczności przeprowadzenia poprawek, co generuje dodatkowe koszty i czas, a także obniża ogólną jakość wykonania.

Pytanie 20

W jakiej temperaturze najlepiej wykonywać prace tynkarskie?

A. w dowolnej
B. < 10o
C. 15o - 20o
D. 25o - 30o
Pytanie o temperaturę prowadzenia robót tynkarskich jest kluczowe dla jakości i trwałości wykonanych prac, jednak niektóre z proponowanych odpowiedzi wskazują na istotne nieporozumienia w tej kwestii. Wybór temperatury poniżej 10o jako odpowiedniej do robót tynkarskich jest błędny, ponieważ niskie temperatury powodują, że zaprawa nie osiąga wymaganego wiązania i przyczepności do podłoża. W takich warunkach może dochodzić do odwodnienia zaprawy, co prowadzi do osłabienia i pęknięć. Z kolei odpowiedź sugerująca, że tynkowanie można prowadzić w temperaturze 25o - 30o, również jest myląca. Chociaż w takich warunkach tynk może być łatwiejszy w aplikacji, zbyt wysoka temperatura powoduje szybkie parowanie wody, co skutkuje powstawaniem rys oraz słabszym wiązaniem materiału. Ostatecznie, wskazanie, że prace tynkarskie mogą być prowadzone w dowolnej temperaturze, jest skrajnie nieodpowiedzialne. Tego rodzaju podejście może prowadzić do poważnych problemów z jakością wykonania, a w skrajnych przypadkach do odpadania tynku. Zrozumienie wpływu temperatury na proces tynkowania jest niezbędne do zapewnienia właściwego wykonania i długowieczności prac budowlanych, dlatego tak istotne jest przestrzeganie zalecanych zakresów temperaturowych.

Pytanie 21

Zgodnie z zasadami przedmiarowania robót murarskich ilość ścian oblicza się w metrach kwadratowych ich powierzchni. Od powierzchni ścian należy odejmować powierzchnie projektowanych otworów okiennych i drzwiowych większych od 0,5 m².
Oblicz ilość robót związanych z wykonaniem ściany z cegły ceramicznej pełnej, której widok przedstawiono na rysunku.

Ilustracja do pytania
A. 21,00 m2
B. 19,11 m2
C. 18,13 m2
D. 20,02 m2
Odpowiedź 19,11 m2 jest prawidłowa, ponieważ przy obliczaniu powierzchni ścian należy uwzględnić zarówno ich całkowitą powierzchnię, jak i pomniejszyć ją o powierzchnię otworów okiennych i drzwiowych, które mają więcej niż 0,5 m². Aby obliczyć powierzchnię ściany, najpierw mierzymy wysokość i szerokość ściany, a następnie mnożymy te wartości. Następnie, jeśli w projekcie znajdują się okna lub drzwi, które spełniają powyższy warunek, ich powierzchnię również należy obliczyć i odjąć od całkowitej powierzchni ściany. Przykładowo, jeśli ściana ma wysokość 3 m i długość 7 m, jej powierzchnia wynosi 21 m². Jeśli w tej ścianie umieszczono okno o wymiarach 1,5 m x 1 m, jego powierzchnia wynosi 1,5 m², co daje w sumie 19,5 m². Jednakże, w zależności od dodatkowych wymiarów otworów, powinna być zachowana dokładność w obliczeniach, by uzyskać precyzyjny wynik. Udzielając odpowiedzi, ważne jest stosowanie się do zasad przedmiarowania zgodnych z normami obowiązującymi w branży budowlanej, co podkreśla znaczenie precyzyjnych obliczeń w kosztorysowaniu robót budowlanych.

Pytanie 22

Określenie lokalizacji nowych ścianek działowych w renowowanym obiekcie następuje na podstawie

A. specyfikacji technicznej wykonania i odbioru robót
B. założeń do kosztorysu
C. warunków technicznych wykonania i odbioru robót
D. projektu budowlanego
Projekt budowlany jest kluczowym dokumentem w procesie przebudowy budynku, ponieważ określa on szczegółowe rozwiązania architektoniczne oraz konstrukcyjne, w tym lokalizację nowych ścianek działowych. Zawiera on rysunki techniczne, które ilustrują układ pomieszczeń, a także specyfikacje materiałowe i technologiczne. Przykładowo, w przypadku przekształcenia przestrzeni biurowej, projekt budowlany pomoże zdecydować, gdzie najlepiej umieścić ścianki działowe, aby zachować optymalną funkcjonalność oraz estetykę. Ponadto, każda realizacja powinna być zgodna z obowiązującymi normami budowlanymi i technicznymi, które są zawarte w planie. Stosowanie się do zatwierdzonego projektu budowlanego minimalizuje ryzyko konfliktów z przepisami prawa budowlanego, co może prowadzić do kosztownych opóźnień w realizacji projektu oraz konieczności wprowadzenia zmian w już zrealizowanych elementach budowlanych.

Pytanie 23

Jakie wiązanie cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Krzyżykowe.
B. Wozówkowe.
C. Kowadełkowe.
D. Główkowe.
Odpowiedź 'wozówkowe' jest prawidłowa, ponieważ układ cegieł na przedstawionym rysunku odzwierciedla charakterystykę tego typu wiązania. W wiązaniu wozówkowym cegły są układane naprzemiennie: jedna cegła jest osadzona na swoim krótszym boku (wąsko), a kolejna na swoim dłuższym boku (szeroko). Takie ułożenie pozwala na lepsze rozłożenie obciążenia, co zwiększa stabilność i trwałość budowli. W praktyce, wiązanie wozówkowe jest często stosowane w budownictwie ścian zarówno murowanych, jak i w konstrukcjach z cegły, ponieważ zapewnia odpowiednią więź i zmniejsza ryzyko pękania. Warto również zauważyć, że wiązanie to jest zgodne z zasadami sztuki budowlanej, które zalecają stosowanie różnych rodzajów układów cegieł w celu uzyskania optymalnej wytrzymałości strukturalnej. Ponadto, wiązanie wozówkowe jest estetyczne i często stosowane w budynkach o tradycyjnym charakterze, co czyni go uniwersalnym rozwiązaniem w architekturze.

Pytanie 24

Do tworzenia zapraw murarskich jako spoiwo powietrzne należy używać

A. cementu hutniczego
B. cementu murarskiego
C. wapna hydraulicznego
D. wapna hydratyzowanego
Wapno hydrauliczne, cement murarski oraz cement hutniczy to materiały, które różnią się znacząco właściwościami i zastosowaniem w budownictwie. Wapno hydrauliczne, będące spoiwem reagującym z wodą, jest wykorzystywane w sytuacjach, gdzie szybkie wiązanie i twardnienie są kluczowe, ale nie jest idealnym wyborem dla zapraw murarskich, które powinny być elastyczne i paroprzepuszczalne. Użycie wapna hydraulicznego może prowadzić do zbyt szybkiego wysychania, co z kolei może spowodować pęknięcia w murze i zmniejszenie trwałości konstrukcji. Cement murarski, z kolei, to rodzaj cementu przeznaczonego głównie do stosowania w murach, jednak jego wysoka twardość może ograniczać naturalną funkcję w porach materiałów budowlanych, a więc wpływać negatywnie na wentylację i zdrowie mikroklimatu w pomieszczeniach. Cement hutniczy to materiał o właściwościach hydraulicznych, który jest często stosowany w budownictwie drogowym i inżynieryjnym, ale nie jest właściwym materiałem do zapraw murarskich ze względu na swoją sztywność i tendencję do pękania. Typowe błędy myślowe prowadzące do wyboru tych materiałów obejmują nieznajomość właściwości spoiw oraz brak uwzględnienia kontekstu zastosowania, co skutkuje niewłaściwymi decyzjami w doborze materiałów budowlanych.

Pytanie 25

Jaką powierzchnię ściany przedstawionej na rysunku należy uwzględnić w przedmiarze robót murarskich, jeżeli od powierzchni projektowanej ściany należy odliczyć powierzchnie otworów większych od 0,5 m2?

Ilustracja do pytania
A. 23,51 m2
B. 21,51 m2
C. 22,00 m2
D. 24,00 m2
Odpowiedź 22,00 m2 jest poprawna, ponieważ uwzględnia wszystkie istotne czynniki wpływające na obliczenie powierzchni ściany. W przedmiarze robót murarskich kluczowe jest odliczenie powierzchni otworów, które mają większą powierzchnię niż 0,5 m2. Zgodnie z dobrą praktyką w budownictwie, projektując ścianę, należy precyzyjnie obliczyć jej powierzchnię, aby uniknąć zbędnych kosztów materiałowych oraz zapewnić zgodność z dokumentacją projektową. W tym przypadku, jeśli całkowita powierzchnia ściany wynosiła 24,00 m2, a powierzchnia otworów większych od 0,5 m2 wynosi 2,00 m2, to otrzymujemy 24,00 m2 - 2,00 m2 = 22,00 m2. Takie podejście jest typowe w branży budowlanej, gdzie każdy meter kwadratowy ma znaczenie ekonomiczne. Warto również zaznaczyć, że stosowanie takich obliczeń jest zgodne z normami budowlanymi, które mówią o konieczności rzetelnego podejścia do określania potrzebnych materiałów.

Pytanie 26

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)
A. 4 pojemniki cementu i 2 pojemniki wapna.
B. 5 pojemników cementu i 2,5 pojemnika wapna.
C. 4 pojemniki wapna i 2 pojemniki cementu.
D. 5 pojemników wapna i 2,5 pojemnika cementu.
Odpowiedź, która wskazuje na zużycie 5 pojemników cementu i 2,5 pojemnika wapna jest właściwa, ponieważ opiera się na poprawnych proporcjach składników potrzebnych do przygotowania zaprawy. W opisie technicznym podano, że proporcje objętościowe składników wynoszą 1:0,5:4, co oznacza, że na każdy 1 pojemnik cementu przypada 0,5 pojemnika wapna i 4 pojemniki piasku. Zgodnie z planowanym użyciem 20 pojemników piasku, można obliczyć ilość pozostałych składników. 20 pojemników piasku podzielone przez 4 (czwartą część proporcji) daje 5 pojemników cementu, co odpowiada proporcji 1:4. Współczynnik dla wapna wynosi 0,5, więc 5 pojemników cementu pomnożone przez 0,5 daje 2,5 pojemnika wapna. Takie podejście nie tylko zapewnia zgodność z podanymi proporcjami, ale także wpisuje się w najlepsze praktyki budowlane, które gwarantują odpowiednią wytrzymałość i trwałość zaprawy. W praktyce, stosowanie się do tych proporcji pozwala uniknąć problemów związanych z niedostatecznym wiązaniem materiałów, co ma kluczowe znaczenie dla późniejszej jakości prac budowlanych.

Pytanie 27

Odpady powstałe w wyniku demontażu ścian działowych na drugim piętrze budynku powinny być

A. układane na stropach w rejonie okien
B. transportowane na zewnątrz z wykorzystaniem obudowanych zsypów
C. zbierane w jednym miejscu w obiekcie
D. wydobywane na zewnątrz przez okna do podstawionych pojemników
Usuwanie gruzu powstałego podczas rozbiórki ścian działowych na drugiej kondygnacji w budynku przy użyciu obudowanych zsypów jest najlepszym rozwiązaniem, które zapewnia bezpieczeństwo oraz efektywność procesu. Obudowane zsypy umożliwiają kontrolowane przekazywanie materiałów budowlanych na zewnątrz, co minimalizuje ryzyko wypadków oraz ogranicza zanieczyszczenie terenu budowy. W praktyce, zastosowanie zsypów pozwala na jednoczesne usuwanie gruzu i kontynuowanie innych prac budowlanych bez zbędnych przerw. Ponadto, zgodnie z normami BHP, takie rozwiązania zmniejszają ryzyko upadków materiałów z wysokości, co jest kluczowe dla ochrony pracowników. Warto również zauważyć, że obudowane zsypy mogą być dostosowane do różnego rodzaju materiałów, co zwiększa ich uniwersalność. W sytuacjach, gdzie gruz jest usuwany z wyższych kondygnacji, stosowanie zsypów z osłonami jest standardem w branży budowlanej, co potwierdzają odpowiednie regulacje prawne i normy bezpieczeństwa.

Pytanie 28

Na którym rysunku pokazano urządzenie służące do usuwania gruzu z nadziemnych kondygnacji budynku?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Rysunek A przedstawia ruchome rusztowanie budowlane, które jest kluczowym narzędziem w procesie budowlanym, szczególnie przy usuwaniu gruzu z nadziemnych kondygnacji budynków. Ruchome rusztowanie pozwala na bezpieczne i efektywne transportowanie materiałów budowlanych oraz gruzu w pionie i poziomie. Zastosowanie rusztowania umożliwia robotnikom swobodne poruszanie się na wysokości, co jest niezbędne w celu utrzymania porządku na placu budowy i zapewnienia bezpieczeństwa. Zgodnie z normami BHP, użycie rusztowania zmniejsza ryzyko wypadków oraz ułatwia dostęp do oddalonych miejsc, gdzie może gromadzić się gruz. Dodatkowo, rusztowania są projektowane z uwzględnieniem obciążeń, co zapewnia ich stabilność. W praktyce, podczas demontażu lub przebudowy budynków, wykorzystuje się również ruchome rusztowania, aby zminimalizować czas potrzebny na usuwanie odpadów budowlanych, co jest zgodne z zasadami efektywności i zrównoważonego rozwoju w budownictwie.

Pytanie 29

Jakie materiały są wymagane do naprawy pojedynczych pęknięć w murze o głębokości przekraczającej 30 mm?

A. Klamry stalowe Ø15-18 mm oraz zaczyn cementowy
B. Kotwy stalowe rozporowe gwintowane oraz mieszanka betonowa
C. Klamry stalowe Ø6-8 mm oraz zaczyn gipsowy
D. Cięgna z prętów stalowych i kątowniki mocujące
Podczas analizy pozostałych odpowiedzi można zauważyć kilka istotnych błędów koncepcyjnych. Cięgna z prętów stalowych i kątowniki oporowe, chociaż mogą być użyte w lepszym wzmocnieniu konstrukcji, nie są odpowiednie do prostych napraw pęknięć muru. Kątowniki oporowe wymagają znacznie większej ingerencji w strukturę budynku i zastosowania skomplikowanej technologii montażu, co czyni je niepraktycznymi w przypadku drobnych uszkodzeń. Propozycja użycia kotew stalowych rozporowych gwintowanych i mieszanki betonowej, mimo że jest bardziej właściwa w kontekście dużych uszkodzeń, jest zdecydowanie zbyt mocna dla pęknięć o głębokości 30 mm. Zastosowanie mieszanki betonowej mogłoby prowadzić do problemów związanych z różnicami w skurczu czy rozszerzalności termicznej, co w dłuższym okresie mogłoby zniweczyć efekty wzmocnienia. W końcu, klamry stalowe Ø6-8 mm i zaczyn gipsowy nie zapewniają wystarczającej nośności ani odporności na wilgoć, co jest kluczowe w kontekście długotrwałych napraw murów. Zastosowanie gipsu jako materiału wiążącego w stresujących warunkach jest nieodpowiednie, ponieważ gips jest materiałem o niskiej odporności na działanie wody i ulega szybkiemu osłabieniu w trudnych warunkach atmosferycznych. Właściwe podejście do naprawy pęknięć muru wymaga zrozumienia nie tylko materiałów, ale także ich interakcji i wpływu na długoterminową stabilność konstrukcji.

Pytanie 30

Perlit to lżejsze kruszywo stosowane w budownictwie do wytwarzania zapraw

A. szamotowych
B. ciepłochronnych
C. kwasoodpornych
D. krzemionkowych
Wybór złej odpowiedzi może oznaczać, że nie do końca rozumiesz, jakie właściwości ma perlit. To kruszywo jest znane przede wszystkim ze swoich niezwykłych właściwości cieplnych, co czyni je idealnym do zapraw ciepłochronnych. Szamotowe czy kwasoodporne zaprawy mają zupełnie inne zastosowania. Szamotowe są na przykład stosowane w miejscach narażonych na wysokie temperatury. A kruszywa krzemionkowe? Te są bardziej związane z produkcją betonu, a nie z izolacją, jaką daje perlit. Wydaje mi się, że niektóre materiały mają swoje specyficzne cechy, i to właśnie one decydują o tym, gdzie je użyjemy. Jak już wspomniałem, perlit jest super, jeżeli zależy nam na efektywnej izolacji termicznej, a to z kolei może pomóc w redukcji kosztów energii i zwiększeniu komfortu mieszkańców budynków. Dlatego dobrze jest znać właściwości materiałów, które wybieramy do różnych projektów.

Pytanie 31

Jaką ilość kg suchej mieszanki trzeba zakupić do realizacji tynku gipsowego o grubości 10 mm na powierzchni 15 m2, jeżeli zużycie wynosi 1 kg na m2 przy grubości 1 cm?

A. 2,5 kg
B. 1,5 kg
C. 15,0 kg
D. 25,0 kg
Aby obliczyć ilość suchej mieszanki potrzebnej do wykonania tynku gipsowego o grubości 10 mm na powierzchni 15 m2, należy zacząć od przeliczenia grubości tynku z milimetrów na centymetry. Grubość 10 mm to 1 cm. Znając zużycie mieszanki, które wynosi 1 kg na m2 przy grubości 1 cm, możemy łatwo obliczyć całkowite zużycie na 15 m2. Wzór jest następujący: 1 kg/m2 * 15 m2 = 15 kg. Takie obliczenie jest zgodne z obowiązującymi standardami budowlanymi i praktyką w zakresie tynkowania. Warto pamiętać, że dokładność w obliczeniach jest kluczowa, aby uniknąć niedoboru materiału, co mogłoby prowadzić do opóźnień w pracy. W praktyce często stosuje się również margines zapasu, zwłaszcza w przypadku większych projektów budowlanych, aby zminimalizować ryzyko przestojów związanych z brakiem materiałów. Dlatego, w tym przypadku, 15,0 kg to optymalna ilość do zakupu.

Pytanie 32

Jakie jest spoiwo mineralne powietrzne?

A. cement hutniczy
B. wapno hydrauliczne
C. gips budowlany
D. cement portlandzki
Cement hutniczy, gips budowlany, cement portlandzki oraz wapno hydrauliczne to materiały budowlane, które różnią się nie tylko składem chemicznym, ale również właściwościami oraz zastosowaniem w budownictwie. Cement hutniczy, znany również jako cement blastyczny, to materiał, który uzyskuje się w wyniku przetwarzania klinkieru cementowego z dodatkiem żużla. Jego główną cechą jest znacznie niższa zawartość wapnia w porównaniu do cementu portlandzkiego, co wpływa na jego właściwości wiążące i czas twardnienia. To spoiwo hydrauliczne, więc zachowuje swoje właściwości w kontakcie z wodą, co sprawia, że nie jest odpowiednie jako spoiwo mineralne powietrzne. Cement portlandzki, będący najczęściej stosowanym rodzajem cementu w budownictwie, również charakteryzuje się działaniem hydraulicznym. Jego wiązanie zachodzi w wyniku reakcji z wodą, co czyni go nieodpowiednim przykładem spoiwa mineralnego powietrznego. Wapno hydrauliczne jest spoiwem, które również twardnieje w obecności wody, a jego zastosowanie ogranicza się do określonych rodzajów budowli, w których wymagane są specyficzne właściwości chemiczne i fizyczne. W przypadku tych materiałów, typowe błędy myślowe polegają na myleniu ich funkcji i właściwości, co prowadzi do nieprawidłowych wniosków o możliwości ich zastosowania jako spoiw mineralnych powietrznych. Warto zwrócić uwagę na znaczenie dokładnego rozumienia klasyfikacji materiałów budowlanych, aby właściwie dobrać je do zastosowań w budownictwie.

Pytanie 33

Izolację poziomą w budynku bez piwnicy powinno się wykonać

A. na górnej powierzchni fundamentu i na poziomie terenu
B. pod fundamentem i na górnej powierzchni ściany fundamentowej
C. na górnej powierzchni fundamentu i na górnej powierzchni ściany fundamentowej
D. pod fundamentem i na poziomie podłogi na gruncie
Wykonanie lekkiej izolacji poziomej budynku niepodpiwniczonego na górnej powierzchni ławy oraz na górnej powierzchni ściany fundamentowej jest kluczowym elementem ochrony budynku przed wilgocią i wodami gruntowymi. Izolacja ta ma za zadanie zapewnić barierę przed przenikaniem wody oraz ograniczyć ryzyko powstawania pleśni i grzybów w konstrukcji budowlanej. W praktyce, stosowanie materiałów hydroizolacyjnych, takich jak membrany bitumiczne lub folie PVC, na poziomie ławy fundamentowej oraz ścian fundamentowych jest zgodne z normami budowlanymi i zaleceniami branżowymi. Tego rodzaju izolacja powinna być również odpowiednio zgrzewana lub klejona, aby zapewnić jej szczelność. Należy pamiętać, że skuteczność izolacji poziomej ma bezpośredni wpływ na trwałość budynku oraz jego komfort użytkowania. Dodatkowo, przy projektowaniu izolacji warto uwzględnić lokalne warunki gruntowe oraz poziom wód gruntowych, co pozwoli na optymalizację rozwiązań budowlanych.

Pytanie 34

Aby przygotować zaprawę cementowo-wapienną, użyto 50 kg wapna. Jaką ilość cementu trzeba zastosować do tej zaprawy, jeśli proporcja objętościowa składników wynosi 1:2:4?

A. 150 kg
B. 50 kg
C. 25 kg
D. 100 kg
Aby obliczyć ilość cementu potrzebną do wykonania zaprawy cementowo-wapiennej, należy najpierw zrozumieć stosunek objętościowy składników, który wynosi 1:2:4. Oznacza to, że na każdą część cementu przypadają dwie części wapna i cztery części piasku. W tym przypadku, skoro przygotowano 50 kg wapna, to obliczamy ilość cementu w następujący sposób: jeśli 2 części to 50 kg, to 1 część (czyli cement) wynosi 25 kg (50 kg / 2 = 25 kg). Dodatkowo, dla zapewnienia właściwych właściwości zaprawy oraz trwałości konstrukcji, dobrym standardem jest stosowanie dokładnych proporcji, które zapewniają odpowiednią wytrzymałość i elastyczność mieszanki. Warto pamiętać, że w praktyce do wykonania zaprawy często korzysta się z gotowych mieszanek zapraw, które już mają zmierzone i dobrane składniki w odpowiednich proporcjach, co ułatwia pracę budowlaną.

Pytanie 35

W warunkach technicznych wykonania i odbioru robót podano, że dopuszczalne odchylenie powierzchni tynku kategorii IV od linii prostej wynosi 2 mm, w co najwyżej dwóch miejscach na 2-metrowej łacie. Tynk kategorii IV, wykonany zgodnie z zalecanymi warunkami, przedstawiono na rysunku

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Odpowiedź A jest poprawna, ponieważ spełnia wymagania określone w warunkach technicznych dotyczących tynku kategorii IV. Dopuszczalne odchylenie od linii prostej wynosi maksymalnie 2 mm w co najwyżej dwóch miejscach na 2-metrowej łacie. W przypadku tynku przedstawionego na rysunku A widzimy, że odchylenia wynoszą 1 mm oraz 2 mm, które mieszczą się w określonych normach. Zastosowanie takich standardów ma kluczowe znaczenie w budownictwie, ponieważ zapewnia odpowiednią jakość i estetykę wykończenia, co jest szczególnie istotne w projektach, gdzie dokładność jest niezbędna. W praktyce, na przykład w przypadku tynków dekoracyjnych, zachowanie tych norm wpływa na końcowy efekt wizualny oraz trwałość powłok. Utrzymywanie odchyleń w granicach określonych norm wpływa również na bezpieczeństwo użytkowania budynków. Dlatego warto pamiętać o tych standardach w trakcie wykonywania robót budowlanych i ich odbioru.

Pytanie 36

Aby uzyskać zaprawę cementowo-wapienną M4, należy użyć składników w proporcjach objętościowych 1 : 1 : 6, co oznacza

A. 1 część cementu : 1 część wapna hydratyzowanego : 6 części wody
B. 1 część cementu : 1 część piasku : 6 części wapna hydratyzowanego
C. 1 część wapna hydratyzowanego : 1 część piasku : 6 części cementu
D. 1 część cementu : 1 część wapna hydratyzowanego : 6 części piasku
Proporcje objętościowe 1 : 1 : 6 w zaprawie cementowo-wapiennej M4 oznaczają, że do każdej części cementu przypada jedna część wapna hydratyzowanego oraz sześć części piasku. Taki skład jest zgodny z zaleceniami w branży budowlanej, które podkreślają znaczenie właściwego doboru proporcji, aby uzyskać optymalną wytrzymałość, plastyczność i trwałość zaprawy. Przykładowo, w praktyce budowlanej, odpowiednie przygotowanie zaprawy jest kluczowe przy murowaniu, gdzie właściwe proporcje zapewniają lepsze przyleganie cegieł oraz odporność na czynniki atmosferyczne. Warto zaznaczyć, że stosunek składników wpływa również na czas wiązania zaprawy, co jest istotne podczas wykonywania prac budowlanych w określonych warunkach. Standardy budowlane, takie jak PN-EN 998-1, podkreślają znaczenie właściwego stosowania zapraw w zależności od ich przeznaczenia, co w kontekście zaprawy M4 ma na celu zapewnienie wysokiej jakości i bezpieczeństwa konstrukcji budowlanych.

Pytanie 37

Jaką minimalną długość powinno mieć oparcie nadproża L19 na murze?

A. 6 cm
B. 22 cm
C. 10 cm
D. 19 cm
Minimalna długość oparcia nadproża L19 wynosząca 10 cm jest zgodna z obowiązującymi normami budowlanymi oraz najlepszymi praktykami w zakresie projektowania konstrukcji. Oparcie nadproża jest kluczowym elementem w systemach murowych, ponieważ przenosi obciążenia z nadproża na ściany boczne, co zapewnia stabilność całej konstrukcji. W praktyce, stosowanie długości oparcia o wartości 10 cm zapewnia odpowiednią nośność, a jednocześnie minimalizuje ryzyko pęknięć i deformacji w budynku. Przykładem zastosowania tej wartości jest budowa ścian oporowych w obiektach mieszkalnych, gdzie nadproża są narażone na różnorodne obciążenia, w tym obciążenia dynamiczne. Warto również zwrócić uwagę, że przy projektowaniu nadproży należy uwzględniać dodatkowe czynniki, takie jak rodzaj materiału, z którego wykonane jest nadproże, oraz jego szerokość, co może wpływać na wymaganą długość oparcia. Zastosowanie 10 cm jako minimalnej długości oparcia nadproża jest zgodne z literaturą przedmiotu oraz standardami budowlanymi, co czyni tę odpowiedź poprawną.

Pytanie 38

Jaką minimalną grubość powinny mieć przegrody oddzielające przewody spalinowe od dymowych w ścianach murowanych z cegły?

A. ¼ cegły
B. 1 cegły
C. ½ cegły
D. 1½ cegły
Minimalna grubość przegród oddzielających przewody spalinowe od dymowych wynosząca ½ cegły jest zgodna z regulacjami dotyczącymi bezpieczeństwa budowlanego. Tego rodzaju przegrody są kluczowe w zapobieganiu rozprzestrzenieniu się dymu oraz szkodliwych substancji w budynkach, co ma istotne znaczenie dla ochrony zdrowia i życia ludzi. Przegrody te powinny być projektowane zgodnie z wytycznymi zawartymi w normach budowlanych, takich jak PN-EN 13501-2, które określają wymagania dla klasyfikacji ogniowej materiałów budowlanych. W praktyce, zapewnienie odpowiedniej grubości przegrody wpływa na skuteczność ochrony przed pożarem, a także na trwałość konstrukcji. W sytuacjach, gdy przewody są umieszczane w bliskiej odległości od siebie, grubość ½ cegły stanowi minimalny standard, który można zastosować, aby zachować właściwe warunki bezpieczeństwa. Na przykład w budynkach użyteczności publicznej, gdzie istnieje większe ryzyko wystąpienia pożaru, zastosowanie takich przegrody jest nie tylko zalecane, ale może być wymagane przez lokalne przepisy budowlane.

Pytanie 39

Ile cegieł potrzeba do wymurowania ściany o grubości 25 cm, której widok przedstawiono na rysunku, jeżeli nakłady na 1 m2 ściany o grubości 1 cegły (25 cm) wynoszą 92,7 szt?

Ilustracja do pytania
A. 1113 szt.
B. 93 szt.
C. 939 szt.
D. 927 szt.
Aby poprawnie obliczyć liczbę cegieł potrzebnych do wymurowania ściany, kluczowe jest zrozumienie, jak oblicza się powierzchnię oraz jak odwzorować to na ilości materiału budowlanego. W tym przypadku, wiedząc, że 1 m² ściany o grubości 25 cm wymaga 92,7 cegieł, przystąpiliśmy do obliczenia całkowitej powierzchni netto, która wynosi 10 m². Mnożąc tę wartość przez ilość cegieł na 1 m², otrzymujemy 927 cegieł, co jest kluczowe dla prawidłowego wykonania prac budowlanych. Zrozumienie tego procesu jest niezbędne dla każdego, kto zajmuje się budową, ponieważ precyzyjne obliczenia materiałowe wpływają na koszty projektu oraz jego terminowość. W praktyce, przy planowaniu budowy, warto także uwzględnić straty materiałowe, co może zwiększyć wymaganą ilość cegieł. Dlatego znajomość takich obliczeń oraz ich zastosowanie w praktyce jest nie tylko przydatne, ale wręcz niezbędne w branży budowlanej.

Pytanie 40

Tynk zwykły w trzech warstwach, którego powierzchnia jest gładka, równomierna i ma połysk w ciemnym odcieniu, klasyfikuje się jako tynk kategorii

A. IV
B. IV f
C. IV w
D. III
Wybór tynku kategorii IV f, III lub IV jako odpowiedzi na to pytanie wskazuje na niezrozumienie klasyfikacji tynków oraz ich właściwości. Tynk IV f różni się od IV w głównie teksturą i wykończeniem. Tynki tej klasy są zazwyczaj bardziej chropowate i nie oferują tego samego poziomu gładkości ani połysku, co może nie spełniać oczekiwań dotyczących wykończenia powierzchni. Wybór tynku III również jest błędny, ponieważ ta klasa tynków przeznaczona jest głównie do zastosowań, gdzie nie wymaga się aż takiego poziomu estetyki, co w przypadku tynków IV w. Typowym błędem w myśleniu jest założenie, że wszystkie tynki w kategorii IV są sobie równe. W rzeczywistości różnice w wykończeniu, połysku i teksturze mają ogromne znaczenie dla finalnego efektu i zastosowania tynku. Kluczowe jest zrozumienie, że wybór odpowiedniej kategorii tynku powinien być uzależniony od wymaganych standardów estetycznych i funkcjonalnych, które są ściśle określone w dokumentacji technicznej oraz normach budowlanych. Niezrozumienie tych aspektów prowadzi do podejmowania błędnych decyzji w zakresie materiałów budowlanych, co może skutkować nieodpowiednim wyglądem wykończenia oraz większymi kosztami związanymi z ewentualnymi poprawkami.