Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 13 lutego 2026 21:06
  • Data zakończenia: 13 lutego 2026 21:28

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po wykonanej radioterapii do dokumentacji pacjenta należy wpisać dawkę promieniowania w jednostce

A. Grej (Gy)
B. Siwert (Sv)
C. Kiur (Ci)
D. Bekerel (Bq)
Prawidłową jednostką dawki pochłoniętej w radioterapii jest grej (Gy). W dokumentacji po napromienianiu zawsze wpisujemy dawkę w Gy, ponieważ ta jednostka opisuje ile energii promieniowania zostało pochłonięte przez tkankę: 1 Gy = 1 dżul na kilogram. To jest dokładnie to, co nas interesuje przy planowaniu i ocenie skuteczności leczenia onkologicznego – ile energii oddaliśmy do guza i tkanek zdrowych. W praktyce klinicznej zapis wygląda np. tak: „Dawka całkowita: 50 Gy w 25 frakcjach po 2 Gy”, albo przy brachyterapii: „HDR 7 Gy na frakcję do punktu referencyjnego”. Moim zdaniem warto od początku przyzwyczajać się do czytania i pisania takich zapisów, bo to jest codzienny chleb w radioterapii. Grej jest jednostką układu SI i jest standardem w wytycznych międzynarodowych (ICRU, ICRP), w planach leczenia, w systemach TPS i w kartach informacyjnych. Oczywiście w radiologii i ochronie radiologicznej pojawiają się też inne jednostki, jak siwert (Sv) dla dawki równoważnej i skutecznej czy bekerel (Bq) dla aktywności źródła, ale to są inne wielkości fizyczne. W radioterapii, przy opisie konkretnego napromieniania pacjenta, wpisujemy właśnie dawkę pochłoniętą w Gy. W dokumentacji dodatkowo często zaznacza się rozkład dawki (DVH), dawki na narządy krytyczne też w Gy, np. „maks. dawka do rdzenia kręgowego 45 Gy”. To wszystko musi być spójne, dlatego użycie greja nie jest kwestią mody, tylko po prostu standardem i wymogiem poprawnej dokumentacji medycznej.

Pytanie 2

Który system informatyczny służy do archiwizacji i transmisji obrazów radiologicznych?

A. PACS
B. IHE
C. RIS
D. HL7
PACS (Picture Archiving and Communication System) to właśnie ten system, który w praktyce „spina” całą diagnostykę obrazową od strony informatycznej. Jego główne zadanie to archiwizacja, przeglądanie i transmisja obrazów radiologicznych: RTG, TK, MR, USG, mammografia, a także inne badania, które generują obrazy w standardzie DICOM. W dobrze zorganizowanej pracowni radiologicznej każdy aparat (np. tomograf, aparat RTG, rezonans) wysyła obrazy do serwera PACS, gdzie są one bezpiecznie przechowywane, opisywane i udostępniane lekarzom na oddziałach, w poradniach, a czasem nawet zdalnie (teleradiologia). Moim zdaniem kluczowe w PACS jest to, że pozwala on na pracę w pełni cyfrową: radiolog może powiększać obraz, zmieniać okna (window/level), porównywać badania z wcześniejszych lat, tworzyć rekonstrukcje, a wszystko bez szukania klisz po szafach. To ogromna oszczędność czasu i mniejsze ryzyko zagubienia dokumentacji. Z punktu widzenia dobrych praktyk, nowoczesny PACS jest zintegrowany z RIS oraz systemem szpitalnym HIS, dzięki czemu dane pacjenta, zlecenia badań i opisy są spójne i nie trzeba ich przepisywać kilka razy. Standardowo komunikacja obrazów odbywa się przez DICOM, a dane tekstowe (np. informacje o pacjencie, status badania) często przez HL7. W praktyce technik radiologii powinien wiedzieć, jak sprawdzić, czy badanie poprawnie wysłało się do PACS, jak odszukać wcześniejsze badania danego pacjenta oraz jak zgłosić problemy z transmisją obrazów do działu IT. Bez sprawnego PACS-u pracownia działa, szczerze mówiąc, jak w poprzedniej epoce – na płytach, pendrive’ach i papierowych opisach, a to jest kompletnie nieefektywne i niezgodne z obecnymi standardami pracy w diagnostyce obrazowej.

Pytanie 3

Parametr spirometryczny czynnościowa pojemność zalegająca oznaczany jest skrótem

A. TV
B. RV
C. TLC
D. FRC
W spirometrii i badaniach pojemności płuc bardzo łatwo pomylić poszczególne skróty, bo wszystkie są do siebie trochę podobne i odnoszą się do objętości powietrza w płucach. Czynnościowa pojemność zalegająca to jednak konkretny parametr – FRC (Functional Residual Capacity) – i oznacza ilość powietrza pozostającą w płucach po spokojnym, nie wymuszonym wydechu. To jest taki punkt równowagi między sprężystością płuc a klatki piersiowej. Jeśli ktoś wybiera TLC, to zwykle myli pojęcia „maksymalna” i „czynnościowa”. TLC (Total Lung Capacity) to całkowita pojemność płuc, czyli objętość powietrza przy maksymalnym, głębokim wdechu. To jest największa objętość, jaką płuca mogą osiągnąć, a nie objętość przy spokojnym oddychaniu. FRC jest znacznie mniejsze niż TLC i ma inne znaczenie kliniczne, szczególnie przy ocenie hiperinfalcji w POChP. Z kolei RV (Residual Volume) to objętość zalegająca – powietrze, które pozostaje w płucach po maksymalnym, wymuszonym wydechu. To jest już skrajna sytuacja, gdy pacjent „wyciska” z płuc tyle, ile może. FRC obejmuje RV, ale nie jest z nim tożsame, bo zawiera jeszcze objętość zapasową wydechową (ERV). Typowy błąd myślowy polega na tym, że skoro nazwa zawiera słowo „zalegająca”, to ludzie automatycznie kojarzą to z RV, a nie z FRC jako sumą dwóch składowych. TV (Tidal Volume) to natomiast objętość oddechowa – ilość powietrza w pojedynczym spokojnym wdechu i wydechu. Bardzo podstawowy parametr, używany np. przy ustawianiu respiratora, ale zupełnie inny niż pojemności funkcjonalne. W spirometrii i bodypletyzmografii ważne jest, żeby odróżniać objętości (np. TV, RV) od pojemności (np. FRC, TLC), bo ich interpretacja według standardów ERS/ATS opiera się właśnie na tych relacjach. Mylenie tych skrótów może prowadzić do błędnych wniosków o restrykcji czy obturacji, dlatego warto mieć w głowie prosty schemat: FRC – punkt wyjścia po spokojnym wydechu, TLC – maksimum po głębokim wdechu, RV – minimum po maksymalnym wydechu, TV – zwykły, spokojny oddech.

Pytanie 4

Na wykresie EKG zaznaczono

Ilustracja do pytania
A. odstęp QT
B. odcinek PQ
C. odcinek ST
D. odstęp PQ
Na zaznaczonym fragmencie EKG widoczny jest klasyczny odstęp QT – czyli czas od początku zespołu QRS (pierwsze wychylenie zespołu komorowego, zwykle załamek Q lub R) do końca załamka T. Ten odcinek obejmuje pełny czas depolaryzacji i repolaryzacji komór serca. W praktyce mówi się, że QT to „elektryczne życie komór”, bo opisuje, jak długo komory są pobudzone i jak się potem wyciszają. To właśnie ten zakres jest oznaczony na schemacie: start na początku ostrego, wysokiego wychylenia (zespół QRS) i koniec na opadającym ramieniu załamka T. Moim zdaniem to jeden z kluczowych parametrów w EKG, który technik czy ratownik musi rozpoznawać niemal odruchowo. W codziennej pracy odstęp QT zawsze oceniamy z korekcją do częstości rytmu serca (QTc, np. wg wzoru Bazzetta). Normy QTc to orientacyjnie do ok. 440 ms u mężczyzn i 460 ms u kobiet, ale trzeba też patrzeć na zalecenia aktualnych wytycznych ESC i Polskiego Towarzystwa Kardiologicznego. Wydłużony QT może świadczyć o ryzyku groźnych komorowych zaburzeń rytmu, np. torsade de pointes, i często jest związany z lekami (neuroleptyki, niektóre antyarytmiki, antybiotyki makrolidowe), zaburzeniami elektrolitowymi (hipokaliemia, hipomagnezemia), wrodzonym zespołem długiego QT. Skrócony QT może pojawiać się np. w hiperkalcemii. W pracowni EKG dobrą praktyką jest mierzenie QT w kilku odprowadzeniach (najczęściej II, V5, V6) i wybór najlepiej widocznego końca załamka T, unikając odprowadzeń z wyraźną załamkowością U. Z mojego doświadczenia warto zawsze powiększyć zapis na ekranie aparatu, żeby dokładnie uchwycić koniec T, bo to tam najczęściej popełnia się błędy pomiarowe. Prawidłowe rozpoznanie odstępu QT, tak jak w tym pytaniu, to podstawa bezpiecznej interpretacji EKG.

Pytanie 5

Urografia polega na

A. dożylnym podaniu środka kontrastującego i wykonaniu jednego zdjęcia.
B. doustnym podaniu środka kontrastującego i wykonaniu jednego zdjęcia.
C. dożylnym podaniu środka kontrastującego i wykonaniu serii zdjęć.
D. doustnym podaniu środka kontrastującego i wykonaniu serii zdjęć.
Prawidłowo – urografia to badanie, w którym środek kontrastujący podaje się dożylnie, a następnie wykonuje się serię zdjęć RTG w określonych odstępach czasu. Dzięki temu kontrast, który jest wydalany przez nerki, kolejno wypełnia kielichy, miedniczki nerkowe, moczowody i pęcherz moczowy. Na zdjęciach widzimy więc dynamiczny obraz całego układu moczowego, a nie tylko pojedynczą „migawkę”. W praktyce klinicznej najczęściej robi się zdjęcie przeglądowe jamy brzusznej przed podaniem kontrastu, a potem kolejne ujęcia po kilku, kilkunastu i kilkudziesięciu minutach. Pozwala to ocenić zarówno budowę anatomiczną, jak i czynność wydalniczą nerek (czy kontrast pojawia się symetrycznie, z jakim opóźnieniem, czy nie ma zastoju). Moim zdaniem ważne jest zapamiętanie, że urografia to badanie czynnościowo-anatomiczne, a do tego potrzebna jest seria zdjęć, a nie jedno. Zgodnie z dobrymi praktykami pacjent powinien być odpowiednio nawodniony, mieć ocenioną kreatyninę i eGFR, bo kontrast jodowy może obciążać nerki. W radiologii przyjęte jest też dokładne informowanie pacjenta o możliwym uczuciu ciepła po podaniu kontrastu. Warto też kojarzyć, że doustne podanie kontrastu służy raczej do uwidaczniania przewodu pokarmowego, a nie układu moczowego. Urografia dożylna jest więc typowym przykładem badania z użyciem kontrastu jodowego w diagnostyce układu moczowego, wykonywanego w serii projekcji czasowych, co pozwala wykrywać kamicę, wady wrodzone, zwężenia czy guzy uciskające drogi moczowe.

Pytanie 6

Do podstawowych projekcji stosowanych w diagnostyce mammograficznej należą

A. kaudokranialna i boczna boczno-przyśrodkowa.
B. kraniokaudalna i skośna przyśrodkowo-boczna.
C. kraniokaudalna i skośna boczno-przyśrodkowa.
D. kaudokranialna i boczna przyśrodkowo-boczna.
Prawidłowa odpowiedź wskazuje na dwa podstawowe, standardowe ujęcia w mammografii: projekcję kraniokaudalną (CC) oraz skośną przyśrodkowo-boczną, czyli MLO – mediolateral oblique. To właśnie ten zestaw projekcji jest zalecany w badaniu przesiewowym i diagnostycznym piersi w większości wytycznych, np. europejskich programów screeningowych. Projekcja kraniokaudalna pokazuje pierś „z góry na dół”, umożliwia dobrą ocenę kwadrantów przyśrodkowych i centralnej części gruczołu, a także w miarę poprawne porównanie symetrii obu piersi. W praktyce technik musi zadbać o odpowiednie uciśnięcie piersi, wyrównanie brodawki i maksymalne wciągnięcie tkanki z okolicy przymostkowej, bo tam potrafią się chować drobne zmiany. Projekcja skośna przyśrodkowo-boczna (MLO) jest kluczowa, bo pozwala uwidocznić górno-zewnętrzny kwadrant piersi i ogon Spence’a, czyli fragment tkanki piersiowej sięgającej w stronę pachy. To właśnie tam bardzo często lokalizują się zmiany nowotworowe. MLO jest wykonywana pod kątem około 45–60°, w zależności od budowy klatki piersiowej, tak aby jak najlepiej „wciągnąć” tkankę piersiową i węzły chłonne pachowe. Moim zdaniem, w codziennej pracy dobrze jest pamiętać, że dopiero połączenie CC + MLO daje pełniejszy obraz piersi – radiolog ma wtedy możliwość oceny zmiany w dwóch płaszczyznach, co ułatwia lokalizację i różnicowanie np. guzków od nałożenia się struktur. W razie wątpliwości wykonuje się projekcje dodatkowe (np. ML, LM, powiększeniowe), ale to właśnie CC i MLO są absolutną podstawą, bez której żaden opis mammografii nie będzie kompletny ani zgodny z dobrą praktyką.

Pytanie 7

W radiologii stomatologicznej ząb o numerze 23 to kieł

A. górny lewy.
B. górny prawy.
C. dolny lewy.
D. dolny prawy.
W systemie numeracji zębów stosowanym w stomatologii i radiologii stomatologicznej (system FDI, czyli dwucyfrowy) ząb 23 oznacza górny lewy kieł. Pierwsza cyfra „2” wskazuje na II ćwiartkę łuku zębowego, czyli szczękę lewą (górny lewy kwadrant), a druga cyfra „3” określa konkretny ząb w tej ćwiartce – trójka to właśnie kieł. W praktyce radiologicznej bardzo ważne jest, żeby automatycznie kojarzyć numer z lokalizacją, bo na zdjęciu – szczególnie panoramicznym – łatwo się pomylić stronami, jeśli nie myśli się schematem ćwiartek. Na pantomogramie prawa i lewa strona są odwrócone względem obserwatora: prawa strona pacjenta jest po lewej stronie obrazu. Mimo tego numeracja pozostaje taka sama: ząb 23 zawsze będzie w górnym lewym kwadrancie pacjenta, czyli na szczęce po jego lewej stronie. W dobrych praktykach opisu zdjęć RTG zawsze podaje się numery zębów według FDI, żeby uniknąć nieporozumień między lekarzem, technikiem i protetykiem. Moim zdaniem warto wyrobić sobie nawyk „czytania” numeru: 1 i 2 to szczęka (góra), 3 i 4 to żuchwa (dół), a cyfry 1–8 to kolejno: siekacz przyśrodkowy, siekacz boczny, kieł, pierwszy przedtrzonowiec, drugi przedtrzonowiec, pierwszy trzonowiec, drugi trzonowiec, trzeci trzonowiec. Dzięki temu, gdy na opisie widzisz np. „ubytkowe zmiany próchnicowe zęba 23” albo „ognisko okołowierzchołkowe przy 23”, od razu wiesz, że chodzi o górny lewy kieł, co ma znaczenie przy planowaniu leczenia zachowawczego, endodontycznego czy chirurgicznego oraz przy prawidłowym pozycjonowaniu pacjenta do zdjęć celowanych na kły.

Pytanie 8

Na którym obrazie TK uwidoczniony jest artefakt spowodowany ruchami oddechowymi pacjenta?

A. Obraz 1
Ilustracja do odpowiedzi A
B. Obraz 2
Ilustracja do odpowiedzi B
C. Obraz 4
Ilustracja do odpowiedzi C
D. Obraz 3
Ilustracja do odpowiedzi D
Prawidłowo wskazany jest obraz 1. Na tym przekroju TK widać bardzo charakterystyczne, „pofalowane”, zygzakowate zniekształcenie konturów tkanek miękkich i ścian jamy brzusznej, jakby ktoś przesunął fragment obrazu w bok. Struktury anatomiczne nie są ostro odcięte, tylko rozciągnięte i nieregularne w kierunku osi Z i częściowo w płaszczyźnie obrazu. To typowy artefakt ruchowy wynikający z oddychania pacjenta w trakcie akwizycji danych. W TK brzucha i klatki piersiowej ruch oddechowy przepony oraz przesuwanie się narządów (wątroba, śledziona, jelita) powoduje, że kolejne projekcje są zbierane z narządami w nieco innym położeniu. Rekonstrukcja takiego „mieszanego” zestawu danych skutkuje właśnie takim falowaniem, rozmyciem, czasem podwójnymi konturami. W praktyce, zgodnie z dobrymi standardami (ESR, wytyczne producentów skanerów), badając jamę brzuszną prosimy pacjenta o wstrzymanie oddechu na czas skanu, stosujemy krótkie czasy rotacji lampy, odpowiednio dobraną kolimację i pitch, żeby skrócić czas zbierania danych. U pacjentów, którzy mają problem ze współpracą (np. dzieci, osoby z dusznością), często warto rozważyć techniki niskodawkowe z bardzo szybkim skanem, a czasem nawet sedację. Moim zdaniem kluczowe jest też dokładne wytłumaczenie pacjentowi przed badaniem, jak ma oddychać i kiedy przestać, bo to w prosty sposób zmniejsza ryzyko takich artefaktów i poprawia jakość diagnostyczną obrazów.

Pytanie 9

Na rentgenogramie uwidoczniono badanie

Ilustracja do pytania
A. urografii TK.
B. urografii.
C. angiografii nerkowej.
D. angiografii nerkowej TK.
Na zdjęciu widzimy klasyczną urografię, czyli badanie RTG układu moczowego po dożylnym podaniu środka cieniującego. Świadczy o tym kilka charakterystycznych cech obrazu. Po pierwsze – projekcja jest typowo przeglądowa AP jamy brzusznej i miednicy, bez warstwowania, bez rekonstrukcji 3D, bez typowego „przekrojowego” wyglądu jak w tomografii komputerowej. Widzimy zarys kręgosłupa lędźwiowego, talerzy biodrowych i – co najważniejsze – wyraźnie zakontrastowane kielichy nerkowe, miedniczki nerkowe oraz moczowody schodzące do pęcherza wypełnionego kontrastem. To jest dokładnie obraz fazy wydzielniczej urografii dożylnej. W angiografii nerkowej środek cieniujący wypełniałby tętnice nerkowe i ich gałęzie, byłby widoczny typowy „drzewkowaty” obraz naczyń, a nie układ kielichowo‑miedniczkowy. Dodatkowo angiografia wymagałaby cewnika w tętnicy (zwykle udowej), a obraz skupiałby się na naczyniach, nie na zarysie moczowodów czy pęcherza. W urografii TK natomiast mielibyśmy serię przekrojów poprzecznych (axial), ewentualnie rekonstrukcje MPR, a nie pojedynczą płaską kliszę. Moim zdaniem to jest bardzo typowy przykład, jaki można spotkać w podręcznikach – klasyczny obraz kontrastowego wypełnienia całego górnego i dolnego odcinka dróg moczowych. W praktyce klinicznej taka urografia służy do oceny drożności moczowodów, wykrywania kamieni, wad wrodzonych, poszerzeń układu kielichowo‑miedniczkowego czy oceny pęcherza. Choć dziś częściej używa się urografii TK, to rozpoznawanie klasycznego badania RTG nadal jest ważne, bo takie zdjęcia wciąż pojawiają się w dokumentacji i na egzaminach.

Pytanie 10

Który środek kontrastujący stosuje się w badaniu metodą rezonansu magnetycznego?

A. Na bazie gadolinu.
B. Lipiodol ultra fluid.
C. Siarczan baru.
D. Na bazie jodu.
W diagnostyce obrazowej łatwo pomylić rodzaje środków kontrastowych, bo w praktyce mamy ich kilka i każdy jest „przywiązany” do konkretnej metody. Typowy błąd polega na automatycznym kojarzeniu kontrastu z jodem albo barem, bo to najczęściej pojawia się przy RTG i tomografii komputerowej, i przez to ktoś odruchowo zaznacza je również przy rezonansie magnetycznym. To się wydaje logiczne, ale fizyka tych badań jest zupełnie inna. W rezonansie magnetycznym nie ma promieniowania rentgenowskiego, tylko pole magnetyczne i fale radiowe, więc kontrast musi działać na właściwości magnetyczne protonów, a nie na pochłanianie promieniowania X. Środki na bazie jodu są klasycznymi kontrastami radiologicznymi stosowanymi głównie w tomografii komputerowej (TK) i w badaniach naczyniowych w RTG, jak angiografie. Ich zadaniem jest silne pochłanianie promieniowania rentgenowskiego, co poprawia widoczność naczyń, narządów miąższowych czy układu moczowego. W MR jod „nie ma co robić”, bo aparat nie rejestruje promieniowania przechodzącego przez ciało, tylko sygnał magnetyczny z jąder wodoru. Dlatego środek jodowy nie zadziała jak kontrast w MR, nawet jeśli podamy go prawidłowo dożylnie. Podobnie wygląda sytuacja z siarczanem baru. Bar jest stosowany głównie w badaniach przewodu pokarmowego z użyciem promieniowania X: pasaż jelita, wlewka doodbytnicza, badanie żołądka, przełyku. Siarczan baru jest gęsty, nieprzepuszczalny dla promieniowania i bardzo ładnie kontrastuje światło przewodu pokarmowego, ale kompletnie nie ma zastosowania w rezonansie. Do MR nie podaje się baru, ani doustnie, ani dożylnie. Z kolei lipiodol ultra fluid to oleisty kontrast jodowy używany w wybranych procedurach zabiegowych i diagnostycznych w radiologii interwencyjnej, np. w limfografii, czasem przy chemoembolizacji guzów wątroby. To też środek przeznaczony dla technik wykorzystujących promieniowanie X, a nie pole magnetyczne. Podsumowując, mylenie tych środków wynika zwykle z ogólnego skojarzenia „kontrast = jod lub bar”, bez uwzględnienia fizycznych podstaw badania. W rezonansie zawsze trzeba myśleć o gadolinie i jego wpływie na czasy relaksacji, a nie o pochłanianiu promieniowania rentgenowskiego, bo to zupełnie inna bajka i inne zasady doboru kontrastu.

Pytanie 11

Które znaczniki są wykorzystywane w scyntygrafii tarczycy?

A. Mikrosfery albuminowe i technet 99m
B. Mikrosfery albuminowe i jod 131
C. Mikrosfery albuminowe i jod 132
D. Jod 131 i technet 99m
Prawidłowo wskazane znaczniki – jod 131 i technet 99m – to klasyczne i w zasadzie podręcznikowe radioizotopy stosowane w scyntygrafii tarczycy. W praktyce medycyny nuklearnej oba wykorzystuje się do oceny funkcji i budowy gruczołu, ale w trochę innych sytuacjach. Technet 99m (a dokładniej nadtechnecjan Tc‑99m) jest pobierany przez komórki tarczycy podobnie jak jod, ale nie jest przez nie wbudowywany w hormony. Dzięki temu daje szybki, czysty obraz rozmieszczenia czynnego miąższu – świetnie nadaje się do rutynowych badań scyntygraficznych, oceny guzków „zimnych” i „gorących”, kontroli po leczeniu zachowawczym nadczynności. W standardach pracowni medycyny nuklearnej Tc‑99m jest izotopem pierwszego wyboru do typowej scyntygrafii, bo ma krótki okres półtrwania i emituje głównie promieniowanie gamma o energii idealnej dla gammakamery. Jod 131 ma inne zastosowanie: służy głównie do badań jodochwytności, planowania terapii jodem promieniotwórczym oraz do terapii nadczynności i raka tarczycy. Emituje promieniowanie beta (terapeutyczne) i gamma (diagnostyczne), ale z racji wyższej dawki i gorszej jakości obrazowania w nowoczesnych standardach rzadziej używa się go do klasycznej scyntygrafii obrazowej, a bardziej do procedur terapeutyczno‑diagnostycznych. Moim zdaniem ważne jest, żeby kojarzyć: tarczyca = izotopy jodu + Tc‑99m, a nie mikrosfery czy inne radiofarmaceutyki narządowo‑nieswoiste. W praktyce technik medycyny nuklearnej musi wiedzieć, że do scyntygrafii tarczycy przygotowuje się właśnie preparaty jodu promieniotwórczego albo nadtechnecjanu, zgodnie z procedurami, kontrolą jakości radiofarmaceutyku i zasadami ochrony radiologicznej.

Pytanie 12

Który artefakt uwidoczniono na skanie RM głowy?

Ilustracja do pytania
A. Przesunięcie chemiczne.
B. Poruszenie pacjenta.
C. Zawijanie obrazu.
D. Efekt uśrednienia.
Na przedstawionym obrazie RM głowy mamy klasyczny przykład artefaktu zawijania obrazu, a nie efekt uśrednienia, poruszenia pacjenta ani przesunięcia chemicznego. W diagnostyce obrazowej MR bardzo łatwo pomylić te zjawiska, bo każde z nich pogarsza jakość obrazu, ale ich mechanizm fizyczny i wygląd są zupełnie inne. Poruszenie pacjenta powoduje najczęściej rozmycie konturów, podwójne krawędzie, smugi wzdłuż kierunku kodowania fazy, czasem takie „cienie duchy” od naczyń pulsujących. Cały obraz wygląda jakby był lekko rozmazany, szczególnie tam, gdzie granica tkanek jest ostra, np. między istotą szarą a białą. Tutaj struktury są ostre, tylko pewne elementy anatomiczne pojawiają się w nienaturalnym miejscu, co bardziej pasuje do aliasingu niż ruchu. Efekt uśrednienia (partial volume effect) to z kolei zjawisko związane z grubymi warstwami i dużym voxel’em: sygnał z różnych tkanek mieszanych w jednym voxelu uśrednia się, przez co zanika kontrast między strukturami. Na obrazie nie widzielibyśmy dodatkowych nałożonych fragmentów, tylko np. słabiej widoczne granice kory, wygładzenie zakrętów, zlewanie się małych struktur. Tego tutaj nie ma. Przesunięcie chemiczne dotyczy głównie granicy tłuszcz–woda, np. w okolicy oczodołów lub tkanki podskórnej, i objawia się cienkim pasemek jasnym i ciemnym po dwóch stronach granicy, przesuniętym w kierunku fazowym. Jest to subtelny, liniowy artefakt na styku tkanek o różnym przesunięciu częstotliwości, a nie całe „przerzucone” fragmenty głowy. Typowym błędem jest patrzenie tylko na to, że obraz jest „dziwny” i odruchowe obwinianie ruchu pacjenta. Z mojego doświadczenia w pracowni MR dużo osób nie zwraca uwagi na kierunek kodowania fazy i wielkość FOV, a to właśnie one decydują o powstawaniu zawijania. Dlatego warto przy każdym takim pytaniu przeanalizować: czy widzę rozmycie i smugi (ruch), liniowe pasma na granicy tłuszcz–woda (przesunięcie chemiczne), czy raczej powtórzone, przesunięte fragmenty anatomii po przeciwnej stronie obrazu – czyli aliasing. Taka analiza bardzo pomaga później w realnej pracy przy optymalizacji sekwencji i szybkim korygowaniu błędów.

Pytanie 13

Do wykonania stomatologicznego zdjęcia rentgenowskiego techniką kąta prostego promień centralny należy ustawić prostopadle do

A. linii Campera.
B. dwusiecznej kąta zawartego między filmem a osią zęba.
C. płaszczyzny zgryzu.
D. filmu rentgenowskiego i osi długiej zęba.
W technice kąta prostego (ang. paralleling technique) kluczowa zasada brzmi: promień centralny musi być ustawiony prostopadle jednocześnie do filmu rentgenowskiego (lub sensora) oraz do osi długiej zęba. To właśnie opisuje odpowiedź z filmem rentgenowskim i osią długą zęba. Dzięki temu uzyskujemy minimalne zniekształcenia geometryczne – obraz nie jest ani wydłużony, ani skrócony, tylko możliwie wiernie odwzorowuje rzeczywistą długość i kształt zęba. Moim zdaniem to jedna z ważniejszych zasad w radiologii stomatologicznej, bo w praktyce klinicznej lekarz bardzo polega na dokładnym odwzorowaniu długości korzeni, np. przy planowaniu leczenia endodontycznego, ocenie zmian okołowierzchołkowych czy kontroli po leczeniu kanałowym. W technice kąta prostego film umieszcza się możliwie równolegle do osi długiej zęba, najczęściej przy pomocy specjalnych uchwytów pozycjonujących. Potem lampa RTG jest ustawiana tak, aby wiązka padała dokładnie pod kątem 90° do tej pary: film–ząb. To jest standard zgodny z nowoczesnymi zaleceniami radiologii stomatologicznej, bo zapewnia powtarzalność projekcji, lepszą jakość diagnostyczną i mniejsze ryzyko błędnej interpretacji. W praktyce, jeśli promień nie jest prostopadły do filmu i osi zęba, pojawiają się typowe błędy: skrócenie korzeni (foreshortening), wydłużenie (elongation) albo nałożenie się struktur. Technik, który dobrze opanuje ustawianie promienia w tej technice, dużo rzadziej musi powtarzać zdjęcia, co przekłada się też na mniejsze narażenie pacjenta na promieniowanie jonizujące. To jest po prostu dobra praktyka i zgodna z zasadą ALARA – jak najmniejsza dawka przy zachowaniu jakości diagnostycznej.

Pytanie 14

Osłony na gonady dla osób dorosłych powinny posiadać równoważnik osłabienia promieniowania nie mniejszy niż

A. 0,50 mm Pb
B. 0,35 mm Pb
C. 1,00 mm Pb
D. 0,75 mm Pb
Prawidłowo – dla osób dorosłych osłony na gonady powinny mieć równoważnik osłabienia co najmniej 1,00 mm Pb. Wynika to z zasad ochrony radiologicznej, gdzie gonady traktuje się jako narząd szczególnie wrażliwy, kluczowy dla płodności i ryzyka dziedzicznych skutków promieniowania. Grubość 1,00 mm ołowiu zapewnia bardzo wysoki stopień osłabienia wiązki promieniowania w typowych warunkach badań RTG, np. w radiografii miednicy, bioder, kręgosłupa lędźwiowego. Przy takiej grubości osłony dawka pochłonięta przez jądra lub jajniki jest istotnie zredukowana, a jednocześnie osłona jest jeszcze na tyle ergonomiczna, że da się ją wygodnie stosować w praktyce. Moim zdaniem ważne jest, żeby nie traktować tej wartości jako „opcji”, tylko jako minimum – jeśli w pracowni są osłony cieńsze, to dla dorosłych nie spełniają one standardów ochrony. W dobrych pracowniach radiologicznych rutynowo stosuje się osłony gonadowe właśnie o grubości około 1 mm Pb, dopasowane kształtem: fartuchy typu „figi”, ochraniacze moszny, osłony na okolice miednicy. Warto pamiętać, że zgodnie z zasadą ALARA (As Low As Reasonably Achievable) redukujemy dawkę wszędzie tam, gdzie to możliwe, bez utraty jakości diagnostycznej obrazu. Dobrze dobrana osłona 1 mm Pb nie powinna wchodzić w pole obrazowania i nie może zasłaniać interesujących nas struktur, dlatego tak ważne jest poprawne pozycjonowanie pacjenta i prawidłowe ułożenie samej osłony. Z mojego doświadczenia wiele błędów w pracowni polega właśnie na tym, że ktoś ma dobrą osłonę, ale źle ją zakłada i albo wchodzi w projekcję, albo w ogóle nie przykrywa gonad. Sama grubość 1,00 mm Pb to jedno, a prawidłowa technika i nawyk jej stosowania – drugie, równie ważne.

Pytanie 15

Rozpraszanie promieniowania X, w wyniku którego następuje zwiększenie długości fali promieniowania, to zjawisko

A. Comptona.
B. Maxwella.
C. Bragga.
D. Boltzmana.
Prawidłowo wskazane zjawisko to efekt Comptona. W fizyce promieniowania mówi się, że jest to sprężyste rozpraszanie fotonów promieniowania X (albo gamma) na praktycznie swobodnych elektronach, po którym foton ma mniejszą energię, a więc większą długość fali. Energia nie znika, tylko dzieli się: część przejmuje elektron (zostaje on wybity z powłoki i zyskuje energię kinetyczną), a część zachowuje foton, ale już o niższej energii i zmienionym kierunku. Właśnie ta utrata energii fotonu jest fizyczną przyczyną zwiększenia długości fali. W praktyce radiologicznej efekt Comptona dominuje w zakresie energii typowej dla diagnostycznych zdjęć RTG klatki piersiowej czy jamy brzusznej, szczególnie w tkankach o średniej gęstości. Z mojego doświadczenia to jedno z kluczowych zjawisk, które trzeba rozumieć, jeśli ktoś chce sensownie mówić o kontraście obrazu i dawce rozproszonej. Rozproszone promieniowanie Comptona odpowiada za tzw. mgłę na obrazie, pogarsza kontrast i zwiększa niepotrzebne narażenie personelu. Dlatego w dobrych praktykach pracowni RTG stosuje się kratki przeciwrozproszeniowe, odpowiednie kolimowanie wiązki, właściwe parametry kV i mAs – właśnie po to, żeby ograniczać wpływ rozpraszania Comptona. W planowaniu osłon stałych i organizacji pracowni fizyk medyczny też musi brać pod uwagę udział promieniowania rozproszonego na ściany, sufit i podłogę. Co ważne, efekt Comptona jest w dużej mierze niezależny od liczby atomowej materiału, więc występuje zarówno w tkankach miękkich, jak i w kości, a jego intensywność bardziej zależy od gęstości elektronowej i energii wiązki. W tomografii komputerowej, przy typowych energiach efektywnych wiązki, rozpraszanie Comptona również ma duży udział i wpływa na artefakty oraz konieczność stosowania filtrów i algorytmów rekonstrukcji uwzględniających rozproszenie. Dlatego kojarzenie „zwiększenia długości fali po rozproszeniu” z nazwiskiem Compton to w medycynie obrazowej absolutna podstawa fizyki promieniowania.

Pytanie 16

Zamieszczone obrazy związane są z badaniem

Ilustracja do pytania
A. testu wysiłkowego.
B. dopplerowskim.
C. densytometrycznym.
D. audiometrycznym.
Prawidłowo wskazana odpowiedź to badanie densytometryczne. Na obrazie po lewej stronie widać projekcję bliższego końca kości udowej z nałożonymi polami pomiarowymi, a po prawej charakterystyczny wykres zależności BMD (Bone Mineral Density, gęstość mineralna kości) od wieku z zaznaczonym T-score i strefami: zieloną (norma), żółtą (osteopenia) i czerwoną (osteoporoza). To jest typowy ekran z badania DXA (dual-energy X-ray absorptiometry), czyli złotego standardu w diagnostyce osteoporozy według zaleceń WHO i większości towarzystw osteologicznych. W densytometrii wykorzystuje się promieniowanie rentgenowskie o dwóch różnych energiach, a oprogramowanie aparatu wylicza BMD w g/cm² oraz wskaźniki T-score i Z-score. Kluczowe miejsca pomiaru to kręgosłup lędźwiowy i bliższy koniec kości udowej, dokładnie tak jak na pokazanym obrazie. W praktyce klinicznej wynik densytometrii służy nie tylko do rozpoznania osteoporozy, ale też do oceny ryzyka złamań (np. FRAX), kwalifikacji do leczenia farmakologicznego i monitorowania skuteczności terapii. Z mojego doświadczenia ważne jest prawidłowe pozycjonowanie pacjenta i unikanie artefaktów, bo błędy ułożenia biodra czy obecność metalowych elementów potrafią istotnie zafałszować BMD. Dobrą praktyką jest porównywanie kolejnych badań na tym samym aparacie, w tej samej projekcji i z identycznym protokołem analizy, żeby trend gęstości mineralnej kości był wiarygodny. Warto też pamiętać, że densytometria nie bada „jakości” kości jako takiej, tylko ich gęstość, dlatego wynik zawsze interpretujemy razem z obrazem klinicznym, wywiadem o złamaniach i innymi czynnikami ryzyka.

Pytanie 17

W której próbie stroikowej przystawia się stroik do czoła (u podstawy nosa) lub na szczycie głowy i porównuje się przewodnictwo kostne ucha prawego i lewego?

A. W próbie Binga.
B. W próbie Webera.
C. W próbie Rinnego.
D. W próbie Schwabacha.
W próbie Webera rzeczywiście przykładamy drgający stroik kamertonowy do linii pośrodkowej czaszki – najczęściej na szczycie głowy, na czole u podstawy nosa albo na siekacze górne – i porównujemy przewodnictwo kostne między prawym a lewym uchem. To badanie jest klasycznym testem stroikowym do oceny lateralizacji dźwięku. W praktyce klinicznej chodzi o to, żeby sprawdzić, czy dźwięk jest słyszany symetrycznie w obu uszach, czy „ucieka” bardziej na jedną stronę. U osoby z prawidłowym słuchem lub z symetrycznym ubytkiem słuchu dźwięk z próby Webera jest odczuwany w linii środkowej, jakby „w głowie”. Przy niedosłuchu przewodzeniowym (np. korek woskowinowy, wysięk w jamie bębenkowej) dźwięk lateralizuje do ucha chorego, natomiast przy niedosłuchu odbiorczym (uszkodzenie ślimaka, nerwu VIII) – do ucha lepiej słyszącego. Moim zdaniem warto zapamiętać prosty schemat: Weber do środka czaszki, ocena gdzie „ucieka” dźwięk. W standardzie badania laryngologicznego próba Webera jest zawsze łączona z próbą Rinnego, bo dopiero zestawienie wyników pozwala w miarę sensownie odróżnić uszkodzenie przewodzeniowe od odbiorczego. W gabinecie protetyka słuchu czy w podstawowej opiece zdrowotnej te dwie próby są taką szybką, „łóżkową” metodą orientacyjnej oceny słuchu zanim pacjent trafi na audiometrię tonalną. Warto też pamiętać, żeby w trakcie badania poprosić pacjenta o zamknięcie oczu i nie sugerować mu odpowiedzi, bo subiektywne wrażenie lateralizacji jest kluczowe dla interpretacji.

Pytanie 18

Które urządzenie zostało przedstawione na fotografii i w jakiej pracowni znajduje zastosowanie?

Ilustracja do pytania
A. Densytometr rentgenowski w pracowni medycyny nuklearnej.
B. Rentgenograf w pracowni rentgenowskiej.
C. Kamera scyntygraficzna w pracowni medycyny nuklearnej.
D. Gammakamera w pracowni radioterapii.
Na fotografii wiele osób na pierwszy rzut oka widzi po prostu „duży aparat z tunelem i stołem”, co łatwo skojarzyć z tomografem, rentgenem albo nawet sprzętem do radioterapii. To dość typowy błąd: ocenianie urządzenia tylko po tym, że ma pierścień i ruchomy stół. W diagnostyce obrazowej trzeba jednak zwracać uwagę na szczegóły konstrukcyjne i przede wszystkim na to, jakie zjawisko fizyczne jest wykorzystywane. Rentgenograf w pracowni RTG emituje promieniowanie z lampy rentgenowskiej na zewnątrz, przez pacjenta, na detektor po przeciwnej stronie. Zazwyczaj ma jedną głowicę z lampą i płaski detektor, a nie symetryczny pierścień z masywnymi głowicami po obu stronach stołu. Do tego w klasycznej pracowni RTG nie podajemy pacjentowi radiofarmaceutyków, tylko regulujemy parametry ekspozycji (kV, mAs, ognisko, projekcje). Radioterapia z kolei wykorzystuje akcelerator liniowy lub aparaty kobaltowe do leczenia, nie do obrazowania funkcjonalnego. Głowica akceleratora jest zawieszona na ramieniu gantry, obraca się wokół pacjenta i ma zupełnie inną geometrię, a w opisie klinicznym mówimy o frakcjach dawki, planie napromieniania, obszarach PTV, CTV, a nie o obrazach scyntygraficznych. Pomyłka z densytometrem rentgenowskim bierze się z tego, że też kojarzy się z kośćmi i promieniowaniem jonizującym. Densytometr jednak jest kompaktowy, dużo mniejszy, służy głównie do badania gęstości mineralnej kości (BMD) i pracuje w pracowni densytometrii lub RTG, a nie w medycynie nuklearnej. W medycynie nuklearnej kluczowe jest podanie radiofarmaceutyku i rejestracja promieniowania emitowanego z wnętrza organizmu za pomocą kamery scyntygraficznej (gammakamery). To właśnie takie urządzenie pokazano na zdjęciu: duże głowice detekcyjne, kolimatory, możliwość wykonywania badań planarnych i SPECT. Z mojego doświadczenia, jeśli zapamiętasz, że w medycynie nuklearnej obraz „pochodzi z pacjenta”, a w RTG czy radioterapii „pada na pacjenta z zewnątrz”, dużo łatwiej będzie Ci odróżniać te aparaty i unikać takich pomyłek w przyszłości.

Pytanie 19

Co jest przyczyną artefaktu widocznego na obrazie MR?

Ilustracja do pytania
A. Zjawisko zawijania fazy.
B. Ruch narządu lub pacjenta.
C. Pulsacyjny przepływ krwi.
D. Zjawisko zaniku sygnału.
W rezonansie magnetycznym istnieje kilka typowych artefaktów i łatwo je ze sobą pomylić, szczególnie kiedy patrzymy tylko na pojedynczy przekrój. W tym pytaniu kluczowe jest odróżnienie zjawisk związanych z samą fizyką obrazowania od efektów wynikających z ruchu pacjenta. Zjawisko zawijania fazy, czyli aliasing, powstaje wtedy, gdy pole widzenia (FOV) w kierunku kodowania fazy jest zbyt małe w stosunku do rzeczywistej wielkości obszaru, z którego pochodzi sygnał. Struktury spoza FOV są „przenoszone” na przeciwległą stronę obrazu, jakby nachodziły na badany obszar. Wygląda to jak zdublowane elementy anatomiczne pojawiające się w miejscu, gdzie ich w ogóle nie powinno być. Na obrazie oczodołów w pytaniu nie ma jednak takiego typowego nałożenia struktur spoza pola – jest raczej rozmycie i nieostrość, co sugeruje ruch, a nie aliasing. Zanik sygnału kojarzy się głównie z artefaktami przepływowymi, niejednorodnością pola lub obecnością materiału o silnych właściwościach magnetycznych. Wtedy w obrazie widzimy ciemne strefy, „dziury” w sygnale, czasem z towarzyszącymi zniekształceniami geometrii. Tu sygnał nie znika, tylko jest rozciągnięty i nieostry, więc mechanizm jest inny. Pulsacyjny przepływ krwi faktycznie może dawać artefakty, zwłaszcza w naczyniach podstawy czaszki czy zatokach żylnych, ale najczęściej objawia się to pasmami wysokiego lub niskiego sygnału w przebiegu naczyń, czasem przypominającymi duchy w kierunku kodowania fazy. W oczodołach bardziej widoczne byłyby naczynia oczodołowe lub struktury sąsiadujące, a nie tak uogólnione rozmazanie konturów. Typowy błąd myślowy polega na tym, że każdą nieostrość przypisuje się od razu zanikowi sygnału albo aliasingowi, bo brzmią bardziej „fizycznie”. Tymczasem w codziennej praktyce technika MR najczęstszą przyczyną problemów z jakością obrazu jest zwykły ruch: mruganie, poruszenie głową, przełykanie śliny. Dlatego przy analizie artefaktów zawsze warto najpierw zadać sobie pytanie, czy pacjent mógł się ruszyć, a dopiero później szukać bardziej złożonych wyjaśnień fizycznych.

Pytanie 20

Warstwa półchłonna (WP) jest wyrażona w mm Cu dla

A. terapii ortowoltowej.
B. medycyny nuklearnej.
C. diagnostyki radiologicznej.
D. terapii megawoltowej.
Warstwa półchłonna to pojęcie wspólne dla wielu dziedzin wykorzystujących promieniowanie jonizujące, ale kluczowe jest, w jakim materiale i dla jakiego zakresu energii ją określamy. Typowy błąd polega na automatycznym przenoszeniu jednego standardu na wszystkie zastosowania. W medycynie nuklearnej wprawdzie też mówi się o osłonach i tłumieniu, ale tam operuje się głównie radionuklidami emitującymi promieniowanie gamma lub beta i używa się ołowiu, wolframu czy betaglasa, a nie milimetrów miedzi jako standardu HVL. Dodatkowo w medycynie nuklearnej bardziej interesuje nas aktywność, czas połowicznego zaniku i dawka pochłonięta niż klasyczna WP dla wiązki rentgenowskiej. W terapii megawoltowej sytuacja jest jeszcze inna. Dla energii rzędu kilku–kilkunastu MV (akceleratory liniowe) miedź nie jest typowym materiałem referencyjnym do określania warstwy półchłonnej. Charakterystyka wiązki opisuje się raczej przez procentową dawkę głęboką (PDD) albo wskaźniki TPR/TMR, a kontrolę jakości prowadzi się w fantomach wodnych i za pomocą wiązki fotonów wysokoenergetycznych, gdzie rolę materiału odniesienia pełni woda lub tkanka ekwiwalentna. W diagnostyce radiologicznej z kolei HVL jak najbardziej się stosuje, ale standardowo w milimetrach aluminium, nie miedzi. Wynika to z niższych energii wiązki diagnostycznej (zwykle 40–120 kV) i historycznych oraz normatywnych zaleceń, np. w regulacjach dotyczących kontroli jakości aparatów RTG. Mylenie mm Al z mm Cu wynika często z tego, że oba pojęcia występują w literaturze i na szkoleniach obok siebie, ale są przypisane do innych zakresów energii i innych zastosowań. Dobra praktyka w ochronie radiologicznej i radioterapii jest taka, żeby zawsze kojarzyć: ortowolt – mm Cu, diagnostyka – mm Al, megawolt – inne wskaźniki jakości wiązki, a w medycynie nuklearnej głównie ekwiwalentne grubości ołowiu i parametry związane z izotopem, a nie klasyczną WP dla promieniowania rentgenowskiego.

Pytanie 21

Co określa M₀ w systemie klasyfikacji nowotworów TNM?

A. Nie stwierdza się przerzutów odległych.
B. Nie stwierdza się przerzutów w regionalnych węzłach chłonnych.
C. Nie można ocenić obecności przerzutów odległych.
D. Nie można ocenić regionalnych węzłów chłonnych.
Prawidłowo – symbol M₀ w klasyfikacji TNM oznacza, że nie stwierdza się przerzutów odległych. W systemie TNM mamy trzy główne składowe: T (tumor) opisuje guz pierwotny, N (nodes) dotyczy zajęcia regionalnych węzłów chłonnych, a M (metastases) odnosi się właśnie do przerzutów odległych, czyli takich, które pojawiają się w narządach odległych od guza pierwotnego, np. w płucach, wątrobie, kościach czy mózgu. M₀ to informacja, że w aktualnej diagnostyce obrazowej i klinicznej nie ma dowodów na obecność takich przerzutów. W praktyce klinicznej oznacza to zwykle wcześniejsze stadium zaawansowania nowotworu i często lepsze rokowanie. Przy planowaniu leczenia onkologicznego, np. radioterapii czy leczenia chirurgicznego, rozróżnienie M₀ i M₁ jest absolutnie kluczowe. Pacjent z M₀ może być kwalifikowany do leczenia radykalnego, czyli z intencją wyleczenia, natomiast przy M₁ najczęściej myślimy o leczeniu paliatywnym lub skojarzonym, bardziej nastawionym na kontrolę choroby i objawów niż na pełne wyleczenie. Z mojego doświadczenia warto zawsze pamiętać, że zapis M₀ nie oznacza, że przerzutów na pewno nie ma, tylko że nie są wykrywalne dostępnymi metodami (TK, MR, PET-CT, scyntygrafia, USG itd.). Dlatego tak ważne są dobrze wykonane badania obrazowe oraz ich prawidłowa interpretacja. W dobrych standardach opisu badań radiologicznych i onkologicznych zawsze jasno podaje się status M, bo od tego zależy nie tylko rodzaj terapii, ale też np. kwalifikacja do badań klinicznych czy decyzje o zakresie napromieniania w radioterapii.

Pytanie 22

Na przekroju poprzecznym rezonansu magnetycznego strzałką oznaczono

Ilustracja do pytania
A. trzustkę.
B. śledzionę.
C. żołądek.
D. wątrobę.
Strzałka na przekroju poprzecznym MR pokazuje wątrobę – duży, jednorodny narząd położony w prawym górnym kwadrancie jamy brzusznej, przylegający do przepony i ściany brzucha. Na typowych obrazach przekroju poprzecznego (axial) wątroba zajmuje znaczną część prawej strony obrazu, otacza żyłę główną dolną, a jej krawędź jest lekko zaokrąglona. W rezonansie magnetycznym rozpoznajemy ją nie tylko po lokalizacji, ale też po charakterystycznym, stosunkowo jednorodnym sygnale miąższu oraz obecności struktur naczyniowych – żyły wrotnej i żył wątrobowych. W praktyce klinicznej poprawne rozpoznawanie wątroby na MR jest kluczowe przy ocenie zmian ogniskowych, takich jak naczyniaki, przerzuty czy ogniska HCC, oraz przy planowaniu biopsji czy zabiegów interwencyjnych. Radiolodzy, zgodnie z dobrymi praktykami (ESR, EASL), zawsze zaczynają opis jamy brzusznej od oceny wątroby: wielkości, jednorodności miąższu, zarysów brzegu, cech marskości, obecności płynu w jamie otrzewnej. Moim zdaniem opanowanie anatomii wątroby w obrazowaniu to podstawa, bo ten narząd jest punktem odniesienia do orientacji w całym badaniu. W technice MR ważne jest też świadome dobranie sekwencji: T1, T2, sekwencje z saturacją tłuszczu oraz fazy po kontraście paramagnetycznym, które pozwalają odróżnić prawidłowy miąższ od zmian patologicznych. W codziennej pracy technika elektroradiologii umiejętność szybkiego rozpoznania wątroby na skanach pomaga prawidłowo zaplanować zakres badania, ustawić odpowiednie pola widzenia (FOV) i ocenić, czy pacjent był dobrze wypozycjonowany.

Pytanie 23

Na przekroju poprzecznym TK mózgu strzałką wskazano obszar

Ilustracja do pytania
A. hypodensyjny w płacie czołowym.
B. hyperdensyjny w móżdżku.
C. hyperdensyjny w płacie czołowym.
D. hypodensyjny w móżdżku.
Na przedstawionym przekroju poprzecznym TK głowy widoczny jest obraz w projekcji osiowej na poziomie tylnego dołu czaszki. Strzałka wyraźnie wskazuje strukturę położoną w obrębie móżdżku, poniżej półkul mózgowych i powyżej otworu wielkiego. Z mojego doświadczenia w opisywaniu takich badań najczęstszy błąd to pomylenie tego poziomu z płatami potylicznymi, ale tutaj widać typowy układ półkul móżdżku i robaka móżdżku. Zaznaczony obszar jest jaśniejszy niż prawidłowa tkanka móżdżku, czyli ma większą gęstość w jednostkach Hounsfielda – mówimy więc, że jest hyperdensyjny. W TK bez kontrastu taka hyperdensyjna zmiana w móżdżku najczęściej sugeruje świeży krwotok śródmózgowy lub krwotok do guza. W praktyce klinicznej rozpoznanie hyperdensyjnego ogniska w móżdżku ma duże znaczenie, bo krwotok w tej lokalizacji może szybko dawać wzrost ciśnienia śródczaszkowego i ucisk pnia mózgu. Standardowo, zgodnie z dobrymi praktykami radiologicznymi, opisując taki obraz, zwraca się uwagę na lokalizację (półkula móżdżku, robak), gęstość zmiany, obecność obrzęku, przemieszczenie struktur pośrodkowych i ewentualne poszerzenie układu komorowego. Warto też pamiętać, że hyperdensyjny obszar w TK może wynikać nie tylko z krwi, ale też z zwapnień, materiału kontrastowego lub ciała obcego, dlatego zawsze ocenia się kontekst kliniczny i porównuje z innymi warstwami oraz z wcześniejszymi badaniami. Moim zdaniem to pytanie dobrze uczy podstawowego odruchu: najpierw lokalizacja anatomiczna (tu móżdżek), dopiero potem charakter densyjny (hyper- czy hypodensyjny).

Pytanie 24

Wysoką rozdzielczość przestrzenną obrazowania MR uzyskuje się przez

A. zmniejszenie wielkości FoV i zmniejszenie matrycy obrazującej.
B. zwiększenie wielkości FoV i zmniejszenie matrycy obrazującej.
C. zwiększenie wielkości FoV i zwiększenie matrycy obrazującej.
D. zmniejszenie wielkości FoV i zwiększenie matrycy obrazującej.
Wszystkie niepoprawne odpowiedzi wynikają z jednego, bardzo typowego nieporozumienia: mylenia „dużego obrazu” z „dokładnym obrazem”. W MR nie chodzi o to, żeby zobaczyć jak największy obszar ciała, tylko żeby na jednostkę długości przypadało jak najwięcej pikseli. Rozdzielczość przestrzenna to w uproszczeniu rozmiar pojedynczego piksela, czyli FoV podzielone przez liczbę elementów matrycy. Jeśli zwiększamy FoV przy tej samej lub mniejszej matrycy, to każdy piksel obejmuje większy fragment tkanki. Obraz może wyglądać „większy” na monitorze, ale szczegóły anatomiczne są bardziej rozmyte, krawędzie struktur mniej ostre, a małe zmiany patologiczne mogą się zlać z tłem. To jest klasyczny błąd myślowy: skoro coś jest większe, to wydaje się bardziej widoczne, ale w diagnostyce obrazowej liczy się gęstość informacji, a nie sama powierzchnia. Z drugiej strony samo zmniejszenie matrycy przy dowolnym FoV zawsze obniża rozdzielczość, bo redukujemy liczbę linii w k-space i upraszczamy obraz. To czasem się robi celowo, żeby skrócić czas badania, ale kosztem szczegółowości. W odpowiedziach błędnych pojawia się też założenie, że wystarczy manipulować jednym parametrem. W praktyce technicznej MR zawsze patrzymy na kombinację FoV i matrycy, bo dopiero ich wspólna zmiana decyduje o rozmiarze voxela. Dobre praktyki w pracowniach MR mówią jasno: jeśli celem jest wysoka rozdzielczość przestrzenna (np. w badaniu stawów, przysadki, nerwów czaszkowych), trzeba zmniejszyć FoV do badanego obszaru i jednocześnie zastosować możliwie dużą matrycę, akceptując ewentualnie dłuższy czas skanowania lub korzystając z technik przyspieszających (parallel imaging, kompresja SENSE/GRAPPA). Odpowiedzi sugerujące zwiększanie FoV lub zmniejszanie matrycy idą dokładnie w przeciwną stronę: prowadzą do większych voxelów, gorszej ostrości i mniejszej wykrywalności drobnych zmian, co w praktyce klinicznej może po prostu obniżyć wartość diagnostyczną badania.

Pytanie 25

Zwiększenie napięcia na lampie rentgenowskiej powoduje

A. wydłużenie fali i zmniejszenie przenikliwości promieniowania X
B. wydłużenie fali i zwiększenie przenikliwości promieniowania X
C. skrócenie fali i zwiększenie przenikliwości promieniowania X
D. skrócenie fali i zmniejszenie przenikliwości promieniowania X
Prawidłowo – zwiększenie napięcia na lampie rentgenowskiej skraca długość fali promieniowania X i jednocześnie zwiększa jego przenikliwość. Wynika to bezpośrednio z fizyki zjawiska: wyższe napięcie anodowe (kV) nadaje elektronom większą energię kinetyczną. Te szybsze elektrony uderzają w anodę i wytwarzają fotony promieniowania X o wyższej energii. A im wyższa energia fotonu, tym krótsza długość fali (E = h·c/λ) i większa zdolność przenikania przez tkanki pacjenta czy materiały osłonowe. W praktyce radiologicznej oznacza to, że podnosząc kV, uzyskujemy bardziej „twarde” promieniowanie, które lepiej przechodzi przez gęste struktury, np. kości miednicy czy klatkę piersiową u pacjentów o większej masie ciała. Moim zdaniem kluczowe jest kojarzenie: kV = jakość promieniowania (energia, przenikliwość), a mAs = ilość promieniowania (liczba fotonów). W nowoczesnych aparatach RTG standardy pracy i dobre praktyki (np. wytyczne EFRS, europejskie zalecenia dla ekspozycji) mówią jasno: dobiera się możliwie wysokie kV i możliwie niskie mAs, aby zmniejszyć dawkę dla pacjenta, ale jednocześnie zachować odpowiedni kontrast obrazu. Dla zdjęć klatki piersiowej stosuje się zwykle wyższe napięcia (np. 100–125 kV), właśnie po to, żeby promieniowanie miało wysoką przenikliwość i równomiernie „przeszło” przez cały przekrój klatki. Przy badaniach kończyn, gdzie struktury są cieńsze, używa się niższego napięcia, bo nie potrzebujemy aż tak twardego widma. Warto też pamiętać, że zwiększenie kV zmniejsza kontrast tkankowy obrazu (bo wszystko jest bardziej przepuszczalne), ale za to redukuje pochłoniętą dawkę w skórze. W dobrze prowadzonym pracowni RTG technik świadomie balansuje kV i mAs, aby osiągnąć kompromis między jakością diagnostyczną a ochroną radiologiczną. Z mojego doświadczenia to jedna z podstawowych umiejętności w diagnostyce obrazowej – rozumieć, że zmiana napięcia to nie tylko „jaśniej/ciemniej”, ale przede wszystkim zmiana energii i przenikliwości promieniowania.

Pytanie 26

Do zdjęcia prawych otworów międzykręgowych kręgosłupa szyjnego pacjent stoi w skosie

A. prawym tylnym.
B. lewym przednim.
C. prawym przednim.
D. lewym tylnym.
W tym zadaniu cała trudność polega na zrozumieniu logiki projekcji skośnych kręgosłupa szyjnego, a nie tylko na zapamiętaniu skrótu. Typowy błąd polega na myleniu, po której stronie widoczne są otwory międzykręgowe w zależności od tego, czy wybieramy skos przedni czy tylny i z której strony pada promień. W odpowiedziach z określeniem „prawy tylny” oraz „prawy przedni” często kryje się intuicyjne myślenie: skoro badamy prawe otwory, to wybiorę projekcję „prawą”. Niestety w kręgosłupie szyjnym tak to nie działa. W projekcjach skośnych szyi otwory międzykręgowe najlepiej uwidaczniają się po stronie przydetektorowej, czyli tej bliżej kasety. Jeśli pacjent stoi w prawym tylnym skosie (RPO), to bliżej detektora znajduje się lewa strona szyi, a promień wchodzi od strony prawej tylnej. Efekt jest taki, że lepiej uwidocznimy LEWE otwory międzykręgowe, a nie prawe. Analogicznie, przy prawym przednim skosie (RAO) promień wchodzi od przodu po prawej stronie, ale nadal strona bliższa detektorowi będzie lewa, więc diagnostycznie wyraźniejsze będą lewe otwory. To jest bardzo typowe złudzenie: skupiamy się na tym, skąd pada promień, a nie na tym, która strona jest przy detektorze. Odpowiedź z „lewym przednim” też jest myląca, bo ktoś może założyć, że skoro lewa, to będzie widoczna prawa strona, ale przy projekcjach przednich (LAO/RAO) otwory oglądamy z innej geometrii wiązki, i standardowo do oceny szyjnych otworów międzykręgowych preferuje się projekcje tylne skośne, właśnie LPO i RPO. W praktyce klinicznej przyjęło się, że: LPO – oglądamy prawe otwory, RPO – oglądamy lewe otwory. Jeżeli wybierzemy niewłaściwy skos, obraz będzie mało przydatny diagnostycznie, a pacjent niepotrzebnie dostanie kolejną dawkę promieniowania przy powtórce badania. Dobra praktyka to zawsze myśleć: którą stronę chcę przyłożyć do detektora, a dopiero potem dobierać projekcję i kierunek wiązki, zamiast kierować się tylko intuicyjną nazwą skosu.

Pytanie 27

Wysoką rozdzielczość przestrzenną obrazowania MR uzyskuje się przez

A. zwiększenie wielkości FoV i zwiększenie matrycy obrazującej.
B. zmniejszenie wielkości FoV i zwiększenie matrycy obrazującej.
C. zwiększenie wielkości FoV i zmniejszenie matrycy obrazującej.
D. zmniejszenie wielkości FoV i zmniejszenie matrycy obrazującej.
W obrazowaniu MR łatwo się pomylić, bo intuicja podpowiada, że „im większy FoV, tym więcej widać, więc jakość rośnie”. To jest typowy błąd myślowy: mylenie zakresu anatomicznego z rozdzielczością. Duże FoV faktycznie obejmuje większy obszar ciała, ale jeśli matryca pozostaje taka sama lub jest nawet zmniejszana, to każdy pojedynczy piksel reprezentuje większy fragment tkanek, więc szczegółów jest mniej. Rozdzielczość przestrzenna to nie jest to, ile narządów wejdzie w kadr, tylko jak małe struktury da się od siebie odróżnić na obrazie. Dlatego powiększanie FoV przy tej samej lub mniejszej matrycy pogarsza rozdzielczość, choć obraz „wydaje się” lepszy, bo widzimy całe kolano albo całą głowę. Drugie częste nieporozumienie dotyczy samej matrycy. Zmniejszenie matrycy oznacza mniej punktów pomiarowych w przestrzeni k‑przestrzeni, czyli de facto większe piksele po rekonstrukcji. Nawet jeśli dołożymy do tego mały FoV, to i tak ograniczamy ilość informacji przestrzennej. Efekt jest taki, że struktury drobne, jak nerwy, małe naczynia, cienkie warstwy chrząstki, zaczynają się zlewać i obraz robi się „miękki”, mniej ostry. Z mojego doświadczenia wiele osób na początku nauki MR skupia się tylko na jednym parametrze – albo na FoV, albo na macierzy – i nie patrzy na ich proporcje. Tymczasem standardy i dobre praktyki w MR mówią jasno: o rozdzielczości decyduje rozmiar piksela i grubość warstwy, a rozmiar piksela zależy jednocześnie od FoV i liczby punktów w matrycy. Dlatego konfiguracje typu duży FoV z małą matrycą lub mały FoV z małą matrycą są kompromisami raczej do szybkich przeglądowych sekwencji, a nie do badań wysokorozdzielczych. W protokołach wysokiej jakości zawsze dąży się do możliwie małego FoV obejmującego tylko interesujący obszar i możliwie dużej matrycy, oczywiście z uwzględnieniem czasu skanowania i SNR. Zrozumienie tego mechanizmu bardzo pomaga potem świadomie modyfikować parametry, zamiast klikać „na czuja”.

Pytanie 28

Jaki jest cel stosowania bolusa w radioterapii?

A. "Wyciągnąć" dawkę bliżej skóry.
B. "Wyciągnąć" dawkę dalej od skóry.
C. Ochronić skórę przed poparzeniem.
D. Ochronić narządy krytyczne.
Prawidłowo – bolus w radioterapii stosuje się po to, żeby „wyciągnąć” dawkę bliżej skóry, czyli podnieść dawkę w warstwach powierzchownych. Promieniowanie fotonowe ma tzw. zjawisko build‑up: maksymalna dawka nie pojawia się na samej powierzchni, tylko kilka–kilkanaście milimetrów pod skórą. To jest fajne przy klasycznych napromienianiach głębiej położonych guzów, bo naturalnie trochę oszczędza się naskórek. Ale jeśli celem leczenia jest zmiana bardzo powierzchowna, np. rak skóry, blizna pooperacyjna, zajęta skóra klatki piersiowej po mastektomii, to ta „dziura dawki” przy skórze staje się problemem. Wtedy właśnie zakłada się bolus – materiał o gęstości zbliżonej do tkanek miękkich (najczęściej 0,5–1 cm, czasem więcej), który symuluje dodatkową warstwę tkanki. Dla wiązki fotonów linak widzi bolus jak ciało pacjenta: maksimum dawki przesuwa się w głąb bolusa, a nie w głąb faktycznej skóry. Efekt praktyczny jest taki, że na powierzchni skóry pacjenta dawka rośnie, bo dla wiązki to już nie jest „początek”, tylko strefa bliżej dawki maksymalnej. Moim zdaniem kluczowe jest, żeby kojarzyć bolus nie z ochroną skóry, ale właśnie z jej dodatkowym „dobiciem” dawką. W planowaniu leczenia w TPS zawsze zaznacza się obecność bolusa (z odpowiednią grubością i materiałem), bo wpływa to na rozkład izodoz i na wyliczenie dawki w punktach kontrolnych. W dobrych praktykach klinicznych pilnuje się też, żeby bolus dobrze przylegał do skóry (bez pęcherzyków powietrza), bo każda szczelina może powodować nierównomierny rozkład dawki na powierzchni, co widać potem w rozkładach i, niestety, na odczynach skórnych.

Pytanie 29

Na radiogramie TK głowy strzałką wskazano

Ilustracja do pytania
A. zatokę sitową.
B. przegrodę nosową.
C. zbiornik wielki.
D. zatokę klinową.
Na przedstawionym przekroju osiowym TK głowy strzałka wskazuje prawidłowo zatokę klinową. W tomografii komputerowej w projekcji poprzecznej zatoka klinowa leży centralnie, w linii pośrodkowej, tuż za jamą nosową i poniżej siodła tureckiego. Ma charakterystyczny, dość symetryczny kształt, a jej światło w badaniu bez kontrastu jest hipodensyjne (ciemne), wypełnione powietrzem, otoczone grubszą warstwą kości trzonu kości klinowej. Moim zdaniem to jest jedno z tych miejsc, które warto sobie „zakodować”, bo w praktyce radiologicznej często ocenia się właśnie zatokę klinową pod kątem zmian zapalnych, polipów, guzów czy szerzenia się patologii z przysadki mózgowej. W standardowych opisach TK zatok czy TK głowy zwraca się uwagę na drożność ujść zatok, obecność płynu, pogrubienie błony śluzowej czy całkowite zacienienie zatoki klinowej. Dobre praktyki uczą, żeby zawsze porównywać obustronne struktury oraz oceniać zatokę klinową w kilku kolejnych warstwach – unikamy wtedy pomyłek wynikających z artefaktów albo nietypowego ułożenia głowy. W wielu pracowniach technik wykonujący badanie ma obowiązek sprawdzenia, czy zakres skanowania obejmuje cały kompleks zatok przynosowych, w tym właśnie zatokę klinową, bo bywa ona pomijana przy zbyt małym zakresie. W codziennej pracy klinicznej obraz zatoki klinowej ma znaczenie np. przed planowanym dostępem chirurgicznym przez zatokę klinową do przysadki (dostęp endoskopowy przez nos). Chirurdzy laryngolodzy i neurochirurdzy opierają się wtedy na dokładnym opisie TK i znajomości anatomicznych wariantów tej zatoki. Dlatego rozpoznanie jej na obrazie TK to taki absolutny „must have” w diagnostyce obrazowej głowy.

Pytanie 30

Które środki kontrastujące wykorzystywane są w diagnostyce rezonansem magnetycznym?

A. Jodowe, nierozpuszczalne w wodzie.
B. Środki na bazie siarczanu baru.
C. Jodowe, rozpuszczalne w wodzie.
D. Środki na bazie gadolinu.
Prawidłowo – w diagnostyce rezonansem magnetycznym standardowo stosuje się paramagnetyczne środki kontrastujące na bazie gadolinu. Gadolinium samo w sobie jest silnie toksycznym metalem ciężkim, ale w kontrastach MR występuje w postaci chelatów, czyli związków kompleksowych, które wiążą jon gadolinu i dzięki temu znacznie zmniejszają jego toksyczność i poprawiają bezpieczeństwo kliniczne. Mechanizm działania takiego kontrastu jest inny niż w klasycznej radiologii: gadolin nie pochłania promieniowania rentgenowskiego, tylko skraca czasy relaksacji T1 (głównie) i T2 protonów wody w tkankach. W praktyce oznacza to, że struktury, które gromadzą gadolin, stają się jaśniejsze (hiperintensywne) na obrazach T1-zależnych. W codziennej pracy używa się go np. w diagnostyce guzów mózgu, zmian demielinizacyjnych w SM, ocenie zapalenia opon, w badaniach serca (blizna pozawałowa, kardiomiopatie) czy przy ocenie unaczynienia guzów wątroby i nerek. Moim zdaniem warto zapamiętać, że kontrast MR to przede wszystkim gadolin, a nie jod czy bar. Dobre praktyki mówią o konieczności oceny czynności nerek (eGFR) przed podaniem gadolinu, szczególnie u pacjentów z niewydolnością nerek, ze względu na ryzyko nefrogennego układowego zwłóknienia (NSF) przy starszych preparatach. Obecnie preferuje się tzw. środki makrocykliczne, które są bardziej stabilne chemicznie i uznawane za bezpieczniejsze. W MR stosuje się też specjalne protokoły dynamiczne po kontraście (np. badania wątroby, piersi), gdzie obserwuje się fazy wzmocnienia w czasie, co pomaga różnicować zmiany łagodne i złośliwe. W praktyce technika i lekarz opisujący zawsze powinni dobrać odpowiednią dawkę, sekwencje T1-zależne i czas podania, żeby wzmocnienie kontrastowe było maksymalnie diagnostyczne.

Pytanie 31

Do zdjęcia rentgenowskiego żeber w projekcji skośnej tylnej pacjenta należy ustawić

A. przodem do lampy rentgenowskiej, stroną badaną bliżej kasety.
B. tyłem do lampy rentgenowskiej, stroną badaną oddaloną od kasety.
C. przodem do lampy rentgenowskiej, stroną badaną oddaloną od kasety.
D. tyłem do lampy rentgenowskiej, stroną badaną bliżej kasety.
W tym zadaniu łatwo się pomylić, bo wszystkie odpowiedzi brzmią całkiem logicznie na pierwszy rzut oka. Trzeba jednak pamiętać, że w projekcjach skośnych żeber kluczowe są dwie rzeczy: kierunek wiązki (AP albo PA) oraz to, czy strona badana jest bliżej kasety, czy dalej. Cała reszta to w zasadzie konsekwencja tych dwóch decyzji. Częstym błędem jest mylenie projekcji skośnych tylnych z przednimi. Jeżeli pacjent jest ustawiony tyłem do lampy, a przodem do kasety, to mamy projekcję PA lub PA skośną, typowo stosowaną raczej do uwidaczniania żeber tylnych. W tym pytaniu chodzi o projekcję skośną tylną, czyli sytuację, gdy promień centralny biegnie od tyłu do przodu, a pacjent jest ustawiony przodem do lampy. Dlatego konfiguracje, w których pacjent stoi tyłem do lampy, nie pasują do definicji projekcji tylnej. Drugim typowym nieporozumieniem jest przekonanie, że badana strona powinna być zawsze dalej od kasety, bo wtedy „lepiej się odcina” od tła. To jest odwrotne do zasad geometrii obrazowania. Stronę badaną zbliżamy do detektora właśnie po to, żeby ograniczyć powiększenie i zniekształcenia perspektywiczne. Jeśli ustawimy stronę badaną dalej od kasety, to żebra po tej stronie wyjdą większe, bardziej rozmyte i trudniejsze do oceny, a dodatkowo nałoży się na nie obraz strony bliższej detektorowi. W praktyce klinicznej przy badaniu żeber dążymy do tego, aby interesująca nas połowa klatki piersiowej była jak najbliżej kasety, niezależnie czy robimy projekcję AP, PA czy skośną. Błędne odpowiedzi wynikają zwykle z mechanicznego kojarzenia „tyłem do lampy = projekcja tylna” lub z intuicji, że coś co jest dalej, będzie „lepiej widoczne”. Tymczasem definicja projekcji odnosi się do kierunku biegu wiązki, a jakość obrazu zależy w dużej mierze od odległości badanej struktury od detektora. Dlatego poprawne ustawienie dla skośnej tylnej żeber musi łączyć dwa elementy: wiązka AP (pacjent przodem do lampy) i strona badana bliżej kasety.

Pytanie 32

Którą metodą i w której płaszczyźnie zostało wykonane badanie stawu kolanowego zobrazowane na zdjęciach?

Ilustracja do pytania
A. MR, w płaszczyźnie czołowej.
B. MR, w płaszczyźnie strzałkowej.
C. TK, w płaszczyźnie czołowej.
D. TK, w płaszczyźnie strzałkowej.
W tym zadaniu łatwo się pomylić, bo na pierwszy rzut oka każde przekrojowe badanie stawu kolanowego może wyglądać podobnie, ale kluczowe jest rozróżnienie zarówno metody obrazowania, jak i płaszczyzny skanowania. Zacznijmy od odróżnienia MR od TK. W tomografii komputerowej podstawą jest promieniowanie jonizujące i obraz tworzony jest w skalach gęstości (HU). Kość korowa jest bardzo jasna, ostry kontur, tkanki miękkie zwykle mają niższy kontrast, a łąkotki i więzadła nie odcinają się tak wyraźnie. W rezonansie magnetycznym obraz budowany jest na podstawie właściwości magnetycznych protonów, dzięki czemu otrzymujemy wysokokontrastowe odwzorowanie tkanek miękkich: łąkotki, chrząstka, więzadła, obrzęk szpiku kostnego – wszystko to jest dobrze widoczne. Na prezentowanych obrazach właśnie ta doskonała wizualizacja struktur wewnątrzstawowych jednoznacznie wskazuje na MR, a nie TK, więc odpowiedzi z tomografią (niezależnie od płaszczyzny) są merytorycznie błędne. Drugi element to płaszczyzna. W płaszczyźnie czołowej (frontalnej) widzimy obie kłykcie kości udowej i piszczeli obok siebie, jakbyśmy patrzyli na kolano „od przodu” lub „od tyłu”. W płaszczyźnie strzałkowej oglądamy przekrój „z boku” – zwykle jeden kłykieć, wyraźnie podłużny przebieg więzadła krzyżowego przedniego i tylnego, profil rzepki. Na załączonych obrazach wyraźnie widać symetryczne kłykcie i szparę stawową na całej szerokości, co jest typowe dla projekcji czołowej. Częsty błąd polega na tym, że zdający automatycznie kojarzy przekrój z tomografią, bo „jest w przekroju”, albo myli płaszczyzny, sugerując się tylko jednym elementem anatomicznym. Z mojego doświadczenia pomaga świadome „ustawianie” w głowie, skąd patrzymy na staw: z przodu/tyłu – płaszczyzna czołowa, z boku – strzałkowa, od góry – poprzeczna. W praktyce technika radiologii poprawne rozpoznanie płaszczyzn i modalności to podstawa, bo od tego zależy właściwe planowanie badania, dobór sekwencji i późniejsze zrozumienie, co widzi na monitorze radiolog.

Pytanie 33

Badanie cewki moczowej polegające na wstecznym wprowadzeniu środka kontrastowego to

A. pielografia zstępująca.
B. cystouretrografia mikcyjna.
C. pielografia wstępująca.
D. uretrografia wstępująca.
W tym pytaniu bardzo łatwo dać się złapać na skojarzeniach z innymi badaniami kontrastowymi układu moczowego. Kluczowe słowo to jednak „cewka moczowa”. Pielografia zstępująca i wstępująca dotyczą miedniczek nerkowych i moczowodów, a nie cewki. Wstępująca pielografia polega na podaniu kontrastu przez cewnik założony do moczowodu podczas cystoskopii, czyli kontrast idzie w górę, ale do górnych dróg moczowych. Z kolei zstępująca pielografia (dożylna urografia) opiera się na wydalaniu kontrastu przez nerki i jego spływie w dół drogami moczowymi. Oba te badania służą głównie ocenie nerek i moczowodów, np. w kamicy, guzach, wodonerczu, a nie do oceny zwężeń cewki. Cystouretrografia mikcyjna brzmi bardzo podobnie i to jest typowy błąd myślowy: skoro jest „uretro-”, to może chodzić o cewkę. Rzeczywiście, to badanie też pokazuje cewkę, ale jego założenie jest inne. Kontrast podaje się do pęcherza przez cewnik, następnie wykonuje się zdjęcia podczas mikcji, czyli opróżniania pęcherza. Przepływ kontrastu jest tu zgodny z naturalnym kierunkiem oddawania moczu, a głównym celem jest ocena pęcherza i odpływów pęcherzowo-moczowodowych, często u dzieci. W pytaniu wyraźnie podkreślono „wsteczne wprowadzenie środka kontrastowego do cewki”, czyli nie przez pęcherz, tylko bezpośrednio przez ujście zewnętrzne, pod prąd. I to jest istota uretrografii wstępującej. Z mojego doświadczenia wiele osób myli te nazwy, bo skupia się tylko na słowie „wstępująca”, nie patrząc, którego odcinka układu moczowego dotyczy badanie. Dobrą praktyką jest zawsze kojarzyć: pielografia – miedniczki i moczowody, cystografia – pęcherz, uretrografia – cewka. Dopiero potem dokładamy kierunek podania kontrastu i mamy pełną nazwę badania.

Pytanie 34

Na obrazie ultrasonograficznym jamy brzusznej strzałką wskazano

Ilustracja do pytania
A. wątrobę.
B. nerkę.
C. pęcherzyk żółciowy.
D. ogon trzustki.
Na tym obrazie USG jamy brzusznej łatwo popełnić kilka klasycznych pomyłek, jeśli nie patrzy się świadomie na echogeniczność, kształt i relacje anatomiczne. Nerka w badaniu ultrasonograficznym ma charakterystyczny kształt fasoli, z wyraźnie zróżnicowaną korą i rdzeniem. Jest strukturą bardziej złożoną echogenicznie: kora jest średnioechogeniczna, rdzeń bardziej hipoechogeniczny, a zatoka nerkowa jasna, hiperechogeniczna. Nie jest to jednorodna, czarna przestrzeń jak na obrazie. Poza tym nerka leży głębiej i zwykle nie przylega tak ściśle do przedniej ściany brzucha w standardowej projekcji podżebrowej. Wątroba z kolei ma drobnoziarnistą, jednorodną echogeniczność i wypełnia większość prawego górnego kwadrantu. Na prezentowanym obrazie wątroba jest tłem, a nie strukturą wskazaną strzałką – widać ją jako szarą tkankę miąższową otaczającą bezechowy pęcherzyk. Typowym błędem jest uznanie ciemnej, bezechowej przestrzeni w wątrobie za naczynie żylne lub fragment miąższu narządu, ale naczynia mają cienkie ściany i zwykle łączą się z innymi strukturami rurowymi, a tu widzimy zamkniętą, workowatą jamę. Ogon trzustki jest położony wyżej i bardziej do lewej, blisko śledziony, a sam gruczoł trzustkowy jest narządem litym, o drobnoziarnistej, nieco jaśniejszej echostrukturze, bez dużej bezechowej jamy. Mylenie go z pęcherzykiem żółciowym wynika często z braku orientacji co do projekcji i poziomu skanu. Z mojego doświadczenia typowy schemat błędu wygląda tak: widzę czarną przestrzeń – myślę „nerka” albo „naczynie”. Tymczasem kluczem jest analiza: czy to struktura workowata czy rurowa, czy ma własną ścianę, czy jest w loży pęcherzyka, jak wygląda otoczenie. Dobre praktyki w diagnostyce obrazowej mówią jasno: zawsze trzeba oceniać narząd w co najmniej dwóch płaszczyznach i w kontekście anatomii topograficznej, a nie na podstawie jednego „wrażenia” z pojedynczej klatki.

Pytanie 35

Na którym z zapisów EKG została uwidoczniona fala Pardee'go?

A. Zapis 1
Ilustracja do odpowiedzi A
B. Zapis 4
Ilustracja do odpowiedzi B
C. Zapis 2
Ilustracja do odpowiedzi C
D. Zapis 3
Ilustracja do odpowiedzi D
Prawidłowo wskazany jest zapis 3, ponieważ właśnie tam widać klasyczną falę Pardee’go, czyli uniesienie odcinka ST z zachowaną, wyraźnie wysmukloną falą T, tworzącą taki jakby jednolity „kopiec” nad linią izoelektryczną. W ostrym zawale STEMI, zgodnie z wytycznymi ESC i PTK, szukamy uniesienia ST ≥1–2 mm w dwóch sąsiednich odprowadzeniach, o charakterystycznym kształcie: odcinek ST przechodzi płynnie z załamka R, bez wyraźnego punktu J, a całość przypomina właśnie falę Pardee’go. Na zapisie 3 dokładnie to widać – segment ST jest wyniesiony, wypukły do góry, a załamek T jest dodatni i niejako „przyklejony” do ST. To jest obraz świeżego, rozległego uszkodzenia mięśnia sercowego w fazie ostrej. W praktyce klinicznej rozpoznanie takiego uniesienia ST wymaga natychmiastowej reakcji: kwalifikacji do pierwotnej angioplastyki wieńcowej (PCI) lub, gdy to niemożliwe, do trombolizy. W pracowni, na SOR-ze czy nawet w ZRM, technik i ratownik powinni automatycznie kojarzyć falę Pardee’go z ostrym zawałem z uniesieniem ST. Moim zdaniem warto sobie wpoić prostą zasadę: jeśli widzisz ładny, gładki „garb” ST-T ponad izolinią w odpowiednich odprowadzeniach, u pacjenta z bólem w klatce, to traktujesz to jak STEMI, dopóki koronarografia nie udowodni czegoś innego. Ten wzorzec trzeba umieć odróżnić od wczesnej repolaryzacji, przerostu komór czy zmian w przebiegu zapalenia osierdzia, gdzie kształt i kontekst kliniczny są inne. Im częściej oglądasz takie EKG, tym szybciej i pewniej rozpoznasz falę Pardee’go w realnej sytuacji na dyżurze.

Pytanie 36

Rytm alfa i beta rejestruje się podczas badania

A. HSG
B. EKG
C. EEG
D. USG
Rytm alfa i beta to pojęcia ściśle związane z elektroencefalografią, czyli badaniem EEG. Są to typy fal mózgowych, które rejestruje się za pomocą elektrod umieszczonych na skórze głowy. Rytm alfa zwykle pojawia się w okolicach potylicznych, gdy pacjent jest w stanie relaksu, z zamkniętymi oczami, ale przy zachowanej świadomości. Jego częstotliwość to mniej więcej 8–13 Hz. Rytm beta ma wyższą częstotliwość, około 13–30 Hz, i wiąże się z aktywnością psychiczną, koncentracją, czasem z niepokojem czy pobudzeniem. W praktyce technika EEG to właśnie te rytmy opisuje w opisie badania, razem z innymi (theta, delta), bo na ich podstawie lekarz ocenia czynność bioelektryczną mózgu. W dobrych pracowniach EEG standardem jest rejestracja w układzie 10–20, z zastosowaniem odpowiedniego filtra, kalibracji i opisu poszczególnych rytmów w spoczynku, podczas hiperwentylacji, fotostymulacji i ewentualnie snu. Moim zdaniem warto kojarzyć, że samo słowo „rytmy” w kontekście alfa/beta prawie zawsze oznacza EEG, a nie żadne inne badanie. W diagnostyce wykorzystuje się to np. w rozpoznawaniu padaczki, ocenie śpiączek, zaburzeń świadomości, a także w monitorowaniu głębokości sedacji. Rytm alfa zanikający przy otwarciu oczu czy rytm beta nasilony przy lekach uspokajających to typowe obserwacje. W praktyce technik medyczny, który dobrze rozumie, czym są te rytmy, łatwiej wychwyci artefakty, błędy elektrod czy nietypowy zapis i przekaże lekarzowi wiarygodny materiał do interpretacji.

Pytanie 37

Które zdjęcie RTG stawu łokciowego zostało wykonane w projekcji skośnej w rotacji zewnętrznej?

A. Zdjęcie 4
Ilustracja do odpowiedzi A
B. Zdjęcie 2
Ilustracja do odpowiedzi B
C. Zdjęcie 1
Ilustracja do odpowiedzi C
D. Zdjęcie 3
Ilustracja do odpowiedzi D
Na podstawie samych obrazów bardzo łatwo pomylić projekcję skośną z klasycznym AP albo z lekkim błędem ułożenia, dlatego wiele osób wybiera nieprawidłową odpowiedź. Kluczowe jest jednak zrozumienie, jak różnią się od siebie standardowe projekcje stawu łokciowego: AP, boczna oraz skośne w rotacji zewnętrznej i wewnętrznej. Zdjęcie przypominające typowe AP będzie miało dość symetryczne odwzorowanie nadkłykcia przyśrodkowego i bocznego, a kości promieniowa i łokciowa częściowo się nakładają. Gdy ktoś wskazuje taką projekcję jako skośną w rotacji zewnętrznej, zwykle wynika to z myślenia w stylu „nie jest boczne, więc pewnie skośne”, co jest trochę zbyt uproszczone. Projekcja boczna z kolei przedstawia staw łokciowy w zgięciu około 90°, z wyraźnym profilem bloczka, wcięcia bloczkowego i głowy kości promieniowej, a kości przedramienia są ustawione jedna za drugą. Jeśli taki obraz uznaje się za skośny, to jest to efekt mylenia pojęć: boczne ≠ skośne. W projekcji skośnej nadal zachowane jest wrażenie „prawie AP”, ale z kontrolowaną rotacją kończyny. W rotacji zewnętrznej promień stopniowo „odkleja się” od kości łokciowej, a boczne struktury stawu, szczególnie głowa kości promieniowej i nadkłykieć boczny, uwidaczniają się lepiej i mniej się nakładają. Ujęcia boczne, czy też prawie idealne AP, nie spełniają tego warunku, więc nie mogą być uznane za prawidłową projekcję skośną. Typowym błędem jest też ocenianie projekcji głównie po stopniu zgięcia łokcia – tymczasem o skośności decyduje głównie rotacja, a nie sama flexja. Warto sobie wyrobić nawyk patrzenia na relacje promień–łokciowa oraz na kształt i wzajemne ustawienie kłykci kości ramiennej. Z mojego doświadczenia dopiero takie podejście naprawdę porządkuje w głowie, która projekcja jest która i dlaczego wybór innego zdjęcia niż numer 1 w tym zadaniu prowadzi do błędnej odpowiedzi.

Pytanie 38

W obrazowaniu MR do uwidocznienia naczyń krwionośnych jest stosowana sekwencja

A. DWI
B. STIR
C. TOF
D. EPI
Prawidłowa odpowiedź to TOF, czyli technika Time of Flight. Jest to specjalny rodzaj angiografii MR (MRA), który wykorzystuje zjawisko napływu świeżej, niespoczynkowej krwi do warstwy obrazowania. Krew płynąca w naczyniach ma inny stan namagnesowania niż otaczające ją tkanki stacjonarne, dzięki czemu w odpowiednio zaprojektowanej sekwencji gradientowo-echo (GRE) naczynia wychodzą bardzo jasno na tle przytłumionych tkanek. Moim zdaniem to jedna z fajniejszych sztuczek fizycznych w MR, bo pozwala zobaczyć naczynia bez podawania kontrastu. W praktyce klinicznej TOF stosuje się głównie do oceny tętnic wewnątrzczaszkowych, tętnic szyjnych, czasem tętnic kręgowych i koła Willisa. Standardem jest 3D TOF w badaniach neuroangiograficznych – daje wysoką rozdzielczość przestrzenną, możliwość rekonstrukcji MIP (maximum intensity projection) oraz dobre uwidocznienie zwężeń, tętniaków czy malformacji naczyniowych. W badaniach wydolności tętnic szyjnych często łączy się TOF z sekwencjami T1 i T2, żeby jednocześnie ocenić zarówno światło naczynia, jak i blaszkę miażdżycową. Warto też kojarzyć, że TOF jest techniką niekontrastową, w przeciwieństwie do klasycznej angiografii kontrastowej czy MRA z gadolinem – szczególnie ważne u pacjentów z niewydolnością nerek, gdzie unikamy kontrastu. Dobrą praktyką jest odpowiednie ustawienie kierunku przepływu względem płaszczyzny skanowania, bo TOF najlepiej działa, gdy krew napływa prostopadle do warstwy. Jeśli przepływ jest bardzo wolny albo bardzo turbulentny, kontrast naczyń może się pogarszać, więc technik musi świadomie dobrać parametry TR, flip angle i grubość warstw. W diagnostyce radiologicznej TOF jest po prostu podstawowym narzędziem do nieinwazyjnej oceny naczyń w MR bez kontrastu.

Pytanie 39

Który obraz MR mózgu został wykonany w sekwencji DWI?

A. Obraz 3
Ilustracja do odpowiedzi A
B. Obraz 4
Ilustracja do odpowiedzi B
C. Obraz 1
Ilustracja do odpowiedzi C
D. Obraz 2
Ilustracja do odpowiedzi D
Prawidłowo wskazany został Obraz 2, ponieważ ma on typowe cechy sekwencji DWI (Diffusion Weighted Imaging). W DWI tło mózgowia jest stosunkowo jednorodne i dość ciemne, natomiast ogniska z ograniczoną dyfuzją wody (np. świeży udar niedokrwienny, ropień, niektóre guzy o dużej komórkowości) są bardzo jasne, wręcz „świecące”. Charakterystyczny jest też nieco gorszy kontrast anatomiczny niż w klasycznych sekwencjach T1- czy T2-zależnych oraz częste zniekształcenia geometryczne obrazu wynikające z użycia sekwencji echo-planar (EPI). Moim zdaniem, to właśnie to ziarniste tło, wysoki sygnał w patologii i specyficzny wygląd kory i jąder podstawy najbardziej „zdradzają”, że patrzymy na DWI. W praktyce klinicznej DWI jest złotym standardem w diagnostyce ostrego udaru – zgodnie z aktualnymi wytycznymi neurologicznymi i neuroradiologicznymi to ta sekwencja pozwala najwcześniej wychwycić niedokrwienie, często już po kilkunastu minutach od początku objawów, kiedy TK bywa jeszcze prawidłowa. Dodatkowo stosuje się ją do różnicowania zmian naczyniopochodnych z przewlekłymi leukopatiami, do oceny ropni (ograniczona dyfuzja w ropnym materiale) oraz w onkologii, gdzie współczynnik dyfuzji (ADC) pomaga ocenić złośliwość guza i odpowiedź na leczenie. W dobrze wykonanym badaniu MR mózgu w trybie ostrego dyżuru DWI jest zawsze w pakiecie podstawowym, obok sekwencji T2, FLAIR i często angiografii MR. Z mojego doświadczenia technicy, którzy szybko „łapią” charakterystyczny wygląd DWI, znacznie sprawniej wstępnie oceniają badanie jeszcze na konsoli, co w udarze realnie skraca czas do decyzji terapeutycznej.

Pytanie 40

W badaniu EKG różnice potencjałów pomiędzy lewym podudziem a lewym przedramieniem rejestruje odprowadzenie

A. III
B. aVR
C. I
D. aVL
Prawidłowo wskazane odprowadzenie III rejestruje różnicę potencjałów między lewym podudziem (elektroda na nodze lewej – LL) a lewym przedramieniem (elektroda na ręce lewej – LA). W klasycznym 12‑odprowadzeniowym EKG mamy trzy odprowadzenia kończynowe dwubiegunowe: I, II i III. Zgodnie ze standardem Einthovena: odprowadzenie I zapisuje różnicę potencjałów między prawym przedramieniem (RA) a lewym przedramieniem (LA), odprowadzenie II – między RA a lewym podudziem (LL), a właśnie odprowadzenie III – między LA a LL. Czyli w uproszczeniu: III = LL – LA. To dokładnie odpowiada treści pytania. W praktyce klinicznej znajomość tej konfiguracji jest bardzo ważna, bo ułatwia rozumienie tzw. trójkąta Einthovena i zależności między odprowadzeniami. Można np. korzystać z zależności I + III = II do kontroli jakości zapisu – jeśli suma wektorowa się „nie zgadza”, to często oznacza źle założone elektrody albo artefakty. Moim zdaniem technik, który automatycznie kojarzy, z których elektrod składa się każde odprowadzenie, ma dużo łatwiej przy rozwiązywaniu problemów typu: „dziwnie odwrócone załamki P” czy „nagle ujemny QRS w I”. Wtedy można podejrzewać zamianę elektrod RA/LA albo LA/LL. W codziennej pracy, gdy zakładasz elektrody, warto sobie w głowie odtwarzać, że LL zawsze „wchodzi” w II i III, LA w I i III, a RA w I i II. To naprawdę pomaga w świadomym wykonywaniu badania, a nie tylko „podpinaniu kabelków”.