Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 9 grudnia 2025 11:07
  • Data zakończenia: 9 grudnia 2025 11:51

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zestyk K1 oznaczony na schemacie czerwoną ramką odpowiada za

Ilustracja do pytania
A. blokowanie jednoczesnego załączenia cewek przekaźników K1 i K2
B. podtrzymanie zasilania cewek przekaźników K1 i K2
C. wyłączenie zasilania cewek przekaźników K1 i K2
D. włączenie zasilania cewek przekaźników K1 i K2
Zestyk K1, oznaczony na schemacie czerwoną ramką, pełni istotną funkcję podtrzymywania zasilania cewek przekaźników K1 i K2. Po naciśnięciu przycisku S1, cewka przekaźnika K1 zostaje zasilona, co skutkuje zamknięciem zestyku K1. To zamknięcie jest kluczowe, ponieważ pozwala na utrzymanie zasilania cewki K1 nawet po zwolnieniu przycisku S1, co jest zgodne z zasadami działania układów elektromechanicznych. Dzięki temu przekaźnik K2 również uzyskuje zasilanie, co jest niezbędne w wielu aplikacjach automatyki, gdzie wymagane jest zachowanie stanu załączenia po przełączeniu. Takie rozwiązanie jest powszechnie stosowane w systemach sterowania, gdzie stabilność i niezawodność działania są priorytetem. Przykładem zastosowania tej funkcjonalności może być system zabezpieczeń, gdzie podtrzymanie zasilania jest kluczowe dla ciągłości działania alarmu. W branży elektrycznej i automatyki, stosowanie zestyków podtrzymujących zgodnie z normami oraz dobrymi praktykami zapewnia bezpieczeństwo i efektywność operacyjną.

Pytanie 2

Z przedstawionego rysunku złożeniowego (a) oraz schematu montażowego (b) pompy zębatej wynika, że

Ilustracja do pytania
A. koło pasowe montowane jest przed uszczelnieniem.
B. do montażu pokrywy potrzebne są 2 wkręty.
C. koło zębate montowane na wale i zablokowane kołkiem.
D. pokrywa mocowana jest do korpusu przed montażem wału i osi.
Jak się przyjrzysz rysunkowi i schematowi montażowemu, to widać, że koło zębate na wale to naprawdę istotna część, żeby pompa zębata działała. To koło zębate (to oznaczone jako 7) jest na wale (oznaczonym jako 1) i jest przytrzymane kołkiem (oznaczonym jako 8). Wiesz, to jest bardzo ważne, żeby wszystko było zamocowane zgodnie z inżynieryjnymi zaleceniami. Dzięki temu pompa działa sprawniej i jest bardziej stabilna. Ja mam doświadczenie, że jak koło zębate nie jest dobrze zamocowane, to mogą być różne problemy — od niewłaściwej pracy aż po uszkodzenie mechanizmu. No i pamiętaj, przy montażu warto używać dobrych narzędzi i technik, takich jak odpowiednie momenty dokręcania, co często można znaleźć w instrukcji producenta. Zrozumienie tych zasad naprawdę pomaga w bezpiecznym użytkowaniu pomp w różnych zastosowaniach przemysłowych.

Pytanie 3

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. formą
B. kolejnością montażu
C. rozmiarem
D. poziomem skomplikowania
Części podzespołów przeznaczone do montażu powinny być uporządkowane na stanowisku pracy według kolejności montowania, ponieważ takie podejście znacząco zwiększa efektywność oraz bezpieczeństwo pracy. Przede wszystkim, właściwe zorganizowanie stanowiska roboczego według sekwencji montażu pozwala na płynne przechodzenie z jednego etapu do drugiego, co minimalizuje ryzyko pomyłek i opóźnień. Przykładowo, w przemyśle elektronicznym przy montażu komponentów na płytach PCB, kolejność ich umieszczania ma kluczowe znaczenie dla funkcjonowania całego układu. Umożliwia to także lepszą kontrolę jakości, ponieważ każdy etap montażu można łatwo nadzorować. Dobre praktyki w zakresie organizacji stanowisk pracy, takie jak zasady 5S, promują utrzymanie porządku i efektywną organizację miejsca pracy, co wspiera optymalizację procesów produkcyjnych i zapewnia zachowanie wysokich standardów bezpieczeństwa.

Pytanie 4

Którą śrubę należy wkręcać przy pomocy przedstawionej końcówki?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Poprawna odpowiedź to C, ponieważ śruba oznaczona literą C jest przystosowana do użycia z końcówką typu Phillips (PH), która charakteryzuje się krzyżowym nacięciem. Takie nacięcie zapewnia lepszą przyczepność końcówki do śruby, co minimalizuje ryzyko poślizgu i uszkodzenia nacięcia. Końcówki Phillips są szeroko stosowane w różnych gałęziach przemysłu, od budownictwa po elektronikę, ze względu na ich uniwersalność i efektywność. W praktyce, użycie odpowiedniej końcówki do śruby ma kluczowe znaczenie dla zapewnienia jakości montażu oraz bezpieczeństwa konstrukcji. W przypadku śrub z nacięciem krzyżowym, takich jak te oznaczone literami A i B, występuje różnica w kształcie główki, co oznacza, że nie będą one pasować do końcówki Phillips. Natomiast śruba D, z sześciokątnym nacięciem, wymaga innej końcówki, takiej jak klucz sześciokątny. Zastosowanie odpowiednich narzędzi jest zgodne z dobrymi praktykami, które zwiększają efektywność i bezpieczeństwo pracy.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Na podstawie wskazania mikrometru wynik pomiaru wynosi

Ilustracja do pytania
A. 21,64 mm
B. 22,14 mm
C. 21,14 mm
D. 22,16 mm
Odpowiedź 21,64 mm jest prawidłowa, ponieważ wynika z dokładnego odczytu z mikrometru. Mikrometr składa się z dwóch skali: głównej i pomocniczej. W tym przypadku odczyt z głównej skali wynosi 21,5 mm, co oznacza, że wskazanie jest już na poziomie 21 mm. Następnie, aby uzyskać precyzyjny wynik, należy dodać wartość z skali pomocniczej, która wynosi 0,14 mm. Sumując te wartości (21,5 mm + 0,14 mm), uzyskujemy dokładny wynik 21,64 mm. Użycie mikrometru w takich pomiarach jest zgodne z najlepszymi praktykami pomiarowymi w inżynierii, gdzie dokładność i precyzja mają kluczowe znaczenie. Mikrometry są powszechnie stosowane w produkcji oraz kontroli jakości, gdzie wymagana jest wysoka dokładność w pomiarach wymiarowych. Wiedza na temat odczytu mikrometru jest niezbędna w wielu dziedzinach inżynierii, w tym mechanice, elektronice i inżynierii materiałowej, gdzie wymiary elementów muszą być ściśle kontrolowane.

Pytanie 7

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wysuniętym tłoczysku siłownika i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 0 i I3 = 1
B. I2 = 1 i I3 = 1
C. I2 = 0 i I3 = 0
D. I2 = 1 i I3 = 0
W Twojej odpowiedzi wskazałeś, że I2 = 0 i I3 = 1, co jest poprawne. W kontekście działania czujników w układzie, kiedy tłoczek siłownika jest wysunięty, czujnik B2 jest aktywowany, co przekłada się na stan logiczny I3 równy 1. Z kolei czujnik B1 pozostaje nieaktywny, ponieważ jego aktywacja zachodzi tylko w przypadku, gdy tłoczek jest w pozycji cofniętej, co powoduje, że I2 = 0. Takie działanie układu jest zgodne z podstawowymi zasadami automatyki i sterowania, gdzie odpowiednie aktywowanie czujników ma kluczowe znaczenie dla poprawnej funkcji systemów. W praktyce, zrozumienie stanów logicznych w kontekście czujników jest istotne w projektowaniu i diagnostyce układów automatyki przemysłowej, ponieważ pozwala na efektywne monitorowanie i kontrolę procesów. Umiejętność interpretacji stanów logicznych jest również niezbędna w kontekście bezpieczeństwa operacyjnego i zapewnienia zgodności z procedurami eksploatacyjnymi.

Pytanie 8

Na którym rysunku przedstawiono zęby i ślady zazębień poprawnie zamontowanych i współpracujących ze sobą kół zębatych?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Na rysunku A przedstawiono poprawnie zamontowane i współpracujące ze sobą koła zębate. Zęby tych kół są idealnie zazębione, co jest kluczowe dla prawidłowego funkcjonowania mechanizmów zębatych. Oznacza to, że linie styku zębów są równoległe, co zapobiega niepożądanym ruchom osiowym oraz zapewnia efektywne przenoszenie momentu obrotowego. Dobre praktyki inżynieryjne wskazują, że prawidłowe zazębienie zębów zębatych wpływa nie tylko na sprawność pracy, ale również na trwałość całego mechanizmu. W zastosowaniach przemysłowych, takich jak przekładnie w maszynach, konieczne jest przestrzeganie standardów, takich jak ISO 6336, dotyczących obliczania nośności i trwałości kół zębatych. Dzięki temu można uniknąć nadmiernego zużycia, awarii i wysokich kosztów napraw. Właściwe zazębienie zębów jest także istotne z punktu widzenia akustyki, minimalizując hałas podczas pracy mechanizmu. Dodatkowo, takie podejście pozwala na optymalizację pracy układów mechanicznych, potencjalnie zwiększając ich wydajność energetyczną.

Pytanie 9

Cechy medium energii pneumatycznej, jakim jest sprężone powietrze, eliminują ryzyko powstania zagrożenia takiego jak

A. odłamki rozrywanych maszyn
B. przenoszenie wibracji na pracownika
C. nadmierny hałas generowany przez pracujące urządzenia
D. iskra prowadząca do pożaru lub wybuchu
Pierwsza z przedstawionych odpowiedzi odnosi się do odłamków rozrywanych urządzeń, co może się zdarzyć w przypadku zastosowania sprężonego powietrza, zwłaszcza jeśli urządzenia nie są odpowiednio zabezpieczone. Odłamki mogą być efektem nieprawidłowej eksploatacji narzędzi pneumatycznych, co może prowadzić do kontuzji pracowników. Z kolei przenoszenie drgań na pracownika również jest problemem, którym należy się zająć, gdyż narzędzia pneumatyczne generują drgania, które mogą wpływać na zdrowie operatorów. Hałas wywołany pracą urządzeń pneumatycznych to kolejny aspekt, na który należy zwrócić uwagę, ponieważ nadmierny hałas w miejscu pracy może prowadzić do uszkodzeń słuchu. Jednak wszystkie te zagrożenia są związane z niewłaściwym użytkowaniem lub brakiem odpowiednich środków ochrony osobistej w miejscu pracy. Najczęstszym błędem myślowym jest przekonanie, że sprężone powietrze stwarza te same zagrożenia co inne źródła energii, jak na przykład gazy palne. W rzeczywistości, sprężone powietrze, gdy używane jest zgodnie z zasadami bezpieczeństwa i przy zachowaniu odpowiednich standardów, nie generuje ryzyka pożaru ani wybuchu. W kontekście pracy w strefach zagrożonych wybuchem, jak np. w przemyśle chemicznym, sprężone powietrze jest preferowane ze względu na swoje właściwości niepalne.

Pytanie 10

Wskaż urządzenie, które można wykorzystać do pomiaru ciśnienia wywieranego przez ciecz na ścianki zbiornika?

A. Żyroskop
B. Tachometr
C. Pirometr
D. Tensometr
Tensometr to urządzenie, które służy do pomiaru odkształceń materiałów pod wpływem sił zewnętrznych, w tym ciśnienia cieczy. W kontekście zbiorników, tensometry są wykorzystywane do monitorowania sił działających na ścianki zbiorników, co pozwala na ocenę ciśnienia cieczy wewnętrznej. Przykłady zastosowania to kontrola zbiorników ciśnieniowych w przemyśle chemicznym, gdzie precyzyjny pomiar ciśnienia jest kluczowy dla bezpieczeństwa i efektywności procesów. Tensometry mogą być integrowane z systemami automatyki przemysłowej, co umożliwia zdalne monitorowanie i wczesne wykrywanie nieprawidłowości. Zgodnie z normami branżowymi, stosowanie tensometrów w tych aplikacjach przyczynia się do zwiększenia niezawodności i wydajności operacyjnej. Dodatkowo, dzięki stosowaniu materiałów o wysokiej czułości i precyzji, tensometry zapewniają dokładne i powtarzalne pomiary, co jest niezwykle istotne w kontroli procesów technologicznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Wskaż, który rodzaj siłownika można wykorzystać w układzie zasilanym sprężonym powietrzem o ciśnieniu p = 0,8 MPa, jeśli wymagana jest siła teoretyczna 50 daN oraz przemieszczenie 10 cm?

A. D32, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
B. D25, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
C. D32, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
D. D12, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
Wybór niewłaściwego siłownika, takiego jak D25, D12 czy D32 z niewłaściwym skokiem, może prowadzić do nieoptymalnych rezultatów w aplikacjach przemysłowych. Siłownik D25, mimo że posiada maksymalne ciśnienie 10 bar, może nie być w stanie wygenerować wymaganej siły teoretycznej 50 daN w kontekście zadanego przemieszczenia. W przypadku siłownika D12, jego parametry mogą być zbyt niskie dla tego zastosowania, przez co nie spełni on oczekiwań w zakresie siły i skoku. Siłownik D32 z nieodpowiednim skokiem (np. 16, 32, 50, 80, 125, 200 mm) również może nie dostarczyć wymaganego przemieszczenia 10 cm, co jest kluczowe dla efektywności operacji. Przykładowe błędy myślowe obejmują nieprzemyślane założenie, że każdy siłownik o podobnym ciśnieniu roboczym jest równoważny w aplikacji, co jest dalekie od rzeczywistości. W praktyce, parametry takie jak średnica tłoka, siła teoretyczna oraz skok mają bezpośredni wpływ na skuteczność działania układów pneumatycznych. Wybór odpowiedniego siłownika powinien być oparty na analizie wymagań konkretnej aplikacji oraz standardów branżowych, aby zapewnić optymalne działanie systemu.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. stopić je w miejscu styku z użyciem spoiwa.
B. wprowadzić płynne spoiwo pomiędzy te elementy.
C. stopić je w miejscu zetknięcia bez użycia spoiwa.
D. docisnąć je podczas podgrzewania miejsca łączenia.
Zgrzewanie to proces łączenia materiałów, w którym kluczowe jest zastosowanie odpowiedniego nacisku oraz podgrzewania w miejscu styku elementów. W odpowiedzi wskazano, że łączone materiały należy docisnąć z jednoczesnym ich podgrzaniem, co jest zgodne z zasadami zgrzewania oporowego oraz zgrzewania elektrycznego. W procesie tym ciepło generowane jest w wyniku oporu elektrycznego, co prowadzi do stopienia metalu w miejscu styku, a następnie do jego związania. Praktycznym przykładem zastosowania tej metody jest produkcja konstrukcji stalowych, gdzie zgrzewanie jest powszechnie używane do łączenia blach. Kluczowym aspektem jest kontrola temperatury oraz siły docisku, co powinno być zgodne z normami, takimi jak ISO 14731, które określają wymagania dotyczące zgrzewania. Zgrzewanie zapewnia wytrzymałe połączenia, co jest niezbędne w przemyśle motoryzacyjnym, budowlanym oraz w produkcji urządzeń przemysłowych.

Pytanie 16

Który podzespół jest badany pod względem szczelności w układzie przedstawionym na ilustracji?

Ilustracja do pytania
A. Zawór Z3.
B. Zawór Z1.
C. Zespół przygotowania powietrza.
D. Siłownik pneumatyczny.
Wybór innego podzespołu, takiego jak zawór Z3, zespół przygotowania powietrza czy zawór Z1, wskazuje na pewne nieporozumienia dotyczące funkcji poszczególnych elementów układu pneumatycznego. Zawory, takie jak Z3 i Z1, spełniają rolę kontrolowania przepływu powietrza, ale to nie one są odpowiedzialne za bezpośrednie wykonywanie ruchu. W przypadku zaworu Z3, który może być odpowiedzialny za kierowanie powietrzem do różnych stref siłownika, jego szczelność ma znaczenie, ale to nie on wykonuje ruch. Z kolei zespół przygotowania powietrza odpowiada za przygotowanie sprężonego powietrza, w tym eliminację wilgoci i zanieczyszczeń, co również jest istotne, lecz nie wpływa bezpośrednio na ruch mechaniczny. Typowym błędem myślowym jest utożsamianie wszystkich komponentów z ich funkcjami, co prowadzi do pomijania kluczowych różnic w ich rolach w układzie. Zrozumienie specyfiki każdego z podzespołów oraz ich interakcji jest kluczowe dla efektywnego projektowania i eksploatacji systemów pneumatycznych. Warto zaznaczyć, że nieszczelności w siłowniku mają znacznie większy wpływ na wydajność całego układu niż w przypadku innych komponentów, co potwierdzają standardy branżowe dotyczące utrzymania i diagnostyki systemów pneumatycznych.

Pytanie 17

Obniżenie temperatury czynnika w sprężarkach skutkuje

A. skraplaniem pary wodnej oraz osuszaniem powietrza
B. powiększaniem objętości sprężonego powietrza
C. osadzaniem zanieczyszczeń na dnie zbiornika
D. wzrostem ciśnienia sprężonego powietrza
Wzrost ciśnienia sprężonego powietrza po schłodzeniu czynnika jest zjawiskiem fizycznym wynikającym z zastosowania zasady gazów doskonałych, która mówi, że przy stałej objętości gazu, jego ciśnienie rośnie wraz ze spadkiem temperatury. W praktyce, schładzanie czynnika roboczego w sprężarkach służy nie tylko do podniesienia efektywności procesu sprężania, ale również do dehydratacji powietrza, co jest kluczowe w aplikacjach przemysłowych. Zastosowanie systemów chłodzenia w sprężarkach przyczynia się do redukcji kondensacji pary wodnej, co zapobiega korozji i osadzaniu się zanieczyszczeń w układzie pneumatycznym. Udoskonalone systemy, takie jak sprężarki o wyższej wydajności czy chłodnice powietrza, przyczyniają się do zwiększenia efektywności energetycznej, co jest zgodne z najlepszymi praktykami w branży. W efekcie, poprawa ciśnienia sprężonego powietrza poprzez schładzanie czynnika roboczego jest kluczowym elementem dla uzyskania wysokiej jakości sprężonego powietrza.

Pytanie 18

Metoda osuszania sprężonego powietrza, w której w pierwszej fazie usuwana jest para wodna oraz olej za pomocą węgla aktywowanego, a w drugiej następuje odessanie pary wodnej w kapilarach żelu krzemionkowego, określana jest jako

A. konwekcją
B. adsorpcją
C. absorpcją
D. desorpcją
W procesach związanych z osuszaniem sprężonego powietrza, niepoprawne odpowiedzi mogą być mylące, szczególnie dla osób mniej zaznajomionych z terminologią. Konwekcja odnosi się do transportu ciepła poprzez ruch płynów, a nie do procesu usuwania wilgoci. Absorpcja, choć wydaje się zbliżona, polega na wchłanianiu substancji przez inną substancję, co różni się od adsorpcji, gdzie cząsteczki są przyciągane do powierzchni materiału, a nie wnikają w jego objętość. Desorpcja z kolei to proces, w którym substancje, wcześniej adsorbowane, są uwalniane z powierzchni materiału, a więc nie jest to etap osuszania, a raczej proces przeciwny. Te nieścisłości mogą prowadzić do błędnych wniosków w kontekście doboru technologii osuszania w różnych aplikacjach przemysłowych. Zrozumienie różnic pomiędzy tymi procesami jest kluczowe dla efektywnego zaprojektowania systemów uzdatniania powietrza, które spełniają wymagania jakościowe oraz normy branżowe, takie jak ISO 8573. W związku z tym, aby skutecznie przeprowadzić proces usuwania wilgoci, należy skupić się na technikach adsorpcji, które zapewniają najwyższą efektywność oraz niezawodność w aplikacjach wymagających precyzyjnej kontroli warunków atmosferycznych.

Pytanie 19

Który element został oznaczony na rysunku symbolem literowym X?

Ilustracja do pytania
A. Sensor ciśnienia.
B. Zawór bezpieczeństwa.
C. Tłumik hałasu.
D. Korek uszczelniający.
Element oznaczony na rysunku symbolem literowym X to tłumik hałasu, który pełni kluczową rolę w różnych systemach mechanicznych i hydraulicznych. Tłumiki hałasu są stosowane do redukcji niepożądanych dźwięków generowanych przez przepływające medium, takie jak powietrze lub ciecz. Ich projekt oparty jest na zasadach akustyki i inżynierii mechanicznej, co pozwala na skuteczne tłumienie fal dźwiękowych. W zastosowaniach przemysłowych, takich jak systemy pneumatyczne i hydrauliczne, tłumiki hałasu przyczyniają się nie tylko do poprawy komfortu pracy, ale także do ochrony elementów układu przed uszkodzeniami spowodowanymi wibracjami. Dobrze zaprojektowany tłumik hałasu może również wpłynąć na wydajność systemu, minimalizując straty energii związane z hałasem. W branży stosuje się różne normy dotyczące poziomów hałasu, co sprawia, że stosowanie tłumików hałasu staje się nie tylko zalecane, ale wręcz wymagane w wielu zastosowaniach, aby zapewnić zgodność z regulacjami ochrony środowiska i zdrowia pracowników.

Pytanie 20

Które z wymienionych narzędzi należy zastosować podczas wymiany układu scalonego na płytce drukowanej, widocznej na zdjęciu?

Ilustracja do pytania
A. Lutownicę i odsysacz.
B. Ucinaczki i pilnik.
C. Pęsetę i zaciskarkę.
D. Śrubokręt i szczypce.
Lutownica i odsysacz to kluczowe narzędzia w procesie wymiany układu scalonego na płytce drukowanej. Lutownica, jako narzędzie do podgrzewania cyny, pozwala na jej roztopienie, co jest niezbędne do skutecznego odłączenia układu od płytki. Odsysacz jest równie ważny, gdyż umożliwia usunięcie nadmiaru roztopionej cyny, co minimalizuje ryzyko uszkodzenia ścieżek przewodzących na płytce. Użycie tych narzędzi zgodnie z najlepszymi praktykami branżowymi zapewnia nie tylko efektywność, ale także bezpieczeństwo całego procesu. Na przykład, podczas pracy z płytkami PCB, ważne jest, aby unikać przegrzania komponentów, co może prowadzić do ich uszkodzenia lub zmniejszenia wydajności. Dobrze jest również używać odsysacza w celu precyzyjnego usunięcia cyny, co z kolei pozwala na łatwiejsze umiejscowienie nowego układu scalonego. Warto również zwrócić uwagę na to, że lutownica powinna być odpowiednio kalibrowana, a temperatura lutowania dostosowana do specyfiki używanej cyny.

Pytanie 21

Ilustracja przedstawia łożysko

Ilustracja do pytania
A. przegubowe.
B. walcowe.
C. igiełkowe.
D. kulkowe.
Odpowiedź jest poprawna, ponieważ ilustracja przedstawia łożysko przegubowe, które charakteryzuje się unikalną budową kulistych powierzchni wewnętrznej i zewnętrznej. Ta konstrukcja pozwala na swobodny ruch przegubowy, co czyni je idealnym rozwiązaniem w miejscach, gdzie występują złożone ruchy, takie jak w zawieszeniach pojazdów, robotyce czy mechanizmach przemysłowych. Łożyska przegubowe są szczególnie cenione w aplikacjach wymagających dużych obciążeń oraz kompensacji niewspółosiowości, co jest kluczowe w wielu zastosowaniach inżynieryjnych. W przeciwieństwie do łożysk walcowych, które są ograniczone do ruchów liniowych, łożyska przegubowe oferują większą elastyczność i możliwość dostosowania się do zmieniających się warunków pracy. W standardach branżowych, takich jak ISO 12240, podkreśla się znaczenie wyboru odpowiedniego typu łożyska w zależności od specyfiki ruchu i obciążenia. Wiedza na temat budowy i zastosowań łożysk przegubowych jest kluczowa dla inżynierów mechaników, którzy projektują i optymalizują systemy mechaniczne dla różnych dziedzin przemysłu.

Pytanie 22

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. usterką silnika pralki
B. brakiem zasilania elektrycznego
C. brakiem dopływu wody do urządzenia
D. niewłaściwym zerowaniem obudowy silnika pralki
Brak zasilania napięciem elektrycznym jest najczęstszą przyczyną, dla której pralka automatyczna nie reaguje po wciśnięciu przycisku zasilania. W praktyce, przed rozpoczęciem jakiejkolwiek diagnostyki, warto upewnić się, że urządzenie jest prawidłowo podłączone do gniazdka i że gniazdko jest sprawne. Testowanie gniazdka za pomocą innego urządzenia, np. lampki, może potwierdzić obecność napięcia. W sytuacji, gdy zasilanie jest prawidłowe, dalsza kontrola powinna obejmować przewody zasilające i wtyczki, które mogą ulec uszkodzeniu. W standardzie instalacji elektrycznych, aby zapewnić bezpieczeństwo urządzeń, należy stosować odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe. Ponadto, regularne przeglądy instalacji elektrycznej są zalecane, aby unikać problemów związanych z zasilaniem, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa urządzeń AGD.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W instalacji pneumatycznej przedstawionej na rysunku przewód główny, do którego podłącza się m.in. kolejne układy sterowania pneumatycznego zainstalowany, jest ze spadkiem 1% w celu

Ilustracja do pytania
A. spowolnienia przepływu.
B. umożliwienia spływu kondensatu.
C. poprawy szczelności.
D. przyspieszenia przepływu.
Spadek przewodu głównego w instalacji pneumatycznej, taki na poziomie 1%, to naprawdę ważna rzecz, jeśli chodzi o sprawne odprowadzanie kondensatu, który powstaje z chłodzenia sprężonego powietrza. Jak wiadomo, para wodna w sprężonym powietrzu skrapla się i potem gromadzi w dolnych częściach przewodu. To może być naprawdę problematyczne, bo może prowadzić do korozji i zanieczyszczenia różnych elementów w systemie pneumatycznym. Dlatego trzeba zadbać o to, żeby kondensat miał gdzie spływać, na przykład do zespołu przygotowania powietrza. To zgodne z dobrymi praktykami, które mówią, że każda instalacja pneumatyczna powinna mieć dobrze zaprojektowane systemy do odprowadzania skroplin. Z tego, co widzę, to pomaga utrzymać system w dobrym stanie i zmniejsza ryzyko awarii. A to przecież jest kluczowe, żeby procesy przemysłowe mogły działać bez zakłóceń. No i nie można zapominać, że regularne kontrole i konserwacja tych systemów są absolutnie niezbędne, żeby wszystko działało jak należy i spełniało normy bezpieczeństwa.

Pytanie 25

Którymi cyframi oznaczono moduły wejść i wyjść dyskretnych sterownika PLC?

Ilustracja do pytania
A. Wejścia cyfrowe – 3, wyjścia cyfrowe – 4.
B. Wejścia cyfrowe – 4, wyjścia cyfrowe – 2.
C. Wejścia cyfrowe – 1, wyjścia cyfrowe – 3.
D. Wejścia cyfrowe – 2, wyjścia cyfrowe – 1.
Poprawna odpowiedź to wejścia cyfrowe – 4, wyjścia cyfrowe – 2. W kontekście sterowników PLC, liczba modułów wejść i wyjść jest kluczowym elementem określającym zdolności systemu automatyki. Oznaczenia cyfr 4 i 2 przypisane do modułów odzwierciedlają rzeczywiste konfiguracje w systemie. Moduł wejść cyfrowych oznaczony jako 'DC DIGITAL INPUTS' z cyfrą 4 wskazuje na możliwość przyjmowania czterech różnych sygnałów wejściowych, co jest istotne w kontekście zbierania danych z czujników czy przycisków. Z kolei moduł wyjść cyfrowych 'DIGITAL OUTPUTS' z cyfrą 2 oznacza, że system może kontrolować dwa urządzenia wyjściowe, co jest niezbędne w automatyzacji procesów, takich jak włączanie silników czy przekaźników. Znajomość liczby modułów pozwala na odpowiednie planowanie rozwoju systemu oraz możliwości jego rozbudowy. W zastosowaniach przemysłowych istotne jest, aby liczba wejść i wyjść była zgodna z wymaganiami aplikacji, co wpływa na efektywność i niezawodność całego układu sterowania.

Pytanie 26

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 1500 mm2
B. 1000 mm2
C. 2000 mm2
D. 3000 mm2
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności F<sub>u</sub> = η ∙ S ∙ p. Wstawiając znane wartości: F<sub>u</sub> = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = F<sub>u</sub> / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m<sup>2</sup>, co odpowiada 2000 mm<sup>2</sup>. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Aby zmierzyć temperaturę, należy podłączyć do wejścia sterownika PLC

A. prądnicę tachometryczną
B. przekaźnik elektromagnetyczny
C. czujnik rezystancyjny
D. czujnik indukcyjny
Podłączenie innych komponentów, takich jak prądnica tachometryczna, czujnik indukcyjny czy przekaźnik elektromagnetyczny, do pomiaru temperatury nie jest odpowiednie. Prądnica tachometryczna jest wykorzystywana do pomiaru prędkości obrotowej w silnikach i nie ma zastosowania w kontekście temperatury. Czujnik indukcyjny, z kolei, wykrywa obecność obiektów metalowych i również nie nadaje się do pomiaru temperatury. Przekaźnik elektromagnetyczny jest elementem wykonawczym, który służy do załączania lub wyłączania obwodów elektrycznych, a więc nie jest narzędziem pomiarowym. Typowym błędem myślowym jest mylenie funkcji różnych elementów w systemie automatyki. Często przy wyborze czujnika do pomiaru temperatury nie uwzględnia się specyfiki ich działania oraz przeznaczenia. W przypadku pomiaru temperatury, kluczowe jest, aby zastosować czujniki, które są przystosowane do tej funkcji, co znacznie zwiększa dokładność i niezawodność całego systemu. Wybór odpowiednich komponentów w systemie automatyki powinien być oparty na zrozumieniu ich przeznaczenia oraz właściwości, co jest zgodne z dobrymi praktykami projektowania systemów automatyki.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakie są etapy podstawowych cykli działania sterownika PLC?

A. Inicjalizacja sterownika, aktualizacja stanu wyjść, aktualizacja stanu wejść, wykonanie programu
B. Aktualizacja stanu wejść, inicjalizacja sterownika, aktualizacja stanu wyjść, wykonanie programu
C. Aktualizacja stanu wyjść, inicjalizacja sterownika, wykonanie programu, uaktualnianie stanu wejść
D. Inicjalizacja sterownika, aktualizacja stanu wejść, wykonanie programu, aktualizacja stanu wyjść
Odpowiedź podana jako prawidłowa opisuje właściwą kolejność cykli pracy sterownika PLC. Proces ten zaczyna się od inicjalizacji sterownika, która przygotowuje system do działania, ustalając wszystkie niezbędne parametry i konfiguracje. Następnie następuje aktualizacja stanu wejść, gdzie sterownik odczytuje dane z urządzeń zewnętrznych, takich jak czujniki. Kolejnym krokiem jest wykonanie programu, w którym sterownik przetwarza zebrane dane i podejmuje decyzje na podstawie zdefiniowanych algorytmów. Na końcu następuje aktualizacja stanu wyjść, co oznacza wysłanie sygnałów do urządzeń wykonawczych, takich jak siłowniki czy przekaźniki. Przykładowo, w aplikacji automatyki przemysłowej, po odczytaniu sygnału z czujnika temperatury, sterownik może podjąć decyzję o włączeniu systemu chłodzenia. Dobre praktyki wskazują, że ta sekwencja cykli zapewnia maksymalną efektywność i niezawodność w działaniu systemu PLC, co jest kluczowe w przemysłowych zastosowaniach automatyki.

Pytanie 31

Co znaczy zaświecenie czerwonej diody oznaczonej skrótem BATF na panelu kontrolnym sterownika PLC?

A. Tryb funkcjonowania CPU
B. Brak baterii podtrzymującej zasilanie
C. Tryb wstrzymania CPU
D. Potrzeba zmian w parametrach programu
Zaświecenie się czerwonej diody oznaczonej skrótem BATF na panelu sygnalizacyjnym sterownika PLC informuje użytkownika o braku baterii podtrzymującej zasilanie. Baterie te są kluczowe dla prawidłowego działania urządzeń, które przechowują dane w pamięci nieulotnej, takich jak godzina systemowa czy ustawienia konfiguracyjne. Gdy bateria jest wyczerpana lub nieobecna, sterownik PLC może stracić wprowadzone dane po wyłączeniu zasilania, co może prowadzić do nieprawidłowego działania systemu oraz utraty istotnych informacji. W praktyce, w przypadku zaświecenia się diody BATF, zaleca się jak najszybszą wymianę baterii, aby uniknąć potencjalnych awarii. Ponadto, zgodnie z normami branżowymi, regularne przeglądy stanu baterii oraz systematyczne konserwacje są kluczowe dla zapewnienia ciągłości pracy urządzeń oraz ich niezawodności. Utrzymanie funkcji podtrzymywania zasilania nie tylko zabezpiecza dane, ale również zwiększa efektywność operacyjną całego systemu.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Na podstawie widoku płytki sterownika oraz schematu podłączenia uzwojeń silnika, wskaż parametry napięć zasilających sterownik oraz silnik.

Ilustracja do pytania
A. Napięcie zasilania sterownika 30 V AC Napięcie zasilania silnika 12 V AC
B. Napięcie zasilania sterownika 30 V DC Napięcie zasilania silnika 12 V AC
C. Napięcie zasilania sterownika 12 V DC Napięcie zasilania silnika 30 V DC
D. Napięcie zasilania sterownika 12 V DC Napięcie zasilania silnika 30 V AC
Analizując błędne odpowiedzi, można zauważyć powszechny problem z błędną interpretacją schematów oraz specyfikacji zasilania. Przy wyborze napięcia dla sterownika i silnika, kluczowe jest prawidłowe rozpoznanie oznaczeń na schematach, co jest fundamentalnym aspektem pracy z elektroniką. Niestety, nierzadko dochodzi do mylnych wniosków dotyczących napięć, co może prowadzić do niewłaściwego doboru komponentów. Przykładowo, napięcia zbyt wysokie lub zbyt niskie w stosunku do specyfikacji komponentów mogą skutkować ich uszkodzeniem lub nieefektywnym działaniem. Zastosowania w automatyce wymagają precyzyjnego zrozumienia zasad zasilania, a każde niewłaściwe napięcie może prowadzić do nieprzewidzianych awarii. Typowym błędem jest niezrozumienie, że różne części systemu mogą wymagać różnych napięć, co było istotnym czynnikiem w tej konkretnej analizie. Niezbędna jest znajomość standardów, takich jak IEC 61000, które określają wymagania dotyczące zasilania i ochrony urządzeń elektronicznych. Kluczowym elementem skutecznej pracy z elektroniką jest umiejętność czytania schematów i dostosowywania komponentów zgodnie z ich specyfikacjami, co jest niezbędne dla bezpieczeństwa i efektywności operacyjnej systemów automatyki.

Pytanie 34

Po wciśnięciu przycisku sterującego zaworu rozdzielającego 1V1 nastąpi

Ilustracja do pytania
A. wysunięcie tłoków obu siłowników 1A1 i 1A2
B. wysunięcie tłoka siłownika 1A1 i wsunięcie tłoka siłownika 1A2
C. wysunięcie tłoka siłownika 1A2 i wsunięcie tłoka siłownika 1A1
D. wsunięcie tłoków obu siłowników 1A1 i 1A2
Analizując błędne odpowiedzi, można zauważyć, że wiele z nich opiera się na niepoprawnym zrozumieniu działania zaworu rozdzielającego 1V1. W przypadku pierwszej koncepcji, gdzie mówi się o wysunięciu tłoka siłownika 1A2 i wsunięciu tłoka 1A1, myśl ta opiera się na fałszywym założeniu, że wciśnięcie przycisku sterującego utrzymuje ciśnienie w portach A. W rzeczywistości zmiana połączenia ciśnienia powoduje, że siłowniki działają w przeciwnym kierunku. Z kolei odpowiedź sugerująca wysunięcie obu tłoków 1A1 i 1A2 ignoruje istotę działania rozdzielacza, który ma za zadanie jednoczesne wsunięcie tłoków, a nie ich wysunięcie. Podobnie, koncepcja mówiąca o wsunięciu tłoka 1A2 a wysunięciu 1A1 opiera się na błędnym rozumieniu mechanizmu sterowania ciśnieniem. Tego rodzaju błędy myślowe często wynikają z nieuwagi podczas analizy schematów hydraulicznych lub braku zrozumienia zasad działania zaworów rozdzielających. Kluczowe jest, aby dobrze zrozumieć, że w hydraulice kierunek ruchu tłoków jest bezpośrednio związany z tym, który port jest zasilany ciśnieniem. Właściwa wiedza na temat działania rozdzielaczy jest niezbędna do unikania pomyłek w projektowaniu i eksploatacji systemów hydraulicznych.

Pytanie 35

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. uniwersalne
B. płaskie
C. oczko
D. zapadkowe
Klucze zapadkowe są specjalizowanymi narzędziami, które pozwalają na szybkie i efektywne dokręcanie oraz odkręcanie połączeń gwintowych, co znacznie zwiększa wydajność montażu. Ich konstrukcja pozwala na ciągłe obracanie klucza w jednym kierunku bez konieczności jego wyjmowania z miejsca pracy. Działa to na zasadzie mechanizmu zapadkowego, gdzie przekręcenie klucza w jedną stronę powoduje, że zapadka przeskakuje, umożliwiając kolejne ruchy. W praktyce oznacza to, że praca z kluczem zapadkowym jest znacznie szybsza i mniej męcząca, co ma kluczowe znaczenie w środowiskach przemysłowych, gdzie czas i efektywność są na wagę złota. Użycie kluczy zapadkowych jest zgodne z normami ergonomii oraz efektywności pracy, co czyni je bardzo popularnym rozwiązaniem w mechanice i montażu. Warto również zauważyć, że klucze zapadkowe są dostępne w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w różnorodnych zastosowaniach, od napraw samochodowych po prace w przemyśle budowlanym.

Pytanie 36

Podczas użytkowania urządzenia zaobserwowano wzrost hałasu spowodowany przez łożysko toczne. Naprawa sprzętu polega na

A. wymianie osłony łożyska
B. wymianie całego łożyska
C. zmniejszeniu luzów łożyska
D. redukcji nadmiaru smaru w łożysku
Wymiana całego łożyska jest właściwą odpowiedzią w kontekście zwiększonego hałasu, który wskazuje na problemy z łożyskiem tocznym. W przypadku uszkodzenia łożyska, jego wymiana jest najlepszym rozwiązaniem, ponieważ usunięcie i zastąpienie uszkodzonego elementu zapewnia długotrwałą efektywność działania urządzenia. Standardy branżowe, takie jak ISO 1940, wskazują na potrzebę wymiany łożysk, gdy wykazują one znaczące zużycie lub uszkodzenie, co może prowadzić do awarii mechanizmu. Przykładem może być sytuacja w przemyśle motoryzacyjnym, gdzie wymiana łożysk w silnikach oraz układach napędowych jest kluczowym elementem zapewniającym ich niezawodność. Dodatkowo, regularna kontrola stanu łożysk oraz ich wymiana zgodnie z zaleceniami producenta sprzętu są najlepszą praktyką, co przekłada się na wydłużenie cyklu życia maszyn i zmniejszenie ryzyka awarii.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Odczytaj wynik pomiaru wykonanego mikrometrem.

Ilustracja do pytania
A. 4,30 mm
B. 5,80 mm
C. 5,30 mm
D. 4,80 mm
Poprawna odpowiedź to 4,80 mm, ponieważ w pomiarze mikrometrycznym kluczowe jest zrozumienie, jak odczytywać zarówno podziałkę główną, jak i noniusz. Na podziałce głównej widoczna jest liczba 4, co oznacza, że mamy 4 mm. Następnie, na podziałce noniusza, linia 40 pokrywa się z linią na podziałce głównej, co wskazuje na dodatkowe 0,80 mm. Sumując te dwie wartości (4 mm + 0,80 mm) otrzymujemy ostateczny wynik 4,80 mm. W praktyce, mikrometry są często wykorzystywane w precyzyjnych pomiarach w inżynierii i metrologii, a ich umiejętne odczytywanie jest kluczowe dla zapewnienia dokładności w produkcji części mechanicznych. Standardy takie jak ISO 2768 określają tolerancje w wymiarach, co podkreśla znaczenie prawidłowych pomiarów. Odpowiednie szkolenie w obsłudze mikrometrów oraz praktyka w ich używaniu pozwalają na eliminację błędów pomiarowych, co jest niezbędne w każdym układzie produkcyjnym.

Pytanie 39

Którą z przedstawionych na ilustracji nakrętek należy zastosować w połączeniach gwintowych, aby zapewnić ochronę przed zranieniem o powierzchnię gwintu oraz nadać im estetyczny wygląd?

Ilustracja do pytania
A. Nakrętkę 2.
B. Nakrętkę 3.
C. Nakrętkę 4.
D. Nakrętkę 1.
Wybór niewłaściwej nakrętki do połączeń gwintowych może prowadzić do wielu problemów, które mają zarówno praktyczne, jak i estetyczne konsekwencje. Nakrętki, które nie są wyposażone w zaślepki, nie tylko narażają użytkowników na potencjalne zranienia, ale także obniżają ogólną estetykę połączenia. Często myśli się, że nakrętki standardowe, które nie mają osłon, mogą być wystarczające, jednak w rzeczywistości ich ostrze krawędzie mogą być niebezpieczne, szczególnie w miejscach publicznych. Ponadto, brak osłony pozwala na gromadzenie się zanieczyszczeń w gwintach, co może prowadzić do korozji i uszkodzenia połączenia. W wielu przypadkach, takie zastosowanie może nie być zgodne z obowiązującymi normami bezpieczeństwa, co stawia na szali integralność konstrukcji. Warto pamiętać, że estetyka w projektowaniu nie jest drugorzędna - poprawnie dobrana nakrętka nie tylko wpływa na bezpieczeństwo, ale również na wrażenia wizualne i jakość produktu końcowego. Często występującym błędem jest również przekonanie, że nakrętka nie musi pasować do reszty projektu; w rzeczywistości każdy element ma znaczenie dla ogólnej funkcjonalności i wyglądu wyrobu. Wybierając niewłaściwie, można nie tylko pogorszyć bezpieczeństwo, ale również wartość estetyczną i funkcjonalną całego produktu.

Pytanie 40

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Łączenia przewodów hydraulicznych.
B. Usuwania izolacji z przewodów elektrycznych.
C. Gięcia przewodów elektrycznych.
D. Cięcia przewodów pneumatycznych.
Narzędzie przedstawione na rysunku to nożyk do przewodów z tworzyw sztucznych, które są powszechnie wykorzystywane w instalacjach pneumatycznych. Jego konstrukcja umożliwia precyzyjne cięcie różnych typów przewodów pneumatycznych, co jest niezwykle istotne w branży automatyki i pneumatyki. Przewody te często stosowane są w systemach transportu sprężonego powietrza, gdzie ich integralność i odpowiednie dopasowanie mają kluczowe znaczenie dla sprawności całego układu. Dzięki zastosowaniu tego narzędzia, możliwe jest uzyskanie gładkich krawędzi bez uszkodzenia struktury materiału, co minimalizuje ryzyko przecieków i awarii. Warto zwrócić uwagę, że zgodnie z najlepszymi praktykami w branży, cięcie przewodów powinno być przeprowadzane w sposób zabezpieczający przed odkształceniem ich końców, co zapewnia prawidłowe działanie systemów pneumatycznych. Dobrej jakości nożyk do przewodów jest niezbędnym wyposażeniem każdego technika zajmującego się instalacjami pneumatycznymi.