Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 12:26
  • Data zakończenia: 17 grudnia 2025 12:39

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Wskaż urządzenie, które można wykorzystać do pomiaru ciśnienia wywieranego przez ciecz na ścianki zbiornika?

A. Tensometr
B. Pirometr
C. Tachometr
D. Żyroskop
Tensometr to urządzenie, które służy do pomiaru odkształceń materiałów pod wpływem sił zewnętrznych, w tym ciśnienia cieczy. W kontekście zbiorników, tensometry są wykorzystywane do monitorowania sił działających na ścianki zbiorników, co pozwala na ocenę ciśnienia cieczy wewnętrznej. Przykłady zastosowania to kontrola zbiorników ciśnieniowych w przemyśle chemicznym, gdzie precyzyjny pomiar ciśnienia jest kluczowy dla bezpieczeństwa i efektywności procesów. Tensometry mogą być integrowane z systemami automatyki przemysłowej, co umożliwia zdalne monitorowanie i wczesne wykrywanie nieprawidłowości. Zgodnie z normami branżowymi, stosowanie tensometrów w tych aplikacjach przyczynia się do zwiększenia niezawodności i wydajności operacyjnej. Dodatkowo, dzięki stosowaniu materiałów o wysokiej czułości i precyzji, tensometry zapewniają dokładne i powtarzalne pomiary, co jest niezwykle istotne w kontroli procesów technologicznych.

Pytanie 2

Na podstawie wskazań manometru wskaż wartość zmierzonego ciśnienia?

Ilustracja do pytania
A. 6,5 bar
B. 65 bar
C. 0,65 bar
D. 90 bar
Poprawna odpowiedź, 6,5 bar, wynika z bezpośredniego odczytu wskazania manometru, na którym wartość ciśnienia jest wyraźnie zaznaczona na zewnętrznej skali. Manometry są powszechnie stosowane w różnych aplikacjach przemysłowych i inżynieryjnych, w tym w systemach hydraulicznych, pneumatycznych oraz w branży motoryzacyjnej. Odczytywanie ciśnienia jest kluczowe dla zapewnienia bezpieczeństwa i efektywności operacji. Wartość 6,5 bar wskazuje na umiarkowane ciśnienie, co może być istotne w kontekście działań konserwacyjnych lub diagnostycznych. W praktyce, jeżeli manometr wskazuje ciśnienie na poziomie 6,5 bar, oznacza to, że system, w którym jest używany, działa w optymalnych warunkach. Zachowanie w zakresie poprawnych wartości ciśnienia jest kluczowe, aby uniknąć uszkodzeń sprzętu lub awarii systemu. Dobrą praktyką jest regularne kalibracja manometrów, aby utrzymać ich dokładność i niezawodność. Takie działanie jest zgodne z normą ISO 9001, która podkreśla znaczenie jakości w procesach produkcyjnych i serwisowych.

Pytanie 3

Muskuł pneumatyczny przedstawiony na rysunku przystosowany jest do połączenia

Ilustracja do pytania
A. spawanego.
B. gwintowego.
C. tarczowego.
D. kołnierzowego.
Muskuł pneumatyczny, który widzisz na rysunku, jest zaprojektowany tak, żeby można go było połączyć za pomocą gwintów. Takie połączenie jest bardzo popularne w hydraulice i pneumatyce, bo można łatwo montować i demontować różne części bez potrzeby używania jakichś specjalistycznych narzędzi. Dobrze to widać przy łączeniu cylindrów pneumatycznych z zaworami, co jest naprawdę ważne w automatyce przemysłowej. Jak już masz do czynienia z projektowaniem takich układów, warto znać standardy jak ISO 16047, które mówią, jakie są wymagania co do złączek i połączeń gwintowych. Dzięki temu jesteśmy pewni, że układy działają bezpiecznie i niezawodnie, co jest kluczowe w systemach, gdzie precyzyjne sterowanie i efektywność energetyczna mają znaczenie. Pamiętaj, że dobrze dobrane połączenia mają duży wpływ na trwałość i wydajność tych systemów.

Pytanie 4

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. wkrętaka płaskiego
B. wkrętaka krzyżowego
C. klucza płaskiego
D. klucza imbusowego
Użycie wkrętaka krzyżowego do demontowania sterownika PLC z szyny DIN to nie najlepszy pomysł. Te narzędzia są zaprojektowane bardziej do pracy z krzyżowymi gniazdami, a nie do zwalniania zatrzasków. Jak się mocno pchnie wkrętak krzyżowy, to można uszkodzić zatrzaski, a potem będzie problem z montowaniem z powrotem sterownika. Klucz imbusowy z kolei jest do śrub sześciokątnych, więc do szyn DIN się nie nadaje. A klucz płaski też nie zda egzaminu, bo nie jest do zatrzasków, co może być mylone przez osoby, które nie wiedzą, jak to działa. Używanie złych narzędzi wydłuża czas demontażu i może prowadzić do różnych uszkodzeń. W sytuacjach awaryjnych, kiedy potrzebna jest szybka wymiana, źle dobrane narzędzia mogą wywołać poważne problemy, zarówno techniczne, jak i finansowe. Dlatego trzeba się dobrze zapoznać z tym, co jest potrzebne i używać narzędzi, które poleca producent.

Pytanie 5

Którą literą na rysunku silnika hydraulicznego oznaczono tarczę rozdzielacza?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź B jest poprawna, ponieważ na rysunku silnika hydraulicznego tarcza rozdzielacza jest oznaczona literą 'B'. Tarcza rozdzielacza odgrywa kluczową rolę w prawidłowej pracy silnika hydraulicznego, ponieważ odpowiada za kierowanie przepływu cieczy roboczej do odpowiednich komór. Dzięki prawidłowemu rozdzieleniu ciśnienia, silnik może efektywnie generować moc, co jest istotne w zastosowaniach takich jak maszyny budowlane, urządzenia przemysłowe czy systemy hydrauliczne w pojazdach. W przypadku nieprawidłowego oznaczenia lub uszkodzenia tarczy rozdzielacza, może dojść do niewłaściwego rozdzielenia cieczy, co skutkuje spadkiem wydajności silnika, a nawet jego uszkodzeniem. Zgodnie z dobrymi praktykami branżowymi, regularne przeglądy i konserwacja komponentów hydraulicznych, w tym tarczy rozdzielacza, są kluczowe dla zapewnienia ich długotrwałej i niezawodnej pracy. Właściwe oznaczenia na schematach technicznych są ważne, aby zapewnić prawidłowe interpretacje i efektywne naprawy w sytuacjach awaryjnych.

Pytanie 6

Na rysunku przedstawiono przekrój siłownika pneumatycznego

Ilustracja do pytania
A. tandemu.
B. wielopołożeniowego.
C. udarowego.
D. tłokowego.
Wybór odpowiedzi dotyczących siłownika wielopołożeniowego wskazuje na pewne nieporozumienie w zakresie rozumienia konstrukcji i działania różnych typów siłowników pneumatycznych. Siłowniki wielopołożeniowe są projektowane w celu realizacji ruchu w wielu etapach, co nie ma zastosowania w przedstawionym rysunku, gdzie istotne elementy siłownika tłokowego są wyraźnie widoczne. Siłownik tandemowy, z kolei, składa się z dwóch lub więcej siłowników połączonych szeregowo, co również nie jest reprezentowane w tym przypadku. Dodatkowo, siłownik udarowy, który ma na celu generowanie ruchów o dużej prędkości i energii, jest konstrukcją znacznie bardziej złożoną i różniącą się zasadniczo od siłownika tłokowego. Zrozumienie tych różnic jest kluczowe dla stosowania odpowiednich rozwiązań w projektach inżynieryjnych. Często błędem jest mylenie funkcji i konstrukcji siłowników, co może prowadzić do niewłaściwego doboru komponentów, a w konsekwencji do awarii systemów. W praktyce, każda aplikacja wymaga analizy specyficznych wymagań dotyczących siłowników, a nieprawidłowe zrozumienie ich typów i zastosowań może skutkować istotnymi problemami technicznymi.

Pytanie 7

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 16-bitowym
B. 32-bitowym
C. 8-bitowym
D. 64-bitowym
Wybór odpowiedzi 16-bitowej, 32-bitowej czy 64-bitowej jest błędny w kontekście określonej rozdzielczości 40 mV. Te formaty oferują znacznie większą liczbę poziomów rozdzielczości, co prowadzi do nieadekwatnych wyników w tym przypadku. Przykładowo, 16-bitowy przetwornik A/C generuje 65,536 poziomów (2^16), co w przypadku 10 V daje krok napięcia równy około 0,15 mV. Tak mała rozdzielczość jest niepraktyczna, gdy wymagana rozdzielczość wynosi 40 mV. Podobnie, 32-bitowe i 64-bitowe przetworniki oferują jeszcze wyższą precyzję, która w tym kontekście jest zbyteczna. Wybierając zbyt wysoką rozdzielczość, można napotkać problemy związane z przetwarzaniem danych i ich interpretacją, co w praktyce może obniżyć efektywność systemu. Często użytkownicy mylnie zakładają, że wyższa rozdzielczość jest zawsze lepsza, co prowadzi do nieefektywnego wykorzystania zasobów. Dobór odpowiedniego przetwornika A/C powinien być dostosowany do specyficznych wymagań aplikacji, biorąc pod uwagę zarówno wymagania dotyczące rozdzielczości, jak i szybkości pomiaru. W rzeczywistości, dla wielu zastosowań przemysłowych, 8-bitowy przetwornik A/C zapewnia wystarczającą dokładność, co potwierdzają standardy branżowe oraz praktyki inżynieryjne.

Pytanie 8

Którego z wymienionych przyrządów pomiarowych należy użyć do wykonania pomiaru szerokości otworu nieprzelotowego, blisko dna otworu w sposób przedstawiony na rysunku?

Ilustracja do pytania
A. Głębokości omierza.
B. Przymiaru liniowego.
C. Wysokościomierza.
D. Średnicówki czujnikowej.
Wybór niewłaściwego przyrządu pomiarowego do mierzenia szerokości otworu nieprzelotowego blisko dna może prowadzić do istotnych błędów w ocenie wymiarów, co w konsekwencji wpływa na jakość wykonania elementów. Użycie głębokościomierza jest podejściem błędnym, ponieważ to narzędzie zostało zaprojektowane do pomiarów głębokości, a nie średnic. W kontekście otworów nieprzelotowych, głębokościomierz nie jest w stanie dostarczyć informacji o średnicy, co jest kluczowe w przypadku takich pomiarów. Wysokościomierz, podobnie, służy do pomiarów wysokości elementów i nie jest właściwy do oceniania szerokości otworów, przez co użytkownik może uzyskać mylne wyniki, które mogą wpływać na dalsze etapy produkcji. Przymiar liniowy, mimo że jest uniwersalnym narzędziem pomiarowym, nie oferuje precyzji potrzebnej do pomiarów średnic wewnętrznych, zwłaszcza w trudnodostępnych miejscach, takich jak dna otworów. W praktyce, przy pomiarach w inżynierii, kluczowe jest stosowanie narzędzi dostosowanych do specyficznych wymagań zadania pomiarowego, co podkreśla znaczenie zrozumienia ich funkcji oraz ograniczeń, aby uniknąć błędów prowadzących do niepoprawnych wniosków.

Pytanie 9

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. miernik mętności
B. czujnik poziomu
C. miernik prędkości
D. przepływomierz
Miernik poziomu jest urządzeniem, które służy do określania wysokości cieczy w zbiorniku, a jego zakres pomiarowy nie odnosi się do przepływu, lecz do stanu napełnienia. Z kolei mętnościomierz jest narzędziem do pomiaru mętności wody, co jest istotne w analizach jakości wody, ale nie ma związku z pomiarem przepływu. Szybkościomierz, jak sama nazwa wskazuje, mierzy prędkość, co jest inną kategorią pomiarów, najczęściej stosowaną w kontekście ruchu pojazdów lub przepływu powietrza. Błędne rozumienie funkcji tych urządzeń często prowadzi do nieprawidłowych wniosków na temat ich zastosowania. Ważne jest, aby zrozumieć, że każdy z tych mierników ma swoje specyficzne przeznaczenie oraz metody pomiarowe, co jest kluczowe w inżynierii i technologii pomiarowej. Niezrozumienie różnicy między mierzonymi parametrami oraz ich przeznaczeniem może prowadzić do nieefektywnego zarządzania procesami przemysłowymi oraz błędów w aplikacjach inżynieryjnych.

Pytanie 10

Na podstawie przedstawionej noty katalogowej termostatu HONEYWELL 3455RC określ temperaturę otwarcia oraz amplitudę.

Typ czujnikatermostat
Konfiguracja wyjściaNC
Temperatura otwarcia18°C
Temperatura zamknięcia-1°C
Prąd pracy maks.10A
Napięcie pracy maks.240V AC
Przyłączekonektory
6,4mm
A. Temperatura otwarcia 18°C, amplituda 17°C
B. Temperatura otwarcia 18°C, amplituda 19°C
C. Temperatura otwarcia -1°C, amplituda 18°C
D. Temperatura otwarcia 18°C, amplituda -1°C
Coś poszło nie tak. Trzeba przyjrzeć się, co znaczy temperatura otwarcia i amplituda w kontekście termostatów. Mówiąc o temperaturze otwarcia -1°C, to trochę mylące. Termostat raczej nie zaczyna działać w temperaturach ujemnych, bo to nie ma sensu w standardowych sytuacjach. Również amplituda 18°C wydaje się nie pasować, bo między temperaturą otwarcia a zamknięcia powinno być 19°C, a nie 18°C. Jeżeli temperatura otwarcia wynosi 18°C, to temperatura zamknięcia nie może być wyższa. Stąd nie powinna wystąpić sytuacja, w której amplituda jest -1°C, bo to nie ma sensu. Ważne, żeby pamiętać, że amplituda nie może być ujemna, bo wskazuje, jak działa termostat. Często takie błędy wynikają z niepełnego zrozumienia różnych parametrów urządzeń regulacyjnych oraz ich zastosowania, co może prowadzić do nieefektywnego zarządzania systemami HVAC, a w konsekwencji zwiększonego zużycia energii. Warto zrozumieć te podstawowe zasady, zwłaszcza jeżeli planujesz pracować w inżynierii systemów klimatyzacyjnych i grzewczych.

Pytanie 11

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. usuwania kurzu
B. wprowadzania regulacji
C. analizy zużycia styków
D. sprawdzania dokręcenia śrub zacisków
Czyszczenie z kurzu, kontrola dokręcenia śrub zacisków oraz kontrola zużycia styków są kluczowymi elementami konserwacji układów stycznikowo-przekaźnikowych. Czyszczenie z kurzu jest istotne, ponieważ zanieczyszczenia mogą prowadzić do przegrzewania się elementów, co zwiększa ryzyko awarii. Właściwe dokręcenie śrub zacisków jest równie ważne, ponieważ luźne połączenia mogą generować opór, co prowadzi do uszkodzenia elementów elektronicznych oraz ich szybszego zużycia. Kontrola zużycia styków to kolejny niezbędny aspekt, ponieważ stykami przepływa prąd, a ich zużycie może prowadzić do nieefektywnej pracy całego układu, a w konsekwencji do awarii. Użytkownicy często popełniają błąd, myśląc, że konserwacja układu stycznikowo-przekaźnikowego polega jedynie na jego regulacji, co jest mylnym podejściem. Kluczowe jest zrozumienie, że konserwacja ma na celu utrzymanie urządzenia w stanie roboczym oraz zapobieganie awariom, co realizuje się poprzez systematyczne działania profilaktyczne, a nie wprowadzanie zmian w jego parametrach pracy. W praktyce, stosowanie się do standardów branżowych, takich jak normy IEC 60364, zapewnia bezpieczeństwo i długą żywotność urządzeń elektrycznych.

Pytanie 12

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. tłumik
B. zawór dławiący
C. magnes stały
D. membrana
Wybór innych opcji, takich jak zawór dławiący, membrana czy tłumik, nie jest adekwatny do kontekstu bezdotykowych sensorów położeń krańcowych w siłownikach. Zawór dławiący ma na celu regulację przepływu cieczy w układach hydraulicznych, co związane jest z kontrolą prędkości ruchu, ale nie ma zastosowania w pomiarze pozycji. Membrana, często używana w siłownikach pneumatycznych, odpowiada za separację mediów i nie jest elementem, który mógłby współpracować z sensorami położeń. Tłumik natomiast służy do zmniejszania drgań i hałasu, a nie do monitorowania lokalizacji siłownika. Takie myślenie może wynikać z nieporozumienia co do funkcji poszczególnych komponentów w systemach automatyzacji. Kluczowe jest zrozumienie, że bezdotykowe sensory opierają się na interakcji z polem magnetycznym, co czyni magnesy stałe niezbędnymi dla ich działania. Użycie niewłaściwych elementów prowadzi do błędów w projekcie systemów automatyki, co może skutkować obniżoną efektywnością i zwiększonym ryzykiem awarii. W kontekście projektowania systemów warto kierować się zasadami inżynieryjnymi oraz najlepszymi praktykami, które stawiają na efektywność, niezawodność i łatwość w utrzymaniu.

Pytanie 13

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HG
B. HL
C. HH
D. HR
Ciecze hydrauliczne typu HH to tak naprawdę te, które przenoszą energię, ale nie chronią przed korozją ani się nie smarują. Używa się ich głównie w hydraulice, gdzie priorytetem jest efektywne przenoszenie mocy, bez potrzeby dodatkowej ochrony. Przykłady? Proste układy hydrauliczne w maszynach budowlanych, które raczej nie są narażone na dużą korozję czy duże obciążenia. W takich sytuacjach można zbudować układ hydrauliczny z materiałów odpornych na rdzewienie, więc nie ma potrzeby dodawania dodatkowych środków ochronnych do płynów. W branży można spotkać standardy jak ISO 6743, które definiują różne klasy cieczy hydraulicznych na podstawie ich cech. Zrozumienie klasyfikacji cieczy hydraulicznych, w tym typu HH, to klucz do tego, by inżynierowie i technicy mogli wybierać odpowiednie materiały do konkretnych zastosowań, co jest ważne, żeby systemy hydrauliczne działały efektywnie i były niezawodne.

Pytanie 14

Jaki rodzaj oprogramowania trzeba zainstalować na komputerze, aby mieć możliwość wspierania procesów produkcyjnych związanych z kontrolą maszyn CNC?

A. SCADA
B. CAM
C. CAP
D. CAD
Wybór oprogramowania SCADA, CAD, lub CAP w kontekście wspomagania procesów wytwarzania maszyn CNC jest nietrafiony, ponieważ każde z tych narzędzi pełni inną, specyficzną funkcję, która nie jest bezpośrednio związana z kontrolą maszyn produkcyjnych. SCADA (Supervisory Control and Data Acquisition) jest systemem zarządzania, który służy do monitorowania i sterowania procesami w czasie rzeczywistym, ale nie generuje kodów produkcyjnych ani nie bezpośrednio nie obsługuje maszyn CNC. CAD (Computer-Aided Design) natomiast to narzędzie służące do projektowania i modelowania, ale samo w sobie nie ma zdolności przekształcania projektów w instrukcje ruchu dla maszyn. CAD może współpracować z systemami CAM, jednak nie może ich zastąpić. CAP (Computer-Aided Planning) to oprogramowanie, które wspiera procesy planowania produkcji, ale również nie jest odpowiednie do bezpośredniego sterowania maszynami CNC. Typowe błędy myślowe prowadzące do pomyłki w wyborze tych odpowiedzi obejmują mylenie funkcji różnych rodzajów oprogramowania oraz braku zrozumienia, że skuteczna produkcja wymaga ściśle zdefiniowanych procesów, w których CAM jest niezbędnym elementem. W przypadku maszyn CNC, ważne jest, aby korzystać z odpowiednich narzędzi, które są zaprojektowane do specyficznych zadań, aby zapewnić optymalne wyniki produkcyjne.

Pytanie 15

Na płytce drukowanej w miejscach oznaczonych cyframi 1, 2, 3 należy zamontować

Ilustracja do pytania
A. 1 - diodę prostowniczą, 2 - kondensator elektrolityczny, 3 - rezystor.
B. 1 - kondensator elektrolityczny, 2 - diodę prostowniczą, 3 - rezystor.
C. 1 - kondensator elektrolityczny, 2 - rezystor, 3 - diodę prostowniczą.
D. 1 - diodę prostowniczą, 2 - rezystor, 3 - kondensator elektrolityczny.
Wybór niewłaściwych komponentów do montażu na płytce drukowanej może prowadzić do wielu problemów w działaniu układu. Na przykład, umieszczenie diody prostowniczej w miejscu przeznaczonym dla kondensatora elektrolitycznego jest błędem, ponieważ diody mają zupełnie inną funkcję. Dioda prostownicza jest stosowana do kierowania przepływu prądu, co jest kluczowe w procesie prostowania, natomiast kondensator elektrolityczny gromadzi ładunek i stabilizuje napięcie. Jeśli dioda zostanie zamontowana tam, gdzie powinien być kondensator, może dojść do zwarcia lub niewłaściwego działania obwodu. Kolejnym błędem jest mylenie rezystora z diodą. Rezystor ogranicza przepływ prądu, a jego umiejscowienie w obwodzie jest kluczowe dla zapewnienia, że inne komponenty nie będą narażone na zbyt wysokie napięcie lub prąd. W przypadku zamontowania rezystora tam, gdzie powinien znajdować się kondensator, może to prowadzić do braku filtracji w zasilaczu, co z kolei może skutkować niestabilnym działaniem urządzenia. Tego rodzaju błędy zwykle wynikają z niedostatecznego zrozumienia funkcji podstawowych komponentów elektronicznych oraz ich oznaczeń na płytkach drukowanych. Kluczowe w pracy z elektroniką jest zrozumienie, jak różne elementy współdziałają ze sobą oraz jakie są ich role w obwodzie. Dlatego ważne jest, aby przed przystąpieniem do montażu dokładnie analizować schematy oraz oznaczenia na płytkach.

Pytanie 16

Jakie jest właściwe podłączenie dla przyłącza oznaczonego literą 'T' w zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P i T?

A. Do siłownika dwustronnego działania
B. Do zbiornika sprężonego powietrza
C. Do siłownika jednostronnego działania
D. Do zbiornika oleju hydraulicznego
Podłączenie przyłącza "T" do zbiornika sprężonego powietrza, czy do siłownika jednostronnego lub dwustronnego nie jest dobrym pomysłem z kilku przyczyn. Po pierwsze, zawory hydrauliczne są stworzone do zarządzania olejem, a nie sprężonym powietrzem. Te dwa mają zupełnie różne właściwości. Jakbyśmy ich użyli zamiennie, to może to prowadzić do dziwnych problemów z działaniem systemu i, co gorsza, uszkodzenia elementów. Przyłącza do siłowników mają inne funkcje – tam olej wpływa, żeby siłownik mógł działać. Z doświadczenia wiem, że niezrozumienie funkcji tych przyłączy to prosta droga do awarii hydrauliki. Normy branżowe wymagają, żeby każdy element był odpowiednio podłączony, inaczej może być nie tylko nieefektywnie, ale też niebezpiecznie. W hydraulice każdy podzespół ma swoje zadanie, więc warto to mieć na uwadze, żeby wszystko działało tak, jak powinno.

Pytanie 17

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. dwukrotnie
B. sześciokrotnie
C. dziewięciokrotnie
D. trzykrotnie
Wybór odpowiedzi, która zakłada trzykrotny, sześciokrotny lub dwukrotny wzrost wydzielającego się ciepła w wyniku trzykrotnego zwiększenia natężenia prądu, opiera się na błędnym zrozumieniu zależności między mocą, natężeniem prądu a rezystancją. Warto pamiętać, że zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu. Jeśli ktoś uważa, że moc wzrasta tylko trzykrotnie, myli się, ponieważ moc nie jest liniowo związana z natężeniem prądu. Dla natężenia prądu wynoszącego "I", moc wynosi P = I²R, a dla natężenia "3I", moc wynosi P' = (3I)²R = 9I²R. To oznacza, że moc wzrasta dziewięciokrotnie, a nie trzykrotnie, jak sugeruje błędne odpowiedzi. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego projektowania obwodów elektrycznych, co z kolei może prowadzić do przegrzewania się komponentów i ich uszkodzeń. Zrozumienie tych kluczowych zasad jest niezbędne dla inżynierów i techników pracujących z urządzeniami elektrycznymi. Warto podkreślić, że ignorowanie takich relacji między parametrami obwodów może skutkować niebezpiecznymi sytuacjami oraz zwiększeniem kosztów eksploatacji związanych z koniecznością naprawy lub wymiany uszkodzonych elementów.

Pytanie 18

Kiedy należy dokonać wymiany filtrów standardowych w systemie przygotowania powietrza?

A. W trakcie przeglądu konserwacyjnego przeprowadzanego co pół roku
B. W trakcie przeglądu konserwacyjnego przeprowadzanego co miesiąc
C. W trakcie przeglądu konserwacyjnego przeprowadzanym raz w roku lub kiedy spadek ciśnienia na filtrze przekroczy 0,5 bara
D. W trakcie przeglądu konserwacyjnego przeprowadzanego co dwa lata i kiedy spadek ciśnienia na filtrze przekroczy 1 bar
Wybór odpowiedzi sugerującej wymianę filtrów standardowych podczas przeglądu konserwacyjnego raz w miesiącu lub co dwa lata jest nieodpowiedni i wskazuje na brak zrozumienia dynamiki pracy systemów wentylacyjnych oraz ich wpływu na jakość powietrza. Konieczność wymiany filtrów co miesiąc jest niewłaściwa, ponieważ w większości zastosowań przemysłowych i komercyjnych filtry są projektowane do pracy przez dłuższy okres, a ich częsta wymiana może być nie tylko kosztowna, ale również nieefektywna. Ponadto, takie podejście prowadzi do niepotrzebnego generowania odpadów, co jest sprzeczne z zasadami zrównoważonego rozwoju i ochrony środowiska. Z kolei sugestia, aby wymieniać filtry co dwa lata, ignoruje kluczowy wskaźnik, jakim jest spadek ciśnienia. Filtry powinny być wymieniane nie tylko na podstawie czasu, ale przede wszystkim na podstawie ich stanu, co jest potwierdzone pomiarem ciśnienia. Właściwe podejście do zarządzania filtrami w systemach wentylacyjnych polega na ich cyklicznej ocenie i wymianie w zależności od rzeczywistych warunków operacyjnych. Takie praktyki są zgodne z zaleceniami międzynarodowych standardów, takich jak ISO 16890, które kładą duży nacisk na efektywność filtracji oraz odpowiednie zarządzanie jakością powietrza w pomieszczeniach. Właściwe monitorowanie stanu filtrów oraz ich wymiana w odpowiednich odstępach czasowych lub w zależności od spadku ciśnienia to kluczowe elementy zapewniające nieprzerwaną i efektywną pracę systemów uzdatniania powietrza.

Pytanie 19

Odczytaj wynik pomiaru wykonanego mikrometrem.

Ilustracja do pytania
A. 4,80 mm
B. 4,30 mm
C. 5,30 mm
D. 5,80 mm
Wybór błędnej odpowiedzi może wynikać z kilku typowych nieporozumień dotyczących odczytu pomiarów mikrometrycznych. Wiele osób może błędnie zinterpretować pozycję na podziałce głównej, co prowadzi do wyboru wartości 5,80 mm lub 5,30 mm. Problemy te zazwyczaj wynikają z nieprawidłowego odczytu liczby głównej, gdzie osoba pomiarowa może pomylić się, myśląc, że wartość na podziałce głównej pokazuje coś innego niż faktycznie jest. Ponadto, niepoprawne odczytywanie noniusza, takiego jak linia 30 lub 50, mogą skutkować odpowiedzią 4,30 mm lub 4,80 mm. Tego rodzaju błędy są częste, gdy osoba nie zwraca uwagi na precyzyjność podziałki noniusza, co jest kluczowe dla uzyskania dokładnych pomiarów. Zmniejszenie takich pomyłek można osiągnąć poprzez regularne ćwiczenie technik odczytu oraz szkolenie w dziedzinie metrologii. Zrozumienie zasad działania mikrometru oraz umiejętność odczytywania wyników w kontekście wymagań technicznych i standardów branżowych jest fundamentalne dla każdego specjalisty zajmującego się pomiarami w inżynierii oraz produkcji. Warto zainwestować czas w naukę poprawnych technik, co zaowocuje zwiększoną precyzją i jakością wykonywanych pomiarów.

Pytanie 20

Na rysunku przedstawiono tabliczki znamionowej

Ilustracja do pytania
A. autotransformatora.
B. transformatora
C. silnika prądu stałego.
D. silnik indukcyjnego.
Wybór odpowiedzi wskazującej na transformator, silnik prądu stałego lub autotransformator jest nieprawidłowy z kilku kluczowych powodów. Transformator służy do przekształcania napięcia w obwodach elektrycznych, natomiast silnik prądu stałego, mimo że również jest urządzeniem elektrycznym, posiada inną budowę oraz zasadę działania, zazwyczaj z komutatorem i szczotkami, co nie jest typowe dla silników indukcyjnych. Autotransformator z kolei, choć jest formą transformatora, różni się zasadniczo od silników, ponieważ jego działanie polega na regulacji napięcia, a nie na wytwarzaniu energii mechanicznej. Oznaczenia i parametry widoczne na tabliczce znamionowej wskazują na charakterystyki typowe dla silnika indukcyjnego, a więc pomylenie ich z innymi rodzajami urządzeń elektrycznych prowadzi do nieporozumień. Kluczowe jest zrozumienie, że silniki indukcyjne są jednymi z najczęściej stosowanych napędów w aplikacjach przemysłowych ze względu na ich efektywność energetyczną i prostotę konstrukcji. Aby skutecznie ocenić urządzenia elektryczne, konieczne jest dokładne zapoznanie się z ich specyfikacjami oraz zasadami działania, co pozwala na lepsze dobranie sprzętu do konkretnych zastosowań.

Pytanie 21

Jaki klucz należy zastosować do montażu zaworu kątowego, przedstawionego na rysunku?

Ilustracja do pytania
A. Płaski.
B. Nasadowy.
C. Tora.
D. Oczkowy.
Wybór niewłaściwego narzędzia do montażu zaworu kątowego, jak klucz nasadowy czy oczkowy, może narobić niezłych kłopotów. Klucz nasadowy, mimo że się go często używa do różnych złączek, nie nadaje się do zaworów kątowych, bo po prostu nie trzyma się dobrze na płaskich powierzchniach. To może doprowadzić do luzów i wycieków, co nie jest fajne. Klucze oczkowe, chociaż dobrze przylegają, nie rozkładają sił równomiernie na korpusie zaworu, co może być problematyczne. A klucz torowy w tym przypadku? Szkoda go w ogóle wspominać, bo jest stworzony do innego typu śrub. Często ludzie nie rozumieją jak te narzędzia mają działać, co prowadzi do błędów. Myślą, że klucz torowy albo oczkowy z powodzeniem zastąpi klucz płaski, co jest dużym błędem. Dobrze dobrane narzędzia to klucz do efektywnej pracy, a także do bezpieczeństwa całej hydrauliki.

Pytanie 22

Ile powinna wynosić średnica tłoka siłownika pneumatycznego z jednostronnym tłoczyskiem, aby przy zasilaniu powietrzem o ciśnieniu 8 barów można uzyskać przy wysuwaniu tłoczyska siłę 160 N (przyjmując sprawność siłownika 100%)?

F = P · S
S = π · r2
A. 32 mm
B. 16 mm
C. 10 mm
D. 20 mm
Wybór odpowiedzi innej niż 16 mm może wynikać z niepoprawnego podejścia do obliczenia siły oraz średnicy tłoka w siłowniku pneumatycznym. Istnieje ryzyko, że osoby odpowiadające na to pytanie zrezygnowały z bezpośredniego stosowania wzorów, skupiając się jedynie na intuicji lub zniekształconych założeniach. Na przykład, wybór 32 mm sugeruje, że respondenci mogą błędnie oceniać, jak ciśnienie powietrza i siła wpływają na rozmiar tłoka, co prowadzi do przeszacowania wymagań dla danego systemu. Z kolei odpowiedzi 10 mm i 20 mm mogą wynikać z niepełnego zrozumienia zależności między polem powierzchni a siłą, co skutkuje wyborem wartości, które są niewystarczające dla uzyskania wymaganej siły 160 N przy ciśnieniu 8 barów. Niezrozumienie matematyki związanej z geometrią koła, a także pomijanie fizycznych zasad działania siłowników pneumatycznych, prowadzi do błędnych wyborów. Prawidłowe zrozumienie tych koncepcji jest fundamentem projektowania efektywnych i niezawodnych systemów pneumatycznych, a znajomość standardów takich jak ISO 1219 jest kluczowe w kontekście branżowym.

Pytanie 23

Na rysunku przedstawione zostały fragmenty dwóch elementów, które należy połączyć techniką połączenia wciskowego wtłaczanego. Jaka powinna być zależność pomiędzy wymiarami d1 i d2?

Ilustracja do pytania
A. dl = d2
B. dl < d2
C. dl ≤ d2
D. dl > d2
W odpowiedzi dl > d2 uznano, że średnica otworu (d2) musi być mniejsza od średnicy wału (d1) w połączeniu wciskowym wtłaczanym. Ta zasada jest fundamentalna dla zapewnienia stabilności i trwałości połączenia. W praktyce, podczas projektowania komponentów mechanicznych, inżynierowie często korzystają z tej zasady, aby zminimalizować ryzyko luzów i zapewnić odpowiednią siłę tarcia między elementami. Na przykład, w zastosowaniach motoryzacyjnych, takie jak łączenie wałów napędowych z osią, dokładne dopasowanie średnic jest kluczowe dla uniknięcia awarii i zwiększenia żywotności komponentów. W standardach branżowych, jak ISO lub ANSI, zaleca się określenie tolerancji wymiarowych, aby zminimalizować ryzyko nadmiernych naprężeń. Różnica pomiędzy wymiarami musi być starannie dobrana, aby umożliwić efektywne przekazywanie obciążeń, a jednocześnie unikać zbyt dużych naprężeń, które mogą prowadzić do deformacji lub pęknięć. Takie podejście jest zgodne z najlepszymi praktykami inżynieryjnymi, co podkreśla znaczenie właściwego doboru wymiarów w projektowaniu komponentów mechanicznych.

Pytanie 24

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
B. oblać dłoń wodą utlenioną i nałożyć opatrunek
C. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
D. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
Wybór nieprawidłowych metod postępowania w przypadku odmrożeń może prowadzić do poważnych konsekwencji zdrowotnych dla poszkodowanego. W pierwszym przypadku, smarowanie odmrożonego miejsca tłustym kremem jest niewłaściwe, ponieważ takie substancje mogą zatrzymać ciepło w uszkodzonym obszarze, co w konsekwencji może prowadzić do pogorszenia stanu tkanek. Zamiast tego, należy unikać stosowania jakichkolwiek substancji chemicznych, które mogą podrażnić skórę. Przewożenie pracownika do domu bez odpowiedniej pomocy medycznej jest nieodpowiedzialne, ponieważ uszkodzenia mogą wymagać fachowej oceny i interwencji. Kolejna metoda, polegająca na piciu wody utlenionej, jest nieodpowiednia, ponieważ woda utleniona nie jest przeznaczona do stosowania na uszkodzoną skórę, a jej działanie może wywołać dodatkowe podrażnienia i opóźnić proces gojenia. Wreszcie, chociaż podanie środków przeciwbólowych może być czasami uzasadnione, to przeniesienie poszkodowanego do szpitala bez wcześniejszego oceny stanu zdrowia i podjęcia podstawowych działań pierwszej pomocy jest niewłaściwe i może skutkować dodatkowym cierpieniem dla poszkodowanego. Kluczowe jest, aby w sytuacjach medycznych stosować zasady pierwszej pomocy zgodne z wytycznymi organizacji zajmujących się zdrowiem, które zalecają kompleksowe podejście do tego typu urazów.

Pytanie 25

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 3 A
B. 0 A
C. 2 A
D. 1 A
W przypadku wyłącznika różnicowoprądowego, jego podstawowym zadaniem jest monitorowanie różnicy natężeń prądu między przewodami fazowymi a przewodem neutralnym. W warunkach normalnej pracy, gdy urządzenie działa prawidłowo, suma wektorowa natężeń prądów płynących przez przewody powinna wynosić 0 A. Oznacza to, że prąd wpływający do obwodu przez przewód fazowy jest równy prądowi wypływającemu przez przewód neutralny. Przykładowo, jeśli w obwodzie mamy trzy przewody fazowe, każdy z określonym natężeniem prądu, to ich suma wektorowa, uwzględniająca odpowiednie fazy, powinna wskazywać na zerowe natężenie w przewodzie neutralnym. Zgodnie z normą PN-IEC 61008, wyłączniki różnicowoprądowe są projektowane w taki sposób, aby skutecznie wykrywać różnice prądów oraz zapewniać bezpieczeństwo użytkowników poprzez automatyczne odłączenie obwodu w przypadku wykrycia upływu prądu. Taka funkcjonalność jest kluczowa w instalacjach elektrycznych, gdzie bezpieczeństwo i ochrona przed porażeniem prądem są priorytetami.

Pytanie 26

Wyłącznik silnikowy może zadziałać na skutek

A. braku jednej fazy zasilającej silnik
B. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
C. użycia stałego napięcia w obwodzie sterowania silnika
D. uruchomienia silnika przy niewielkim obciążeniu
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 27

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HPG, HTG, HT
B. HV, HLP, HLPD
C. HLP, HFA, HTG
D. HFA, HFC, HFD
Wybór innych odpowiedzi wiąże się z błędnym zrozumieniem klasyfikacji cieczy hydraulicznych oraz ich właściwości. Odpowiedzi HLP oraz HTG odnoszą się do cieczy, które nie mają właściwości trudnopalnych. HLP to oleje hydrauliczne, które mogą być palne i nie są przeznaczone do stosowania w środowiskach o podwyższonym ryzyku pożarowym. Również HTG to oleje typu 'thermo-glycol', które są wykorzystywane do systemów grzewczych, a nie jako cieczy hydraulicznych w warunkach zagrożenia eksplozją. Odpowiedzi takie jak HPG i HT mogą być mylone z cieczami trudnopalnymi, jednak nie odpowiadają standardom wymaganym dla aplikacji, gdzie bezpieczeństwo jest priorytetem. Często błędem myślowym jest przekonanie, że wszystkie oleje mogą być stosowane w każdym warunku, co prowadzi do niebezpiecznych sytuacji w miejscach, gdzie występuje potencjalne ryzyko zapłonu. W celu zapewnienia bezpieczeństwa, kluczowe jest, aby użytkownicy posiadali wiedzę na temat odpowiednich standardów oraz certyfikacji cieczy hydraulicznych, takich jak ISO 12922, które definiują wymagania dotyczące ich palności oraz zastosowania w specyficznych warunkach operacyjnych.

Pytanie 28

Ilustracja przedstawia łożysko

Ilustracja do pytania
A. igiełkowe.
B. walcowe.
C. kulkowe.
D. przegubowe.
Odpowiedź jest poprawna, ponieważ ilustracja przedstawia łożysko przegubowe, które charakteryzuje się unikalną budową kulistych powierzchni wewnętrznej i zewnętrznej. Ta konstrukcja pozwala na swobodny ruch przegubowy, co czyni je idealnym rozwiązaniem w miejscach, gdzie występują złożone ruchy, takie jak w zawieszeniach pojazdów, robotyce czy mechanizmach przemysłowych. Łożyska przegubowe są szczególnie cenione w aplikacjach wymagających dużych obciążeń oraz kompensacji niewspółosiowości, co jest kluczowe w wielu zastosowaniach inżynieryjnych. W przeciwieństwie do łożysk walcowych, które są ograniczone do ruchów liniowych, łożyska przegubowe oferują większą elastyczność i możliwość dostosowania się do zmieniających się warunków pracy. W standardach branżowych, takich jak ISO 12240, podkreśla się znaczenie wyboru odpowiedniego typu łożyska w zależności od specyfiki ruchu i obciążenia. Wiedza na temat budowy i zastosowań łożysk przegubowych jest kluczowa dla inżynierów mechaników, którzy projektują i optymalizują systemy mechaniczne dla różnych dziedzin przemysłu.

Pytanie 29

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Termomanometr bimetaliczny
B. Detektor wycieków
C. Miernik przepływu powietrza
D. Miernik punktu rosy
Miernik punktu rosy to naprawdę ważne urządzenie, jeżeli chodzi o jakość sprężonego powietrza. Głównie pozwala zmierzyć, w jakiej temperaturze para wodna zaczyna się skraplać, co jest mega istotne w kontekście wilgotności. W różnych branżach, gdzie sprężone powietrze jest na porządku dziennym, kontrolowanie wilgotności to podstawa. Za dużo wody w powietrzu może uszkodzić sprzęt, prowadzić do korozji, a czasem nawet zmniejszyć efektywność działania. Na przykład w systemach pneumatycznych, gdzie wszystko musi działać precyzyjnie, nadmiar wilgoci może spowodować tzw. „hydrauliczne uderzenie”, co w efekcie może doprowadzić do awarii. A skoro mówimy o branży spożywczej czy farmaceutycznej, to według norm ISO 8573, które regulują jakość sprężonego powietrza, pomiar punktu rosy to kluczowa sprawa, bo wpływa na bezpieczeństwo i jakość produktów. Używając miernika punktu rosy, szczególnie w połączeniu z systemami osuszania powietrza, można naprawdę zadbać o odpowiednie standardy jakości, co jest niezbędne, żeby procesy przemysłowe działały jak należy.

Pytanie 30

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. przymiaru średnicowego
B. przymiaru kreskowego
C. śruby mikrometrycznej
D. mikroskopu technicznego
Przymiar kreskowy to narzędzie miernicze, które służy do przeprowadzania pomiarów liniowych, jednak jego dokładność jest ograniczona i zazwyczaj nie przekracza kilku dziesiątych milimetra. Dlatego nie jest on odpowiedni do dokładnego pomiaru średnicy wałków, gdzie wymagana jest znacznie większa precyzja. Użytkownicy, którzy wybierają przymiar kreskowy, mogą napotkać problemy związane z błędami odczytu oraz wpływem warunków zewnętrznych, takich jak temperatura czy zanieczyszczenia. Przymiar średnicowy, z kolei, jest narzędziem służącym do pomiaru średnicy otworów, a nie wałków, dlatego również nie jest odpowiedni w tym kontekście. Użycie mikroskopu technicznego może dostarczyć informacji o mikrostrukturze powierzchni, ale nie jest to narzędzie do pomiaru średnicy w sensie mechanicznym. Błędem myślowym jest zakładanie, że każde narzędzie miernicze może być używane zamiennie do różnych zastosowań, co prowadzi do obniżenia jakości pomiarów. Zrozumienie specyfiki narzędzi pomiarowych i ich zastosowań jest kluczowe dla uzyskania wiarygodnych wyników, dlatego istotne jest, aby wybierać odpowiednie przyrządy do konkretnych zadań pomiarowych.

Pytanie 31

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
B. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
C. wrzucić je do kosza na śmieci
D. pozostawić je obok kontenera na śmieci
Pozbywanie się wyeksploatowanych urządzeń elektronicznych poprzez pozostawienie ich obok śmietnika bądź wyrzucenie do śmietnika jest niezgodne z obowiązującymi przepisami i normami dotyczącymi ochrony środowiska. Tego rodzaju praktyki prowadzą do niekontrolowanego uwalniania substancji niebezpiecznych, które mogą wydostać się do gleby, wód gruntowych oraz atmosfery, stwarzając zagrożenie dla zdrowia ludzi oraz ekosystemów. Wiele urządzeń zawiera szkodliwe chemikalia, a ich przypadkowe usunięcie może powodować poważne kontaminacje. Ponadto, stłuczenie szyjki kineskopu przed wyrzuceniem urządzenia jest nie tylko nieodpowiedzialne, lecz także potencjalnie niebezpieczne, jako że może prowadzić do wydobycia się szkodliwych substancji. Warto pamiętać, że zgodnie z zasadami zrównoważonego rozwoju oraz dobrymi praktykami branżowymi, odbiór i utylizacja odpadów elektronicznych powinny być realizowane przez wyspecjalizowane firmy, które przestrzegają norm prawnych i środowiskowych. Wiele państw oraz regionów wprowadza rygorystyczne przepisy dotyczące e-odpadów i ich utylizacji, co oznacza, że nieprzestrzeganie tych zasad może skutkować nie tylko problemami ekologicznymi, ale również konsekwencjami prawnymi dla osób, które decydują się na nieodpowiedzialne metody pozbycia się tych urządzeń.

Pytanie 32

Zawór dławiąco-zwrotny 1V2 układu pneumatycznego przedstawionego na schemacie umożliwia powolne

Ilustracja do pytania
A. wsunięcie tłoczyska siłownika metodą dławienia na dopływie.
B. wysunięcie tłoczyska siłownika metodą dławienia na dopływie.
C. wysunięcie tłoczyska siłownika metodą dławienia na wypływie.
D. wsunięcie tłoczyska siłownika metodą dławienia na wypływie.
Niepoprawne odpowiedzi wynikają z niepełnego zrozumienia działania zaworu dławiąco-zwrotnego. W kontekście układu pneumatycznego, dławienie na wypływie oznacza kontrolowanie prędkości wysuwania tłoczyska. Jeśli uważasz, że zawór ten ma wpływ na wsunięcie tłoczyska, to może to prowadzić do nieporozumienia. Istotne jest, aby zrozumieć, że zawór dławiąco-zwrotny działa na zasadzie ograniczania przepływu medium, co w efekcie wpływa na prędkość ruchu siłownika. Stąd, stwierdzenie, że zawór ten umożliwia wsunięcie tłoczyska na wypływie, jest błędne. Odpowiedzi sugerujące, że dławienie odbywa się na dopływie również nie są trafne, ponieważ w takim przypadku mielibyśmy do czynienia z innym efektem, w którym tłoczysko byłoby wysuwane szybciej, co w praktyce nie jest pożądane w sytuacjach wymagających precyzyjnego sterowania. Zrozumienie zasady działania tego zaworu jest kluczowe dla skutecznego projektowania układów pneumatycznych. Błędy myślowe związane z niewłaściwym kojarzeniem dławienia z kierunkiem ruchu tłoczyska mogą prowadzić do niewłaściwego doboru komponentów oraz nieefektywnego działania całego systemu. Warto przy tym zaznaczyć, że w branży pneumatycznej, zastosowanie zaworów dławiąco-zwrotnych jest ściśle powiązane z zasadami bezpieczeństwa i efektywności, co wymaga odpowiedniego przeszkolenia i zrozumienia ich funkcji.

Pytanie 33

Zespół elementów przedstawiony na rysunku pełni funkcję

Ilustracja do pytania
A. filtra.
B. stabilizatora napięcia.
C. prostownika.
D. powielacza napięcia.
Prostowniki są kluczowymi elementami w układach elektronicznych, które przekształcają prąd przemienny (AC) na prąd stały (DC). W przedstawionym schemacie mamy do czynienia z mostkiem prostowniczym, który składa się z czterech diod, co pozwala na wyprostowanie obu połówek sygnału AC. Dzięki temu uzyskujemy stabilny prąd stały, który może być użyty do zasilania różnych urządzeń elektronicznych. Prostowniki są wykorzystywane w zasilaczach, ładowarkach oraz w systemach zasilania energią odnawialną, takich jak panele słoneczne. Dobrze zaprojektowane układy prostownicze uwzględniają także aspekty związane z filtracją, aby zminimalizować tętnienia w prądzie stałym, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej. Prostowniki są fundamentalnym elementem w konwersji energii elektrycznej i ich zrozumienie jest niezbędne dla każdego inżyniera elektryka.

Pytanie 34

Wskaż prawidłowe przyporządkowanie cyfr wskazujących części sprzęgła kłowego do ich nazw.

Piasta sprzęgłaKołnierz przykręcanyWkładka elastycznaPierścienie osadczePodkładka zabezpieczająca
Przyporządkowanie 1.1234 | 56
Przyporządkowanie 2.3124 | 56
Przyporządkowanie 3.4235 | 61
Przyporządkowanie 4.5124 | 63
Ilustracja do pytania
A. Przyporządkowanie 3.
B. Przyporządkowanie 2.
C. Przyporządkowanie 1.
D. Przyporządkowanie 4.
Podanie innych przyporządkowań, które nie odpowiadają rzeczywistym oznaczeniom części sprzęgła kłowego, może prowadzić do wielu problemów w praktyce. Często występującą pomyłką jest błędna identyfikacja podzespołów, co może wynikać z braku zrozumienia ich funkcji i rozmieszczenia. Na przykład, pomylenie płytki sprzęgła z wkładką elastyczną skutkuje nieprawidłowym montażem, co może prowadzić do awarii sprzętu. Również kołnierz przykręcany, który pełni istotną rolę w zapewnieniu stabilności całego mechanizmu, jest często mylony z innymi elementami, co prowadzi do nieodpowiedniego mocowania. W praktyce, takie błędy mogą prowadzić do zwiększonego zużycia części, a nawet do poważnych uszkodzeń systemu. Kluczowe jest, aby pamiętać, że w urządzeniach mechanicznych każdy element ma swoje miejsce i funkcję, co jest fundamentem efektywnej pracy całego systemu. Zastosowanie właściwych przyporządkowań jest nie tylko kwestią poprawności technicznej, ale także zapewnienia bezpieczeństwa operacyjnego. Dlatego tak ważne jest, aby przed podjęciem decyzji montażowych zrozumieć i przestygnąć poprawnie funkcje oraz interakcje pomiędzy poszczególnymi częściami sprzęgła kłowego.

Pytanie 35

Zawory zwrotno-dławiące, w przedstawionym na rysunku układzie sterowania pneumatycznego, realizują dławienie

Ilustracja do pytania
A. na wylocie - zawór 1V1 i na wlocie - zawór 1V2
B. na wlocie - zawory 1V1 i 1V2
C. na wlocie - zawór 1VI i na wylocie - zawór 1V2
D. na wylocie - zawory 1V1 i 1V2
Zawory zwrotno-dławiące 1V1 i 1V2 są umieszczone na wlocie do siłownika pneumatycznego, co jest naprawdę ważne dla tego jak działa cały układ pneumatyczny. Dławienie na początku pozwala na lepszą kontrolę nad przepływem medium, a to z kolei wpływa na prędkość ruchu siłownika. Przykładowo, w automatyzacji przemysłowej, gdzie precyzja ma kluczowe znaczenie, użycie tych zaworów na wlocie pozwala na płynniejsze i bardziej kontrolowane ruchy. Z mojego doświadczenia, to podejście zwiększa efektywność systemu i zmniejsza ryzyko uszkodzenia siłownika przez zbyt szybki ruch. Warto też zauważyć, że dobrze ustawione zawory zwrotno-dławiące są zgodne z normami ISO, co gwarantuje optymalne warunki pracy i bezpieczeństwo. No i nie zapominajmy, że swobodny powrót medium z siłownika do zbiornika jest kluczowy, żeby uniknąć opóźnień w reakcji układu, co jest ważne w dynamicznych zastosowaniach.

Pytanie 36

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. łożysk
B. uzwojenia
C. komutatora
D. szczotek
Kiedy mówimy o naprawach silnika komutatorowego, wybór odpowiednich komponentów do wymiany jest kluczowy dla przywrócenia jego sprawności. Odpowiedzi takie jak łożyska, komutator czy szczotki, mimo że mogą być istotnymi elementami silnika, nie są odpowiednie w kontekście problemu z zwarciami międzyzwojowymi. W przypadku łożysk, ich zadaniem jest jedynie umożliwienie swobodnego obrotu wirnika, a ich uszkodzenie nie prowadzi bezpośrednio do zwarć w uzwojeniu. Z kolei komutator, który przekształca prąd stały na prąd zmienny, również nie jest bezpośrednią przyczyną takich awarii. Jeśli komutator jest uszkodzony, może to prowadzić do niewłaściwego działania silnika, ale nie jest to bezpośredni skutek przeciążenia uzwojenia. Wymiana szczotek, które są elementami stykowymi, również nie rozwiąże problemu przyczynowego, jakim są zwarcia w uzwojeniach. Te pomyłki wynikają często z braku zrozumienia roli poszczególnych elementów w silniku komutatorowym oraz ich wpływu na ogólną funkcjonalność urządzenia. Aby skutecznie naprawić silnik, konieczne jest zrozumienie, że uzwojenie w przypadku uszkodzeń związanych z przeciążeniem wymaga szczególnej uwagi, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 37

W trakcie montażu systemu elektronicznego chłodzonego radiatorem, należy zapewnić odpowiednią powierzchnię styku pomiędzy układem a radiatorem poprzez

A. rozdzielenie folią aluminiową
B. pokrycie pastą termoprzewodzącą
C. rozdzielenie papierem
D. pokrycie klejem
Wybór kleju do pokrycia powierzchni styku układu elektronicznego i radiatora jest nieodpowiedni, ponieważ kleje, choć mogą oferować pewne właściwości termiczne, nie są zaprojektowane do efektywnego przewodzenia ciepła. Kleje mogą tworzyć warstwę izolacyjną, co prowadzi do podwyższenia temperatury pracy układu elektronicznego, a w konsekwencji do jego uszkodzenia. Ponadto, kleje mogą utwardzać się w sposób, który uniemożliwia późniejsze demontaż komponentów, co jest istotne w przypadku konserwacji lub wymiany części. Rozdzielanie powierzchni folią aluminiową lub papierem również jest błędne. Folię aluminiową, mimo że ma dobre właściwości przewodzenia ciepła, nie można używać jako materiału izolacyjnego w tym kontekście, gdyż nie zapewnia stabilnego kontaktu między elementami, a dodatkowo może powodować problemy z elektrycznością statyczną. Papier, z kolei, ma znikome właściwości przewodzące i może ulegać degradacji w wyniku działania ciepła, co prowadzi do dalszych problemów z odprowadzaniem ciepła. Te błędy myślowe wynikają często z niepełnego zrozumienia roli chłodzenia w układach elektronicznych oraz zagadnień związanych z przewodnictwem cieplnym. Dla uniknięcia takich błędów, warto zapoznać się z podstawowymi zasadami fizyki cieplnej oraz przyjętymi praktykami branżowymi, które jasno wskazują na konieczność stosowania wyspecjalizowanych materiałów, takich jak pasty termoprzewodzące.

Pytanie 38

Które narzędzia należy zastosować podczas wymiany rezystora R1 przedstawionego na rysunku?

Ilustracja do pytania
A. Pilnik i zaciskarkę.
B. Wkrętak i szczypce.
C. Szczypce i pilnik.
D. Lutownicę i odsysacz.
Wybór lutownicy i odsysacza jest kluczowy przy wymianie rezystora na płytce drukowanej. Lutownica jest niezbędna do rozlutowania końcówek rezystora, co umożliwia jego usunięcie z obwodu. Dobrej jakości lutownica z regulowaną temperaturą pozwala na precyzyjne wykonanie tej operacji, co minimalizuje ryzyko uszkodzenia ścieżek na płytce. Odsysacz, z kolei, służy do efektywnego usunięcia cyny z lutowanych połączeń. To ważne, aby zapewnić czyste miejsce do montażu nowego rezystora, co przyczynia się do poprawności i niezawodności całego układu. Dodatkowo, stosowanie odsysacza cyny jest zgodne z najlepszymi praktykami w elektronice, które zalecają eliminację resztek lutowia przed montażem nowych elementów. Warto również pamiętać, że w sytuacjach, gdzie wymiana elementów elektronicznych jest częsta, takie narzędzia stają się integralną częścią wyposażenia każdego elektronika, a umiejętność ich użycia jest kluczowa dla zachowania wysokiej jakości napraw i modyfikacji.

Pytanie 39

Jakie obwody elektroniczne gwarantują utrzymanie stałego napięcia na wyjściu, niezależnie od zmian obciążenia oraz fluktuacji napięcia zasilającego?

A. Flip-flopy.
B. Stabilizatory.
C. Prostowniki.
D. Generatory.
Przerzutniki, prostowniki i generatory to układy, które mają różne funkcje w elektronice i nie są przeznaczone do stabilizacji napięcia. Przerzutniki, na przykład, są układami pamięci, które przechowują stany logiczne i nie mają zdolności do regulacji napięcia. Używane są głównie w systemach cyfrowych do przechowywania informacji, ale ich działanie zależy od sygnałów wejściowych, co czyni je niewłaściwymi dla utrzymywania stabilnego napięcia wyjściowego. Prostowniki przekształcają prąd zmienny na prąd stały, ale ich wyjście może być obciążone tętnieniami i nie jest stałe; do tego celu wymagane są dodatkowe układy filtrujące oraz stabilizatory. Generatory z kolei produkują sygnały elektryczne, ale również nie mają mechanizmów do stabilizacji napięcia. Największym błędem w myśleniu jest założenie, że układ może utrzymać stałe napięcie, gdy w rzeczywistości pełni on zupełnie inną funkcję. Aby zrozumieć, jak ważne jest stosowanie właściwych układów do konkretnego zastosowania, należy zapoznać się ze specyfikacjami technicznymi oraz zasadami projektowania układów zasilania, które określają, kiedy i jak stosować stabilizatory w elektronice.

Pytanie 40

Narzędzia przedstawione na rysunku są stosowane do

Ilustracja do pytania
A. wiercenia.
B. honowania.
C. frezowania.
D. gwintowania.
Wybór odpowiedzi dotyczącej honowania, wiercenia bądź frezowania, wskazuje na pewne nieporozumienia związane z procesami obróbczy. Honowanie jest procesem używanym do poprawy jakości powierzchni oraz dokładności wymiarowej już istniejących otworów, a nie do tworzenia gwintów. Używa się go do obróbki wykończeniowej, zwłaszcza w kontekście cylindrów silnikowych oraz innych elementów, dla których wymagana jest precyzyjna jakość powierzchni. Z kolei wiercenie to proces, którego celem jest wykonywanie otworów w materiałach, najczęściej bez tworzenia gwintów. Wiercenie odbywa się przy użyciu wierteł, które różnią się od gwintowników, zarówno pod względem konstrukcji, jak i przeznaczenia. Frezowanie natomiast to proces skrawania, w którym narzędzie obrotowe (frez) usuwa materiał z powierzchni obrabianego elementu, ale także nie jest przeznaczone do gwintowania. Typowym błędem myślowym jest mylenie tych procesów z powodu ich wspólnego celu, jakim jest obróbka materiałów. Każdy z tych procesów ma swoje specyficzne zastosowanie i narzędzia, które są ściśle przystosowane do konkretnych zadań, co jest kluczowe w inżynierii mechanicznej oraz produkcji przemysłowej.