Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 11:57
  • Data zakończenia: 7 grudnia 2025 12:24

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na rysunku przedstawiono sposób podłączenia

Ilustracja do pytania
A. trójfazowego transformatora separacyjnego.
B. trójfazowego licznika energii elektrycznej.
C. przekładników prądowych w trzech fazach.
D. dławików w trójfazowej oprawie świetlówkowej.
Trójfazowy licznik energii elektrycznej to urządzenie służące do pomiaru zużycia energii elektrycznej w systemach trójfazowych, które są powszechnie stosowane w przemyśle oraz w dużych obiektach komercyjnych. Na rysunku przedstawiono schemat, gdzie widoczne są trzy linie fazowe L1, L2, L3 oraz przewód neutralny N, co jest zgodne z typową konfiguracją podłączenia do takiego licznika. Liczniki energii elektrycznej muszą spełniać normy takie jak PN-EN 62053, które określają dokładność pomiarów oraz wymagania dotyczące instalacji. Przykładowo, w przypadku monitorowania zużycia energii w zakładzie przemysłowym, zastosowanie trójfazowego licznika pozwala na precyzyjne określenie, ile energii jest konsumowane przez różne maszyny, co z kolei umożliwia optymalizację kosztów operacyjnych oraz efektywności energetycznej. Odpowiednia symbolika graficzna na schemacie, jaką zastosowano w tym przypadku, jednoznacznie wskazuje na licznik, co jest zgodne z normami PN-EN 60617, które dotyczą symboliki w dokumentacji elektrycznej.

Pytanie 2

Na którym rysunku pokazano jednofazowy wyłącznik różnicowoprądowy?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Jednofazowy wyłącznik różnicowoprądowy, przedstawiony na rysunku A, pełni kluczową rolę w ochronie instalacji elektrycznych przed porażeniem prądem oraz w zapobieganiu pożarom spowodowanym przez prądy upływowe. Główną cechą wyróżniającą to urządzenie są dwa zaciski przyłączeniowe, które odpowiadają za podłączenie przewodów fazowego i neutralnego, a także charakterystyczny przycisk testowy oznaczony literą 'T', który pozwala na sprawdzenie poprawności działania wyłącznika. W praktyce, jednofazowe wyłączniki różnicowoprądowe są powszechnie stosowane w domowych instalacjach elektrycznych, zwłaszcza w obwodach z gniazdami, aby zabezpieczyć użytkowników przed potencjalnymi zagrożeniami. Zgodnie z normami branżowymi, takie urządzenia powinny być montowane w każdym nowym budynku, co znacząco zwiększa poziom bezpieczeństwa użytkowników. Dodatkowo, regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich sprawności, dlatego rekomenduje się przeprowadzanie testów co najmniej raz na trzy miesiące.

Pytanie 3

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Wymienić wszystkie przewody na nowe o większym przekroju
B. Pomalować uszkodzoną izolację przewodu
C. Założyć gumowy wężyk na uszkodzoną izolację przewodu
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest kluczowym działaniem w zapewnieniu bezpieczeństwa i funkcjonalności instalacji elektrycznej. Uszkodzenie izolacji przewodu, które prowadzi do utraty elastyczności i zmiany koloru, wskazuje na problem, który może prowadzić do porażenia prądem lub zwarcia. Zgodnie z normami IEC oraz Polskimi Normami (PN), przewody elektryczne powinny być zawsze w dobrym stanie technicznym. W praktyce, wymiana uszkodzonego przewodu na nowy o takim samym przekroju zapewnia, że instalacja elektryczna będzie w pełni sprawna i zgodna z wymaganiami dotyczącymi obciążalności prądowej oraz ochrony przed przeciążeniem. Przykładem może być wymiana przewodu w domowej instalacji, gdzie zgodność z przekrojem przewodu zabezpiecza przed zjawiskiem przegrzewania się instalacji oraz potencjalnym uszkodzeniem urządzeń elektrycznych. Stanowisko to jest zgodne z dobrą praktyką inżynieryjną i zapewnia trwałość oraz bezpieczeństwo eksploatacji systemów elektrycznych.

Pytanie 4

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Szeregowy.
B. Jednobiegunowy.
C. Grupowy.
D. Dwubiegunowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 5

Na podstawie przedstawionego schematu instalacji określ liczbę jednofazowych obwodów gniazd wtyczkowych.

Ilustracja do pytania
A. 12 obwodów.
B. 7 obwodów.
C. 14 obwodów.
D. 5 obwodów.
Odpowiedź "5 obwodów" jest prawidłowa, ponieważ w systemach elektroinstalacyjnych każdy obwód gniazd wtyczkowych powinien być zabezpieczony odpowiednim wyłącznikiem nadprądowym, który w tym przypadku ma oznaczenie B16. Dokładna liczba jednofazowych obwodów gniazd wtyczkowych można ustalić poprzez zliczenie wyłączników przypisanych do tych obwodów. Na przedstawionym schemacie instalacji widoczne są 5 wyłączników B16, co oznacza, że mamy do czynienia z pięcioma niezależnymi obwodami zasilającymi gniazda. Warto zwrócić uwagę, że zgodnie z normą PN-IEC 60364-4-41, każdy obwód powinien być projektowany w taki sposób, aby zapewnić odpowiednią ochronę przed przeciążeniem i zwarciem. Odpowiednia liczba obwodów gniazd wtyczkowych jest kluczowa dla bezpieczeństwa i funkcjonalności instalacji elektrycznej, co może być istotne w praktycznych zastosowaniach domowych oraz przemysłowych.

Pytanie 6

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 5 sekund
B. 0,2 sekundy
C. 1 sekundę
D. 0,4 sekundy
Podawana maksymalna wartość czasu samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie do 32 A w sieci TN wynosząca 5 sekund, 1 sekundę czy 0,2 sekundy jest niezgodna z obowiązującymi standardami ochrony elektrycznej, co może prowadzić do niebezpiecznych sytuacji. Różne wartości czasowe dla samoczynnego wyłączenia mają swoje uzasadnienie w kontekście skuteczności ochrony przed dotykiem pośrednim, a czas 0,4 sekundy został ustalony jako maksymalny, po to aby zapewnić minimalizację ryzyka porażenia prądem w przypadku awarii. Czas 5 sekund jest zdecydowanie zbyt długi i nie zapewnia odpowiedniego poziomu ochrony, zwłaszcza w sytuacjach, gdy człowiek ma kontakt z uszkodzonym urządzeniem lub przewodem. Z kolei 1 sekunda, choć jest znacznie krótsza, również nie spełnia wymaganych norm w kontekście niektórych zastosowań, gdzie szybka reakcja jest kluczowa. Odpowiedzi 0,2 sekundy mogą wydawać się bardziej bezpieczne, jednak nie są zgodne z określoną normą, a ich zastosowanie w realnych warunkach użytkowania mogłoby prowadzić do fałszywych alarmów i niepotrzebnych wyłączeń, co w praktyce zakłócałoby funkcjonowanie urządzeń. Niezrozumienie zasad bezpieczeństwa elektrycznego, jak również wymagań normatywnych, prowadzi do nieprawidłowych decyzji i zagrożeń w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 7

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. na linii zasilającej budynek
B. w złączu budynku
C. w rozdzielnicach mieszkaniowych
D. w puszkach instalacyjnych gniazd odbiorczych
Odpowiedź wskazująca na rozdzielnice mieszkaniowe jako miejsce instalacji ochronników przeciwprzepięciowych klasy C jest poprawna, ponieważ rozdzielnice te pełnią kluczową rolę w zarządzaniu i dystrybucji energii elektrycznej w budynku. Ochronniki klasy C są projektowane do ochrony przed przepięciami wynikającymi z różnorodnych zjawisk, takich jak wyładowania atmosferyczne czy zakłócenia w sieci. Montaż tych urządzeń w rozdzielnicach mieszkaniowych pozwala na skuteczną ochronę wszystkich obwodów, które z nich zasilają, co jest zgodne z normą PN-EN 61643-11 oraz wytycznymi zawartymi w dokumentach technicznych dotyczących instalacji elektrycznych. Przykładowo, w przypadku wyładowania atmosferycznego, przepięcia mogą przedostać się do instalacji, co może prowadzić do uszkodzenia sprzętu elektronicznego. Umiejscowienie ochronników w rozdzielnicach minimalizuje te ryzyka, zapewniając bezpieczeństwo i ciągłość działania urządzeń w gospodarstwie domowym.

Pytanie 8

Który przewód jest oznaczony literami PE?

A. Fazowy
B. Neutralny
C. Ochronny
D. Ochronno-neutralny
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 9

W jaki sposób należy ułożyć przewody w instalacji elektrycznej, jeśli na jej planie znajduje się symbol przedstawiony na rysunku?

Ilustracja do pytania
A. Pod tynkiem.
B. W listwach elektroinstalacyjnych.
C. Na tynku.
D. W kanałach przypodłogowych.
Odpowiedź "Pod tynkiem" jest poprawna, ponieważ zgodnie z normami instalacji elektrycznych, przewody powinny być ułożone w sposób, który zapewnia ich odpowiednie zabezpieczenie oraz estetykę. Układanie przewodów pod tynkiem to standardowa praktyka, która minimalizuje ryzyko uszkodzeń mechanicznych i wpływu warunków atmosferycznych, co jest kluczowe dla długowieczności instalacji. Przewody umieszczone w ścianach są mniej narażone na uszkodzenia spowodowane codziennym użytkowaniem pomieszczeń. Dodatkowo, lokalizowanie przewodów pod tynkiem pozwala na łatwiejsze ich maskowanie i dostosowanie do estetyki wnętrza, co jest istotne w projektach budowlanych. Warto również zauważyć, że układanie przewodów pod tynkiem musi być zgodne z obowiązującymi normami, takimi jak PN-IEC 60364, które regulują sposób wykonania instalacji elektrycznych. W praktyce, przed rozpoczęciem pracy, warto wykonać szczegółowy plan instalacji, który uwzględnia rozmieszczenie gniazdek, włączników i innych elementów instalacji, aby uniknąć późniejszych problemów związanych z dostępem do przewodów i ich konserwacją.

Pytanie 10

Na podstawie tabeli dobierz dopuszczalny prąd znamionowy zabezpieczenia nadprądowego w instalacji jednofazowej dla przewodu YDY 3x1,5 mm2 przy sposobie ułożenia A2?

Ilustracja do pytania
A. 20 A
B. 25 A
C. 13 A
D. 16 A
Wybór niewłaściwego prądu znamionowego zabezpieczenia nadprądowego może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i funkcjonowania instalacji elektrycznej. Z odpowiedziami takimi jak 20 A, 13 A czy 25 A wiąże się kilka kluczowych błędów myślowych. W przypadku prądu 20 A, użytkownik może sądzić, że wyższy prąd zabezpieczenia jest korzystny, co w rzeczywistości może prowadzić do sytuacji, gdzie przewody będą narażone na przeciążenia, gdyż zabezpieczenie nie zareaguje na wzrost prądu. Z kolei odpowiedź 13 A, mimo że może być uznana za bardziej konserwatywną, nie spełnia wymagań dla tego konkretnego przekroju i metody układania, co skutkuje zbyt dużym ryzykiem uszkodzenia instalacji. Natomiast 25 A, będąc jeszcze bardziej niebezpiecznym wyborem, może całkowicie zignorować prawidłowe normy bezpieczeństwa, prowadząc do przegrzania przewodów i w konsekwencji do zagrożeń pożarowych. Ważne jest, aby zrozumieć, że dobór zabezpieczeń nie powinien opierać się na intuicji czy przybliżeniu, ale na dokładnych danych technicznych, które są dostępne w normach branżowych. Wszystkie te czynniki podkreślają znaczenie przestrzegania przepisów i dobrych praktyk w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 11

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. przewód ochronny.
B. przewody zasilające.
C. żyrandol.
D. łącznik.
Wybór łącznika jako błędnie podłączonego elementu jest poprawny, ponieważ łącznik powinien być zawsze podłączony w obwodzie fazowym (L) w celu prawidłowej kontroli zasilania. W sytuacji, gdy łącznik przerywa obwód neutralny (N), mamy do czynienia z poważnym zagrożeniem dla bezpieczeństwa użytkowników. Zgodnie z normami PN-IEC 60364, instalacje elektryczne powinny być projektowane oraz wykonywane w sposób zapewniający ich bezpieczeństwo, co obejmuje również właściwe podłączenie łączników. Praktyka poprawnego stosowania łączników w instalacjach elektrycznych polega na tym, że przy włączonym obwodzie fazowym, możliwe jest odcięcie zasilania i tym samym zapewnienie bezpieczeństwa podczas konserwacji urządzeń. Dobrą praktyką jest również stosowanie łączników, które posiadają oznaczenia wskazujące ich położenie w obwodzie, co ułatwia identyfikację w razie awarii. Podczas projektowania instalacji, należy także uwzględnić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, aby minimalizować ryzyko porażenia prądem. Dlatego poprawne podłączenie łącznika jest kluczowe dla ogólnego bezpieczeństwa instalacji elektrycznej.

Pytanie 12

Urządzenie pokazane na zdjęciu to

Ilustracja do pytania
A. łącznik zmierzchowy.
B. programowalny przełącznik czasowy.
C. regulator natężenia oświetlenia.
D. regulator fotokomórki.
Łącznik zmierzchowy to urządzenie, które automatycznie aktywuje oświetlenie, gdy poziom naturalnego światła spada poniżej określonego progu. Urządzenie, które widzimy na zdjęciu, ma charakterystyczne oznaczenie "AZH-S" oraz pokrętło z symbolami słońca i księżyca. Te elementy wskazują na jego funkcję detekcji zmierzchu. W praktyce, łącznik zmierzchowy jest powszechnie stosowany w systemach oświetleniowych w budynkach mieszkalnych oraz komercyjnych, umożliwiając automatyczne włączanie lamp w godzinach wieczornych. Dzięki zastosowaniu tego typu urządzenia, można znacznie zwiększyć efektywność energetyczną, ograniczając zużycie energii i jednocześnie poprawiając komfort użytkowników. Dodatkowo, zgodnie z aktualnymi standardami budowlanymi, wprowadzenie automatyzacji w systemach oświetleniowych staje się coraz bardziej popularną praktyką, co wpisuje się w globalne trendy oszczędności energii i zrównoważonego rozwoju.

Pytanie 13

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
C. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
D. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 14

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-1, II-2, III-3, IV-4
B. I-2, II-4, III-1, IV-3
C. I-1, II-4, III-2, IV-3
D. I-4, II-3, III-2, IV-1
Poprawne podłączenie łącznika krzyżowego oznaczone jako I-1, II-4, III-2, IV-3 wynika z analizy schematu elektrycznego oraz właściwego oznaczenia wejść i wyjść łącznika. Wejścia 1 i 4 są odpowiedzialne za przyjmowanie sygnałów z dwóch niezależnych punktów sterujących, co pozwala na ich połączenie w systemie wielopunktowego sterowania oświetleniem. Dobrze skonstruowany układ umożliwia użytkownikowi włączanie i wyłączanie źródła światła z trzech różnych punktów, co jest szczególnie przydatne w dużych pomieszczeniach lub korytarzach. Tego typu rozwiązanie jest zgodne z normami instalacji elektrycznych oraz zaleceniami dotyczącymi ergonomii w projektowaniu przestrzeni. Ponadto, zastosowanie łącznika krzyżowego zwiększa elastyczność w zakresie zarządzania oświetleniem, co przyczynia się do oszczędności energii i poprawy komfortu użytkowania, spełniając standardy zrównoważonego rozwoju.

Pytanie 15

Na fotografii przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V w izolacji gumowej.
B. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
C. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w izolacji gumowej.
D. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
Poprawna odpowiedź dotyczy kabla kontrolnego z żyłami wielodrutowymi na napięcie 300/500 V z izolacją z tworzywa bezhalogenowego. Kable kontrolne są używane w różnych systemach automatyki i zabezpieczeń, gdzie istotne jest monitorowanie i zarządzanie sygnałami. Ekranowanie jest kluczowe, ponieważ pozwala na redukcję zakłóceń elektromagnetycznych, co zapewnia prawidłowe działanie systemów. Izolacja z tworzywa bezhalogenowego jest korzystna z punktu widzenia bezpieczeństwa pożarowego, ponieważ nie emituje toksycznych gazów w przypadku kontaktu z ogniem. Kable te są powszechnie stosowane w aplikacjach przemysłowych, w których występują trudne warunki środowiskowe. Zgodność z normami takimi jak PN-EN 50525 jest niezbędna, aby zapewnić wysoką jakość i niezawodność dostarczanych produktów. Zastosowanie kabli kontrolnych w obszarze monitorowania i kontroli procesów przemysłowych jest szerokie, a ich wybór powinien być przemyślany zgodnie z wymaganiami projektowymi oraz normami branżowymi.

Pytanie 16

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. C16
B. B25
C. C20
D. D10
Odpowiedzi C16, C20 i D10 to nie są najlepsze wybory i to z kilku powodów. Przede wszystkim, wybierając wyłącznik nadmiarowo-prądowy, trzeba brać pod uwagę przewidywany prąd zwarciowy. Przy 150 A, C16 i C20 mogą być za małe, bo ich prąd znamionowy nie jest wystarczający. C16 by działał za szybko w normalnych warunkach, co oznacza, że mógłby wyłączać się bez potrzeby, a to nie jest dobre, zwłaszcza przy takich prądach zwarciowych. C20, choć lepszy od C16, nadal nie spełnia wymagań, które mogą być w awaryjnych sytuacjach. A D10? No, to już w ogóle nie ma sensu, bo 10 A to zdecydowanie za mało na prąd zwarciowy wynoszący 150 A. Używanie takich słabych wyłączników może prowadzić do częstych wyłączeń i narażenia instalacji na różne niebezpieczeństwa. W praktyce to może skończyć się poważnymi kłopotami, nawet porażeniem elektrycznym. Dlatego tak ważne jest, żeby trzymać się norm i przepisów.

Pytanie 17

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 500 V DC
B. 500 V AC
C. 200 V DC
D. 200 V AC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 18

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
B. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
C. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
D. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
Podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych niezwykle istotne jest przestrzeganie procedur bezpieczeństwa, które zapobiegają wypadkom. Wiele osób może pomylić kolejność działań, co prowadzi do niebezpiecznych sytuacji. Na przykład, pierwszym krokiem w odpowiedziach opisujących zabezpieczenie przed przypadkowym załączeniem przed wyłączeniem instalacji spod napięcia jest istotnym błędem. Jeśli instalacja nie została wyłączona, jakiekolwiek zabezpieczenia mogą być niewystarczające, co może skutkować niebezpieczeństwem dla osób pracujących w danym miejscu. Ponadto, potwierdzenie braku napięcia po zabezpieczeniu może prowadzić do fałszywego poczucia bezpieczeństwa. Bez uprzedniego wyłączenia instalacji, wszelkie późniejsze kroki są bezzasadne, ponieważ osoba może być narażona na ryzyko porażenia prądem. Z kolei oznakowanie miejsca pracy powinno odbywać się na końcu, co nie tylko może wprowadzić chaos, ale również nie zabezpiecza przed przypadkowymi włączeniami. Praktyczne zastosowanie tych zasad jest kluczowe; regularne szkolenia i przestrzeganie norm, takich jak PN-EN 50110-1, są niezbędne dla zapewnienia bezpieczeństwa. Ignorowanie właściwej kolejności działań naraża nie tylko pracowników, ale również instytucje na poważne konsekwencje prawne i finansowe, dlatego tak ważne jest zrozumienie i stosowanie się do ustalonych procedur.

Pytanie 19

Na rysunku przedstawiono schemat do pomiaru impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. spadku napięcia.
B. techniczną.
C. zastosowania dodatkowego źródła.
D. bezpośredniego pomiaru.
Odpowiedź 'spadku napięcia' jest prawidłowa, ponieważ odnosi się do metody pomiaru impedancji pętli zwarciowej, która polega na pomiarze spadku napięcia wywołanego przez prąd zwarcia. W tym układzie stosuje się woltomierz do pomiaru napięcia oraz amperomierz do pomiaru prądu. Na podstawie tych pomiarów można zastosować prawo Ohma, aby obliczyć impedancję pętli, co jest kluczowe w ocenie funkcjonalności systemów elektroenergetycznych. Zgodnie z normą PN-EN 61010-1, zasady dotyczące bezpieczeństwa przy pomiarach elektrycznych wymagają, aby pomiary były dokładne i wiarygodne, co właśnie ta metoda zapewnia. Praktyczne zastosowanie tej metody znajduje się w procesach diagnostycznych instalacji elektrycznych, gdzie kluczowe jest określenie impedancji pętli zwarciowej dla oceny bezpieczeństwa użytkowania oraz zapewnienia, że systemy zabezpieczeń działają prawidłowo w przypadku awarii. Stosowanie metody spadku napięcia umożliwia również ocenę stanu izolacji oraz identyfikację potencjalnych problemów z instalacją.

Pytanie 20

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 2 do 3
B. 10 do 20
C. 3 do 5
D. 5 do 10
Złudzenia związane z innymi wartościami krotności prądu znamionowego wynikają często z niepełnego zrozumienia działania wyłączników nadprądowych oraz ich zastosowania w ochronie instalacji elektrycznych. Odpowiedzi sugerujące krotności od 3 do 5, 5 do 10, czy 10 do 20 są błędne, ponieważ wyzwalacze w wyłącznikach typu Z są zaprojektowane do zadziałania w niższym zakresie krotności, co pozwala na skuteczną ochronę delikatniejszych układów przed zbyt dużym prądem. Wyzwalacze w kategoriach 5 do 10 i 10 do 20 zazwyczaj znajdziemy w wyłącznikach typu C lub D, które są przeznaczone do obwodów o wyższej tolerancji na prądy rozruchowe, takich jak obwody z silnikami dużej mocy. Nieprawidłowe podejście do wyboru odpowiednich wyłączników może prowadzić do poważnych problemów, takich jak uszkodzenia sprzętu, które mogłyby być uniknięte dzięki zastosowaniu wyłączników typu Z w odpowiednich aplikacjach. Kluczowym błędem myślowym jest zakładanie, że wyższa krotność zawsze oznacza lepszą ochronę, co jest mylące. Odpowiedni wybór wyłącznika powinien być oparty na charakterystyce obciążenia oraz wymaganiach instalacji, co jest zgodne z normami i dobrymi praktykami w projektowaniu systemów elektroenergetycznych.

Pytanie 21

Na zdjęciu przedstawiono puszkę elektroinstalacyjną

Ilustracja do pytania
A. PU.PP-F3X60GŁ-N
B. PK-3x60/43 MS
C. PU.PP-F2X60PŁ-N
D. PK-2x60/43 MS
Odpowiedź "PK-3x60/43 MS" jest prawidłowa, ponieważ odpowiada wizualnej analizie puszki elektroinstalacyjnej, na której widoczne są trzy przegródki. Oznaczenie "PK" zazwyczaj wskazuje na rodzaj puszki, a liczba "3x60" sugeruje, że jest to puszka z trzema komorami o głębokości 60 mm, co jest standardem w branży elektroinstalacyjnej. Tego typu puszki są wykorzystywane w instalacjach elektrycznych do łączenia przewodów i zapewnienia bezpieczeństwa w obwodach. W praktyce, puszki kablowe muszą spełniać odpowiednie normy, takie jak PN-EN 60670-1, które określają wymagania dotyczące bezpieczeństwa oraz materiałów, z których powinny być wykonane. Wybór odpowiedniej puszki jest kluczowy dla trwałości instalacji oraz łatwości w późniejszej konserwacji. Użycie puszki z trzema przegródkami umożliwia staranne uporządkowanie przewodów, co redukuje ryzyko zwarcia i zwiększa estetykę pracy elektryka.

Pytanie 22

Który z wymienionych parametrów elementów instalacji elektrycznej można zmierzyć przyrządem, którego fragment pokazano na rysunku?

Ilustracja do pytania
A. Rezystancję uziemienia.
B. Czas wyłączenia wyłącznika nadprądowego.
C. Impedancję pętli zwarcia.
D. Rezystancję izolacji.
Wybór innych opcji, takich jak rezystancja izolacji czy rezystancja uziemienia, to nie jest dobry wybór. Te pomiary wymagają całkiem innych metod i sprzętu. Rezystancja izolacji to zdolność materiałów do opierania się przepływowi prądu, co jest bardzo ważne dla bezpieczeństwa. Mierniki do tego typu pomiarów działają na wyższych napięciach, więc to nie ma nic wspólnego z pomiarami impedancji pętli zwarcia. Rezystancja uziemienia z kolei odnosi się do skuteczności połączeń uziemiających, a to też wymaga innego sprzętu i techniki pomiarowej. Czas wyłączenia wyłącznika nadprądowego to inny temat, który można ocenić w kontekście zabezpieczeń, ale nie mierzysz go tym miernikiem z rysunku. Ta odpowiedź pokazuje typowy błąd w myśleniu, gdzie różne pomiary są mylone, co prowadzi do złych wniosków. Zrozumienie tych różnic jest kluczowe, żeby dobrze zarządzać bezpieczeństwem instalacji elektrycznych i robić poprawne pomiary według norm.

Pytanie 23

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. rozdzielnicę główną
B. przyłącze
C. złącze
D. instalacje odbiorcze
Złącze jest kluczowym elementem w instalacjach elektrycznych, gdyż umożliwia efektywne połączenie różnych linii zasilających w jednym punkcie. W przypadku, gdy jedna linia zasilająca rozdziela się na co najmniej dwie, złącze pozwala na zorganizowane i bezpieczne zarządzanie tymi połączeniami. Przykładowo, w budynkach mieszkalnych złącze jest często wykorzystywane do podłączenia linii zasilających do różnych sekcji obwodów, takich jak oświetlenie i gniazdka. Stosowanie złącz zgodnych z normami PN-IEC 60947-1, zapewnia, że instalacja będzie bezpieczna i zgodna z dobrymi praktykami branżowymi. Złącza powinny być również odpowiednio oznakowane i dostosowane do przewodów, co zwiększa bezpieczeństwo oraz ułatwia ewentualną konserwację lub modernizację instalacji. Warto podkreślić, że dobór odpowiednich złącz zgodnych z wymaganiami technicznymi znacznie redukuje ryzyko awarii oraz poprawia efektywność energetyczną całego systemu.

Pytanie 24

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
B. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 25

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy podnapięciowy
B. Dwubiegunowy instalacyjny nadprądowy
C. Dwubiegunowy przepięciowy
D. Dwubiegunowy różnicowoprądowy
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 26

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik będzie zasilany prądem w kierunku przeciwnym
B. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
C. Podczas zasilania silnika jego wirnik będzie stał
D. Silnik będzie pracować na biegu jałowym
Analizując pozostałe opcje, warto zauważyć, że zasilenie silnika przeciwprądem prowadzi do sytuacji, w której wirnik nie ma możliwości obrotów, co generuje maksymalny poślizg. W takim przypadku wirnik staje się właściwie statyczny, a energia nie jest efektywnie przetwarzana. Sytuacja ta nie tylko powoduje straty, ale również może prowadzić do uszkodzeń silnika. Z kolei, gdy wirnik silnika jest całkowicie nieruchomy, co ma miejsce w przypadku, gdy silnik jest zasilany bez obciążenia lub niesprawny, poślizg osiąga wartość maksymalną, ponieważ nie ma żadnego ruchu, co prowadzi do nieefektywnego wykorzystania energii. Praca silnika na biegu jałowym może sprawiać wrażenie podobnej do sytuacji z wirnikiem nieruchomym, jednakże w przypadku biegu jałowego wirnik wykonuje pewne obroty, co obniża poślizg. Wreszcie, praca silnika w znamionowych warunkach zasilania i obciążenia również nie zapewnia minimalnego poślizgu, ponieważ obciążenie wprowadza różnice prędkości wynikające z oporu mechanicznego oraz charakterystyki samego silnika. Ważne jest, aby zrozumieć, że optymalizacja pracy silników indukcyjnych, w tym zmniejszenie poślizgu, jest kluczowym elementem w kontekście efektywności energetycznej oraz długowieczności urządzeń.

Pytanie 27

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
B. Silnik będzie zasilany prądem przeciwnym
C. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
D. Silnik będzie pracował w stanie jałowym
W sytuacjach, gdy silnik zasilany jest przeciwprądem, wirnik nie może osiągnąć ujemnego poślizgu, ponieważ prąd zasilający działa w przeciwną stronę, co może prowadzić do uszkodzenia silnika. Silnik nie pracuje wtedy w sposób efektywny, a jego działanie może być szkodliwe dla całego układu. Podobnie, pozostawienie silnika na biegu jałowym również nie prowadzi do ujemnego poślizgu, ponieważ wirnik nie obraca się w stosunku do pola magnetycznego, co oznacza, że poślizg jest równy zeru. Z kolei, gdy wirnik jest nieruchomy podczas zasilania, silnik działa w warunkach maksymalnego poślizgu, co jest całkowicie odmienne od ujemnego poślizgu. Zrozumienie tych podstawowych zasad działania silników indukcyjnych jest kluczowe, aby uniknąć typowych błędów myślowych związanych z interpretacją i zastosowaniem teorii silników elektrycznych. W przemyśle i praktyce inżynieryjnej ważne jest, aby znajomość charakterystyk silników indukcyjnych była stosowana w odpowiednich kontekstach, aby zapewnić ich efektywność i bezpieczeństwo operacyjne.

Pytanie 28

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. LY
B. YAKY
C. OMY
D. YDY
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 29

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. C16
B. C10
C. B10
D. B16
Wybór wyłączników nadprądowych powinien być oparty na dokładnych obliczeniach prądu roboczego danego obwodu oraz na charakterystyce urządzeń, które są zasilane. Wyłącznik C10, mimo iż ma mniejszy prąd znamionowy niż B16 i C16, nie jest odpowiedni dla obszarów, gdzie występują urządzenia o dużych prądach rozruchowych, jak silniki elektryczne czy grzejniki oporowe, ponieważ może zareagować zbyt szybko na chwilowe skoki prądu. Z kolei wyłącznik B16 jest przeznaczony dla obwodów, które mogą mieć większe obciążenia i prądy do 16 A, co sprowadza się do przekroczenia maksymalnych wartości obciążenia na obwodzie z grzejnikiem 1600 W. Chociaż wyłącznik B16 mógłby teoretycznie zadziałać, w praktyce nie zapewniałby odpowiedniego poziomu zabezpieczenia, co może prowadzić do niebezpiecznych sytuacji. Podobnie, wyłącznik C16 ma zbyt wysoką wartość prądową dla tego konkretnego zastosowania, co czyni go niewłaściwym wyborem, gdyż nie zadziałałby w przypadku przeciążenia, a tym samym nie chroniłby instalacji. Właściwy wybór wyłącznika nadprądowego powinien opierać się na danych technicznych urządzeń oraz na normach bezpieczeństwa, aby zapewnić optymalną ochronę przed skutkami awarii elektrycznych.

Pytanie 30

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Megaomomierza
B. Watomierza
C. Omomierza
D. Megawoltomierza
Wybór nieodpowiednich przyrządów pomiarowych do oceny rezystancji izolacji może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa, jak i funkcjonalności instalacji elektrycznej. Watomierz, wykorzystujący zjawisko pomiaru mocy w obwodach elektrycznych, nie jest przeznaczony do oceny stanu izolacji. Jego zastosowanie ogranicza się do pomiaru energii elektrycznej, co jest całkowicie odmiennym zadaniem. Omomierz, mimo że mierzy opór, jest stosowany przy normalnych warunkach pracy, co oznacza, że nie uwzględnia on stanu izolacji pod wpływem wysokich napięć, które są kluczowe w tym kontekście. W przypadku megawoltomierza, jest to urządzenie służące do pomiaru napięcia, a nie rezystancji, co czyni go zupełnie nieprzydatnym w tym aspekcie. Typowym błędem jest założenie, że każdy przyrząd pomiarowy, który mierzy opór, spełni wymagania dla pomiaru izolacji, podczas gdy w rzeczywistości tylko megaomomierz, działający w odpowiednich warunkach napięciowych, może dostarczyć wiarygodne dane. Właściwe zrozumienie zastosowania każdego z tych urządzeń oraz ich ograniczeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 31

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Odpowiedź B jest poprawna, ponieważ łącznik przedstawiony na zdjęciu to łącznik pojedynczy, jednobiegunowy, co jest zgodne z symboliką stosowaną w branży elektrycznej. W praktyce, łączniki te są powszechnie używane do włączania i wyłączania obwodów oświetleniowych w domach i biurach. Zgodnie z normami IEC (Międzynarodowa Komisja Elektrotechniczna), poprawne oznaczenie graficzne elementów instalacji elektrycznych ma kluczowe znaczenie dla ich właściwej identyfikacji i funkcjonowania. Użycie symbolu z opcji B ułatwia instalatorom i technikom szybkie rozpoznanie typu łącznika, co przyspiesza proces montażu oraz ewentualnych prac serwisowych. Przykładem praktycznym może być zastosowanie łącznika jednobiegunowego w domach jednorodzinnych, gdzie jedna para przycisków kontroluje jedno źródło światła, co jest zgodne z powszechnymi standardami instalacyjnymi. Dobrą praktyką jest również stosowanie jednolitych symboli graficznych na schematach elektrycznych, co minimalizuje ryzyko pomyłek podczas realizacji projektów elektrycznych.

Pytanie 32

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Uszkodzenie izolacji przewodu ochronnego
B. Zwarcie doziemne przewodu neutralnego
C. Przerwa w przewodzie ochronnym
D. Przerwa w przewodzie neutralnym
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 33

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. TN-S
B. IT
C. TN-C
D. TT
Wybór innych układów sieciowych, takich jak IT, TN-S i TT, jest nietrafiony z kilku powodów. W układzie IT, który charakteryzuje się izolowanym systemem zasilania, nie występuje przewód PEN, ponieważ nie ma potrzeby łączenia funkcji ochronnych i neutralnych. Ten system jest często stosowany w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale, ponieważ w przypadku awarii jednego z fazowych przewodów, pozostałe mogą dalej funkcjonować bez przerwy. Układ TN-S natomiast odseparowuje przewody ochronne (PE) od przewodów neutralnych (N), co zwiększa bezpieczeństwo, ale wymaga większej liczby przewodów, co może być mniej efektywne kosztowo. Z kolei układ TT to inny system, w którym przewód ochronny jest oddzielony od systemu neutralnego, co oznacza, że w przypadku uszkodzenia nie jest możliwe skorzystanie z przewodu PEN. Takie rozwiązanie może być stosowane w sytuacjach, gdzie występują wysokie wymagania dotyczące bezpieczeństwa, ale wiąże się z większym ryzykiem porażenia elektrycznego. W praktyce, wybór odpowiedniego układu sieciowego powinien być uzależniony od specyficznych potrzeb oraz warunków, w jakich będzie funkcjonować instalacja elektryczna. Warto zatem zrozumieć różnice pomiędzy tymi układami, aby skutecznie dobierać rozwiązania odpowiednie dla konkretnego zastosowania.

Pytanie 34

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Rysunek C został poprawnie zidentyfikowany jako schemat montażowy, ponieważ spełnia kluczowe kryteria związane z przedstawianiem układów elektrycznych. Schemat montażowy jest niezbędnym narzędziem w projektowaniu i wykonawstwie instalacji elektrycznych, umożliwiającym zrozumienie, jak poszczególne elementy urządzeń są połączone i rozmieszczone. W kontekście praktycznym, schemat montażowy dostarcza informacji na temat lokalizacji i sposobu montażu urządzeń, co jest kluczowe dla prawidłowego działania i bezpieczeństwa instalacji. Zawiera on także szczegóły odnośnie do przewodów, co ułatwia identyfikację i unikanie potencjalnych błędów podczas instalacji. Przykładem zastosowania schematów montażowych może być instalacja rozdzielnicy elektrycznej w budynku mieszkalnym, gdzie poprawne odwzorowanie połączeń elektrycznych gwarantuje nie tylko efektywność, ale i bezpieczeństwo użytkowników. Ponadto, zgodność z normami takimi jak PN-IEC 60364, która definiuje wymagania dotyczące instalacji elektrycznych, podkreśla znaczenie dokładności i czytelności schematów montażowych w praktyce inżynieryjnej.

Pytanie 35

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
B. Sprawdzenie stanu izolacji oraz powłok przewodów
C. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
D. Zamiana wszystkich źródeł oświetlenia w oprawach
Sprawdzenie stanu izolacji i powłok przewodów jest kluczowym elementem konserwacji instalacji elektrycznych w mieszkaniach. Izolacja przewodów jest niezbędna do zapewnienia bezpieczeństwa użytkowania, ponieważ uszkodzona lub niewłaściwa izolacja może prowadzić do zwarć, pożarów, a także porażenia prądem. Regularne inspekcje stanu izolacji powinny być przeprowadzane zgodnie z obowiązującymi standardami, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych w obiektach budowlanych. Przykładowe metody oceny stanu izolacji obejmują pomiar rezystancji przy użyciu megomierza. Zastosowanie odpowiednich technik, takich jak testy izolacji, pozwala na wczesne wykrycie problemów i ich naprawę, co przekłada się na dłuższą żywotność instalacji oraz zwiększa bezpieczeństwo mieszkańców. Dbanie o stan izolacji to nie tylko spełnienie wymogów prawnych, ale także odpowiedzialność za bezpieczeństwo domowników i ich majątek.

Pytanie 36

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 4,6 Ω
B. 2,3 Ω
C. 7,7 Ω
D. 8,0 Ω
Wartości impedancji pętli zwarcia 2,3 Ω, 7,7 Ω oraz 8,0 Ω nie są odpowiednie z różnych powodów. Impedancja pętli zwarcia o wartości 2,3 Ω może wydawać się atrakcyjna, ale jest zbyt niska, co może prowadzić do nieprawidłowego działania wyłącznika nadprądowego, czyniąc go bardziej podatnym na fałszywe wyzwolenia. Wyłączniki nadprądowe mają swoje charakterystyki czasowe, a przy zbyt niskiej impedancji prąd zwarciowy może być niewystarczający do ich skutecznego działania w momentach awaryjnych. Z kolei wartość 7,7 Ω, choć nieco bardziej akceptowalna, przekracza maksymalne wartości, które zapewniają odpowiednią ochronę w standardowych instalacjach, co może prowadzić do niebezpieczeństwa porażenia. Zbyt wysoka impedancja pętli zwarcia powoduje, że prąd zwarciowy, który z reguły musi być odpowiednio wysoki, aby wyzwolić zabezpieczenia, może nie osiągnąć wartości progowej przy zwarciu, co w konsekwencji skutkuje wydłużonym czasem wyłączenia zasilania i narażeniem użytkowników na niebezpieczeństwo. Wartość 8,0 Ω jest jeszcze bardziej niekorzystna, ponieważ znacznie przekracza parametry zalecane przez normy, co może prowadzić do poważnych zagrożeń w przypadku uszkodzenia izolacji. Zrozumienie tych zasad jest kluczowe dla inżynierów oraz techników, którzy projektują instalacje elektryczne, aby zapewnić ich bezpieczeństwo i zgodność z normami branżowymi.

Pytanie 37

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Żarówkę halogenową.
B. Lampę metalohalogenkową.
C. Lampę indukcyjną.
D. Świetlówkę kompaktową.
Wybór lampy indukcyjnej, żarówki halogenowej lub lampy metalohalogenkowej jako odpowiedzi na pytanie o źródło światła przedstawione na zdjęciu opiera się na nieprawidłowej interpretacji ich cech charakterystycznych. Lampa indukcyjna, choć efektywna, nie ma kształtu spirali typowego dla świetlówek kompaktowych. W rzeczywistości, lampy te wykorzystują pole elektromagnetyczne do generowania światła, co sprawia, że ich konstrukcja jest zupełnie inna. Żarówki halogenowe, z kolei, są bardziej zaawansowaną formą żarówek wolframowych, charakteryzującą się niewielkim rozmiarem oraz wysoką wydajnością, ale nie przybierają formy zwiniętej. Lampy metalohalogenkowe, które często znajdują zastosowanie w oświetleniu przemysłowym, mają także różne kształty i są przeznaczone do innych celów, takich jak oświetlenie uliczne czy w halach produkcyjnych. Wybór tych odpowiedzi może wynikać z mylnego skojarzenia typowych cech tych lamp z wyglądem świetlówki kompaktowej. Kluczowe jest zrozumienie, że każda z tych lamp ma swoje unikalne zastosowanie oraz konstrukcję, a błędna interpretacja ich funkcji prowadzi do mylnych wniosków. Aby efektywnie dobrać źródło światła, należy zwracać uwagę na jego charakterystykę, efektywność energetyczną oraz przeznaczenie, co jest kluczowe w kontekście oszczędzania energii oraz ochrony środowiska.

Pytanie 38

W zakres oględzin instalacji elektrycznych nie wchodzi weryfikacja

A. metody zabezpieczenia przed porażeniem prądem elektrycznym
B. stanu osłon zabezpieczających przewody przed uszkodzeniami mechanicznymi
C. stanu widocznych elementów przewodów, izolatorów oraz ich mocowania
D. ciągłości przewodów ochronnych i neutralnych
Ciągłość przewodów ochronnych i neutralnych nie jest przedmiotem oględzin instalacji elektrycznych w kontekście ich widocznego stanu, ponieważ tego typu sprawdzenie jest realizowane w ramach bardziej zaawansowanych testów, takich jak pomiary rezystancji izolacji. Właściwe oględziny koncentrują się na widocznych elementach instalacji, co pozwala na szybkie zidentyfikowanie ewentualnych uszkodzeń, korozji czy niewłaściwych połączeń. Przykładowo, inspektorzy mogą zwracać uwagę na stan izolacji przewodów oraz mocowanie elementów, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Zgodnie z normą PN-IEC 60364, regularne sprawdzanie stanu widocznych części instalacji elektrycznej jest niezbędne dla utrzymania bezpieczeństwa i efektywności działania systemów elektrycznych. Dlatego istotne jest, aby technicy elektrycy posiadali wiedzę na temat widocznych elementów instalacji oraz ich stanu.

Pytanie 39

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 450/750 V
B. 300/300 V
C. 100/100 V
D. 300/500 V
Izolacja przewodów w sieciach elektrycznych jest kluczowym elementem zapewniającym bezpieczeństwo i efektywność systemów zasilających. Wybór niewłaściwego napięcia znamionowego może prowadzić do poważnych konsekwencji, takich jak uszkodzenie przewodów, ryzyko porażenia prądem, a nawet pożarów. Odpowiedzi takie jak 300/300 V, 100/100 V czy 450/750 V mogą wydawać się atrakcyjne, jednak każda z nich ma swoje ograniczenia i nie spełnia wymagań dla instalacji niskonapięciowych. Na przykład, napięcie 300/300 V jest zbyt niskie w kontekście zastosowań niskonapięciowych, co może prowadzić do uszkodzenia izolacji w przypadku wystąpienia zwarcia. Natomiast 100/100 V jest zdecydowanie niewystarczające dla standardowych instalacji trójfazowych. Z kolei 450/750 V, mimo że może wyglądać na odpowiednie, jest zbyt wysokie dla nominalnych wartości napięcia 230/400 V, co może prowadzić do nieoptymalnego doboru komponentów w instalacji. Dlatego kluczowe jest stosowanie przewodów o odpowiednich dla danego zastosowania parametrach, jak 300/500 V, co zapewnia bezpieczeństwo oraz efektywność działania całego systemu elektrycznego. Zrozumienie norm i standardów, takich jak PN-EN 60228, jest niezbędne dla inżynierów i techników zajmujących się projektowaniem oraz instalowaniem systemów elektrycznych.

Pytanie 40

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Wymiana uszkodzonych gniazd wtyczkowych
B. Zamiana zużytych urządzeń na nowe
C. Przesunięcie miejsc montażu opraw oświetleniowych
D. Instalacja nowych punktów świetlnych
Zmiana miejsc zamontowania opraw oświetleniowych, montaż nowych wypustów oświetleniowych oraz wymiana odbiorników energii elektrycznej na nowe to czynności, które nie należą do prac konserwacyjnych, lecz do prac instalacyjnych i modernizacyjnych. Prace konserwacyjne koncentrują się na utrzymaniu istniejącej instalacji w dobrym stanie, co obejmuje m.in. naprawy, wymianę uszkodzonych elementów czy przeglądy techniczne. Zmiana lokalizacji opraw oświetleniowych czy montaż nowych wypustów wiąże się z modyfikacją struktury instalacji, co wymaga zupełnie innego podejścia i często jest związane z koniecznością uzyskania odpowiednich zezwoleń oraz wykonania projektu technicznego. Podobnie, wymiana odbiorników energii elektrycznej na nowe wiąże się z ich odpowiednim doborem oraz z zapewnieniem, że instalacja elektryczna jest przystosowana do nowych wymagań. Często mylnie przyjmuje się, że każda czynność związana z elektrycznością należy do prac konserwacyjnych, jednakże zgodnie z najlepszymi praktykami branżowymi należy dbać o wyraźne rozgraniczenie tych dwóch rodzajów aktywności, aby zapewnić bezpieczeństwo oraz prawidłowe funkcjonowanie systemów elektrycznych.