Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 9 grudnia 2025 14:45
  • Data zakończenia: 9 grudnia 2025 14:56

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Podczas przeglądu silnika trójfazowego frezarki numerycznej wykonano pomiary rezystancji uzwojeń i rezystancji izolacji, zamieszczone w tabeli. Wyniki te wskazują na

Pomiar między zaciskamiU1-U2V1-V2W1-W2U1-V1V1-W1U1-W1U1-PEV1-PEW1-PE
Wynik22 Ω21,5 Ω22,2 Ω52 MΩ49 MΩ30 Ω
A. zwarcie między uzwojeniem W1-W2, a obudową silnika.
B. zwarcie między uzwojeniami U1-U2 oraz W1-W2.
C. przerwę w uzwojeniu V1-V2.
D. przerwę w uzwojeniu U1-U2.
Odpowiedź wskazująca na zwarcie między uzwojeniem W1-W2 a obudową silnika jest prawidłowa, ponieważ analizy wyników pomiarów rezystancji izolacji ujawniają niską wartość rezystancji wynoszącą 30 Ω. Taka wartość wskazuje na poważne problemy z izolacją, które mogą prowadzić do zwarcia. W warunkach normalnych, dla dobrze działających silników, rezystancja izolacji powinna wynosić przynajmniej kilka megaomów, co zapewnia wystarczającą ochronę przed przepływem prądu do obudowy. W przypadku stwierdzenia niskiej rezystancji, konieczne jest przeprowadzenie szczegółowej analizy oraz podjęcie działań naprawczych, które mogą obejmować wymianę uszkodzonych uzwojeń. Dobrą praktyką jest regularne wykonywanie pomiarów rezystancji izolacji, zwłaszcza przed rozpoczęciem długotrwałej eksploatacji maszyn. Tylko dzięki tym pomiarom można uniknąć potencjalnych awarii i zagrożeń dla bezpieczeństwa. W kontekście standardów branżowych, np. IEC 60034, zaleca się, aby rezystancja izolacji przekraczała 1 MΩ dla silników o napięciu do 1000 V, co podkreśla konieczność utrzymywania właściwych parametrów izolacyjnych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jaką metodę uzyskiwania sprężonego powietrza należy zastosować, aby jak najlepiej usunąć olej z medium roboczego?

A. Odolejanie
B. Redukcję
C. Filtrację
D. Osuszanie
Metoda odolejania to kluczowy proces w przygotowaniu sprężonego powietrza, szczególnie w aplikacjach, gdzie czystość medium roboczego ma kluczowe znaczenie dla funkcjonowania urządzeń pneumatycznych i jakości produktów końcowych. Odolejanie polega na zastosowaniu specjalistycznych filtrów, które są zdolne do eliminacji cząstek oleju poprzez mechanizmy adsorpcji i separacji. W praktyce, w systemach pneumatycznych, często wykorzystuje się filtry wstępne i końcowe, które skutecznie usuwają zanieczyszczenia, poprawiając jakość sprężonego powietrza. Standardy branżowe, takie jak ISO 8573, definiują różne klasy czystości sprężonego powietrza, gdzie klasa 1 wymaga minimalnej zawartości oleju. Niezbędne jest, aby systemy odolejania były regularnie serwisowane i monitorowane, aby utrzymać ich skuteczność. W kontekście przemysłowym, nieprzestrzeganie zasad odolejania może prowadzić do uszkodzeń sprzętu, zwiększenia kosztów eksploatacji oraz obniżenia jakości produkcji. Znajomość i zastosowanie metody odolejania to zatem niezbędny element w zarządzaniu jakością w procesach pneumatycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Początkowo operator frezarki powinien

A. ocenić stan frezu oraz jego mocowanie
B. kilkakrotnie szybko uruchomić i wyłączyć frezarkę w celu sprawdzenia prawidłowego działania silnika
C. sprawdzić kondycję techniczną łożysk silnika i w razie potrzeby je nasmarować
D. wyczyścić łożyska silnika, styki przekaźników oraz styczników w systemie sterowania
Poprawną odpowiedzią jest sprawdzenie stanu frezu i jego mocowania, ponieważ jest to kluczowy krok w zapewnieniu prawidłowego funkcjonowania frezarki. Frez jest narzędziem skrawającym, które wymagane jest do efektywnego usuwania materiału. Jego uszkodzenie lub niewłaściwe mocowanie mogą prowadzić do wadliwego przetwarzania materiału, co z kolei wpływa na jakość wykonanych detali oraz wydajność produkcji. Przykładowo, jeśli frez nie jest prawidłowo zamocowany, może dojść do jego wibracji, co prowadzi do nadmiernego zużycia narzędzia oraz ryzyka uszkodzenia maszyny. Dobrym praktyką przed rozpoczęciem pracy jest przeprowadzenie wizualnej kontroli frezu oraz zastosowanie odpowiednich narzędzi do pomiaru, takich jak suwmiarka, aby upewnić się, że jego średnica oraz długość są zgodne z wymaganiami. Dodatkowo, warto pamiętać o regularnych przeglądach stanu technicznego, co jest zgodne z normami ISO dotyczącymi zarządzania jakością w procesach produkcyjnych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Ręczne sterowanie prasą hydrauliczną postanowiono zastąpić automatycznym zarządzaniem przy pomocy sterownika PLC. Parametry technologiczne prasy pozostają bez zmian. Jakie elementy powinien uwzględniać projekt modernizacji prasy?

A. Obliczenie parametrów mediów zasilających prasę oraz zaprojektowanie zabezpieczeń
B. Obliczenie parametrów elementów prasy oraz stworzenie programu
C. Określenie parametrów wytrzymałościowych mechanizmów i sprawdzenie zabezpieczeń
D. Przygotowanie schematów układu sterowania oraz opracowanie programu
Sporządzenie schematów układu sterowania oraz opracowanie programu jest kluczowym krokiem w procesie modernizacji prasy hydraulicznej. Przeniesienie ręcznego sterowania na automatyczne za pomocą sterownika PLC wymaga precyzyjnego zaplanowania architektury układu sterowania, co obejmuje zarówno schematy ideowe, jak i szczegółowe. Schematy te powinny zawierać wszystkie elementy systemu, takie jak czujniki, wykonawcze elementy hydrauliczne oraz interfejsy komunikacyjne. Opracowanie programu sterującego jest równie istotne, gdyż to właśnie on definiuje logikę działania urządzenia, umożliwiając precyzyjne kontrolowanie procesu w czasie rzeczywistym. W praktyce, zastosowanie standardów takich jak IEC 61131-3 pozwala na tworzenie programów w sposób modularny, co ułatwia ich późniejszą modyfikację i konserwację. Dodatkowo, przy projektowaniu układu sterowania warto uwzględnić protokoły komunikacyjne, co pozwoli na integrację prasy z innymi elementami linii produkcyjnej, zapewniając większą elastyczność i efektywność w procesie produkcji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W urządzeniu mechatronicznym zastosowano pasek zębaty jako mechanizm przenoszenia napędu. W trakcie regularnej inspekcji tego paska należy przede wszystkim ocenić stopień jego zużycia oraz

A. bicie osiowe
B. temperaturę
C. smarowanie
D. naprężenie
Prawidłowe naprężenie paska zębatego jest kluczowe dla efektywnego przenoszenia napędu w urządzeniach mechatronicznych. Zbyt luźny pasek może powodować poślizgnięcia i przeskakiwanie zębów, co prowadzi do zwiększonego zużycia oraz uszkodzeń mechanicznych. Z kolei zbyt mocno napięty pasek może powodować zwiększone obciążenie na łożyskach oraz prowadzić do szybszego zużycia samego paska. Standardy branżowe, takie jak ISO 5296, wskazują na konieczność regularnego monitorowania naprężeń w elementach przenoszących napęd, aby zapewnić ich długowieczność i niezawodność. Praktyka przemysłowa sugeruje, że przed każdą dłuższą eksploatacją należy przeprowadzić kontrolę naprężenia, co pozwala na optymalizację wydajności systemu oraz minimalizację ryzyka awarii. Dlatego umiejętność prawidłowego pomiaru i regulacji naprężenia paska zębatego jest fundamentalną umiejętnością w konserwacji urządzeń mechatronicznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakie są różnice między blokiem funkcyjnym przerzutnika RS a blokiem przerzutnika SR w PLC?

A. Czasem reakcji
B. Przewagą sygnałów Set i Reset
C. Odwróceniem sygnałów Set i Reset
D. Ilością stanów pośrednich
Wybór odpowiedzi związanej z liczbą stanów pośrednich pokazuje, że możesz mieć niepełne zrozumienie tego, jak działają przerzutniki. Wydaje się, że myślisz, że RS i SR różnią się tylko ilością stanów, a to nie do końca tak jest. Oba działają na podstawie dwóch stanów: 0 i 1. Warto też zauważyć, że szybkość działania nie jest główną różnicą między nimi, chociaż faktycznie różne realizacje mogą reagować w różnym czasie. Kluczowe jest to, że przerzutnik SR może zmieniać stan, gdy oba sygnały są aktywne, a w RS musi być aktywny Set, żeby Reset nie miał wpływu. Pamiętaj, że negacja sygnałów Set i Reset dotyczy bardziej logiki w niektórych schematach, a niekoniecznie samej różnicy w działaniu tych przerzutników. Często spotykane błędy to pomijanie podstawowych zasad działania tych bloków funkcyjnych oraz brak zrozumienia ich w praktycznych zastosowaniach. Żeby skutecznie projektować systemy automatyki, warto naprawdę dobrze poznać te funkcjonalne różnice.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jaki sterownik powinien być wykorzystany do zarządzania 5 pompami napełniającymi 5 zbiorników, gdy włączanie i wyłączanie poszczególnych pomp opiera się na sygnałach z czujników binarnych, które wykrywają niski oraz wysoki poziom cieczy, a także system uruchamiany jest ręcznie przyciskiem zwiernym i wyłączany przyciskiem rozwiernym?

A. Posiadający co najmniej 8 wejść i 4 wyjścia analogowe
B. Posiadający co najmniej 16 wejść i 8 wyjść analogowych
C. Posiadający co najmniej 16 wejść i 8 wyjść cyfrowych
D. Posiadający co najmniej 8 wejść i 4 wyjścia cyfrowe
Odpowiedzi, które nie mają 16 wejść i 8 wyjść, są po prostu za małe, żeby obsłużyć 5 pomp i 5 czujników. Takie jak 8 wejść i 4 wyjścia to za mało, bo nie da się wtedy podłączyć wszystkich potrzebnych elementów. W automatyce ważne jest, żeby komponenty działały obok siebie, co jest konieczne w bardziej skomplikowanych systemach z wieloma pompami. Ta odpowiedź dotycząca wyjść analogowych jest też myląca. Wyjścia analogowe są dla sygnałów ciągłych, jak temperatura czy ciśnienie, a nie dla czujników binarnych, które działają w trybie włącz/wyłącz. Z mojego doświadczenia wynika, że to pokazuje brak zrozumienia podstaw automatyki, no bo musisz wiedzieć, jak to działa. Jak wybierzesz zły sterownik, to możesz poważnie skomplikować działanie systemu – np. nie będziesz w stanie monitorować poziomu cieczy, a to prowadzi do awarii i zniszczeń. Dlatego ważne jest, żeby wybierać sprzęt na podstawie dokładnej analizy wymagań systemu, żeby mieć pewność, że wszystko będzie działać jak należy.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

W tabeli podano dane techniczne sterownika PLC. Jakim maksymalnym prądem można obciążyć sterownik, dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalny
Przy sygnale „0"
Przy sygnale „1"
Prąd wejściowy

DC 20,4 ... 28,8 V
maks. AC/DC 5 V
min. AC/DC 12 V
2,5 mA
Wyjścia:
Rodzaj
Prąd ciągły

4 przekaźnikowe
10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym
A. 10,0 A
B. 3,0 A
C. 7,0 A
D. 2,5 A
Odpowiedź 3,0 A jest poprawna, ponieważ zgodnie z danymi technicznymi sterownika PLC, jego maksymalny prąd obciążenia wynosi 3 A. Przy podłączeniu silnika do wyjścia sterownika należy zawsze zwrócić uwagę na jego parametry, ponieważ zarówno prąd, jak i napięcie zasilające muszą być zgodne z danymi katalogowymi urządzenia. W przypadku obciążeń indukcyjnych, takich jak silniki, warto również wziąć pod uwagę prąd rozruchowy, który może być znacznie wyższy od prądu nominalnego. Praktyczne zastosowanie tej wiedzy jest kluczowe, gdyż niewłaściwe dobranie prądu obciążenia może prowadzić do uszkodzenia sterownika oraz obniżenia efektywności całego systemu. W branży automatyki przemysłowej podstawowe zasady dobierania obciążeń są ujęte w normach takich jak IEC 61131, które zalecają odpowiednie dobieranie komponentów w celu zapewnienia trwałości oraz niezawodności systemów. Zrozumienie tych aspektów jest niezwykle istotne, zwłaszcza w kontekście projektowania i eksploatacji instalacji automatyki.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Falowniki używane w przetwornicach częstotliwości mają na celu regulację

A. prędkości obrotowej silnika, poprzez modyfikację wartości prądu zasilającego silnik
B. prędkości obrotowej silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
C. mocy silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
D. kierunku obrotów silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
Falowniki w przetwornicach częstotliwości odgrywają kluczową rolę w regulacji prędkości obrotowej silników. Poprzez zmianę częstotliwości napięcia zasilającego, falownik umożliwia dostosowanie prędkości obrotowej silnika do wymagań obciążenia, co jest istotne w wielu zastosowaniach przemysłowych, takich jak pompy, wentylatory czy taśmociągi. Dzięki tej technologii możliwe jest osiągnięcie większej efektywności energetycznej oraz redukcji kosztów operacyjnych. W przypadku silników asynchronicznych, zmiana częstotliwości zasilania bezpośrednio wpływa na prędkość obrotową, co pozwala na precyzyjne sterowanie procesami. W praktyce, zastosowanie falowników pozwala na unikanie skoków w prędkości obrotowej, co z kolei przekłada się na dłuższy czas eksploatacji urządzeń oraz zmniejszenie zużycia energii. Jest to zgodne z najlepszymi praktykami branżowymi, które promują zrównoważony rozwój oraz efektywność energetyczną w przemyśle.

Pytanie 38

Jakim oznaczeniem literowym nazywa się zmienne wewnętrzne kontrolera, które są używane w programie jako styki i cewki?

A. Q
B. T
C. C
D. M
Odpowiedź "M" jest poprawna, ponieważ symbol ten odnosi się do zmiennych wewnętrznych sterownika, które pełnią rolę cewek i styków w programowaniu PLC. Zmienne te są związane z pamięcią sterownika, co znajduje odzwierciedlenie w angielskim słowie "memory". W praktyce zmienne typu M są wykorzystywane do przechowywania stanów logicznych, które mogą być używane w różnych częściach programu, co zapewnia elastyczność i możliwość łatwego zarządzania danymi. Dobrą praktyką jest przydzielanie zmiennych pamięciowych do konkretnych funkcji, co ułatwia późniejsze debugowanie oraz utrzymanie programu. W kontekście standardów, w wielu systemach automatyki przemysłowej, takich jak Siemens TIA Portal czy Allen-Bradley, zmienne pamięciowe są kluczowym elementem programowania, ponieważ umożliwiają manipulację danymi oraz interakcję z fizycznymi urządzeniami. Warto także zaznaczyć, że zrozumienie i umiejętność wykorzystania zmiennych M ma istotne znaczenie w kontekście pisania efektywnych i bezpiecznych programów automatyki.

Pytanie 39

W instalacji zasilającej bez osuszaczy, przewód do rozprowadzania sprężonego powietrza powinien być układany ze spadkiem w kierunku przepływu powietrza, wynoszącym blisko

A. 11%
B. 1%
C. 5%
D. 13%
Przewód rozprowadzający sprężone powietrze powinien być montowany ze spadkiem wynoszącym około 1% w kierunku przepływu powietrza z kilku istotnych powodów. Przede wszystkim, taki spadek umożliwia efektywne usuwanie wilgoci, która jest nieodłącznym towarzyszem sprężonego powietrza. Wilgoć, będąc cięższa od powietrza, gromadzi się w dolnych partiach przewodów, co może prowadzić do korozji ich wnętrza oraz obniżenia efektywności systemu. Przy odpowiednim nachyleniu, woda jest skutecznie odprowadzana, co znacząco poprawia wydajność systemu sprężonego powietrza. W praktyce, montując przewody ze spadkiem 1%, można zobaczyć znaczną różnicę w ilości zanieczyszczeń i osadów w zbiornikach, co przekłada się na dłuższą żywotność sprzętu i zmniejszenie kosztów utrzymania. Dobrymi praktykami w branży są regularne inspekcje i konserwacja systemów sprężonego powietrza, co powinno obejmować również kontrolę nachylenia przewodów. Warto również odnosić się do standardów, takich jak ISO 8573, które definiują jakość sprężonego powietrza i podkreślają znaczenie eliminacji wilgoci w systemach pneumatycznych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.