Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 21 lutego 2026 15:12
  • Data zakończenia: 21 lutego 2026 15:33

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji uzwojeń silników
R₂₀ = K₂₀·Rₜ
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K₂₀0,670,730,810,901,001,101,211,341,48
A. 6,57 MΩ
B. 6,40 MΩ
C. 8,20 MΩ
D. 8,11 MΩ
W tego typu zadaniach kluczowe jest właściwe zastosowanie przelicznika temperatury do rezystancji izolacji, bo izolacja silników elektrycznych silnie reaguje na zmiany temperatury. W praktyce często zdarza się, że ktoś popełnia błąd, wybierając nie ten współczynnik K₂₀ z tabeli, co trzeba albo myli etapy przeliczania. Przykładowo, jeśli ktoś wybierze współczynnik odpowiadający nie tej temperaturze, w której był wykonany pomiar – np. zamiast 0,90 (dla 17 °C) wybierze 1,00 (dla 20 °C) czy inny, cały wynik się rozjedzie. Równie często spotykam się z zamianą mnożenia na dzielenie, a przy tym wzorze trzeba pamiętać, że to R₂₀ = Rₜ/K₂₀, czyli dzielimy wartość zmierzoną przez współczynnik. To nie jest oczywiste, bo niektóre osoby automatycznie mnożą przez K₂₀, traktując go jak typowy przelicznik korekcyjny – a tu jest odwrotnie, bo współczynnik mówi, jak bardzo pomierzona rezystancja w danej temperaturze odbiega od tej w 20 °C. Jeśli ktoś tego nie zrozumie, uzyska wynik zbyt wysoki lub zbyt niski. Dodatkowo, niektórzy mogą zaokrąglać współczynnik albo wynik bez dokładności, co przy tak precyzyjnych pomiarach prowadzi do błędnych interpretacji technicznych. Takie niedopatrzenia w praktyce serwisowej mogą spowodować, że uznamy sprawny silnik za uszkodzony, lub odwrotnie – przeoczymy pogorszenie stanu izolacji. To pokazuje, jak ważne jest rzetelne stosowanie wzoru i korzystanie z aktualnych tabel przeliczeniowych zgodnych z normami branżowymi, jak PN-EN 60034-1. Moim zdaniem, zanim przeliczymy cokolwiek, zawsze warto dwa razy sprawdzić, czy na pewno korzystamy z właściwych danych i dobrze rozumiemy cel przeliczenia – bo w praktyce to procentuje bezpieczeństwem i niezawodnością pracy urządzeń.

Pytanie 2

Instalacja elektryczna, której odbiorniki oznaczone są symbolem graficznym pokazanym na rysunku

Ilustracja do pytania
A. ma uziemione przewodzące obudowy odbiorników.
B. nie posiada ochrony przed dotykiem pośrednim.
C. posiada podwójną lub wzmocnioną izolację.
D. jest zasilana bardzo niskim napięciem.
Odpowiedź "jest zasilana bardzo niskim napięciem" jest prawidłowa, ponieważ symbol graficzny na rysunku oznacza urządzenie elektryczne klasy III. Urządzenia tej klasy są projektowane do pracy w systemach zasilanych bardzo niskim napięciem (SELV - Safety Extra Low Voltage), co znacząco zwiększa bezpieczeństwo użytkowania. Dzięki zastosowaniu niskiego napięcia, ryzyko wystąpienia porażenia elektrycznego jest minimalne, co czyni te urządzenia idealnymi do użytku w warunkach, gdzie występuje zwiększone ryzyko kontaktu z wodą lub wilgocią. W praktyce, urządzenia klasy III są szeroko stosowane w instalacjach, takich jak oświetlenie w łazienkach, zasilanie urządzeń w ogrodach czy w obiektach publicznych. Standardy elektrotechniczne, takie jak IEC 61140, definiują zasady bezpieczeństwa dla tego typu urządzeń, co potwierdza ich zaufanie w zastosowaniach na całym świecie.

Pytanie 3

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Asynchronicznych klatkowych.
B. Asynchronicznych pierścieniowych.
C. Synchronicznych.
D. Uniwersalnych.
Jak wybrałeś złą odpowiedź, to może być trochę mylące w kontekście konstrukcji silników elektrycznych. Silniki synchroniczne, które wskazałeś w odpowiedziach, mają wirniki z magnesami trwałymi albo z uzwojeniem wzbudzenia. Wiesz, kluczowa różnica to to, że w silnikach synchronicznych prędkość obrotowa wirnika jest zsynchronizowana z częstotliwością prądu zasilającego, a w asynchronicznych to działa na zasadzie poślizgu. Z kolei silniki pierścieniowe mają wirnik z uzwojeniem, połączonym z pierścieniami ślizgowymi, co pozwala regulować prędkość, ale nie daje takiej efektywności jak klatkowe. No i silniki uniwersalne, które mogą działać zarówno na prądzie stałym, jak i przemiennym, mają zupełnie inną konstrukcję wirnika. Błędy w myśleniu, które prowadzą do takich omyłek, zazwyczaj wynikają z pomylenia zasad działania różnych silników. Zrozumienie tych różnic to klucz do efektywnego projektowania i użytkowania systemów napędowych.

Pytanie 4

Na fotografii przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V w izolacji gumowej.
B. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
C. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w izolacji gumowej.
D. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
Poprawna odpowiedź dotyczy kabla kontrolnego z żyłami wielodrutowymi na napięcie 300/500 V z izolacją z tworzywa bezhalogenowego. Kable kontrolne są używane w różnych systemach automatyki i zabezpieczeń, gdzie istotne jest monitorowanie i zarządzanie sygnałami. Ekranowanie jest kluczowe, ponieważ pozwala na redukcję zakłóceń elektromagnetycznych, co zapewnia prawidłowe działanie systemów. Izolacja z tworzywa bezhalogenowego jest korzystna z punktu widzenia bezpieczeństwa pożarowego, ponieważ nie emituje toksycznych gazów w przypadku kontaktu z ogniem. Kable te są powszechnie stosowane w aplikacjach przemysłowych, w których występują trudne warunki środowiskowe. Zgodność z normami takimi jak PN-EN 50525 jest niezbędna, aby zapewnić wysoką jakość i niezawodność dostarczanych produktów. Zastosowanie kabli kontrolnych w obszarze monitorowania i kontroli procesów przemysłowych jest szerokie, a ich wybór powinien być przemyślany zgodnie z wymaganiami projektowymi oraz normami branżowymi.

Pytanie 5

W celu wyrównania potencjałów na elementach metalowych, występujących w budynku, które w normalnych warunkach nie są częścią obwodu elektrycznego, należy zainstalować element oznaczony cyfrą

Ilustracja do pytania
A. 7
B. 3
C. 5
D. 1
Odpowiedź ta jest poprawna, ponieważ wyrównanie potencjałów na elementach metalowych w budynku, które nie są częścią obwodu elektrycznego, jest kluczowym zagadnieniem w zakresie bezpieczeństwa elektrycznego. Szyna wyrównawcza, oznaczona cyfrą '1', pełni istotną funkcję w zapewnieniu, że wszystkie metalowe elementy, takie jak rury, obudowy urządzeń czy inne konstrukcje, są połączone z uziemieniem. Dzięki temu zapobiega się powstawaniu niebezpiecznych różnic potencjałów, które mogą prowadzić do porażeń elektrycznych. W praktyce, stosowanie szyn wyrównawczych jest zgodne z normami, takimi jak PN-EN 62305, które określają wymagania dotyczące ochrony przed porażeniem elektrycznym i zjawiskami wyładowań atmosferycznych. Dobrą praktyką jest regularne sprawdzanie stanu tych połączeń oraz ich integralności, co przyczynia się do zwiększenia bezpieczeństwa użytkowników budynków. W przypadku awarii lub uszkodzenia instalacji, odpowiednio zainstalowana szyna wyrównawcza umożliwia skuteczne odprowadzenie prądów upływowych, zminimalizowanie ryzyka uszkodzenia sprzętu oraz ochronę zdrowia osób przebywających w danym obiekcie.

Pytanie 6

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór innej odpowiedzi, niż oznaczenie "B", może prowadzić do nieporozumień w zakresie identyfikacji wyzwalaczy elektromagnetycznych. Odpowiedzi, które nie są zgodne z definicją i standardami schematów elektrycznych, mogą wywołać szereg problemów związanych z interpretacją projektów elektronicznych. Na przykład, nieprawidłowe symbole mogą prowadzić do błędów w instalacji i eksploatacji urządzeń. W schematach elektrycznych każdy symbol ma swoje unikalne znaczenie, a ich niewłaściwe zrozumienie może skutkować nieefektywnymi rozwiązaniami oraz stwarzaniem zagrożeń dla bezpieczeństwa. Przy projektowaniu obwodów zabezpieczeń, istotne jest, aby każdy komponent był jednoznacznie zidentyfikowany, ponieważ nawet małe błędy mogą prowadzić do poważnych konsekwencji. Ponadto, korzystanie z nieautoryzowanych lub mylnych symboli może być sprzeczne z obowiązującymi normami branżowymi, co może skutkować problemami prawnymi w przypadku awarii. Dlatego kluczowe jest, aby na każdym etapie projektowania oraz realizacji prac korzystać z poprawnych symboli i wytycznych, które odpowiadają rzeczywistym funkcjom urządzeń w obwodzie elektrycznym.

Pytanie 7

Który element stosowany w instalacjach mieszkaniowych przedstawiono na rysunku?

Ilustracja do pytania
A. Regulator oświetlenia.
B. Przekaźnik priorytetowy.
C. Regulator temperatury.
D. Przekaźnik bistabilny.
Jak wybrałeś regulator oświetlenia, regulator temperatury lub przekaźnik priorytetowy, to wpadłeś w kilka pułapek dotyczących ich funkcji i działania. Regulator oświetlenia, w przeciwieństwie do przekaźnika bistabilnego, nie zapamiętuje stanu po wyłączeniu prądu. Po prostu kontroluje intensywność światła. Regulator temperatury ma za zadanie utrzymywać temperaturę w pomieszczeniach, a to całkiem inna bajka. No i ten przekaźnik priorytetowy zajmuje się zarządzaniem zasilaniem dla różnych urządzeń, co również nie ma nic wspólnego z tym, co robi przekaźnik bistabilny. Używając tych terminów, można się gubisz w kontekście projektowania instalacji elektrycznych. Uważam, że ważne jest, aby dobrze rozumieć różnice między tymi urządzeniami, bo błędy w wyborze komponentów mogą prowadzić do problemów w działaniu systemów. Lepiej być ostrożnym, żeby wszystko działało bez zarzutu.

Pytanie 8

Brodzik zostanie osłonięty kabiną prysznicową. W której strefie można zainstalować gniazda z kołkiem ochronnym w łazience, aby było to zgodne z przepisami bezpieczeństwa i higieny pracy oraz przepisami przeciwporażeniowymi?

Ilustracja do pytania
A. Tylko w 2.
B. W l i 3.
C. Tylko w 3.
D. W 1 i 2.
Odpowiedź "Tylko w 3" jest poprawna, ponieważ zgodnie z polskimi normami dotyczącymi bezpieczeństwa instalacji elektrycznych w pomieszczeniach narażonych na wilgoć, gniazda z kołkiem ochronnym mogą być instalowane tylko w strefie 3. Strefa ta jest usytuowana najdalej od wszelkich źródeł wody, co minimalizuje ryzyko porażenia prądem. Strefa 3 zaczyna się od 2,4 metra od krawędzi brodzika czy wanny, co oznacza, że w tym obszarze ryzyko kontaktu z wodą jest zdecydowanie mniejsze. W praktyce oznacza to, że gniazda elektryczne powinny być umiejscowione w taki sposób, aby użytkownik mógł z nich korzystać bez obaw o bezpieczeństwo, np. do podłączenia suszarki do włosów. Stosując się do tych zasad, można zapewnić bezpieczeństwo użytkowników łazienek, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym i zgodności z przepisami przeciwporażeniowymi. Warto również zapoznać się z odpowiednimi normami, takimi jak PN-IEC 60364, które szczegółowo opisują wymagania dotyczące instalacji elektrycznych w strefach zagrożonych wilgocią.

Pytanie 9

Które z uzwojeń bocznikowego silnika prądu stałego uległo przerwaniu, jeśli nastąpił gwałtowny wzrost prędkości obrotowej jego wirnika?

A. Twornika.
B. Wzbudzenia.
C. Kompensacyjne.
D. Komutacyjne.
Gwałtowny wzrost prędkości obrotowej silnika bocznikowego prądu stałego przy stałym napięciu zasilania prawie zawsze wiąże się z problemem w obwodzie wzbudzenia, a nie w pozostałych uzwojeniach. Wiele osób intuicyjnie szuka przyczyny w tworniku, bo „on się kręci”, albo w uzwojeniach pomocniczych, ale to jest właśnie ten typowy błąd myślowy: skupianie się na elemencie ruchomym zamiast na tym, co steruje strumieniem magnetycznym. Uzwojenie kompensacyjne ma za zadanie kompensować reakcję twornika, poprawiać komutację i charakterystykę momentu, szczególnie przy dużych obciążeniach. Jego uszkodzenie może powodować iskrzenie na komutatorze, przegrzewanie, spadek momentu czy niestabilną pracę przy obciążeniu, ale nie prowadzi samo z siebie do nagłego rozbiegania się silnika. Strumień główny w maszynie wzbudzanej bocznikowo jest wytwarzany przez uzwojenie wzbudzenia, a nie kompensacyjne, więc przerwa w kompensacyjnym nie powoduje zaniku tego strumienia. Uzwojenie komutacyjne (bieguny komutacyjne) odpowiada za poprawę komutacji, czyli za ograniczenie iskrzenia na szczotkach przy zmianie kierunku prądu w cewkach twornika. Jego przerwa znowu dałaby objawy w postaci silnego iskrzenia, możliwych uszkodzeń komutatora, ale prędkość obrotowa raczej by nie wzrosła, a często wręcz napęd pracowałby gorzej, mniej stabilnie, szczególnie pod obciążeniem. Natomiast uzwojenie twornika, wbrew pozorom, kiedy ulegnie przerwaniu, wcale nie powoduje przyspieszenia, tylko spadek momentu, drgania, czasem całkowite zatrzymanie. Brak ciągłości w tworniku to brak możliwości wytworzenia odpowiedniego momentu elektromagnetycznego. Silnik może szarpać, nie wystartować albo bardzo się grzać, ale nie ma fizycznych podstaw, żeby przy przerwie w tworniku nagle „wyskoczył” z obrotami. Klucz do zadania leży w równaniu prędkości: n zależy odwrotnie proporcjonalnie od strumienia Φ. Ten strumień ustala właśnie uzwojenie wzbudzenia. Gdy ono jest przerwane, strumień praktycznie zanika, napięcie zasilania pozostaje, więc prędkość dąży do bardzo wysokiej wartości. Stąd odpowiedzi wskazujące na uzwojenie kompensacyjne, komutacyjne czy twornika mijają się z fizyką działania maszyny. Z mojego doświadczenia warto zawsze zadać sobie pytanie: który obwód w tej maszynie decyduje o strumieniu głównym? Jeśli nie jest to ten, który typuję, to najpewniej odpowiedź jest błędna.

Pytanie 10

Bruzdownicę wykorzystuje się podczas realizacji instalacji

A. natynkowej.
B. podtynkowej.
C. wiązanej.
D. prefabrykowanej.
Bruzdownica, znana również jako przecinarka do betonu lub stali, jest narzędziem wykorzystywanym w instalacjach podtynkowych w celu wykonywania rowków w ścianach i stropach. Takie rowki są niezbędne do osadzenia przewodów elektrycznych czy rur hydraulicznych, co pozwala na estetyczne i funkcjonalne wykończenie wnętrz. Wykonywanie instalacji podtynkowej, która jest schowana w ścianach, wymaga precyzyjnego cięcia, a bruzdownica umożliwia to z dużą dokładnością oraz w stosunkowo krótkim czasie. Ponadto, przy użyciu bruzdownicy można dostosować szerokość i głębokość rowków do specyfiki używanych materiałów oraz przewodów, co jest istotne z punktu widzenia bezpieczeństwa i norm budowlanych. W praktyce, aby uzyskać najlepsze rezultaty, operator bruzdownicy powinien przestrzegać zaleceń producenta oraz standardów BHP, co przyczynia się do zwiększenia efektywności pracy oraz zmniejszenia ryzyka wypadków. Prawidłowe stosowanie bruzdownicy ma także wpływ na późniejsze etapy wykończenia, takie jak tynkowanie czy malowanie, które powinny być przeprowadzane na równych i gładkich powierzchniach, stworzonych przez profesjonalnie wykonane rowki.

Pytanie 11

Który z podanych symboli oznacza urządzenie, którym należy zastąpić element instalacji elektrycznej przedstawiony na rysunku?

Ilustracja do pytania
A. SM 320 230-2z
B. CF16-25/2/003
C. S 191 B20
D. FAZ B10/1
Wybór odpowiedzi innej niż "S 191 B20" może wynikać z niewłaściwego zrozumienia oznaczeń oraz funkcji urządzeń elektrycznych. Na przykład, nieprawidłowe odpowiedzi, takie jak "FAZ B10/1" czy "CF16-25/2/003", wskazują na niewłaściwą interpretację prądów znamionowych i charakterystyk. Odpowiedź "FAZ B10/1" oznacza wyłącznik automatyczny o charakterystyce B i prądzie znamionowym 10A. Zastosowanie go w miejsce urządzenia o prądzie 20A jest niewłaściwe, ponieważ spowoduje to nieodpowiednie zabezpieczenie obwodu. Z kolei odpowiedzi "SM 320 230-2z" i "CF16-25/2/003" odnoszą się do urządzeń, które nie spełniają wymagań dotyczących charakterystyki i prądu znamionowego dla konkretnego zastosowania w danym obwodzie. Niezrozumienie znaczenia oznaczeń może prowadzić do wyboru urządzeń, które nie tylko nie zapewniają odpowiedniej ochrony, ale również mogą stwarzać zagrożenie dla bezpieczeństwa instalacji. Fundamentalnym błędem jest przyjęcie niewłaściwej wartości prądu znamionowego lub charakterystyki, co w praktyce może doprowadzić do awarii i uszkodzenia urządzeń oraz zwiększonego ryzyka pożaru. Dlatego kluczowe jest, aby przed dokonaniem wyboru odpowiednich urządzeń elektrycznych dokładnie zrozumieć ich parametry oraz standardy, takie jak PN-EN 60898, które regulują zasady ich stosowania w instalacjach elektrycznych.

Pytanie 12

Zdjęcie przedstawia przewód

Ilustracja do pytania
A. YDY 3x1,5 750 V
B. YDYn 3x1,5 500 V
C. YLY 3x1,5 500 V
D. YDYp 3x1,5 750 V
Wybór błędnie oznaczonego przewodu prowadzi do wielu nieporozumień, które mogą wynikać z niewłaściwej interpretacji symboliki używanej w oznaczeniach. Przewody typu YDY, które nie zawierają litery 'p', są przewodami okrągłymi, co jest istotnym aspektem w kontekście instalacji w różnych warunkach, na przykład w pomieszczeniach o ograniczonej przestrzeni. Zastosowanie przewodów okrągłych może być niewłaściwe tam, gdzie istnieją ograniczenia przestrzenne, co może prowadzić do problemów z instalacją. Z kolei przewód YDYn 3x1,5 500 V, oznaczony jako przewód z napięciem 500 V, jest niewłaściwy dla aplikacji wymagających wyższego napięcia, co oznacza, że jego zastosowanie w instalacjach o wyższych wymaganiach może prowadzić do zagrożeń związanych z przeciążeniem. Ponadto, przewód YLY 3x1,5 500 V, który sugeruje zastosowanie izolacji polietylenowej, jest błędnym wyborem, ponieważ polietylen ma inne właściwości niż poliwinit, w tym różnice w odporności na czynniki atmosferyczne oraz chemiczne. Zrozumienie tych różnic jest kluczowe, aby uniknąć problemów z trwałością i bezpieczeństwem instalacji elektrycznych. W praktyce, nieprawidłowy wybór przewodu może prowadzić do awarii instalacji, a nawet stanowić zagrożenie pożarowe. Dlatego ważne jest, aby w każdej sytuacji dobierać przewód zgodnie z wymaganiami technicznymi i normami branżowymi, co zapewni bezpieczeństwo i efektywność działania instalacji.

Pytanie 13

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. dotyk bezpośredni przewodu pod napięciem.
B. pojawienie się napięcia na części metalowej normalnie nie przewodzącej.
C. zwarcie między przewodem neutralnym i ochronnym.
D. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
Nieprawidłowe połączenie przewodu neutralnego (N) z przewodem ochronnym (PE) jest kluczowym czynnikiem, który spowodował zadziałanie wyłącznika różnicowoprądowego. W momencie, gdy te dwa przewody są połączone, wyłącznik różnicowoprądowy wykrywa różnicę w prądzie, co prowadzi do jego zadziałania w celu ochrony użytkowników przed porażeniem prądem. Przykładowo, w przypadku instalacji elektrycznych w budynkach mieszkalnych, zaleca się stosowanie wyłączników różnicowoprądowych w obwodach zasilających gniazda, co zwiększa bezpieczeństwo użytkowników. W praktyce, aby zapewnić prawidłowe działanie wyłączników, konieczne jest przestrzeganie standardów, takich jak norma PN-EN 61008-1, która określa wymagania dla różnicowoprądowych wyłączników nadprądowych. Dobre praktyki obejmują regularne testowanie tych urządzeń, aby upewnić się, że działają prawidłowo i mogą skutecznie chronić przed zagrożeniami elektrycznymi.

Pytanie 14

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Rtęciowe.
B. Wolframowe.
C. Diodowe.
D. Halogenowe.
Wybór jednego z pozostałych typów źródła światła, takich jak wolframowe, rtęciowe czy halogenowe, jest wynikiem nieporozumienia dotyczącego charakterystyki i konstrukcji żarówek. Źródła wolframowe, na przykład, działają na zasadzie podgrzewania włókna wolframowego, co prowadzi do emisji światła, ale ich efektywność energetyczna jest znacznie niższa niż w przypadku diod LED. Oprócz tego, żarówki te mają krótszą żywotność, wynoszącą średnio tylko około 1 000 godzin. Odpowiedzi oparte na żarówkach rtęciowych również są mylne, ponieważ choć te źródła światła charakteryzują się wysoką sprawnością, ich użycie jest ograniczone ze względu na obecność szkodliwej rtęci, co stawia je w niekorzystnej pozycji w kontekście ochrony środowiska. Wreszcie, żarówki halogenowe, będące wariantem żarówek wolframowych, oferują lepszą wydajność, ale wciąż nie dorównują LED-om pod względem efektywności i trwałości. Często myślenie o tych tradycyjnych źródłach światła jako bardziej znajomych i sprawdzonych powoduje, że użytkownicy mogą nie dostrzegać korzyści płynących z nowoczesnych rozwiązań, jakimi są diody LED. Zrozumienie różnic między tymi technologiami jest kluczowe dla dokonania świadomego wyboru, który nie tylko wpłynie na oszczędności, ale także na jakość oświetlenia w codziennym życiu.

Pytanie 15

Ile wynosi natężenie prądu fazowego pobieranego przez odbiornik trójfazowy powstały z połączenia w gwiazdę trzech jednakowych grzałek rezystancyjnych po 100 Ω każda, przy zasilaniu go z sieci o napięciu 230/400 V?

A. 1,3 A
B. 2,3 A
C. 6,9 A
D. 4,0 A
W tego typu zadaniu największy problem zwykle wynika z pomylenia napięcia fazowego z liniowym oraz z nieprawidłowego kojarzenia zależności między prądem a sposobem połączenia odbiornika. Odbiornik jest połączony w gwiazdę, każda grzałka 100 Ω wisi między fazą a punktem gwiazdowym, czyli pracuje na napięciu 230 V, a nie 400 V. Jeśli ktoś wziął napięcie 400 V do obliczeń, to automatycznie wychodzi zawyżony prąd, bo z prawa Ohma I = U / R. Dla 400 V i 100 Ω wyszłoby 4 A, co kusi, bo jest w odpowiedziach, ale jest to typowy błąd: użycie napięcia międzyfazowego w sytuacji, gdy element jest zasilany napięciem fazowym. W układzie gwiazdy napięcie na każdej fazie (na każdym odbiorniku) jest niższe o pierwiastek z trzech od napięcia międzyfazowego. Drugi typowy błąd to mieszanie zależności prądowych z układu trójkąta z układem gwiazdy. W trójkącie prąd przewodowy jest większy od prądu fazowego o czynnik √3, natomiast w gwieździe prąd fazowy jest równy przewodowemu. Jeśli ktoś próbował tu coś mnożyć lub dzielić przez √3 przy prądzie, to też prowadzi do wyników typu 1,3 A czy 6,9 A, które po prostu nie mają fizycznego sensu przy zadanych danych. Warto pamiętać prostą zasadę: w gwieździe liczymy prąd z napięcia 230 V dla sieci 230/400 V, a w trójkącie – z 400 V. Dopiero po poprawnym ustaleniu napięcia dla pojedynczej fazy można mówić o dalszych przeliczeniach, np. o mocy całkowitej P = 3·U_f·I_f przy odbiorniku rezystancyjnym. Moim zdaniem dobrze jest przy każdym takim zadaniu najpierw narysować sobie prosty schemat gwiazdy i podpisać na nim napięcie fazowe oraz międzyfazowe, wtedy od razu widać, że użycie 400 V do pojedynczej grzałki jest błędem. To jest też bardzo praktyczne przy rzeczywistych instalacjach – błędne założenie napięcia skutkuje złym doborem zabezpieczeń i przekrojów przewodów, co jest niezgodne z PN-HD 60364 i po prostu niebezpieczne dla instalacji.

Pytanie 16

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. wyłącznika nadprądowego
B. rozłącznika
C. wyłącznika różnicowoprądowego
D. odłącznika
Wyłącznik różnicowoprądowy, czyli RCD, to naprawdę ważne urządzenie, które czuwa nad bezpieczeństwem w naszych instalacjach elektrycznych. Jego zadanie polega na tym, że sprawdza, czy prąd, który płynie do urządzenia, jest równy prądowi, który z niego wypływa. Kiedy te dwa prądy się różnią, to może znaczyć, że coś jest nie tak, na przykład prąd może uciekać do ziemi. W takiej sytuacji RCD odłącza zasilanie, co znacznie zmniejsza ryzyko porażenia prądem. Jeśli chodzi o obudowy urządzeń AGD, to napięcie na ich powierzchni może być oznaką problemów z izolacją. Gdy urządzenie ma uszkodzenie, może dojść do niebezpiecznego kontaktu między elementami pod napięciem a obudową. Dlatego tak ważne są wyłączniki różnicowoprądowe, które spełniają normy IEC 61008, bo pomagają one zminimalizować ryzyko. Regularne sprawdzanie ich działania powinno być rutyną w każdym gospodarstwie domowym, żeby wszystko było bezpieczne.

Pytanie 17

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Płaskoszczypce
B. Zagniatarka
C. Nóż monterski
D. Szczypce boczne
Obcinaczki boczne, zagniatarka oraz płaskoszczypce to narzędzia, które mają swoje specyficzne zastosowania, ale nie są wystarczające do naprawy przeciętego przewodu poprzez lutowanie. Obcinaczki boczne służą głównie do cięcia przewodów, co jest przydatne w przypadku eliminowania uszkodzonych odcinków, jednak nie pomagają w przygotowaniu końców przewodów do lutowania. Przy lutowaniu konieczne jest, aby końcówki były gładkie i odpowiednio odizolowane, co wymaga użycia innego narzędzia. Z kolei zagniatarka jest narzędziem przeznaczonym do łączenia przewodów poprzez zaciśnięcie końcówek, co nie ma zastosowania w przypadku naprawy poprzez lutowanie. Płaskoszczypce mogą być użyte do trzymania lub formowania przewodów, ale nie są one wystarczające do ich właściwego przygotowania do lutowania. Typowym błędem myślowym jest założenie, że narzędzia wielofunkcyjne mogą zastąpić specjalistyczne narzędzia, takie jak nóż monterski. Każde narzędzie ma swoje ściśle określone zastosowanie i dla uzyskania optymalnych efektów w naprawach elektrycznych kluczowe jest korzystanie z odpowiedniego zestawu narzędzi. W branży, standardy bezpieczeństwa i jakości pracy wymagają, aby korzystać z narzędzi, które są przeznaczone do konkretnych zadań, a nie improwizować z narzędziami, które nie spełniają tej funkcji.

Pytanie 18

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NO + 1NO + 2NC
B. 3NO + 2NO + 1NC
C. 3NC + 1NO + 2NC
D. 3NC + 2NO + 1NC
Wybrana odpowiedź jest prawidłowa, ponieważ stycznik Q19 wymaga zastosowania trzech zestyków normalnie otwartych (3NO), jednego zestyków normalnie otwartego (1NO) oraz dwóch zestyków normalnie zamkniętych (2NC). W praktycznych zastosowaniach, takie zestawienie pozwala na skuteczne sterowanie obwodami, w których konieczne jest jednoczesne włączanie kilku urządzeń oraz realizacja funkcji zabezpieczających, takich jak odcięcie zasilania w przypadku awarii. W kontekście standardów branżowych, takie połączenie zestyków jest zgodne z normami IEC 60947, które definiują wymagania dla aparatów elektrycznych. Dobrą praktyką jest również regularne przeglądanie schematów układów oraz dobór odpowiednich elementów na podstawie ich charakterystyki oraz wymagań obciążeniowych. Dzięki starannej analizie schematu można uniknąć problemów związanych z niewłaściwym doborem zestyków, co jest kluczowe dla bezpieczeństwa i efektywności działania instalacji elektrycznych.

Pytanie 19

Na której ilustracji przedstawiono puszkę do montażu w ścianie gipsowo-kartonowej?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 1.
C. Na ilustracji 2.
D. Na ilustracji 3.
Prawidłowo – na ilustracji 4 pokazano typową puszkę instalacyjną do montażu w ścianie gipsowo‑kartonowej. Charakterystyczne jest tu kilka elementów konstrukcyjnych. Po pierwsze, korpus jest wykonany z tworzywa i ma wyraźny rant oporowy, który opiera się o zewnętrzną powierzchnię płyty GK. Po drugie, widać wkręty lub łapki rozporowe – po dokręceniu zaciskają się one od wewnętrznej strony płyty, dzięki czemu puszka stabilnie "wisi" w otworze wyciętym w karton‑gipsie, bez potrzeby osadzania w tynku. Po trzecie, głębokość i kształt są dostosowane do montażu osprzętu podtynkowego (gniazda, łączniki, ściemniacze), zgodnie z wymaganiami norm PN‑HD 60364 i ogólnymi zasadami montażu instalacji w lekkich ścianach szkieletowych. W praktyce takie puszki stosuje się wszędzie tam, gdzie ściana nie jest murowana, tylko wykonana z profili stalowych i płyt GK: w mieszkaniach deweloperskich, w biurach z systemowymi ściankami działowymi, na poddaszach. Ważne jest też właściwe przygotowanie otworu – używa się zwykle otwornicy 68 mm, żeby puszka dobrze przylegała i nie "latała". Moim zdaniem warto od razu pamiętać o doborze odpowiedniej głębokości puszki do ilości przewodów i osprzętu, żeby później nie męczyć się z upychaniem żył. Dobrą praktyką jest też stosowanie puszek z odpowiednimi przepustami do kabli i przewodów, zapewniającymi wymaganą ochronę izolacji oraz stabilne mocowanie żył wewnątrz puszki.

Pytanie 20

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. brak podłączenia jednej fazy
C. zamiana dwóch faz miejscami
D. zamiana jednej fazy z przewodem neutralnym
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 21

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Piła do cięcia, przecinak, młotek.
B. Wiertarka, wiertło, piła do cięcia, wkrętak.
C. Zestaw kluczy, wkrętarka, wiertło, przecinak.
D. Nóż monterski, wiertarka, zestaw kluczy.
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 22

Jakiego pomiaru należy dokonać, aby ocenić efektywność ochrony przed porażeniem w przypadku uszkodzenia odbiornika klasy I w sieci TT?

A. Ciągłości przewodów fazowych
B. Ciągłości przewodu neutralnego
C. Rezystancji izolacji przewodu uziemiającego
D. Rezystancji uziomu, do którego dołączona jest obudowa odbiornika
Pomiar ciągłości przewodu neutralnego oraz przewodów fazowych, chociaż istotny w kontekście sprawdzania integralności obwodów elektrycznych, nie jest wystarczający, aby ocenić skuteczność ochrony przeciwporażeniowej dla odbiorników I klasy ochronności w sieci TT. Ciągłość przewodu neutralnego jest krytyczna dla prawidłowego funkcjonowania układów elektrycznych, ale nie zapewnia informacji o jakości uziemienia. Przewody neutralne i fazowe mogą być sprawne, ale jeśli uziemienie jest niewłaściwe, może to prowadzić do niebezpiecznych sytuacji, w których obudowa urządzenia może stać się naładowana prądem. Z kolei pomiar rezystancji izolacji przewodu uziemiającego również nie dostarcza pełnych informacji o skuteczności ochrony przeciwporażeniowej, ponieważ dotyczy on tylko stanu izolacji, a nie efektywności połączenia z ziemią. Typowym błędem myślowym jest zakładanie, że dobre wyniki tych pomiarów automatycznie zapewniają bezpieczeństwo, podczas gdy kluczowe jest, aby obudowa była podłączona do efektywnego systemu uziemienia. Normy, takie jak PN-IEC 60364, jasno wskazują, że uziemienie jest fundamentalnym elementem systemów ochrony przed porażeniem elektrycznym. Dlatego regularne pomiary rezystancji uziomu są niezbędne do zapewnienia bezpieczeństwa i zgodności z przepisami.

Pytanie 23

Która z opraw oświetleniowych najlepiej nadaje się do oświetlenia bezpośredniego?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Odpowiedź B jest prawidłowa, ponieważ oprawa ta jest zaprojektowana do oświetlenia bezpośredniego, skupiając światło w dół, co jest kluczowe w kontekście miejsc pracy, takich jak biura czy przestrzenie do czytania. Downlighty, jak ten opisany w odpowiedzi B, charakteryzują się wysoką efektywnością i są często stosowane w nowoczesnych aranżacjach wnętrz. Oprócz ich funkcjonalności, istotne jest również, że zastosowanie oświetlenia bezpośredniego sprzyja koncentracji i minimalizuje zmęczenie wzroku. W praktyce, dla osiągnięcia optymalnego efektu, zaleca się umieszczanie takich opraw w odległości od 1,5 do 2 metrów od miejsca, które mają oświetlać. Normy, takie jak EN 12464-1, wskazują na odpowiednie poziomy oświetlenia w różnych typach pomieszczeń, co czyni wybór odpowiednich opraw niezwykle istotnym. Warto również pamiętać, że dobór odpowiednich żarówek, takich jak LED-y o wysokim wskaźniku oddawania barw (CRI), może znacznie poprawić jakość oświetlenia.

Pytanie 24

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Regulator oświetlenia.
B. Regulator temperatury.
C. Przekaźnik bistabilny.
D. Przekaźnik priorytetowy.
Wybór odpowiedzi, która nie dotyczy przekaźnika bistabilnego, może prowadzić do nieporozumień w zakresie zrozumienia roli i funkcji różnych elementów w instalacjach automatyki. Regulator temperatury to urządzenie, które monitoruje i kontroluje temperaturę w pomieszczeniach, regulując działanie systemu grzewczego lub chłodzącego. W przeciwieństwie do przekaźnika bistabilnego, jego działanie jest uzależnione od ciągłego zasilania i nie może zmieniać stanu bezpośrednio w odpowiedzi na sygnał, co stawia go w zupełnie innej kategorii. Przekaźnik priorytetowy to z kolei element, który zarządza priorytetami zasilania w systemach, jednak nie spełnia funkcji pamięci stanu, tak jak przekaźnik bistabilny. Regulator oświetlenia natomiast ma na celu regulację intensywności światła, ale również nie działa na zasadzie zmiany stanu jak w przypadku przekaźnika bistabilnego. Wybierając błędną odpowiedź, można zatem nie tylko zrozumieć błędnie działanie tych urządzeń, ale także nie dostrzegać ich zastosowania w praktyce, co może prowadzić do niewłaściwego doboru elementów w projektach automatyki budynkowej. Kluczowe dla prawidłowego zrozumienia jest rozróżnienie między urządzeniami, które zmieniają stan na przeciwny i utrzymują go, a tymi, które wymagają stałego zasilania lub są używane do zarządzania innymi funkcjami.

Pytanie 25

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. FRCdM-63/4/03
B. Ex9BP-N 4P C10
C. SM 25-40
D. Z-MS-16/3
Pozostałe oznaczenia, takie jak SM 25-40, Ex9BP-N 4P C10 oraz FRCdM-63/4/03, nie odnoszą się do wyłączników silnikowych, co może prowadzić do nieporozumień w zakresie ich funkcji i zastosowania. Oznaczenie SM 25-40 zazwyczaj odnosi się do styczników, które służą do załączania i wyłączania obwodów elektrycznych, ale nie mają funkcji ochrony silnika przed przeciążeniem lub zwarciem. Styki w takich urządzeniach są zaprojektowane do pracy w określonych warunkach, lecz nie zrealizują funkcji zabezpieczenia, jaką oferuje wyłącznik silnikowy. Z kolei Ex9BP-N 4P C10 to oznaczenie wyłącznika automatycznego, który może być używany w obwodach elektrycznych, ale nie są one dedykowane do ochrony silników. Zastosowanie tego typu wyłącznika do zabezpieczenia silników może prowadzić do niewłaściwego działania i potencjalnych uszkodzeń. Natomiast oznaczenie FRCdM-63/4/03 wskazuje na urządzenie, które najprawdopodobniej jest wyłącznikiem różnicowoprądowym, stosowanym głównie do ochrony przed porażeniem prądem elektrycznym, a nie przed przeciążeniem silników. Tego typu wyłączniki mają zupełnie inne zastosowanie i nie spełniają wymogów ochrony silników. Właściwe rozróżnienie pomiędzy tymi urządzeniami jest kluczowe w kontekście bezpieczeństwa oraz efektywności pracy instalacji elektrycznych. Użytkownicy powinni być świadomi, że niewłaściwe dobranie urządzenia ochronnego może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i wydajności systemów elektrycznych.

Pytanie 26

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. II
B. III
C. 0
D. I
Wybór niepoprawnej odpowiedzi może wynikać z błędnego zrozumienia klasyfikacji opraw oświetleniowych oraz ich oznaczeń. Klasa ochronności I wskazuje na urządzenia, które wymagają uziemienia, co oznacza, że ich konstrukcja jest oparta na izolacji podstawowej i dodatkowej, co czyni je bardziej podatnymi na uszkodzenia w przypadku awarii izolacji. Użytkownicy mogą mylić klasy ochronności z poziomem bezpieczeństwa, sądząc, że klasa I jest bardziej bezpieczna niż klasa II, podczas gdy w rzeczywistości klasa II, dzięki podwójnej izolacji, nie wymaga uziemienia i może być stosowana w bardziej zróżnicowanych warunkach. Klasa III, która również nie wymaga uziemienia, dotyczy urządzeń zasilanych niskonapięciowych, co czyni ją nieodpowiednią dla standardowych opraw oświetleniowych działających na napięciu sieciowym. Odpowiedź 0 sugeruje brak klasy ochronności, co jest koncepcją błędną, gdyż każda oprawa oświetleniowa musi posiadać oznaczenie dotyczące swojej klasy ochronności. Użytkownicy mogą również nie zdawać sobie sprawy, że niespełnienie wymogów klasy ochronności, może prowadzić do poważnych konsekwencji zdrowotnych i prawnych. Zrozumienie tych różnic jest kluczowe dla zapewnienia bezpieczeństwa i zgodności z obowiązującymi normami branżowymi.

Pytanie 27

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 1.
B. Symbol 3.
C. Symbol 2.
D. Symbol 4.
Wybór innego symbolu zamiast symbolu 1 może wynikać z nieporozumienia dotyczącego rodzaju łącznika oraz jego funkcji. Monostabilne łączniki przyciskowe z zestykiem NO mają specyficzną konstrukcję, która różni się od innych typów łączników, takich jak bistabilne lub normalnie zamknięte (NC). Symbol, który przedstawia zamek lub inny rodzaj styku, jest mylący, ponieważ nie odzwierciedla funkcji chwilowego włączania obwodu. W kontekście automatyki przemysłowej istotne jest rozumienie różnic między tymi symbolami, gdyż niewłaściwe ich użycie prowadzi do błędnych instalacji i potencjalnych awarii w systemach. Na przykład, użycie symbolu przedstawiającego łącznik bistabilny może sugerować, że przycisk pozostaje w stanie włączonym po zwolnieniu, co jest sprzeczne z funkcją monostabilnego przycisku NO. W praktyce, to może prowadzić do sytuacji, gdzie obsługa urządzenia jest nieintuicyjna, a użytkownicy mogą być zdezorientowani, nie wiedząc, jak właściwie korzystać z systemu. Dodatkowo, błędne zrozumienie symboli może prowadzić do niezgodności z normami branżowymi, co w konsekwencji wpływa na bezpieczeństwo operacji oraz zgodność instalacji z obowiązującymi standardami.

Pytanie 28

W którym z punktów spośród wskazanych strzałkami na charakterystyce diody prostowniczej przedstawionej na rysunku odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór punktów B, C lub D wskazuje na zrozumienie jedynie części charakterystyki diody prostowniczej, co prowadzi do mylnych wniosków. Punkt B znajduje się na początku krzywej charakterystyki, gdzie dioda praktycznie nie przewodzi prądu, więc nie można tam mówić o napięciu przebicia. Taki wybór może sugerować niedostateczne zrozumienie podstawowych zasad działania diod. Punkt C, który wskazuje na prąd zwrotny, jest również błędny, ponieważ w tym miejscu dioda nie osiągnęła jeszcze napięcia przebicia i nie przewodzi w kierunku wstecznym. Punkt D natomiast odnosi się do obszaru pracy diody w kierunku przewodzenia, co również nie ma nic wspólnego z napięciem przebicia. Kluczowym błędem w myśleniu może być ignorowanie, że napięcie przebicia to punkt, w którym zachodzi gwałtowna zmiana w charakterystyce diody, a nie stan spoczynku czy też obszar przewodzenia. Wiedza na temat tych różnic jest niezbędna dla prawidłowego projektowania układów elektronicznych oraz unikania typowych problemów związanych z elektroniką, takich jak przegrzewanie czy uszkodzenia spowodowane nieodpowiednim napięciem.

Pytanie 29

Jaka część strumienia świetlnego wysyłana jest w dół w oprawie oświetleniowej V klasy?

A. (90 ÷ 100) %
B. (0 ÷ 10) %
C. (40 ÷ 60) %
D. (60 ÷ 90) %
Odpowiedzi takie jak (90 ÷ 100) %, (40 ÷ 60) % oraz (60 ÷ 90) % nie uwzględniają specyfiki opraw oświetleniowych V klasy. Wrażenie, że znacząca część strumienia świetlnego może być skierowana w dół, jest mylne i wynika z niepełnego zrozumienia zasad projektowania oświetlenia. Oprawy te są konstruowane z zamiarem ograniczenia emisji światła w kierunku podłogi, co jest kluczowe dla efektywności energetycznej oraz komfortu użytkowników. Odpowiedzi te sugerują, że oprawy V klasy działają podobnie jak tradycyjne oprawy oświetleniowe, co jest nieprawidłowe. W praktyce, odpowiednie wykorzystanie tych opraw polega na kierowaniu strumienia świetlnego głównie w górę, co sprzyja stworzeniu efektów iluminacyjnych oraz estetycznych, a nie oświetleniu przestrzeni roboczej. Pojęcia te mogą również wprowadzać w błąd, jeśli chodzi o zastosowanie oświetlenia w różnych kontekstach, na przykład w architekturze czy oświetleniu ulicznym, gdzie inne klasy opraw mogą być stosowane dla zapewnienia odpowiedniego poziomu jasności. Kluczowym błędem myślowym jest założenie, że większa ilość światła skierowanego w dół jest zawsze korzystna, co nie zawsze jest zgodne z zasadami efektywności oświetleniowej i ergonomii.

Pytanie 30

Które z oznaczeń określa przewód przeznaczony do wykonania obwodu jednofazowych gniazd wtyczkowych w instalacji wtynkowej w sieci TN-S?

A. \( \text{YDYtżo 3} \times 2{,}5 \, \text{mm}^2 \)
B. \( \text{YLYżo 3} \times 1{,}5 \, \text{mm}^2 \)
C. \( \text{YDYp 2} \times 1{,}5 \, \text{mm}^2 \)
D. \( \text{YDYt 2} \times 2{,}5 \, \text{mm}^2 \)
W tym zadaniu łatwo się pomylić, bo na pierwszy rzut oka wszystkie oznaczenia wyglądają podobnie, a diabeł siedzi w szczegółach. Kluczowe są tu trzy rzeczy: rodzaj przewodu (materiał, izolacja), liczba żył i ich przeznaczenie oraz przekrój znamionowy dobrany do obwodu gniazd w instalacji wtynkowej w sieci TN-S. Wiele osób odruchowo sięga po przewód dwużyłowy, na przykład 2 × 2,5 mm² albo 2 × 1,5 mm², bo kojarzy, że „jednofazowe gniazdo to faza i neutralny”. I tu pojawia się typowy błąd: w układzie TN-S przewód ochronny PE musi być osobną żyłą, a gniazda wtyczkowe ogólnego przeznaczenia wymagają podłączenia przewodu ochronnego. Dlatego przewód dwużyłowy w ogóle odpada – brakuje trzeciej żyły ochronnej, co jest niezgodne z zasadami ochrony przeciwporażeniowej i warunkami technicznymi. Innym częstym potknięciem jest sięganie po przekrój 1,5 mm² do gniazd. Ten przekrój używa się raczej do obwodów oświetleniowych, gdzie prądy są mniejsze. Dla obwodów gniazd przy zabezpieczeniu 16 A i typowych długościach obwodów przyjmuje się 2,5 mm², aby zapewnić odpowiednią obciążalność prądową, ograniczyć spadek napięcia i zyskać rozsądny zapas bezpieczeństwa eksploatacyjnego. Kolejna sprawa to rodzaj powłoki i przeznaczenie przewodu. W instalacji wtynkowej stosuje się przewody przystosowane do układania pod tynkiem, najczęściej typu YDYt. Przewody płaskie lub o innym przeznaczeniu, jak na przykład YLY stosowane raczej jako przewody elastyczne, nie są typowym wyborem do stałej instalacji w ścianie. Dochodzi jeszcze oznaczenie „żo”, które informuje, że jedna z żył jest żółto-zielona, czyli przeznaczona jako PE. Brak tego oznaczenia w przewodzie wielożyłowym sygnalizuje, że w środku nie ma żyły ochronnej w standardowym kolorze, co znowu kłóci się z wymaganiami dla sieci TN-S. Podsumowując, błędne odpowiedzi wynikają zwykle z pomylenia obwodów gniazd z obwodami oświetleniowymi, nieuwzględnienia osobnej żyły PE albo zignorowania faktu, że przewód ma być typowo instalacyjny pod tynk, a nie jakikolwiek przewód o zbliżonym przekroju.

Pytanie 31

Który z przyrządów służy do bezpośredniego pomiaru współczynnika mocy?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór niewłaściwej odpowiedzi może wynikać z powszechnego nieporozumienia dotyczącego przyrządów pomiarowych i ich funkcji w kontekście analizy obwodów elektrycznych. Wiele osób może mylić różne typy przyrządów, takich jak amperomierze, woltomierze czy oscyloskopy, z watomierzami, nie zdając sobie sprawy, że każdy z tych przyrządów ma swoje specyficzne zastosowanie. Amperomierz mierzy prąd elektryczny, a woltomierz mierzy napięcie, co pozwala na obliczenie mocy pozornej (S) w obwodzie, jednak nie dostarczają one informacji o mocy czynnej (P) bez dodatkowych obliczeń. Natomiast oscyloskop, służący do analizy sygnałów elektrycznych, może być użyty do wizualizacji fali, ale nie jest przeznaczony do pomiaru współczynnika mocy. Typowym błędem myślowym jest także przeświadczenie, że wystarczy znać wartości prądu i napięcia, aby obliczyć współczynnik mocy bez uwzględnienia mocy czynnej, co jest kluczowe w tym kontekście. W praktyce, aby uzyskać rzetelne wyniki pomiarów oraz analiz, niezbędne jest stosowanie przyrządów odpowiednich do zamierzonego pomiaru, co potwierdzają normy i wytyczne branżowe. Dlatego tak ważne jest, aby dobrze zrozumieć rolę watomierza jako narzędzia do bezpośredniego pomiaru współczynnika mocy.

Pytanie 32

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,4 s i 0,2 s
B. 0,8 s i 0,4 s
C. 0,2 s i 0,4 s
D. 0,4 s i 0,8 s
Wybór odpowiedzi, która nie odpowiada rzeczywistym wymaganiom czasów wyłączenia w układach sieci typu IT, może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa. Czas wyłączenia w obwodach z przewodem neutralnym rzeczywiście powinien wynosić 0,4 s, jednak czas dla obwodu bez przewodu neutralnego nie powinien być skracany poniżej 0,8 s. Odpowiedzi sugerujące 0,2 s oraz 0,4 s dla obwodu bez przewodu neutralnego błędnie interpretują zasady ochrony w układach elektrycznych, co może skutkować wydłużonym czasem reakcji urządzenia ochronnego w razie wystąpienia zagrożenia. Podobne błędy myślowe wynikają z niepełnego zrozumienia zjawisk zachodzących w obwodach elektrycznych. W przypadku awarii, krótszy czas wyłączenia niż wymagany może nie zapewnić skutecznej ochrony, co stwarza ryzyko porażenia prądem dla użytkowników. Ponadto, nieodpowiednie wartości czasów wyłączenia mogą prowadzić do niewłaściwego doboru urządzeń zabezpieczających oraz niezgodności z obowiązującymi normami, takimi jak IEC 60364. W kontekście projektowania instalacji elektrycznych, kluczowe jest stosowanie się do sprawdzonych standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 33

Który aparat przedstawiony jest na rysunku?

Ilustracja do pytania
A. Wyłącznik nadmiarowo-prądowy.
B. Ogranicznik przepięć.
C. Selektywny wyłącznik nadprądowy.
D. Rozłącznik izolacyjny.
Wyłącznik nadmiarowo-prądowy jest niezwykle ważnym elementem w ochronie instalacji elektrycznych. Jego głównym zadaniem jest automatyczne przerywanie obwodu w momencie, gdy natężenie prądu przekroczy ustalony bezpieczny poziom. Dzięki temu urządzeniu możliwe jest zabezpieczenie przed skutkami przeciążeń, które mogą prowadzić do uszkodzeń instalacji lub pożarów. W praktyce wyłączniki nadmiarowo-prądowe są wykorzystywane w różnorodnych aplikacjach, zarówno w domowych instalacjach elektrycznych, jak i w przemysłowych systemach zasilania. Kluczowe jest, aby dobierać odpowiednie urządzenia zgodnie z normami EN 60898, które definiują wymagania dotyczące wyłączników nadprądowych. Dobre praktyki wskazują na regularne testowanie tych urządzeń, co pozwala na upewnienie się, że działają one zgodnie z oczekiwaniami i są w stanie skutecznie chronić instalację przed przeciążeniami i zwarciami.

Pytanie 34

Na rysunku przedstawiono przewód

Ilustracja do pytania
A. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski.
B. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, okrągły.
C. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, płaski.
D. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, okrągły.
Poprawna odpowiedź to przewód o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski. W analizowanym rysunku widać, że przewód składa się z żył, które mają jednolitą strukturę, co jednoznacznie wskazuje na zastosowanie żył jednodrutowych. Żyły te charakteryzują się większą odpornością na uszkodzenia mechaniczne oraz lepszym przewodnictwem elektrycznym w porównaniu do żył wielodrutowych, które są bardziej elastyczne, ale mniej trwałe. Płaska konstrukcja przewodu sprawia, że jest on odpowiedni do zastosowań, w których wymagana jest oszczędność miejsca, na przykład w instalacjach elektrycznych w budynkach. Warto również wspomnieć, że przewody te często stosowane są w instalacjach, gdzie ważna jest estetyka oraz minimizacja przestrzeni, jak w przypadku zasilania sprzętu audio czy wideo. Zgodnie z normami PN-IEC 60227, które regulują wymagania dla kabli i przewodów, stosowanie przewodów płaskich o żyłach jednodrutowych w instalacjach domowych jest powszechnie uznawane za praktykę zgodną z najwyższymi standardami bezpieczeństwa i efektywności energetycznej.

Pytanie 35

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Nadtynkowych
B. Wtynkowych
C. Podtynkowych
D. Napowietrznych
Rozważając odpowiedzi, które nie są poprawne, można zauważyć, że układanie przewodów w rurkach karbowanych nie jest praktykowane w instalacjach natynkowych. W tego typu instalacjach przewody są często umieszczane na powierzchni ścian, co nie tylko obniża estetykę, ale również naraża je na uszkodzenia mechaniczne. Rurki karbowane pełnią funkcję ochronną, a ich stosowanie w instalacjach natynkowych jest zbędne, ponieważ przewody nie są ukryte w ścianach. Kolejny błąd myślowy dotyczy odpowiedzi odnośnie instalacji wtynkowych. Termin ten jest często mylony z podtynkowymi, jednak wtynkowe oznacza, że przewody są osadzone w elementach budowlanych, co nie wymaga dodatkowej ochrony, jaką zapewniają rurki karbowane. Wreszcie, instalacje napowietrzne również nie wymagają użycia rur karbowanych. Przewody w takich instalacjach są zwykle zawieszone na słupach i nie są narażone na te same warunki, co przewody w ścianach. Dlatego stosowanie rur karbowanych w tych przypadkach byłoby niepraktyczne i nieefektywne. W każdym przypadku, ignorowanie odpowiednich norm i praktyk dotyczących instalacji elektrycznych może prowadzić do problemów z bezpieczeństwem oraz niezawodnością, dlatego zrozumienie różnic pomiędzy typami instalacji jest kluczowe dla właściwego podejścia do tematu.

Pytanie 36

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 4 mm2
B. 6 mm2
C. 2,5 mm2
D. 1,5 mm2
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 37

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. elektromagnetycznym
B. magnetoelektrycznym
C. elektrodynamicznym
D. ferrodynamicznym
Pomiar wielkości elektrycznych o przebiegu stałym wymaga zastosowania odpowiednich technologii pomiarowych, a wybór niewłaściwego ustroju może prowadzić do błędnych wyników. Ustrój ferrodynamiczny, choć użyteczny w pomiarach prądu zmiennego, opiera się na zasadzie siły elektromotorycznej wywołanej przez zmienne pole magnetyczne. W przypadku prądu stałego brak zmienności pola sprawia, że wynik pomiaru byłby nieprecyzyjny. Ustrój elektromagnetyczny również nie jest właściwy, ponieważ jego działanie bazuje na indukcji elektromagnetycznej, a więc również najlepiej sprawdza się w pomiarach prądu zmiennego. Z kolei ustrój elektrodynamiczny, który wykorzystuje zasadę działania siły działającej na przewodnik w polu magnetycznym, także nie jest dostosowany do pomiarów prądu stałego, co może prowadzić do nieprawidłowych odczytów. Wybór niewłaściwego ustroju pomiarowego może być wynikiem błędnego zrozumienia zasad działania różnych technologii pomiarowych, co jest typowym błędem wśród osób, które nie mają wystarczającej wiedzy na temat specyfiki pomiarów elektrycznych. Dlatego kluczowe jest zrozumienie różnic w konstrukcji i zasadzie działania różnych ustrojów pomiarowych oraz ich właściwego zastosowania w praktyce inżynierskiej.

Pytanie 38

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 4,0 mm2
B. 16 mm2
C. 25 mm2
D. 10 mm2
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 39

Którym symbolem graficznym oznacza się prowadzenie przewodów w tynku na schemacie ideowym projektowanej instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybierając inną odpowiedź, można było wpaść w pułapkę typowych nieporozumień dotyczących symboliki w projektowaniu instalacji elektrycznych. Wiele osób myli symbole graficzne związane z instalacjami elektrycznymi, co często prowadzi do nieprawidłowej interpretacji dokumentów projektowych. Niezrozumienie różnicy między różnymi symbolami może spowodować, że nieprawidłowo zaprojektowane lub wykonane instalacje nie będą spełniały norm bezpieczeństwa i funkcjonalności. Należy pamiętać, że każdy symbol na schemacie ma swoje konkretne znaczenie. Na przykład, niektóre symbole mogą wskazywać na przewody prowadzone pod tynkiem lub w innych rodzajach osłon, co ma bezpośredni wpływ na bezpieczeństwo instalacji. Używanie niewłaściwych symboli może prowadzić do błędów w wykonaniu instalacji, a w konsekwencji do kosztownych poprawek. Właściwe rozumienie symboliki jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i wykonawstwem instalacji elektrycznych, a także dla zapewnienia, że projekty spełniają wymagania norm europejskich i krajowych. Dlatego ważne jest, aby dokładnie zapoznawać się z dokumentacją techniczną oraz stosować się do uznawanych standardów, takich jak PN-IEC 60617, aby uniknąć nieporozumień i błędów w projektach. To zarówno kwestia praktyki, jak i odpowiedzialności zawodowej.

Pytanie 40

Jakiego rodzaju gniazda wtykowego należy użyć do zamontowania w puszce podtynkowej w łazience z instalacją typu TNS?

A. Jednego ze stykiem ochronnym
B. Jednego bez styku ochronnego
C. Podwójnego z stykiem ochronnym
D. Podwójnego bryzgoszczelnego ze stykiem ochronnym
Wybór gniazda pojedynczego bez styku ochronnego jest niewłaściwy, ponieważ jego stosowanie w łazience znacząco zwiększa ryzyko porażenia prądem. Normy dotyczące bezpieczeństwa elektrycznego jasno wskazują, że w pomieszczeniach o podwyższonej wilgotności konieczne jest zastosowanie gniazd ze stykiem ochronnym, co ma na celu minimalizację ryzyka. Pojedyncze gniazdo ze stykiem ochronnym, choć może wydawać się lepszym rozwiązaniem, również nie odpowiada wymaganiom strefy wysokiego ryzyka, jaką jest łazienka. Gniazda podwójne, nawet ze stykiem ochronnym, nie są wystarczające, jeżeli nie spełniają norm dotyczących ochrony przed wodą. Gniazda bryzgoszczelne są projektowane specjalnie z myślą o zabezpieczeniu przed wodą, co czyni je niezastąpionymi w takim środowisku. Stosowanie nieodpowiednich gniazd może prowadzić do niewłaściwego działania urządzeń elektrycznych i poważnych awarii oraz stanowić zagrożenie dla bezpieczeństwa użytkowników. W praktyce, kluczowe jest przestrzeganie norm i dobrych praktyk, co nie tylko chroni użytkowników, ale również zapewnia długotrwałą i bezpieczną eksploatację instalacji elektrycznej.