Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 lutego 2026 00:52
  • Data zakończenia: 8 lutego 2026 00:53

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono mocowanie kołnierzowe siłowników pneumatycznych?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Poprawna odpowiedź to "B". Rysunek B przedstawia siłownik pneumatyczny z kołnierzem montażowym, który jest kluczowym elementem w instalacjach pneumatycznych. Kołnierz montażowy umożliwia stabilne połączenie siłownika z innymi komponentami maszyny, zapewniając odpowiednie ułożenie i minimalizując drgania podczas pracy. W praktyce zastosowanie kołnierza jest szczególnie istotne w kontekście urządzeń, które wymagają precyzyjnego pozycjonowania, takich jak roboty przemysłowe czy automatyczne linie produkcyjne. Warto zwrócić uwagę na standardy montażowe, takie jak ISO 6431, które określają wymiary i tolerancje kołnierzy. Dobrze zaprojektowane mocowanie kołnierzowe nie tylko zwiększa bezpieczeństwo, ale także ułatwia konserwację siłowników poprzez szybki dostęp do ich elementów. Dodatkowo, prawidłowe mocowanie wpływa na żywotność siłownika, zmniejszając ryzyko uszkodzeń związanych z niewłaściwym zamocowaniem.

Pytanie 2

Podczas naprawy pieca indukcyjnego pracownik doznał poparzenia ramienia. Jaką pomoc powinien otrzymać w pierwszej kolejności?

A. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie na ranę oparzeniową nałożyć okład z 3% roztworu sody oczyszczonej
B. miejsca oparzone polewać zimną wodą, a następnie na ranę oparzeniową założyć jałowy opatrunek
C. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie miejsca oparzone polewać wodą utlenioną
D. miejsca oparzone posmarować tłustym kremem, a następnie na ranę oparzeniową zastosować okład z 1% kwasu octowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca polewania miejsc oparzonych zimną wodą jest prawidłowa, ponieważ pierwszym krokiem w przypadku oparzeń jest schłodzenie uszkodzonego miejsca. Schłodzenie oparzenia zimną wodą (najlepiej w temperaturze pokojowej lub lekko chłodnej) powinno trwać od 10 do 20 minut. Dzięki temu zmniejsza się ból oraz ogranicza głębokość oparzenia. Woda działa również jako czynnik nawilżający, co jest istotne, ponieważ oparzenia mogą prowadzić do dalszej utraty wilgoci. Po schłodzeniu, na oparzenie należy nałożyć jałowy opatrunek, co jest standardową praktyką w pierwszej pomocy. Opatrunek chroni ranę przed zanieczyszczeniami oraz sprzyja procesowi gojenia. Warto wspomnieć, że w przypadku poważniejszych oparzeń, w tym oparzeń drugiego i trzeciego stopnia, niezbędna jest konsultacja z lekarzem. Stosowanie jałowego opatrunku jest zgodne z wytycznymi zawartymi w podręcznikach dotyczących pierwszej pomocy."

Pytanie 3

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. sprawdzania dokręcenia śrub zacisków
B. analizy zużycia styków
C. wprowadzania regulacji
D. usuwania kurzu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dokonywanie regulacji w układzie stycznikowo-przekaźnikowym nie jest elementem konserwacji, ponieważ tego typu układy mają z góry ustalone parametry pracy, które powinny być stałe i stabilne. Konserwacja polega raczej na zapewnieniu ich prawidłowego działania poprzez kontrolę i ewentualne czyszczenie, a nie na wprowadzaniu jakichkolwiek zmian w ich ustawieniach. Przykładem dobrej praktyki w zakresie konserwacji jest regularne czyszczenie styków styczników, które zapewnia ich dłuższą żywotność oraz minimalizuje ryzyko awarii. W kontekście standardów, normy IEC dotyczące konserwacji urządzeń elektrycznych podkreślają znaczenie utrzymania ich w stanie gotowości, co jest osiągane poprzez systematyczne kontrole i monitorowanie stanu technicznego, a nie przez zmianę parametrów pracy.

Pytanie 4

Maksymalne natężenie przepływu dla pompy hydraulicznej, której dane katalogowe zamieszczono w ramce, wynosi

Dane techniczne pompy hydraulicznej
Objętość geometryczna:60 cm3
Maksymalne natężenie przepływu Q:120 dm3/min
Natężenie przepływu przy 1000 obr./min:80 dm3/min
Maksymalna prędkość obrotowa:5000 obr/min
Maksymalne ciśnienie ciągłe:600 barów
Zakres temperatury pracy:-5 ÷ 60 °C
Lepkość oleju hydraulicznego:10 ÷ 400 cSt
A. 120 dm3/min
B. 40 dm3/min
C. 200 dm3/min
D. 80 dm3/min

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalne natężenie przepływu dla pompy hydraulicznej wynoszące 120 dm3/min jest kluczowym parametrem, który określa zdolność pompy do transportu cieczy. Wartość ta została określona na podstawie danych katalogowych, które są istotne przy doborze pompy do konkretnego zastosowania. Pompy hydrauliczne stosowane są w różnych aplikacjach, takich jak zasilanie systemów hydraulicznych w maszynach przemysłowych czy konstrukcjach budowlanych. Zrozumienie maksymalnego natężenia przepływu pozwala inżynierom i technikom na odpowiednie dimensionowanie systemów hydraulicznych, zapewniając ich efektywność oraz bezpieczeństwo operacyjne. W praktyce, wybierając pompę, należy uwzględnić również inne parametry, takie jak ciśnienie, moc oraz charakterystyka cieczy, co pozwala na osiągnięcie optymalnych wyników pracy w danej aplikacji. W branży hydraulicznej standardy, takie jak ISO 4413, podkreślają znaczenie doboru odpowiednich elementów hydraulicznych, co ma kluczowe znaczenie dla wydajności i trwałości systemów.

Pytanie 5

Na rysunku przedstawiono fragment urządzenia z zamontowaną smarowniczką (kalamitką). Które z przedstawionych na rysunkach urządzeń należy zastosować do smarowania?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź A jest prawidłowa, ponieważ smarowniczka (kalamitka) jest elementem, który umożliwia skuteczne wprowadzenie smaru do mechanizmów urządzenia. W kontekście technicznym, smarownice ręczne, jak te oznaczone literą A, są zaprojektowane specjalnie do nawijania smaru pod ciśnieniem, co zapewnia optymalne smarowanie. Dzięki wypuszczaniu smaru przez smarowniczkę, możliwe jest zmniejszenie tarcia i zużycia komponentów, co jest kluczowe dla zapewnienia długowieczności maszyn. W praktyce, użycie smarownicy ręcznej pozwala na regularne uzupełnianie smaru w systemach, co powinno być zgodne z harmonogramem konserwacji opisanym w dokumentacji technicznej urządzenia. Prawidłowe smarowanie nie tylko wydłuża żywotność urządzenia, ale także poprawia jego efektywność operacyjną oraz zmniejsza ryzyko awarii. W związku z tym, wybór odpowiedniego narzędzia do smarowania jest kluczowy dla utrzymania wydajności i niezawodności urządzeń, a zastosowanie smarownicy ręcznej do smarowniczek stanowi najlepszą praktykę w branży.

Pytanie 6

Jakie czynności są charakterystyczne dla utrzymania układów pneumatycznych?

A. Usuwanie kondensatu wodnego
B. Okresowe wyłączanie sprężarki
C. Codzienna wymiana filtra powietrza
D. Codzienna wymiana oleju w smarownicy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Usuwanie kondensatu wodnego jest kluczowym działaniem w konserwacji układów pneumatycznych, ponieważ kondensat, który gromadzi się w systemie, może prowadzić do wielu problemów operacyjnych. Woda w układzie pneumatycznym może spowodować korozję komponentów, zmniejszenie efektywności działania siłowników oraz obniżenie jakości powietrza dostarczanego do narzędzi pneumatycznych. Zgodnie z normami ISO 8573, które określają wymagania dotyczące jakości powietrza sprężonego, wilgotność powietrza jest istotnym czynnikiem do utrzymania w ryzach. Regularne usuwanie kondensatu, na przykład przy użyciu automatycznych osuszczy powietrza lub separatorów kondensatu, jest standardową praktyką, która pomaga zapewnić długą żywotność sprzętu i optymalną wydajność układów pneumatycznych. Przykładem tego może być zastosowanie separatorów wody w linii sprężonego powietrza, co pozwala na efektywne usuwanie wody i minimalizowanie ryzyka uszkodzeń oraz przestojów w pracy systemu.

Pytanie 7

Jakiego rodzaju łożysko zostało przedstawione na rysunku?

Ilustracja do pytania
A. Baryłkowe.
B. Kulkowe.
C. Wałeczkowe.
D. Walcowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Kulkowe." jest poprawna, ponieważ na przedstawionym rysunku widoczne są kulki jako elementy toczne, co jest charakterystyczne dla łożysk kulkowych. Łożyska kulkowe są powszechnie stosowane w wielu urządzeniach mechanicznych, takich jak silniki, przenośniki czy maszyny przemysłowe, gdzie istotna jest niska odporność na tarcie i wysoka precyzja ruchu. Dzięki zastosowaniu kulek, które toczą się między wewnętrzną a zewnętrzną pierścieniową powierzchnią, możliwe jest uzyskanie wyjątkowo płynnego obrotu, co przekłada się na dłuższą żywotność maszyn i mniejsze zużycie energii. Standardy branżowe, takie jak ISO 281, definiują parametry i metody testowania łożysk kulkowych, co potwierdza ich znaczenie w inżynierii mechanicznej. Dodatkowo, łożyska kulkowe są dostępne w różnych rozmiarach oraz wykonaniach, co pozwala na ich szeroką adaptację do różnych zastosowań, zwiększając ich wszechstronność.

Pytanie 8

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. nasadowego
B. nasadowego
C. płaskiego
D. imbusowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.

Pytanie 9

Aby zmierzyć nieznaną rezystancję z wysoką precyzją przy użyciu trzech rezystorów odniesienia o znanych wartościach, jaki przyrząd powinno się zastosować?

A. megaomomierz
B. omomierz
C. mostek Thomsona
D. mostek Wheatstone'a

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mostek Wheatstone'a jest jedną z najpowszechniejszych metod wykorzystywanych do precyzyjnego pomiaru nieznanej rezystancji. Jego zasada działania opiera się na zestawieniu znanych rezystancji z jedną nieznaną w formie układu mostkowego. Połączenie rezystorów w tym układzie pozwala na osiągnięcie równowagi, co jest warunkiem do określenia wartości nieznanej rezystancji. Metoda ta jest szczególnie cenna w laboratoriach kalibracyjnych oraz w zastosowaniach przemysłowych, gdzie wymagana jest wysoka dokładność pomiarów. W praktyce mostki Wheatstone'a mogą być używane do pomiaru rezystancji w zakresie miliohmów do megaohmów, co czyni je uniwersalnymi narzędziami. Dodatkowo, stosując tę metodę, można zminimalizować wpływ niepożądanych czynników, takich jak temperatura czy jakość połączeń elektrycznych. Warto również zauważyć, że mostek Wheatstone'a jest zgodny z międzynarodowymi standardami metrologicznymi, co czyni go narzędziem o dużej wiarygodności.

Pytanie 10

Który rodzaj obróbki ręcznej przedstawiono na rysunkach?

Ilustracja do pytania
A. Piłowanie.
B. Przecinanie.
C. Ścinanie.
D. Wiercenie.
Odpowiedź "Ścinanie" jest poprawna, ponieważ na rysunkach przedstawiono proces, który dokładnie odpowiada tej technice obróbczej. Ścinanie polega na usuwaniu materiału z powierzchni za pomocą narzędzi tnących, takich jak dłuta, przecinaki lub noże, które są używane w różnych zastosowaniach inżynieryjnych i rzemieślniczych. W procesie tym narzędzie tnące jest ustawiane pod kątem do obrabianego materiału, co pozwala na precyzyjne usunięcie nadmiaru materiału. To podejście jest kluczowe w wielu branżach, w tym w obróbce metali, stolarstwie i rzeźbieniu. Na przykład, w stolarstwie ścinanie jest używane do formowania krawędzi mebli, a w metaloplastyce do precyzyjnego kształtowania detali. Dobrą praktyką jest również stosowanie narzędzi o odpowiedniej ostrości oraz zapewnienie stabilności materiału, co minimalizuje ryzyko błędów podczas obróbki. Wiedza o procesach ścinania jest istotna, ponieważ pozwala na uzyskanie wysokiej jakości wykończenia oraz oszczędności materiałowych.

Pytanie 11

Na podstawie fragmentu instrukcji serwisowej sprężarki tłokowej wskaż, która z wymienionych czynności konserwacyjnych powinna być wykonywana najczęściej.

CzynnośćCykle
Filtr ssącykontrolowanieco tydzień
czyszczenieco 60 godzin eksploatacji
wymianazależnie od potrzeb (co najmniej raz w roku)
Kontrola stanu olejucodziennie przed uruchomieniem
Wymiana olejupierwsza wymianapo 40 godzinach eksploatacji
kolejna wymianaraz w roku
Spust kondensatuco najmniej raz w tygodniu
Czyszczenie zaworu zwrotnegoco najmniej raz w roku
Pasek klinowykontrola naprężeniaco tydzień
wymianaw przypadku zużycia
A. Wymiana paska klinowego.
B. Kontrola stanu oleju.
C. Wymiana filtra ssącego.
D. Czyszczenie zaworu zwrotnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kontrola stanu oleju jest kluczowym elementem konserwacji sprężarek tłokowych. Regularne sprawdzanie poziomu i jakości oleju zapewnia prawidłowe smarowanie wszystkich ruchomych części, co wpływa na ich trwałość oraz efektywność energetyczną urządzenia. Niekontrolowanie stanu oleju może prowadzić do zwiększonego tarcia, a w konsekwencji do poważnych uszkodzeń silnika. Zgodnie z zaleceniami producentów, kontrola oleju powinna odbywać się codziennie przed rozpoczęciem pracy sprężarki. Dodatkowo, w przypadku wykrycia zanieczyszczeń oleju, jego wymiana powinna być przeprowadzona natychmiastowo, aby zapobiec dalszym uszkodzeniom. Przykładowo, w warunkach przemysłowych, gdzie sprężarki pracują non-stop, regularna kontrola oleju staje się kluczowym elementem strategii utrzymania ruchu, co przyczynia się do mniejszych kosztów eksploatacji oraz dłuższej żywotności maszyn.

Pytanie 12

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAD
B. CAM
C. SCADA
D. CAE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest prawidłowa, ponieważ jest to system informatyczny służący do nadzorowania i kontrolowania procesów przemysłowych w czasie rzeczywistym. Systemy SCADA umożliwiają monitoring i zarządzanie urządzeniami zdalnymi, takimi jak pompy, maszyny czy systemy elektryczne, a także zbierają dane z tych urządzeń, które następnie przetwarzane są w celu analizy wydajności oraz optymalizacji procesów. Przykłady zastosowania SCADA obejmują przemysł petrochemiczny, energetykę oraz wodociągi, gdzie konieczne jest nieprzerwane monitorowanie parametrów operacyjnych. Kluczowe dla systemów SCADA jest ich zdolność do integracji z innymi technologiami, takimi jak PLC (Programowalne Sterowniki Logiczne) i HMI (Interfejsy Człowiek-Maszyna), co pozwala na stworzenie kompleksowego środowiska do zarządzania procesami. Wdrażanie standardów takich jak ISA-95 w kontekście integrowania SCADA z systemami zarządzania przedsiębiorstwem (ERP) jest również istotnym aspektem ich efektywności i nowoczesności. Dobrze zaprojektowane systemy SCADA są niezbędne dla zapewnienia bezpieczeństwa operacji i redukcji ryzyka awarii.

Pytanie 13

Jakie jest zastosowanie przedstawionego na rysunku elementu?

Ilustracja do pytania
A. Obniżanie napięcia sieciowego.
B. Zamiana prądu przemiennego na prąd jednokierunkowy.
C. Filtrowanie zakłóceń napięcia sieciowego.
D. Zamiana prądu przemiennego na prąd stały.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mostek prostowniczy, przedstawiony na rysunku, jest kluczowym elementem w konwersji prądu przemiennego (AC) na prąd stały (DC). Jego podstawowym zastosowaniem jest prostowanie sygnałów AC, co jest niezbędne w wielu aplikacjach elektronicznych. Na przykład, w zasilaczach do komputerów czy urządzeń elektronicznych, mostek prostowniczy jest często pierwszym krokiem w procesie przetwarzania energii elektrycznej. Dzięki czterem diodom, które są skonfigurowane w formie mostka, prąd przemienny przepływający przez ten element jest przekształcany w prąd jednokierunkowy, co pozwala na jego późniejsze wykorzystanie w obwodach wymagających napięcia stałego. Przykładem zastosowania mostka prostowniczego jest zasilanie silników prądu stałego, gdzie wymagany jest stabilny i jednorodny przepływ prądu. Zgodnie z najlepszymi praktykami w branży, odpowiednia dioda powinna być dobrana na podstawie maksymalnego napięcia i natężenia prądu, co zapewnia niezawodność i długowieczność urządzenia.

Pytanie 14

Który rodzaj zasilania jest wykorzystywany do pracy urządzenia mechatronicznego przedstawionego na rysunku?

Ilustracja do pytania
A. Tylko elektryczny.
B. Elektryczny i pneumatyczny.
C. Tylko pneumatyczny.
D. Elektryczny i hydrauliczny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 'Elektryczny i hydrauliczny' ponieważ na zdjęciu przedstawiona jest prasa hydrauliczna, która jest typowym przykładem urządzenia mechatronicznego. W tego typu maszynach zasilanie elektryczne jest kluczowe, gdyż to elektryczny silnik napędza pompę hydrauliczną. Pompa ta generuje ciśnienie w układzie hydraulicznym, co pozwala na efektywne działanie prasy. W praktyce, połączenie zasilania elektrycznego z hydraulicznym umożliwia precyzyjne sterowanie siłą i ruchem, co jest niezbędne w wielu zastosowaniach przemysłowych, takich jak formowanie metalu, prasowanie czy tłoczenie. Takie rozwiązania są zgodne z najlepszymi praktykami w inżynierii mechatronicznej, gdzie integracja różnych systemów zasilania pozwala na uzyskanie większej efektywności oraz funkcjonalności urządzenia. Przykładem zastosowania mogą być linie produkcyjne w przemyśle motoryzacyjnym, gdzie prasy hydrauliczne odgrywają istotną rolę w procesie produkcji elementów samochodowych.

Pytanie 15

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Triaki
B. Diody i tyrystory
C. Triaki oraz diaki
D. Diody

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Półsterowany mostek prostowniczy to układ, który wykorzystuje diody oraz tyrystory do konwersji prądu zmiennego na prąd stały. Użycie diod w tym układzie jest kluczowe, ponieważ pełnią one funkcję prostowników, umożliwiając przepływ prądu w jednym kierunku. Tyrystory natomiast pozwalają na kontrolowanie momentu, w którym prąd zaczyna płynąć, co jest szczególnie istotne w aplikacjach wymagających regulacji mocy. Przykładem zastosowania półsterowanego mostka prostowniczego jest zasilanie silników elektrycznych, gdzie konieczne jest nie tylko prostowanie, ale także kontrolowanie prędkości obrotowej silnika. W takich aplikacjach zarządzanie energią i efektywnością jest kluczowe, a użycie tyrystorów pozwala na uzyskanie lepszej jakości sygnału oraz redukcję strat energii. Zgodnie z normami branżowymi, takie układy są często wykorzystywane w przemyśle automatyki, a ich prawidłowe projektowanie wymaga znajomości zasad działania komponentów elektronicznych oraz ich interakcji w obwodach. W praktyce, dobrze zaprojektowany mostek prostowniczy zwiększa niezawodność i efektywność systemu zasilania.

Pytanie 16

Zależność między ciśnieniem p, temperaturą T i objętością V powietrza opisuje zależność poniżej. Obniżenie temperatury powietrza przy jego stałej objętości

p · V
T
= const
A. zmniejsza ciśnienie powietrza.
B. nie ma wpływu na ciśnienie powietrza.
C. zwiększa ciśnienie powietrza dla temperatur mniejszych od 0 stop.C
D. zwiększa ciśnienie powietrza.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obniżenie temperatury powietrza przy stałej objętości rzeczywiście prowadzi do zmniejszenia ciśnienia powietrza. Zgodnie z prawem Boyle'a-Mariotte'a, dla danej masy gazu, iloczyn ciśnienia (p) i objętości (V) jest wprost proporcjonalny do temperatury (T) wyrażonej w kelwinach. Przy stałej objętości zmiana temperatury wpływa bezpośrednio na ciśnienie. Na przykład, w zastosowaniach inżynieryjnych, w układach pneumatycznych, obniżenie temperatury powietrza może prowadzić do spadku efektywności systemu, co jest kluczowe w kontekście chłodzenia, gdzie kontrola temperatury jest niezbędna dla zapewnienia odpowiednich parametrów pracy. W praktyce, w systemach klimatyzacyjnych, obniżenie temperatury powietrza zewnętrznego skutkuje zmniejszeniem ciśnienia wewnętrznego, co może wpływać na wydajność całego układu. Zrozumienie tej zależności jest niezbędne dla projektantów systemów klimatyzacyjnych oraz inżynierów zajmujących się aerodynamiką.

Pytanie 17

Jakie urządzenie można zastosować do pomiaru siły nacisku generowanej przez prasę pneumatyczną?

A. tensometr
B. pirometr
C. hallotron
D. szczelinomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tensometr to urządzenie służące do pomiaru deformacji materiałów, co czyni go idealnym narzędziem do pomiaru siły nacisku wytwarzanej przez prasę pneumatyczną. Działa na zasadzie pomiaru zmiany oporu elektrycznego, który jest proporcjonalny do deformacji ciała stałego. W praktyce, tensometry są często stosowane w przemyśle do monitorowania obciążeń w różnych maszynach, w tym prasach hydraulicznych i pneumatycznych. Dzięki zastosowaniu tensometrów można na bieżąco kontrolować siłę nacisku, co jest niezwykle ważne dla zapewnienia bezpieczeństwa oraz efektywności procesów produkcyjnych. W standardach branżowych, takich jak ISO, zaleca się regularne stosowanie tensometrów w aplikacjach związanych z kontrolą jakości i monitorowaniem wydajności maszyn. Dodatkowo, zrozumienie działania tensometrów pozwala inżynierom na efektywniejsze projektowanie i optymalizację systemów mechanicznych.

Pytanie 18

Zestyk K1, oznaczony na schemacie czerwoną ramką, odpowiada za

Ilustracja do pytania
A. włączenie zasilania cewek przekaźników K1 i K2
B. podtrzymanie zasilania cewek przekaźników K1 i K2
C. wyłączenie zasilania cewek przekaźników K1 i K2
D. blokowanie jednoczesnego załączenia cewek przekaźników K1 i K2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zestyk K1, oznaczony na schemacie czerwoną ramką, pełni funkcję samopodtrzymania, co oznacza, że po zamknięciu obwodu przez przycisk S1, jest w stanie podtrzymać zasilanie cewek przekaźników K1 i K2. Po zwolnieniu przycisku S1, zestyk K1 zapewnia, że obwód pozostaje zamknięty, co pozwala na kontynuowanie pracy przekaźników. Tego rodzaju rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie istotne jest, aby urządzenia mogły pracować autonomicznie po aktywacji przez operatora. Przykładem praktycznym mogą być systemy sterowania silnikami, gdzie samopodtrzymujące się obwody zapewniają, że silnik pozostanie włączony do momentu, gdy nie zostanie podjęta decyzja o wyłączeniu go. W kontekście standardów, takie podejście jest zgodne z zasadami projektowania systemów automatyki, które zalecają minimalizację punktów awarii oraz zapewnienie ciągłości działania. Wiedza o funkcji samopodtrzymania jest kluczowa dla zrozumienia działania bardziej skomplikowanych systemów sterujących oraz ich bezpieczeństwa.

Pytanie 19

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
B. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
C. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
D. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 20

W układzie hydraulicznym zainstalowano zawór dławiąco-zwrotny w sposób pokazany na rysunku. Jaką reakcję wywołuje w tym układzie odkręcanie pokrętła ręcznego?

Ilustracja do pytania
A. Stabilizuje ciśnienie pracy.
B. Zwiększa prędkość powrotu tłoka.
C. Reguluje skok siłownika.
D. Zmniejsza prędkość wysuwu tłoka.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór dławiąco-zwrotny jest kluczowym elementem w systemach hydraulicznych, który reguluje przepływ płynu roboczego. Odkręcanie pokrętła ręcznego powoduje zmniejszenie oporu przepływu, co z kolei prowadzi do zwiększenia prędkości powrotu tłoka. W praktyce oznacza to, że elementy napędu hydraulicznego mogą powracać do swojej pozycji wyjściowej szybciej, co przyspiesza cykl pracy maszyny. W zastosowaniach przemysłowych, takich jak prasy hydrauliczne czy maszyny do obróbki metali, szybki powrót tłoka jest istotny dla efektywności produkcji. Przykładowo, w procesie formowania na zimno, szybki powrót pozwala na skrócenie czasu cyklu, co przekłada się na wyższą wydajność oraz oszczędność energii. Warto również zauważyć, że dobór odpowiednich ustawień zaworu dławiąco-zwrotnego zgodny z zaleceniami producenta oraz standardami branżowymi, jak ISO 4414 dotyczące systemów hydraulicznych, ma kluczowe znaczenie dla bezpieczeństwa i niezawodności działania całego układu.

Pytanie 21

Która z wymienionych działań, które są częścią montażu osłon przy użyciu wielu mocowań śrubowych, powinna być realizowana ściśle zgodnie z wytycznymi?

A. Dokręcanie śrub
B. Dobór narzędzi
C. Smarowanie odpowiednim smarem
D. Polerowanie ręczne powierzchni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dokręcanie śrub jest kluczowym etapem montażu osłon za pomocą połączeń śrubowych, ponieważ ma na celu zapewnienie odpowiedniej siły i stabilności całej konstrukcji. Zgodnie z normami branżowymi, każde połączenie mechaniczne powinno być dokręcone zgodnie z zaleceniami producenta oraz przy użyciu odpowiednich narzędzi, które gwarantują dokładność momentu dokręcania. Przykładowo, w przypadku zastosowania połączeń śrubowych w motoryzacji, niewłaściwe dokręcenie może prowadzić do wibracji, uszkodzeń komponentów oraz w konsekwencji do poważnych awarii. Ważne jest również, aby stosować się do procedur, takich jak sekwencyjne dokręcanie, które ma na celu równomierne rozłożenie sił i minimalizację ryzyka deformacji elementów. Ponadto, zastosowanie momentomierzy jest rekomendowane, aby uzyskać powtarzalność i zgodność z wymaganiami technicznymi. Takie podejście nie tylko zwiększa bezpieczeństwo, ale również przedłuża żywotność montowanych osłon, co jest kluczowe w kontekście efektywności i niezawodności mechanizmów.

Pytanie 22

Pokazany na rysunku sposób montowania podzespołów elektronicznych, na płytce obwodu drukowanego, to

Ilustracja do pytania
A. zgrzewanie.
B. klejenie.
C. lutowanie.
D. spawanie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lutowanie jest standardową metodą łączenia podzespołów elektronicznych na płytkach obwodów drukowanych (PCB). Proces ten polega na użyciu stopu lutowniczego, który po podgrzaniu w płynnej formie wypełnia szczeliny między elementami a płytką, a następnie po schłodzeniu tworzy trwałe połączenie. Zaletą lutowania jest jego zdolność do zapewnienia nie tylko solidnego połączenia elektrycznego, ale również wytrzymałości mechanicznej, co jest kluczowe w zastosowaniach elektronicznych. W praktyce lutowanie stosowane jest w produkcji urządzeń elektronicznych, takich jak komputery, telewizory czy telefony. Istnieją różne techniki lutowania, w tym lutowanie ręczne, lutowanie na fali czy lutowanie w piecu, które są dostosowane do różnych potrzeb produkcyjnych i typów urządzeń. Warto zaznaczyć, że lutowanie powinno być przeprowadzane zgodnie z normami IPC (Institute for Printed Circuits), które określają wymagania dotyczące jakości i niezawodności połączeń lutowanych.

Pytanie 23

Jaka powinna być wartość znamionowego napięcia zasilania urządzenia, aby mogło być zasilane przez zasilacz impulsowy o charakterystyce napięciowo-prądowej przedstawionej na rysunku?

Ilustracja do pytania
A. 150V
B. 160V
C. 60V
D. 80V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 150V, ponieważ w analizowanym wykresie zauważamy, że w punkcie zwrotnym napięcie wynosi właśnie tę wartość. Zasilacze impulsowe są projektowane tak, aby działać w określonym zakresie napięć, a 150V zapewnia optymalne warunki pracy urządzenia. W praktyce, stosując zasilacz o takim znamionowym napięciu, możemy osiągnąć nie tylko stabilność, ale również efektywność energetyczną. Zasilacze impulsowe są powszechnie stosowane w nowoczesnych urządzeniach elektronicznych ze względu na swoją wysoką sprawność energetyczną oraz zdolność do regulacji napięcia w odpowiedzi na zmieniające się obciążenia. Ponadto, w kontekście krajowych i międzynarodowych norm, takich jak IEC 60950, ważne jest, aby dobierać zasilacze zgodnie z wymaganiami producenta urządzenia, aby unikać uszkodzeń i zapewnić bezpieczeństwo użytkowania. Dlatego odpowiednia wartość znamionowego napięcia zasilania jest kluczowa dla długotrwałego i efektywnego działania systemów elektronicznych.

Pytanie 24

Rozpoczęcie demontażu elektrozaworu w systemie elektropneumatycznym wymaga najpierw odłączenia

A. napięcia zasilającego
B. przewodów pneumatycznych
C. ciśnienia zasilającego układ
D. przewodów elektrycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odłączenie napięcia zasilającego jest kluczowym krokiem przed demontażem elektrozaworu w układzie elektropneumatycznym. Zgodnie z zasadami bezpieczeństwa, zawsze należy najpierw wyłączyć zasilanie elektryczne, aby uniknąć ryzyka porażenia prądem oraz uszkodzenia komponentów. W praktyce, przed przystąpieniem do demontażu, operator powinien upewnić się, że urządzenie zostało odłączone od źródła zasilania i oznakować miejsce pracy, aby uniknąć przypadkowego włączenia. W standardach branżowych, takich jak PN-EN 60204-1, podkreśla się znaczenie stosowania procedur blokowania źródeł energii w celu zapewnienia bezpieczeństwa pracowników. Przykładem dobrych praktyk jest również stosowanie multimetru do sprawdzenia, czy nie ma napięcia w obwodzie przed przystąpieniem do prac serwisowych. W ten sposób można zminimalizować ryzyko wypadków oraz zapewnić prawidłowe funkcjonowanie systemu po ponownym zainstalowaniu elektrozaworu.

Pytanie 25

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Stal wysokowęglowa
B. Żeliwo białe
C. Żeliwo szare
D. Stal niskowęglowa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 26

Jaką wartość ciśnienia wskazuje miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. 8 500 barów
B. 850 barów
C. 12 300 barów
D. 570 barów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość ciśnienia wskazana na mierniku wynosi 850 barów, co jest zgodne z jego wskazaniem na skali. Mierniki ciśnienia są kluczowymi urządzeniami w różnych dziedzinach inżynierii i technologii, gdzie precyzyjne pomiary są niezbędne do zapewnienia bezpieczeństwa oraz efektywności procesów. W przemyśle naftowym, gazowym oraz chemicznym, dokładne pomiary ciśnienia są istotne dla monitorowania i kontrolowania procesów, co pomaga uniknąć awarii oraz zwiększa wydajność produkcji. Wartości ciśnienia są istotne dla obliczeń dotyczących przepływu, a także dla doboru odpowiednich materiałów i sprzętów, które muszą wytrzymać określone warunki pracy. Używając mierników ciśnienia, ważne jest, aby zwracać uwagę na ich kalibrację oraz zgodność z normami branżowymi, takimi jak ISO 6789, które określają wymagania dotyczące dokładności i niezawodności pomiarów. Wiedza o aktualnych wartościach ciśnienia może również wspierać procesy diagnostyczne w systemach hydraulicznych i pneumatycznych, co jest niezbędne do ich prawidłowego funkcjonowania.

Pytanie 27

Które elementy przedstawiono na rysunku?

Ilustracja do pytania
A. Obciążniki do układów hydraulicznych.
B. Akumulatory hydrauliczne.
C. Sondy pomiarowe.
D. Pojemniki na sprężone powietrze.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Akumulatory hydrauliczne to naprawdę ważne elementy w różnych układach hydraulicznych. Działają jak magazyny energii, przechowując ciecz pod ciśnieniem. Ich główna rola to kompensowanie wahań ciśnienia, co pomaga utrzymać stabilną pracę całego systemu. W praktyce używa się ich często w maszynach budowlanych, takich jak dźwigi czy koparki, gdzie szybkie zarządzanie energią ma kluczowe znaczenie. Poza tym, te akumulatory pomagają tłumić pulsacje, co chroni przed uszkodzeniami i poprawia komfort pracy. Z tego co pamiętam, standardy takie jak ISO 4413 zwracają uwagę na ich znaczenie dla bezpieczeństwa i efektywności systemów hydraulicznych. Akumulatory mogą też pełnić rolę awaryjną, dostarczając energię, gdy ciśnienie nagle spada. To naprawdę istotne dla niezawodności całego układu.

Pytanie 28

Jaką czynność należy zrealizować w pierwszej kolejności, instalując oprogramowanie do programowania sterowników PLC?

A. Przenieść z nośnika instalacyjnego wersję instalacyjną oprogramowania na dysk twardy komputera
B. Zaktualizować system operacyjny komputera, na którym zainstalowane będzie oprogramowanie
C. Usunąć poprzednią wersję oprogramowania, które ma być zainstalowane
D. Zweryfikować minimalne wymagania, które musi spełniać komputer, na którym oprogramowanie będzie instalowane

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie minimalnych wymagań systemowych przed instalacją oprogramowania do programowania sterowników PLC jest kluczowym krokiem, który zapewnia prawidłowe działanie aplikacji. Minimalne wymagania mogą obejmować parametry takie jak procesor, pamięć RAM, dostępna przestrzeń na dysku oraz wersję systemu operacyjnego. Ignorowanie tych wymagań może prowadzić do problemów z wydajnością, a nawet do niemożności uruchomienia oprogramowania. Na przykład, jeśli oprogramowanie wymaga 4 GB RAM, a komputer ma tylko 2 GB, może to spowodować znaczące opóźnienia lub awarie. W branży automatyki standardem jest zawsze upewnienie się, że sprzęt spełnia wymagania, co pozwala na efektywne wykorzystanie oprogramowania. Dodatkowo, niektóre z oprogramowań mogą mieć specyficzne wymagania dotyczące kart graficznych lub złączy, co również warto zweryfikować przed instalacją. Taka praktyka nie tylko minimalizuje ryzyko problemów technicznych, ale również optymalizuje czas potrzebny na konfigurację i uruchomienie systemu.

Pytanie 29

Radarowy czujnik wykorzystujący efekt Dopplera pozwala na określenie wartości

A. nadciśnienia
B. temperatury
C. prędkości
D. podciśnienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sensor radarowy działający na zasadzie efektu Dopplera jest wykorzystywany przede wszystkim do pomiaru prędkości obiektów. Efekt Dopplera polega na zmianie częstotliwości fali elektromagnetycznej w zależności od ruchu źródła fali oraz obserwatora. W kontekście radaru, gdy obiekt porusza się w kierunku sensora, fale radarowe są przesuwane ku wyższej częstotliwości, a gdy się oddala, dochodzi do obniżenia częstotliwości. Ta zmiana częstotliwości jest bezpośrednio związana z prędkością obiektu. Przykładem zastosowania tej technologii jest pomiar prędkości pojazdów w systemach monitorowania ruchu drogowego oraz w radarach meteorologicznych do analizy prędkości wiatru. W praktyce, radary oparte na efekcie Dopplera są standardem w wielu dziedzinach, takich jak lotnictwo, motoryzacja czy meteorologia, co czyni je nieocenionym narzędziem w nowoczesnej technologii pomiarowej.

Pytanie 30

Na podstawie wyników pomiarów rezystancji zestyków przycisków S1 i S2 przedstawionych w tabeli można wnioskować, że

Pomiar rezystancji zestyku w Ω
przycisku zwiernego S1przycisku rozwiernego S2
przed wciśnięciem przyciskupo wciśnięciu przyciskuprzed wciśnięciem przyciskupo wciśnięciu przycisku
00
A. przycisk S1 jest sprawny, przycisk S2 jest uszkodzony.
B. przycisk S1 jest uszkodzony, przycisk S2 jest sprawny.
C. oba przyciski są uszkodzone.
D. oba przyciski są sprawne.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na podstawie analizy wyników pomiarów rezystancji zestyków przycisków S1 i S2, można jednoznacznie stwierdzić, że odpowiedź wskazująca na uszkodzenie obu przycisków jest prawidłowa. Przycisk S1, będący przyciskiem zwiernym, powinien wykazywać rezystancję bliską 0 Ω po wciśnięciu. W przypadku, gdy jego rezystancja wynosi nieskończoność, oznacza to, że mechanizm zwierny nie funkcjonuje prawidłowo. Analogicznie, przycisk S2 powinien mieć rezystancję nieskończoną przed wciśnięciem, jednak wartość 0 Ω wskazuje, że styk jest w ciągłym połączeniu, co również potwierdza jego uszkodzenie. Tego typu analizy są kluczowe w diagnostyce elektronicznej, ponieważ pozwalają na szybkie zidentyfikowanie i rozwiązanie problemów w układach sterowania. Dobre praktyki branżowe wymagają regularnego testowania komponentów w celu zapewnienia ich niezawodności i bezpieczeństwa operacyjnego. W przypadku awarii, niezbędna jest wymiana uszkodzonych elementów, a także dokładne sprawdzenie pozostałych komponentów w celu zapobieżenia dalszym problemom. Zrozumienie tych zasad jest istotne dla każdego technika zajmującego się serwisowaniem urządzeń elektronicznych.

Pytanie 31

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. bicie osiowe
B. smarowanie
C. naprężenie
D. temperaturę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.

Pytanie 32

Jaki rodzaj łożyska został przedstawiony na rysunku?

Ilustracja do pytania
A. Baryłkowe.
B. Igiełkowe.
C. Stożkowe.
D. Walcowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łożysko stożkowe, które zostało przedstawione na rysunku, charakteryzuje się unikalnym kształtem, który pozwala na przenoszenie obciążeń zarówno osiowych, jak i promieniowych. W konstrukcji tego typu łożysk, elementy toczne mają formę stożków, które idealnie współpracują z wewnętrznym i zewnętrznym pierścieniem. Dzięki temu, łożyska stożkowe są często wykorzystywane w aplikacjach motoryzacyjnych, takich jak w piastach kół czy mechanizmach różnicowych, gdzie wymagane jest przenoszenie dużych obciążeń. Stosując łożyska stożkowe, inżynierowie mogą osiągnąć lepszą stabilność i wydajność w porównaniu do innych typów łożysk. Zgodnie z normami ISO 355, łożyska te powinny być projektowane z uwzględnieniem specyfikacji dotyczących obciążeń dynamicznych, co zapewnia ich długotrwałą niezawodność i funkcjonalność w trudnych warunkach pracy. Ponadto, łożyska stożkowe są również stosowane w przemyśle ciężkim oraz w maszynach przemysłowych, gdzie kluczowe jest zapewnienie wysokiej precyzji i efektywności energetycznej.

Pytanie 33

Podczas nieostrożnego lutowania pracownik narażony jest przede wszystkim na

A. krwawienie z nosa
B. uszkodzenie słuchu
C. uszkodzenie wzroku
D. poparzenie dłoni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poparzenia dłoni są jednym z najczęstszych zagrożeń dla pracowników lutujących, ze względu na wysoką temperaturę topnienia materiałów lutowniczych oraz używanych narzędzi. W trakcie lutowania, szczególnie przy użyciu lutownic o dużej mocy, istnieje ryzyko kontaktu nagrzanych elementów z naskórkiem, co może prowadzić do poważnych oparzeń. Przykładem dobrej praktyki w zapobieganiu takim incydentom jest stosowanie odpowiedniej odzieży ochronnej, takiej jak rękawice odporną na wysoką temperaturę oraz osłony na przedramiona. Ponadto, w standardach BHP w przemyśle elektronicznym zaleca się regularne szkolenia dla pracowników, aby zwiększyć ich świadomość na temat zagrożeń związanych z lutowaniem i nauczyć ich technik bezpiecznej pracy. Dodatkowo, stosowanie narzędzi takich jak podkładki izolacyjne oraz zachowanie odpowiedniego dystansu od elementów, które mogą być gorące, jest kluczowe dla minimalizacji ryzyka poparzeń.

Pytanie 34

W układzie elektropneumatycznym przedstawionym na ilustracji należy zamontować zawór rozdzielający w wersji

Wersja zaworuW1W2W3W4
Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Ilustracja do pytania
A. W4.
B. W3.
C. W1.
D. W2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór W4 to naprawdę dobry wybór w tym układzie elektropneumatycznym, bo pasuje do wymagań dla systemu z dwoma siłownikami pneumatycznymi. To zawór 5/2, więc ma pięć portów i dwie pozycje. Dzięki temu możemy bardzo dokładnie sterować siłownikami 1M1 i 1M2. W praktyce oznacza to, że każdy z siłowników możemy kontrolować niezależnie, co jest kluczowe, gdy potrzebujemy różne cykle robocze. Wybierając W4, możemy też korzystać ze standardowych komponentów w układach pneumatycznych, co potem ułatwia modyfikacje i konserwację. Przy projektowaniu takich układów trzeba zwracać uwagę na normy branżowe, jak ISO 4414, które mówią o bezpieczeństwie i efektywności w systemach pneumatycznych. Użycie odpowiedniego zaworu jest istotne, bo to zapewnia płynność pracy i zmniejsza ryzyko awarii spowodowanej złym doborem komponentów. Kiedy myślimy nad wyborem zaworu, ważne, żeby uwzględnić takie rzeczy jak ciśnienie robocze, przepływ i rodzaj medium, bo to wszystko wpływa na wydajność układu.

Pytanie 35

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 7 obr/min
B. 750 obr/min
C. 75 obr/min
D. 7500 obr/min

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 750 obr/min jest poprawna, ponieważ woltomierz wskazuje napięcie 7,5 V, a prądniczka tachometryczna ma stałą 10 V przypadającą na 1000 obr/min. Aby obliczyć prędkość obrotową, stosujemy proporcję: jeśli 10 V odpowiada 1000 obr/min, to 7,5 V odpowiada x obr/min. Wykonując obliczenia, otrzymujemy: x = (7,5 V * 1000 obr/min) / 10 V = 750 obr/min. Praktyczne zastosowanie takiej analizy można znaleźć w automatyce i inżynierii, gdzie prędkości obrotowe silników są kluczowe dla precyzyjnego sterowania procesami. W branży motoryzacyjnej, na przykład, prędkości obrotowe silników są monitorowane za pomocą tachometrów, które mogą być oparte na prądnicach tachometrycznych. Zrozumienie tych zasad jest istotne zarówno dla projektantów, jak i techników, aby zapewnić efektywność i bezpieczeństwo systemów napędowych.

Pytanie 36

Ile napędów jest zastosowanych w manipulatorze, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 5 napędów.
B. 4 napędy.
C. 3 napędy.
D. 6 napędów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 4 napędy jest prawidłowa, ponieważ na schemacie manipulatora widać cztery różne elementy napędowe, które pełnią kluczowe funkcje w jego działaniu. Dwa siłowniki są odpowiedzialne za ruch wzdłuż osi, co jest niezbędne do precyzyjnego operowania narzędziami manipulatora. Silnik, który jest przedstawiony jako prostokąt z krzyżem, zapewnia dynamiczny napęd, co jest istotne dla skuteczności i szybkości pracy manipulatora. Ponadto, zawór, symbolizowany przez romb, reguluje przepływ medium, co również jest kluczowe dla poprawnego działania napędów pneumatycznych lub hydraulicznych. W praktyce, wiedza na temat liczby i rodzaju napędów w manipulatorze pozwala inżynierom projektować bardziej wydajne i funkcjonalne systemy automatyzacji, które spełniają wysokie standardy jakości i bezpieczeństwa. Zarówno w przemyśle, jak i w zastosowaniach robotów współpracujących, zrozumienie działania poszczególnych komponentów napędowych jest kluczowe dla optymalizacji procesów produkcyjnych.

Pytanie 37

Uszkodzeniu uległ regulator temperatury i procesu JCM-33A zasilany napięciem sieciowym, posiadający wyjście alarmu przerwania pętli regulacji i wyjście prądowe 4÷20 mA. Na podstawie fragmentu karty katalogowej dobierz model regulatora, który odpowiada uszkodzonemu.

Ilustracja do pytania
A. JCM-33A-A/M,-,LA
B. JCM-33A-R/M,1,SM
C. JCM-33A-A/M,1,SM
D. JCM-33A-R/M,-,LA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Model JCM-33A-A/M,-,LA jest odpowiedni dla uszkodzonego regulatora, ponieważ spełnia wszystkie wymagane parametry. Oznaczenie 'A' wskazuje na obecność wyjścia alarmowego, które jest kluczowe w przypadku przerwania pętli regulacji. Wyjście prądowe 4÷20 mA jest standardem w wielu aplikacjach kontrolnych, co czyni ten model kompatybilnym z najczęściej stosowanymi systemami automatyki przemysłowej. Ponadto, zasilanie sieciowe 100...240VAC zapewnia elastyczność w integracji z różnymi instalacjami. Dobór regulatorów zgodnie z wymaganiami systemowymi jest niezbędny dla zapewnienia ich poprawnego funkcjonowania oraz bezpieczeństwa procesów. Przykładowo, w aplikacjach przemysłowych, takich jak kontrola temperatury w piecach przemysłowych czy systemach HVAC, odpowiedni dobór regulatora zapobiega nadmiernym wahaniom temperatury, co może prowadzić do uszkodzeń sprzętu. Warto również pamiętać, że zgodność z normami branżowymi, takimi jak IEC 61131, jest kluczowa dla zapewnienia niezawodności i efektywności systemów automatyzacji.

Pytanie 38

Jakie połączenie można zaklasyfikować jako połączenia trwałe?

A. Nitowane
B. Wciskowe
C. Wpustowe
D. Sworzniowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Nitowane" jest poprawna, ponieważ połączenia nitowane zaliczają się do grupy połączeń nierozłącznych, co oznacza, że ich demontaż jest skomplikowany i wymaga specjalistycznych narzędzi. Połączenia te są powszechnie stosowane w przemyśle lotniczym, motoryzacyjnym oraz w konstrukcjach stalowych, gdzie kluczowa jest wysoka wytrzymałość na obciążenia oraz odporność na zmiany temperatury. Nity, jako elementy łączące, są stosowane do łączenia blach, profili i innych komponentów, gdzie istotna jest trwałość oraz bezpieczeństwo. W praktyce, standardy takie jak ISO 14588 definiują wymagania dotyczące nitu, co zapewnia ich odpowiednią jakość. W przypadku naprawy lub demontażu konstrukcji nitowanych, często konieczne jest przewiercenie nitów, co podkreśla ich nierozłączny charakter. Warto również dodać, że połączenia nitowane są preferowane w sytuacjach, gdzie nie ma możliwości zastosowania spawania, np. w konstrukcjach, które mają być poddawane różnym cyklom pracy temperaturowej.

Pytanie 39

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. termostat
B. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem
C. termoelement
D. czujnik termiczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Termoelement to naprawdę fajne urządzenie do pomiaru temperatury. Działa na zasadzie efektu Seebecka, co oznacza, że generuje napięcie, gdy są różnice temperatur między dwoma różnymi przewodnikami. Jest super dokładny i szybko reaguje na zmiany temperatury, co czyni go idealnym w różnych branżach, takich jak chemia czy przemysł spożywczy. Można go też spotkać w laboratoriach badawczych. Na przykład, w przemyśle monitoruje się dzięki niemu temperaturę, co jest kluczowe, żeby produkt był dobrej jakości. Co ciekawe, w zależności od użytych materiałów, termoelementy mogą działać w różnych zakresach temperatur, a ich właściwości spełniają międzynarodowe standardy, jak na przykład IEC 60584. Dzięki tym cechom są bardzo popularne w systemach automatyki oraz kontroli procesów.

Pytanie 40

Produkcja sprężonego powietrza w systemach pneumatycznych obejmuje przynajmniej jego

A. sprężanie, osuszanie i filtrowanie
B. sprężanie, osuszanie i smarowanie
C. osuszanie, filtrowanie i smarowanie
D. sprężanie, filtrowanie i smarowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "sprężaniu, osuszaniu i filtrowaniu" jest super, bo te trzy procesy są naprawdę kluczowe, żeby przygotować dobre sprężone powietrze w układach pneumatycznych. Sprężanie to zwiększenie ciśnienia powietrza, dzięki czemu można je przechowywać i wykorzystywać w różnych maszynach. Potem mamy osuszanie, które jest mega ważne, bo wilgoć w powietrzu może zaszkodzić sprzętom, a tego przecież nie chcemy. Osuszacze, jak te chłodnicze i adsorpcyjne, pomagają pozbyć się pary wodnej. Filtrowanie to kolejny krok, który pozwala wyeliminować zanieczyszczenia, które mogą zaszkodzić elementom układów. Właściwe filtry, na przykład zgodne z normą ISO 8573, dbają o to, żeby powietrze było czyste, co jest istotne dla trwałej i pewnej pracy tych systemów. Przykładowo, w przemyśle motoryzacyjnym jakość sprężonego powietrza jest kluczowa podczas montażu i obróbki.