Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 maja 2025 23:23
  • Data zakończenia: 13 maja 2025 23:36

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie z czynności związanych z wymianą oleju oraz filtrów w zasilaczu hydraulicznym powinno być zrealizowane jako ostatnie?

A. Odkręcić śruby mocujące pokrywę do zbiornika, zdjąć pokrywę, dokładnie oczyścić i przepłukać zbiornik
B. Wlać olej do właściwego poziomu i włączyć zasilanie, aby umożliwić samoczynne odpowietrzenie
C. Odłączyć wszystkie obwody, wyłączyć zasilanie, odkręcić śrubę odpowietrzającą lub wyjąć korek wlewowy i lekko przechylając zasilacz zlać olej
D. Zamienić uszczelkę między zbiornikiem a pokrywą oraz wymienić wkłady filtrujące, a później połączyć zbiornik z pokrywą, przestrzegając zalecanej siły dokręcania
Wynikający z niewłaściwego wyboru czynności, pomijanie ostatniego etapu, jakim jest wlano oleju do zbiornika oraz włączenie zasilania, prowadzi do wielu problemów z działaniem zasilacza hydraulicznego. Często zdarza się, że osoby z nieodpowiednią wiedzą techniczną mogą pomylić kolejność procesów, co skutkuje niewłaściwym napełnieniem układu lub, co gorsza, jego przegrzaniem. Przy odkręcaniu śrub lub demontażu pokrywy zbiornika, istotne jest, aby najpierw usunąć zużyty olej oraz zanieczyszczenia, a następnie zlać go, co powinno być realizowane przed dodaniem nowego oleju. Ignorowanie tego etapu może prowadzić do kontaminacji nowego oleju, co wpłynie negatywnie na jego właściwości smarne i zabezpieczające. Dodatkowo, niedopilnowanie momentu dokręcania śrub po wymianie filtrów może spowodować wycieki, co jest niezgodne z najlepszymi praktykami konserwacji. Odpowiednia procedura wymiany oleju w zasilaczu hydraulicznym wymaga zrozumienia całego procesu, od odłączenia obwodów, przez spuszczenie oleju, aż po napełnienie nowym płynem i uruchomienie zasilania dla prawidłowego odpowietrzenia. Tylko taka kolejność zapewni, że system hydrauliczny będzie działał efektywnie oraz bezawaryjnie.

Pytanie 6

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. polwinitowej
B. z żywicy epoksydowej
C. drewnianej
D. metalowej
Ekranowanie urządzeń mechatronicznych to istotny aspekt zapewnienia ich sprawnego działania w obliczu zagrożeń elektromagnetycznych. Wybór materiału do ekranowania jest kluczowy, ponieważ różne materiały posiadają różne właściwości w zakresie ochrony przed falami elektromagnetycznymi. Obudowy drewniane, choć mogą być estetyczne, nie oferują praktycznie żadnej ochrony przed falami elektromagnetycznymi. Drewno jest materiałem dielektrycznym, co oznacza, że nie ma właściwości odbijających ani pochłaniających fale elektromagnetyczne w sposób efektywny. W przypadku obudowy polwinitowej, choć materiał ten ma pewne właściwości izolacyjne, to jednak nie zapewnia wystarczającego ekranowania. Polwinit, podobnie jak drewno, nie jest w stanie skutecznie eliminować fal elektromagnetycznych. Obudowy z żywicy epoksydowej również mają swoje ograniczenia, ponieważ nie są w stanie odbijać fal elektromagnetycznych, a ich działanie ogranicza się głównie do izolacji. Wybierając materiał do ekranowania, należy kierować się wiedzą na temat właściwości materiałów oraz ich zdolności do redukcji zakłóceń elektromagnetycznych. W praktyce oznacza to, że nieprawidłowy wybór materiału ekranowania, jak drewno czy polwinit, prowadzi do poważnych problemów z funkcjonowaniem urządzeń, co może skutkować ich awarią lub nieprawidłowym działaniem w środowisku o dużych zakłóceniach elektromagnetycznych. Dlatego kluczowe znaczenie ma znajomość standardów branżowych i dobrych praktyk w zakresie wyboru materiałów do ekranowania.

Pytanie 7

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. wymienić uszczelkę
B. zmierzyć rezystancję cewki
C. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
D. wymienić membranę
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Licznik impulsów rewersyjnych to urządzenie

A. które wykonuje dodawanie i odejmowanie impulsów
B. które zapisuje w pamięci określoną liczbę impulsów
C. które zajmuje się dodawaniem impulsów
D. które dokonuje odejmowania impulsów
Wybór odpowiedzi, która ogranicza się do dodawania impulsów, nie oddaje pełnego zakresu funkcji rewersyjnego licznika impulsów. Liczniki te, jak sama nazwa wskazuje, mają zdolność do rewersji, co oznacza, że mogą nie tylko akumulować impulsy, ale także je odejmować. Podejście, które koncentruje się wyłącznie na dodawaniu, pomija kluczowy aspekt ich wszechstronności, co jest niezwykle istotne w zastosowaniach przemysłowych. W kontekście pomiarów, na przykład w systemach automatyki, często potrzebne jest nie tylko zliczanie, ale także korekta błędów, co wymaga funkcji odejmowania. Zrozumienie zasady działania rewersyjnych liczników impulsów jest kluczowe, aby uniknąć nieporozumień dotyczących ich zastosowania. Próba wyboru opcji, która mówi tylko o zliczaniu impulsów w pamięci, również jest myląca, ponieważ nie oddaje ona dynamiki działania takich urządzeń. W praktyce, liczniki te muszą reagować na zmieniające się warunki operacyjne, co wymaga zarówno dodawania, jak i odejmowania impulsów. Ignorowanie tej funkcji prowadzi do uproszczonego postrzegania złożonych systemów automatyki, co może skutkować błędnymi decyzjami w inżynierii i projektowaniu układów sterujących.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Zgrzewania
B. Klejenia
C. Lutowania miękkiego
D. Lutowania twardego
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 19

Do czynności przygotowawczych, które pozwalają na późniejszy poprawny montaż nowego paska klinowego w przekładni pasowej, nie należy

A. kontroli czystości paska
B. weryfikacji wymiarów
C. sprawdzenia poziomu naprężenia
D. oceny stopnia zużycia
Sprawdzanie stopnia naprężenia paska klinowego nie jest częścią operacji przygotowawczych przed jego montażem, ponieważ to zadanie wykonuje się już po zainstalowaniu paska. W ery technicznych i mechanicznych, takie jak w przemyśle automotive czy produkcyjnym, prawidłowe napięcie paska jest kluczowe dla efektywnej pracy przekładni pasowej. Przed montażem należy przede wszystkim zająć się weryfikacją wymiarów nowych komponentów, ocenić stopień zużycia istniejących części oraz zapewnić, że wszystkie elementy są czyste. Na przykład, czysty pasek oraz odpowiednio przygotowane koła pasowe minimalizują ryzyko poślizgu i przedwczesnego zużycia. Dobrą praktyką jest także stosowanie specjalistycznych narzędzi do pomiaru wymiarów, co wpływa na precyzję montażu. Wiedza na temat różnych typów pasków klinowych i ich specyfikacji pozwala na podejmowanie świadomych decyzji w procesie wymiany lub montażu, co jest zgodne ze standardami branżowymi, takimi jak ISO 9001.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z litego materiału magnetycznego izotropowego
B. z litego materiału magnetycznego anizotropowego
C. z pakietu blach elektrotechnicznych nie izolowanych od siebie
D. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie
Sugerowanie, że rdzeń wirnika silnika indukcyjnego można wykonać z litego materiału magnetycznego anizotropowego, jest nieprawidłowe z perspektywy inżynierii elektrycznej. Anizotropowość materiału oznacza, że jego właściwości magnetyczne są różne w różnych kierunkach, co w przypadku rdzenia wirnika byłoby niekorzystne. W silnikach indukcyjnych istotne jest, aby rdzeń miał jednorodne właściwości magnetyczne, co zapewnia optymalne zachowanie się pola magnetycznego. Lite materiały mogą prowadzić do powstawania silnych prądów wirowych, co zwiększa straty mocy i obniża efektywność silnika. Użycie pakietów blach elektrotechnicznych, które są wzajemnie izolowane, z kolei pozwala na ograniczenie tych strat. Zastosowanie litego materiału magnetycznego izotropowego nie rozwiązuje problemu strat prądów wirowych, ponieważ chociaż materiał jest jednorodny, to nadal sprzyja powstawaniu strat energetycznych poprzez generowanie prądów wirowych w strukturze. Wreszcie, wykonanie rdzenia z pakietu blach elektrotechnicznych nieizolowanych od siebie jest również nieprawidłowe. Takie podejście prowadziłoby do znacznych strat energii, a także do przegrzewania się rdzenia, co mogłoby wpłynąć na bezpieczeństwo i trwałość silnika. W przemyśle i inżynierii energetycznej stosuje się blachy elektrotechniczne o odpowiedniej grubości i właściwościach magnetycznych, aby zoptymalizować wydajność i niezawodność urządzeń elektrycznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Pamięć EPROM (ang. Erasable Programmable Read-Only Memory) to typ pamięci cyfrowej realizowanej w formie układu scalonego, którą można

A. programować i usuwać elektrycznie
B. bezpowrotnie stracić po odłączeniu zasilania
C. kasować za pomocą promieniowania ultrafioletowego
D. tylko odczytywać
Odpowiedzi, które mówią o programowaniu i kasowaniu elektrycznym oraz utracie danych po wyłączeniu zasilania, są w kontekście pamięci EPROM nietrafione. Pamięć EPROM nie traci danych po odłączeniu prądu; jest to pamięć nieulotna. To znaczy, że dane się w niej trzymają, nawet jak wyłączymy zasilanie, co jest mega ważne w wielu aplikacjach. Poza tym, EPROM programuje się tylko przy użyciu promieniowania UV, a nie elektrycznie, jak w przypadku pamięci EEPROM, która z kolei pozwala na kasowanie i programowanie elektryczne. A odpowiedź, która mówi, że EPROM to tylko odczyt, jest też myląca, bo EPROM można zaprogramować przed użyciem, więc ma znacznie większe możliwości. Wydaje mi się, że te błędne myśli mogą wynikać z braku znajomości różnic między różnymi typami pamięci i z problemów ze zrozumieniem, jak dokładnie działają te mechanizmy. Znajomość tych różnic jest naprawdę ważna, jeśli chcemy dobrze stosować technologię pamięci w projektowaniu systemów elektronicznych.

Pytanie 26

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. stopić je w miejscu styku z użyciem spoiwa.
B. docisnąć je podczas podgrzewania miejsca łączenia.
C. wprowadzić płynne spoiwo pomiędzy te elementy.
D. stopić je w miejscu zetknięcia bez użycia spoiwa.
Zgrzewanie to proces łączenia materiałów, w którym kluczowe jest zastosowanie odpowiedniego nacisku oraz podgrzewania w miejscu styku elementów. W odpowiedzi wskazano, że łączone materiały należy docisnąć z jednoczesnym ich podgrzaniem, co jest zgodne z zasadami zgrzewania oporowego oraz zgrzewania elektrycznego. W procesie tym ciepło generowane jest w wyniku oporu elektrycznego, co prowadzi do stopienia metalu w miejscu styku, a następnie do jego związania. Praktycznym przykładem zastosowania tej metody jest produkcja konstrukcji stalowych, gdzie zgrzewanie jest powszechnie używane do łączenia blach. Kluczowym aspektem jest kontrola temperatury oraz siły docisku, co powinno być zgodne z normami, takimi jak ISO 14731, które określają wymagania dotyczące zgrzewania. Zgrzewanie zapewnia wytrzymałe połączenia, co jest niezbędne w przemyśle motoryzacyjnym, budowlanym oraz w produkcji urządzeń przemysłowych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Sensory indukcyjne działające w trybie zbliżeniowym nie mogą być używane do detekcji elementów stworzonych

A. z polipropylenu
B. z miedzi
C. ze stali
D. z aluminium
Wybierając inne materiały, takie jak miedź, stal czy aluminium, można błędnie założyć, że sensory indukcyjne będą w stanie je wykryć. Miedź, będąca materiałem przewodzącym, podlega wpływowi pola elektromagnetycznego. Sensory indukcyjne są zaprojektowane do detekcji takich materiałów, a ich działanie opiera się na indukcji elektromagnetycznej. Z kolei stal, szczególnie ferromagnetyczna, jest zazwyczaj jednym z najlepszych materiałów do detekcji przez te sensory. Sensory indukcyjne są często stosowane do detekcji obiektów metalowych w różnych procesach przemysłowych, co sprawia, że wybór stali jako materiału wykrywalnego jest uzasadniony. Aluminium również jest materiałem, który można wykrywać, chociaż efektywność detekcji może być nieco niższa niż w przypadku stali. Problem z tymi odpowiedziami polega na mylnym przekonaniu, że każdy materiał metalowy można wykryć bez względu na jego właściwości elektryczne. W rzeczywistości wielkość obiektu, jego kształt oraz materiał, z którego jest wykonany, mają kluczowe znaczenie dla efektywności wykrywania. Użytkownicy powinni zwrócić uwagę na to, że różne typy czujników mają swoje specyficzne zastosowania związane z materiałami, co jest podkreślone w normach branżowych dotyczących automatyzacji i detekcji, takich jak IEC 60947-5-2.

Pytanie 29

Jakie urządzenie jest wykorzystywane do pomiaru kąta?

A. tachometr
B. sensor ultradźwiękowy
C. resolver
D. termoelement
Resolver jest precyzyjnym urządzeniem stosowanym do pomiaru położenia kątowego w różnych aplikacjach inżynieryjnych, takich jak robotyka, automatyka przemysłowa oraz w systemach kontroli ruchu. Działa na zasadzie pomiaru kątów za pomocą dwóch sygnałów elektrycznych, które są proporcjonalne do aktualnego kąta obrotu. Dzięki temu, resolver zapewnia wysoką dokładność oraz możliwość pracy w trudnych warunkach, takich jak wysokie temperatury czy wibracje. Znalezienie zastosowania w systemach sterowania serwonapędami to jeden z przykładów efektywnego wykorzystania resolvera, gdzie precyzja pomiaru jest kluczowa dla prawidłowego działania układów napędowych. W praktyce, stosowanie resolverów przyczynia się do poprawy efektywności operacyjnej oraz minimalizacji błędów w systemach automatyki, co jest zgodne z najlepszymi praktykami w branży inżynieryjnej.

Pytanie 30

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
B. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
C. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
D. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
Poprawna odpowiedź odnosi się do kluczowych zasad demontażu skomplikowanych urządzeń, które są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego procesu. Wykonanie planu demontażu jest istotne, ponieważ pozwala na zrozumienie struktury urządzenia, co z kolei umożliwia bezpieczne i uporządkowane rozmontowywanie poszczególnych zespołów. Przy takiej procedurze, każdy zespół jest najpierw demontowany w całości, co minimalizuje ryzyko uszkodzenia podzespołów i ułatwia ich późniejszy montaż lub konserwację. Przykładem zastosowania tej zasady może być demontaż skomplikowanych systemów elektronicznych, takich jak komputery czy maszyny przemysłowe, gdzie precyzyjne rozpoznanie kolejności demontażu, na podstawie schematów, może zapobiec zniszczeniu delikatnych komponentów. Zgodnie z najlepszymi praktykami, taki plan demontażu powinien być udokumentowany oraz regularnie aktualizowany, aby uwzględniał zmiany w konstrukcji urządzeń oraz nowe technologie.

Pytanie 31

Jakie jest zastosowanie transoptora?

A. zamiany impulsów elektrycznych na promieniowanie świetlne
B. galwanicznego połączenia obwodów
C. sygnalizacji transmisji
D. galwanicznej izolacji obwodów
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów. Jego podstawową funkcją jest zapewnienie separacji elektrycznej pomiędzy dwoma obwodami, co eliminuje ryzyko przeniesienia zakłóceń, przepięć oraz różnic potencjałów między nimi. Przykładem zastosowania transoptora jest w układach sterowania, gdzie sygnał z jednostki sterującej (np. mikroprocesora) jest izolowany od obwodu mocy, co jest kluczowe dla zabezpieczenia delikatnych komponentów. Transoptory znajdują szerokie zastosowanie w systemach automatyki przemysłowej, gdzie są używane do interfejsowania czujników z systemami sterującymi, a także w telekomunikacji, gdzie pozwalają na przesyłanie sygnałów bezpośrednio między różnymi poziomami potencjału. Stosowanie transoptorów jest zgodne z najlepszymi praktykami w inżynierii elektronicznej, które kładą duży nacisk na bezpieczeństwo oraz niezawodność układów elektronicznych, zwłaszcza w środowiskach przemysłowych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jaka jest maksymalna wartość podciśnienia, które może być doprowadzone do zaworu o danych znamionowych zamieszczonych w tabeli?

MS-18-310/2-HN
Zawory elektromagnetyczne 3/2 G1/8
Średnica nominalna : 1,4 mm
Ciśnienie pracy : -0,95 bar...8 bar
Czas zadziałania : 12 ms
Temperatura pracy : -10°C...+70°C
Zabezpieczenie : IP 65 EN 60529
Napięcie sterujące : 12V DC - 230V AC

A. 1 bar.
B. 0,95 bara.
C. 0,75 bara.
D. 2 bary.
Maksymalna wartość podciśnienia, którą może przyjąć zawór, wynosi 0,95 bara, co jest wyraźnie wskazane w tabeli danych znamionowych dla modelu zaworu MS-18-310/2-HN. W praktyce oznacza to, że zawór może efektywnie działać w szerokim zakresie ciśnień, od -0,95 bara do 8 barów. Takie parametry są kluczowe w projektowaniu systemów, w których stosuje się zawory, ponieważ zrozumienie limitów pracy zaworu pozwala na uniknięcie awarii i zapewnienie jego długotrwałej funkcjonalności. Podciśnienie w zakresie 0,95 bara jest typowe w zastosowaniach przemysłowych, takich jak systemy wentylacyjne czy pompy próżniowe, gdzie kontrolowanie ciśnienia ma kluczowe znaczenie dla efektywności operacyjnej. Warto również pamiętać, że przy wyborze zaworu należy kierować się standardami branżowymi, takimi jak norma ISO 9001, które podkreślają znaczenie dokładnych danych technicznych w celu zapewnienia odpowiedniej jakości i bezpieczeństwa pracy urządzeń.

Pytanie 36

Czy rdzenie maszyn elektrycznych produkuje się z stali?

A. krzemowych
B. krzemowo-manganowych
C. chromowych
D. chromowo-krzemowych
Rdzenie maszyn elektrycznych wykonuje się głównie ze stali krzemowej, ponieważ jej właściwości ferromagnetyczne zapewniają efektywność energetyczną oraz minimalizują straty energii w postaci ciepła. Stal krzemowa charakteryzuje się niskim współczynnikiem strat magnetycznych, co jest kluczowe w zastosowaniach takich jak silniki elektryczne czy transformatory. Dodatkowo, dzięki swojej strukturze krystalicznej, stal krzemowa ma dużą przewodność magnetyczną. W praktyce oznacza to, że rdzenie wykonane z tego materiału są bardziej kompaktowe i lżejsze, co przyczynia się do zmniejszenia wymiarów urządzeń elektrycznych. Standardy branżowe, takie jak IEC 60404, określają wymagania dotyczące rodzajów stali używanej w rdzeniach, podkreślając znaczenie stali krzemowej w produkcji zaawansowanych technologicznie maszyn elektrycznych. W związku z tym, stosowanie stali krzemowej jest zgodne z najlepszymi praktykami w zakresie projektowania i produkcji maszyn elektrycznych.

Pytanie 37

Przy pracy z urządzeniami, które są zasilane, należy używać narzędzi izolowanych oznaczonych

A. symbolem podwójnego trójkąta z określoną wartością napięcia
B. symbolem kwadratu z określoną wartością napięcia
C. napisem "narzędzie bezpieczne"
D. zielonym kolorem z żółtą obręczą
Narzędzia izolowane oznaczone znakiem podwójnego trójkąta z podaniem wartości napięcia są kluczowe dla zapewnienia bezpieczeństwa podczas pracy przy urządzeniach pod napięciem. Taki oznaczenie informuje użytkownika, że narzędzie zostało zaprojektowane z myślą o użyciu w określonym zakresie napięcia, co minimalizuje ryzyko porażenia prądem. Na przykład, jeśli narzędzie jest oznaczone dla napięcia 1000V, użytkownik ma pewność, że może je stosować w warunkach, gdzie występują napięcia do 1000V, bez obawy o uszkodzenie narzędzia czy jego izolacji. Stosowanie narzędzi z odpowiednim oznaczeniem jest zgodne z normami bezpieczeństwa, takimi jak EN 60900, które określają standardy dla narzędzi używanych w instalacjach elektrycznych. Dobre praktyki wskazują, że przed rozpoczęciem pracy należy zawsze sprawdzić oznaczenie narzędzi oraz ich stan techniczny, aby zapewnić, że nie doszło do uszkodzenia izolacji, co mogłoby prowadzić do niebezpiecznych sytuacji. Dodatkowo, w środowiskach przemysłowych, gdzie ryzyko kontaktu z napięciem jest wysokie, korzystanie z odpowiednio oznakowanych narzędzi powinno być rutynową procedurą każdej osoby pracującej w branży elektrycznej.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jak można zmierzyć prędkość przepływu gazu?

A. za pomocą zwężki Venturiego
B. przy pomocy pirometru radiacyjnego
C. używając czujnika termoelektrycznego
D. z wykorzystaniem impulsatora fotoelektrycznego
Zwężka Venturiego jest urządzeniem pomiarowym, które wykorzystuje zjawisko Bernoulliego do pomiaru prędkości przepływu płynów, w tym gazów. Gdy gaz przechodzi przez zwężkę, jego prędkość wzrasta, a ciśnienie spada. Zmiana ciśnienia na wejściu i wyjściu zwężki pozwala na obliczenie prędkości przepływu, korzystając z równań dynamicznych. Zastosowanie zwężki Venturiego jest szerokie, obejmując przemysł chemiczny, energetykę oraz instalacje HVAC. Umożliwia ona nie tylko pomiar prędkości, ale również kontrolę i regulację przepływu mediów. Obliczenia dokonuje się najczęściej w oparciu o prawo Bernoulliego oraz równanie ciągłości, co czyni zwężkę skutecznym narzędziem w wielu zastosowaniach inżynieryjnych. Przykładem mogą być systemy wentylacyjne, gdzie precyzyjny pomiar przepływu gazu jest kluczowy dla efektywności energetycznej i jakości powietrza.