Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 21 lutego 2026 21:29
  • Data zakończenia: 21 lutego 2026 21:48

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na rysunku przedstawiono urządzenie służące do poboru próbek

Ilustracja do pytania
A. proszkowych.
B. sypkich.
C. ciekłych.
D. stałych.
Urządzenie przedstawione na rysunku jest przeznaczone do poboru próbek ciekłych, co można stwierdzić na podstawie jego konstrukcji oraz zastosowanego mechanizmu. Przezroczysty pojemnik wskazuje, że materiał pobierany jest w formie cieczy, co jest zgodne z praktykami stosowanymi w laboratoriach analitycznych, gdzie przechowuje się próbki w takich pojemnikach, aby umożliwić wizualną kontrolę ich stanu. Przykłady zastosowania takiego urządzenia obejmują laboratoria chemiczne, w których pobiera się próbki roztworów, a także stacje monitorujące jakość wód, gdzie kluczowe jest dokładne pobranie próbki do analizy. Standardy ISO związane z pobieraniem próbek podkreślają znaczenie odpowiedniego doboru narzędzi do danego typu materiału, aby zapewnić reprezentatywność analizowanych próbek. W kontekście poboru próbek cieczy proces ten powinien być przeprowadzony zgodnie z zaleceniami technicznymi, aby uniknąć kontaminacji próbki, co jest istotnym aspektem w pracy laboratoryjnej.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Gęstość cieczy w próbce określa się bezpośrednio za pomocą

A. konduktometru
B. potencjometru
C. areometru
D. kolorymetru
Areometr to urządzenie służące do pomiaru gęstości cieczy. Działa na zasadzie wyporu, co oznacza, że jego zasada działania opiera się na Archimedesie. Areometr jest zanurzany w cieczy, a jego zanurzenie jest proporcjonalne do gęstości tej cieczy. Im większa gęstość, tym mniejsze zanurzenie. To narzędzie jest powszechnie wykorzystywane w laboratoriach chemicznych, przemysłowych i w gospodarstwie domowym, na przykład do pomiaru gęstości roztworów cukru, alkoholu czy innych cieczy. W praktyce, areometry są kalibrowane do konkretnych temperatur, co jest ważnym aspektem ich użytkowania, ponieważ gęstość cieczy zmienia się wraz z temperaturą. Użycie areometru, zamiast innych urządzeń, jest zgodne z najlepszymi praktykami laboratoryjnymi, ponieważ zapewnia dokładne pomiary w różnych zastosowaniach, takich jak kontrola jakości w przemyśle spożywczym czy chemicznym.

Pytanie 4

Intensywna reakcja z FeCl3 jest wykorzystywana do identyfikacji

A. amin
B. alkenów
C. fenoli
D. aldehydów
Barwna reakcja z chlorkiem żelaza(III) jest dobrze znanym testem stosowanym do wykrywania fenoli, które wykazują zdolność do tworzenia kompleksów z tym związkiem. Fenole posiadają grupę hydroksylową (-OH) połączoną z pierścieniem aromatycznym, co umożliwia im reagowanie z chlorkiem żelaza(III), prowadząc do powstania charakterystycznego zabarwienia, zazwyczaj fioletowego lub purpurowego. Przykładem zastosowania tej reakcji w laboratoriach chemicznych jest analiza składu substancji organicznych, gdzie obecność fenoli może wskazywać na zanieczyszczenia lub naturalne składniki aktywne. Test ten jest często wykorzystywany w przemyśle kosmetycznym oraz farmaceutycznym, gdzie fenole mogą pełnić rolę konserwantów lub substancji czynnych. Zastosowanie tej metody jest zgodne z normami laboratoryjnymi, które zalecają stosowanie reakcji z chlorkiem żelaza(III) jako jednego z podstawowych sposobów na identyfikację związków fenolowych, co jest uznawane za dobrą praktykę w chemii analitycznej.

Pytanie 5

Ustalanie miana roztworu polega na

A. miareczkowaniu próbki roztworu o dokładnie znanym stężeniu przy pomocy roztworu nastawianego
B. miareczkowaniu przy użyciu roztworu o precyzyjnie znanym stężeniu roztworu oznaczanej próbki
C. określaniu przybliżonego stężenia roztworu
D. zważeniu substancji i rozpuszczeniu jej w wodzie
Poprawna odpowiedź dotyczy miareczkowania próbki roztworu o znanym stężeniu za pomocą roztworu nastawianego. Jest to kluczowy proces analityczny w chemii, stosowany do precyzyjnego określania stężenia substancji chemicznych w roztworach. W praktyce, miareczkowanie polega na dodawaniu roztworu titranta o znanym stężeniu do roztworu próbki aż do osiągnięcia punktu końcowego, w którym zachodzi reakcja chemiczna. Użycie roztworu nastawianego, którego stężenie zostało ustalone i potwierdzone na podstawie ścisłych standardów, zapewnia wysoką dokładność i powtarzalność wyników analizy. Na przykład, w laboratoriach analitycznych często stosuje się roztwory wzorcowe, które są przygotowane w zgodzie z normami ISO, co pozwala na uzyskanie wiarygodnych wyników. Miareczkowanie jest nie tylko fundamentalną techniką w chemii analitycznej, ale także w biologii, farmacji, a także w przemyśle spożywczym do kontroli jakości produktów.

Pytanie 6

300 cm3 zanieczyszczonego benzenu poddano procesowi destylacji. Uzyskano 270 cm3 czystej substancji. Jaką wydajność miało oczyszczanie?

A. 111%
B. 10%
C. 80%
D. 90%
Wydajność procesu oczyszczania oblicza się przy użyciu wzoru: (objętość uzyskanego produktu / objętość surowca) * 100%. W naszym przypadku mamy 270 cm³ czystego benzenu uzyskanego z 300 cm³ zanieczyszczonego. Podstawiając wartości do wzoru, otrzymujemy: (270 / 300) * 100% = 90%. Taki wynik oznacza, że proces destylacji był efektywny i pozwolił na odzyskanie 90% czystej substancji. W praktyce, w przemyśle chemicznym, ocena wydajności procesów oczyszczania jest kluczowa, aby zapewnić opłacalność i efektywność produkcji. Wysoka wydajność wskazuje na skuteczną separację substancji, co jest istotne zarówno z punktu widzenia ekonomicznego, jak i jakościowego. Procesy oczyszczania są stosowane w różnych branżach, w tym w produkcji farmaceutycznej czy petrochemicznej, gdzie czystość substancji ma bezpośrednie znaczenie dla bezpieczeństwa i właściwości końcowego produktu. Prawidłowe obliczenie wydajności pozwala również na identyfikację potencjalnych problemów w procesie, co sprzyja ciągłemu doskonaleniu technologii produkcji.

Pytanie 7

Jakiego odczynnika chemicznego, oprócz Na2Cr2O7, należy użyć do sporządzenia mieszaniny chromowej do czyszczenia sprzętu szklarskiego w laboratorium?

A. H2SO4
B. K2CrO4
C. H2CrO4
D. HCI
Kwasy siarkowy (H2SO4) jest kluczowym składnikiem w przygotowaniu mieszaniny chromowej, obok dichromianu sodu (Na2Cr2O7), ponieważ działa jako silny środek utleniający, który wspomaga usuwanie zanieczyszczeń organicznych oraz nieorganicznych z powierzchni szkła laboratoryjnego. Kwas siarkowy reaguje z chromianami, tworząc bardziej aktywne formy chromu, co zwiększa efektywność czyszczenia. Zastosowanie tej mieszaniny jest powszechne w laboratoriach chemicznych, gdzie czystość szkła jest kluczowa dla uzyskania wiarygodnych wyników badań. Dzięki właściwościom higroskopijnym kwasu siarkowego, mieszanina ta dobrze przylega do powierzchni szkła, co pozwala na skuteczniejsze usuwanie osadów. W praktyce, przed użyciem tej mieszaniny, należy przestrzegać odpowiednich procedur bezpieczeństwa, takich jak noszenie odzieży ochronnej i stosowanie odpowiednich środków ochrony osobistej. Ponadto, zgodnie z zaleceniami OSHA i innymi wytycznymi dotyczącymi bezpieczeństwa w laboratoriach, należy przechowywać kwas siarkowy w odpowiednich naczyniach, aby zapobiec jego wyciekom oraz kontaktowi z innymi substancjami chemicznymi.

Pytanie 8

Aby przygotować 150 g roztworu jodku potasu o stężeniu 10% (m/m), konieczne jest użycie
(zakładając, że gęstość wody wynosi 1 g/cm3)

A. 10 g KI oraz 150 cm3 wody destylowanej
B. 15 g KI oraz 145 g wody destylowanej
C. 15 g KI oraz 135 cm3 wody destylowanej
D. 10 g KI oraz 140 g wody destylowanej
W przypadku nieprawidłowych odpowiedzi, jak na przykład 15 g KI i 145 g wody destylowanej, pojawia się błąd w obliczeniach stężenia. Zgodnie z definicją stężenia masowego, suma masy substancji i rozpuszczalnika musi wynosić 150 g. W tym przypadku, przy 15 g KI, pozostała masa wody powinna wynosić 135 g, a nie 145 g. To prowadzi do stwierdzenia, że stężenie jodku potasu będzie znacznie mniejsze niż założone 10%. Przy odpowiedzi 10 g KI i 140 g wody destylowanej, również doświadczamy nieprawidłowych proporcji, ponieważ jodek potasu powinien stanowić 15 g w roztworze 150 g, co jest niezgodne z podanym stężeniem. Kolejna odpowiedź, 10 g KI i 150 cm³ wody, jest także wadliwa, ponieważ pomimo, że woda ma gęstość 1 g/cm³, to jednak suma masy KI i wody przekracza 150 g. Błędy te można przypisać niewłaściwemu zrozumieniu relacji między masą a objętością oraz stężeniem roztworu. W praktyce laboratoryjnej istotne jest, aby zawsze upewnić się, że obliczenia są zgodne z zasadami przygotowywania roztworów, a także aby mieć na uwadze odpowiednie metody pomiaru i przygotowania, co pozwala na uniknięcie typowych pomyłek i uzyskanie dokładnych wyników.

Pytanie 9

Ile gramów chlorku baru powinno się rozpuścić w wodzie, aby uzyskać 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3?

A. 26,04 g
B. 20,00 g
C. 24,06 g
D. 18,40 g
Aby obliczyć masę chlorku baru potrzebną do przygotowania 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3, należy skorzystać z wzoru na stężenie masowe. Stężenie masowe (C) definiuje się jako masa substancji (m) dzielona przez objętość roztworu (V) pomnożoną przez 100%. W tym przypadku C = 10%, V = 200 cm3. Zatem: m = C * V / 100 = 10 * (200) / 100 = 20 g. Jednakże, aby obliczyć masę rzeczywistą roztworu, musimy uwzględnić jego gęstość. Gęstość (d) roztworu wynosi 1,203 g/cm3, co oznacza, że masa roztworu wyniesie: masa roztworu = objętość * gęstość = 200 cm3 * 1,203 g/cm3 = 240,6 g. Teraz, skoro mamy 20 g chlorku baru, to masa pozostałej części roztworu (czyli wody) wyniesie 240,6 g - 20 g = 220,6 g. W końcu należy złożyć obliczenia: 20 g chlorku baru stanowi 10% całości, co jest zgodne z założeniem stężenia. Ostatecznie, aby uzyskać roztwór o pożądanym stężeniu, konieczne jest rozpuszczenie 24,06 g chlorku baru, co odpowiada odpowiedzi nr 4.

Pytanie 10

Związek o podanym wzorze to kwas

Ilustracja do pytania
A. octowy.
B. aminooctowy.
C. asparginowy.
D. glicerynowy.
Kwas octowy, czy jak kto woli kwas etanowy, ma wzór CH₃COOH. Jest to jeden z tych najpotrzebniejszych kwasów organicznych. Gorąco polecam zwrócić uwagę na to, jak szerokie ma zastosowanie. W przemyśle spożywczym działa jak konserwant i pomaga w regulacji kwasowości, a w chemii idzie jeszcze dalej, bo wykorzystuje się go do produkcji różnych związków, jak np. octan etylu czy sztuczne włókna. No i warto dodać, że kwas octowy naturalnie występuje w wielu produktach, jak ocet, a więc jest powszechnie znany. Uważam, że znajomość wzoru chemicznego kwasu octowego jest istotna dla chemików, którzy zajmują się syntezą organiczną. Technolodzy żywności też powinni być z nim za pan brat, bo wpływa na smak i trwałość produktów. W laboratoriach często korzysta się z kwasu octowego jako reagentu, więc umiejętność jego rozpoznania jest bardzo ważna.

Pytanie 11

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1
A. 375,0 g lodu i 125,0 g chlorku sodu.
B. 384,6 g lodu i 115,4 g chlorku amonu.
C. 250,0 g wody i 250,0 g rodanku amonu.
D. 384,6 g wody i 115,4 g chlorku amonu.
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.

Pytanie 12

Na podstawie danych w tabeli wskaż, którego środka suszącego można użyć do osuszenia związku o wzorze (CH3)2CO

Środek suszącyStosowany do suszeniaNie nadaje się do suszenia
NaEter, węglowodory, aminy trzeciorzędoweChlorowcopochodne węglowodorów
CaCl₂Węglowodory, aceton, eter, gazy obojętneAlkohole, amoniak, aminy
Żel krzemionkowyW eksykatorzeHF
H₂SO₄Gazy obojętne i kwasoweZwiązki nienasycone, alkohole, substancje zasadowe
A. CaCl2
B. żel krzemionkowy
C. Na
D. H2SO4
Wybór jednego z pozostałych środków suszących, takich jak Na, H2SO4 czy żel krzemionkowy, w kontekście osuszania acetonu jest nieodpowiedni ze względu na specyfikę ich działania. Na, będący metalem alkalicznym, jest stosowany głównie do osuszania eterów, węglowodorów i amin trzeciorzędowych, gdzie jego reakcje z wodą prowadzą do powstawania sody i innych produktów, co czyni go nieodpowiednim do osuszania ketonów. H2SO4, czyli kwas siarkowy, jest odpowiedni do osuszania gazów obojętnych i kwasowych, jednak jego silne działanie drażniące oraz ryzyko reakcji egzotermicznych sprawiają, że nie nadaje się do osuszania substancji organicznych, takich jak aceton. Z kolei żel krzemionkowy, mimo że jest skutecznym środkiem osuszającym, jest zazwyczaj stosowany w eksykatorach, a nie w bezpośrednim osuszaniu cieczy. Typowe błędy w analizie polegają na pomijaniu specyficznych właściwości chemicznych poszczególnych substancji oraz ich zastosowań w laboratoriach. Aby skutecznie osuszać substancje chemiczne, należy znać ich właściwości, a także odpowiednie metody i środki, które są dostosowane do ich specyfiki. W kontekście standardów laboratoryjnych, brak takiej wiedzy może prowadzić do błędnych wniosków oraz zanieczyszczenia próbek, co wpłynie na wyniki analiz chemicznych.

Pytanie 13

Proces oddzielania cieczy od osadu nazywa się

A. sublimacji
B. sedymentacji
C. dekantacji
D. aeracji
Dekantacja to proces, który polega na oddzieleniu cieczy od osadu, co jest kluczowym krokiem w wielu dziedzinach, takich jak chemia, biotechnologia czy inżynieria środowiska. W praktyce dekantacja jest często stosowana w laboratoriach do oczyszczania roztworów, a także w przemyśle, na przykład w produkcji wina, gdzie dekantowanie polega na oddzieleniu klarownego wina od osadu, który może powstawać w czasie fermentacji. Proces ten polega na powolnym wylewaniu cieczy z naczynia, co pozwala na pozostawienie osadu na dnie. Zastosowanie dekantacji jest zgodne z dobrymi praktykami laboratoryjnymi i przemysłowymi, które zalecają efektywne i bezpieczne separowanie substancji, minimalizując straty materiałowe. Warto również zauważyć, że dekantacja może być stosowana jako wstępny krok przed innymi metodami rozdziału, takimi jak filtracja czy centrifugacja, co zwiększa jej znaczenie w kontekście procesów technologicznych.

Pytanie 14

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. wodnych
B. piaskowych
C. olejowych
D. powietrznych
Ogrzewanie cieczy żrących na łaźniach piaskowych to dobra opcja, bo piasek świetnie izoluje i rozprowadza ciepło. Dzięki temu mamy stabilne warunki, co jest bardzo ważne, zwłaszcza przy substancjach, które mogą się 'dziwnie' zachowywać, gdy temperatura szybko się zmienia. W praktyce użycie łaźni piaskowych zmniejsza ryzyko przegrzewania, co jest super istotne, bo może prowadzić do różnych nieprzyjemnych sytuacji, jak dekompozycja czy toksyczne opary. Piasek nie tylko grzeje, ale i chroni operatora. W laboratoriach chemicznych oraz w różnych branżach, gdzie obsługuje się cieczy żrące, przestrzeganie zasad BHP i stosowanie odpowiednich metod ogrzewania jest kluczowe, aby zapewnić bezpieczne warunki pracy i ochronić zdrowie. To są sprawy, które powinny być zawsze na pierwszym miejscu, a dokumenty branżowe mocno to podkreślają.

Pytanie 15

Którego z poniższych naczyń laboratoryjnych nie powinno się używać do podgrzania 100 cm3wody?

A. Kolby stożkowej o pojemności 200 cm3
B. Zlewki o pojemności 150 cm3
C. Kolby miarowej o pojemności 100 cm3
D. Zlewki o pojemności 200 cm3
Kolby miarowe, ze względu na swoją konstrukcję i przeznaczenie, nie są odpowiednie do stosowania jako naczynia do ogrzewania cieczy, w tym przypadku 100 cm³ wody. Ich główną funkcją jest dokładne mierzenie objętości cieczy, a nie ich podgrzewanie. Kolby miarowe wykonane są z cienkiego szkła, co sprawia, że są bardziej wrażliwe na zmiany temperatury i mogą łatwo pęknąć pod wpływem ciepła. W praktyce laboratoryjnej, do ogrzewania cieczy zaleca się używanie naczyń takich jak zlewki czy kolby stożkowe, które są zaprojektowane do wytrzymywania wysokich temperatur. Na przykład, zlewki wykonane z borokrzemowego szkła, które charakteryzuje się wysoką odpornością na temperaturę, są powszechnie stosowane do takich zadań. Dobre praktyki laboratoryjne nakazują wybieranie naczyń dostosowanych do specyficznych zastosowań, aby zapewnić bezpieczeństwo i efektywność pracy.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. mikrofalową
B. UV
C. na sucho
D. na mokro
Odpowiedź "na sucho" jest prawidłowa, ponieważ mineralizacja substancji organicznej w atmosferze powietrza polega na utlenianiu tych substancji w warunkach braku wody. Proces ten jest stosowany w różnych dziedzinach, takich jak przemysł biopaliwowy, gdzie organiczne odpady są przekształcane w użyteczne substancje, jak biometan. Mineralizacja ma kluczowe znaczenie w cyklu nutrientów w ekosystemach, gdzie przyczynia się do uwalniania składników odżywczych do gleby, co jest istotne dla wzrostu roślin. Dobrze zorganizowany proces mineralizacji pozwala na efektywne zarządzanie odpadami organicznymi, zmniejszając ich wpływ na środowisko. W kontekście standardów branżowych, uwzględnienie metod mineralizacji w zarządzaniu odpadami organicznymi jest częścią dobrych praktyk, które podkreślają znaczenie recyklingu i ponownego wykorzystania zasobów.

Pytanie 18

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. W
B. Ex
C. In
D. R
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 19

Którego odczynnika należy użyć do przygotowania roztworu wzorcowego, zawierającego jony \( \text{Fe}^{3+} \)?

A. \( \text{Fe(OH)}_3 \) cz.
B. \( \text{NH}_4\text{Fe(SO}_4\text{)}_2 \cdot 12\text{H}_2\text{O} \) cz.d.a.
C. \( \text{Fe(OH)}_3 \) cz.d.a.
D. \( \text{NH}_4\text{Fe(SO}_4\text{)}_2 \cdot 12\text{H}_2\text{O} \) cz.
Odpowiedź D jest prawidłowa, ponieważ do przygotowania roztworu wzorcowego zawierającego jony Fe3+ należy użyć związku, który dostarcza te jony w formie rozpuszczalnej. NH4Fe(SO4)2·12H2O, znany również jako sól amonowa żelaza(III), jest idealnym kandydatem, ponieważ w wodzie dysocjuje na jony Fe3+ oraz jony amonowe i siarczanowe, które nie wpływają na analizę jonów żelaza. Użycie czystych substancji chemicznych, takich jak ten odczynnik oznaczony „cz.d.a.”, zapewnia wysoką jakość roztworu wzorcowego, co jest kluczowe w analizach chemicznych, takich jak spektroskopia czy miareczkowanie. Przygotowując roztwory wzorcowe, należy przestrzegać standardów laboratoryjnych, takich jak normy ISO, które wskazują na konieczność używania reagentów o wysokiej czystości. Odpowiednia jakość odczynników ma zasadnicze znaczenie dla uzyskiwania wiarygodnych wyników analitycznych, co jest kluczowe w wielu dziedzinach, w tym w chemii analitycznej, farmacji oraz kontroli jakości.

Pytanie 20

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. azotowym(V)
B. bromowodorowym
C. chlorowodorowym
D. siarkowym(VI)
Roztwarzanie mosiądzu w stężonym kwasie azotowym(V) jest prawidłowym podejściem, ponieważ kwas ten jest silnym utleniaczem, zdolnym do rozkładu mosiądzu, który jest stopem miedzi i cynku. Kwas azotowy(V) powoduje utlenienie miedzi do tlenków miedzi oraz rozpuszczenie cynku, a reakcja ta prowadzi do powstania azotanu miedzi i azotanu cynku. Stosowanie kwasu azotowego w analizie jakościowej ma zastosowanie w laboratoriach chemicznych oraz w przemyśle metalurgicznym, gdzie dokładna analiza składników stopów jest kluczowa dla kontrolowania jakości produktów. Na przykład, w procesach produkcji i recyklingu metali nieżelaznych, analiza jakościowa przy użyciu kwasu azotowego pozwala na dokładne określenie proporcji składników w stopach, co ma istotne znaczenie dla ich dalszego przetwarzania oraz zastosowania. W pracy laboratoryjnej należy pamiętać o zachowaniu odpowiednich środków ostrożności, ponieważ kwas azotowy jest substancją silnie żrącą i toksyczną, co wymaga stosowania odpowiednich zabezpieczeń osobistych oraz procedur BHP.

Pytanie 21

Wody pobrane ze studni powinny być przewożone w szczelnie zamkniętych butelkach z przezroczystego materiału

A. z tworzywa sztucznego, w temperaturze około 4°C
B. z tworzywa sztucznego, w temperaturze około 20°C
C. szklanych, w temperaturze około 20°C
D. szklanych, w temperaturze około 30°C
Wybór materiału i warunków transportu próbek wody ma kluczowe znaczenie dla jakości analizy. Odpowiedzi sugerujące użycie butelek szklanych nie biorą pod uwagę, że szkło, choć chemicznie stabilne, jest bardziej podatne na stłuczenia i może być nieodpowiednie w warunkach transportowych, gdzie istnieje ryzyko uszkodzenia. Wysoka temperatura, jak 30°C, stwarza dodatkowe problemy, ponieważ może prowadzić do niepożądanych reakcji chemicznych oraz przyspieszać rozwój bakterii i innych mikroorganizmów, co zafałszowuje wyniki analizy. Podobnie, temperatura około 20°C nie jest optymalna dla długotrwałego przechowywania próbki, gdyż może wpływać na stabilność niektórych parametrów jakościowych wody. Przy pobieraniu i transporcie próbek wody należy przestrzegać procedur, które uwzględniają zarówno materiał, jak i temperaturę, aby zapewnić ich reprezentatywność. Niezrozumienie wpływu temperatury na skład chemiczny wody oraz na stabilność mikrobiologiczną może prowadzić do błędów w interpretacji wyników, co jest typowym zagadnieniem w praktyce laboratoryjnej. Właściwe podejście jest zatem kluczowe dla uzyskania wiarygodnych danych analitycznych.

Pytanie 22

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 10 mol/dm3
B. 0,1 mol/dm3
C. 100 mol/dm3
D. 1 mol/dm3
Aby obliczyć stężenie molowe roztworu, należy najpierw obliczyć liczbę moli KOH zawartych w 5,6 g. Masa molowa KOH wynosi 56 g/mol (39 g/mol dla K + 16 g/mol dla O + 1 g/mol dla H). Możemy więc obliczyć liczbę moli jako: n = m / M = 5,6 g / 56 g/mol = 0,1 mol. Następnie przekształcamy objętość roztworu z centymetrów sześciennych na decymetry sześcienne: 100 cm³ = 0,1 dm³. Stężenie molowe (C) obliczamy korzystając ze wzoru C = n / V, co daje C = 0,1 mol / 0,1 dm³ = 1 mol/dm³. Tego typu obliczenia są niezwykle istotne w chemii analitycznej, gdzie precyzyjne stężenia roztworów są kluczowe dla uzyskania poprawnych wyników eksperymentalnych oraz w syntezie substancji chemicznych. Zrozumienie tych obliczeń pomaga w zachowaniu właściwych proporcji w reakcjach chemicznych, co jest podstawą wielu procesów przemysłowych oraz laboratoriów badawczych.

Pytanie 23

Roztwór zawierający 16,00 g siarczanu(VI) miedzi(II) nasycono siarkowodorem. Masa wytrąconego siarczku miedzi(II), po odsączeniu i wysuszeniu, wynosiła 8,64 g. Oblicz procentową wydajność tej reakcji.

Równanie reakcji:
\( \text{CuSO}_4 + \text{H}_2\text{S} \rightarrow \text{CuS} + \text{H}_2\text{SO}_4 \)
\( \text{M CuSO}_4 = 160 \, \text{g/mol} \)
\( \text{M CuS} = 96 \, \text{g/mol} \)

A. 87%
B. 100%
C. 98%
D. 90%
Odpowiedź "90%" jest poprawna, ponieważ obliczona wydajność reakcji na podstawie przeprowadzonych eksperymentów wynosi 90%. W reakcji siarczanu(VI) miedzi(II) z siarkowodorem, teoretycznie z 16,00 g CuSO4 można uzyskać 9,6 g CuS. Obliczenia opierają się na stosunkach molowych oraz mas molowych reagentów. Wytrącenie 8,64 g CuS, co stanowi 90% teoretycznej wartości, jest wynikiem efektywnego przebiegu reakcji. W praktyce, wydajność reakcji chemicznych może być różna z powodu czynników takich jak niecałkowite reakcje, straty materiałowe podczas filtracji czy zanieczyszczenia. Zrozumienie tych aspektów jest kluczowe w przemyśle chemicznym, gdzie optymalizacja wydajności procesów chemicznych jest istotna dla rentowności produkcji. Warto również zauważyć, że uzyskanie wyników bliskich 100% jest trudne, ale można dążyć do maksymalizacji wydajności przez doskonalenie technik laboratoryjnych oraz warunków reagowania.

Pytanie 24

Do reakcji estryfikacji użyto 150 g kwasu benzoesowego (M = 122,12 g/mol), w wyniku której otrzymano czysty preparat benzoesanu metylu (M = 136,2 g/mol). Ile gramów benzoesanu metylu otrzymano, jeżeli reakcja przebiegała z wydajnością 92%?

Ilustracja do pytania
A. 167,3 g
B. 154,3 g
C. 181,8 g
D. 153,9 g
Aby zrozumieć, dlaczego 153,9 g benzoesanu metylu to prawidłowa odpowiedź, warto przyjrzeć się całemu procesowi estryfikacji. Zaczynamy od obliczenia liczby moli kwasu benzoesowego. Przy masie 150 g i masie molowej 122,12 g/mol, otrzymujemy około 1,228 moli. W procesach chemicznych, takich jak estryfikacja, często przyjmuje się stechiometrię reakcji 1:1, co oznacza, że 1 mol kwasu benzoesowego reaguje z 1 molem alkoholu do produkcji 1 mola estry. Teoretyczna masa produktu, którą można by uzyskać, oblicza się na podstawie moli i masy molowej benzoesanu metylu, co daje nam około 167,3 g. Jednak w rzeczywistości nie każda reakcja przebiega w 100% wydajności. W przypadku omawianej reakcji wydajność wynosi 92%, co oznacza, że otrzymany produkt to nie cała teoretyczna masa, a jej 92%. Obliczenie rzeczywistej masy benzoesanu metylu poprzez pomnożenie 167,3 g przez 0,92 prowadzi do uzyskania 153,9 g. Taka analiza nie tylko podkreśla znaczenie dokładnych obliczeń w chemii, ale także ilustruje podstawowe zasady prowadzenia reakcji chemicznych w warunkach laboratoryjnych, co jest kluczowe w różnych zastosowaniach przemysłowych, takich jak produkcja estrowych dodatków do żywności czy kosmetyków.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Pierwotna próbka jest zbierana

A. w jednym punkcie partii materiału
B. z próbki ogólnej w sposób bezpośredni
C. z próbki przeznaczonej do badań
D. z opakowania pierwotnego
Prawidłowa odpowiedź wskazuje, że próbka pierwotna jest pobierana w jednym miejscu partii materiału. Jest to zgodne z najlepszymi praktykami w zakresie pobierania próbek, które zalecają, aby próbki były reprezentatywne dla całej partii, co pozwala na dokładną ocenę jakości materiału. Pobieranie próbek w jednym miejscu eliminuje ryzyko rozrzutności wyników i zapewnia, że każda próbka oddaje rzeczywisty stan partii. Na przykład w przemyśle farmaceutycznym pobieranie próbek substancji czynnej w jednym miejscu partii pozwala na skuteczną kontrolę jakości i zgodność z normami, takimi jak ISO 17025, które wymagają, aby metody pobierania próbek były jasno określone i zgodne z procedurami operacyjnymi. W praktyce, taka metoda pozwala na skuteczniejsze monitorowanie i zarządzanie jakością, co jest kluczowe dla zapewnienia bezpieczeństwa i skuteczności produktów.

Pytanie 27

Zestaw do filtracji nie zawiera

A. kolby miarowej
B. metalowego statywu
C. szklanej bagietki
D. szklanego lejka
Kolba miarowa nie jest elementem zestawu do sączenia, ponieważ jej główną funkcją jest dokładne pomiarowanie objętości cieczy. W procesach sączenia, szczególnie w laboratoriach chemicznych i biologicznych, kluczowe jest oddzielenie fazy stałej od cieczy, co odbywa się najczęściej z wykorzystaniem lejek szklany, który jest niezbędny do precyzyjnego kierowania cieczy do naczynia zbiorczego. Bagietka szklana służy do przenoszenia lub dozowania niewielkich ilości substancji, a statyw metalowy jest używany do stabilizacji elementów podczas eksperymentów. W kontekście dobrych praktyk laboratoryjnych, ważne jest zrozumienie roli każdego z tych narzędzi, aby efektywnie przeprowadzać procedury analityczne, takie jak filtracja, gdzie kluczowe jest użycie lejka i odpowiednich filtrów, a kolba miarowa nie jest konieczna w tym procesie. Zrozumienie tych różnic pozwala na lepsze planowanie i przeprowadzanie działań laboratoryjnych, co jest niezbędne w pracy każdego chemika.

Pytanie 28

Podaj nazwę reagentu chemicznego, który w specyficznych warunkach reaguje tylko z jednym jonem, pierwiastkiem lub związkiem chemicznym?

A. Specyficzny
B. Grupowy
C. Selektywny
D. Wzorcowy
Odczynnik specyficzny to substancja chemiczna, która reaguje wyłącznie z określonymi jonami, pierwiastkami lub związkami chemicznymi, co czyni go niezbędnym narzędziem w chemii analitycznej. Przykładem takiego odczynnika może być wskaźnik pH, który zmienia kolor tylko w obecności określonego zakresu wartości pH. Użycie odczynników specyficznych jest kluczowe w różnych dziedzinach, od analizy środowiskowej po medycynę, gdzie precyzyjne oznaczenie obecności określonych substancji jest niezbędne dla bezpieczeństwa i jakości produktów. W praktyce, standardy branżowe, takie jak ISO 17025, podkreślają znaczenie stosowania odczynników specyficznych w laboratoriach, aby zapewnić wiarygodność i dokładność wyników analiz. Używając odczynnika specyficznego, laboratoria mogą minimalizować ryzyko błędnych odczytów i zwiększać efektywność przeprowadzanych ekspertyz, co jest niezwykle ważne w kontekście regulacji prawnych i zarządzania jakością.

Pytanie 29

Przyrząd przedstawiony na rysunku służy do pobierania próbek substancji

Ilustracja do pytania
A. ciekłych.
B. mazistych.
C. stałych.
D. gazowych.
Wybór odpowiedzi związanych z substancjami ciekłymi, gazowymi czy mazistymi jest błędny z kilku powodów. Przede wszystkim, penetrometr, będący narzędziem do pobierania próbek, został zaprojektowany specjalnie do pracy z substancjami stałymi. Jego budowa umożliwia penetrowanie gruntu i mierzenie oporu, co jest niezbędne dla określenia gęstości i konsystencji gleby. Próbki ciekłe wymagają użycia zupełnie innych narzędzi, takich jak pipety czy strzykawki, które są przystosowane do transportu cieczy i nie mają zastosowania w przypadku stałych substancji. Podobnie, substancje gazowe wymagają innych metod analizy, jak chromatografia gazowa, ponieważ ich charakterystyka fizyczna i chemiczna znacznie różni się od substancji stałych. Z kolei maziste substancje, takie jak błoto, również potrzebują odmiennych narzędzi do pobierania próbek, gdyż ich lepkość i konsystencja nie pozwalają na użycie penetrometru. Typowym błędem jest mylenie zastosowania narzędzi i niewłaściwe przypisanie ich właściwości do innych typów substancji. Użytkownicy powinni być świadomi, że każde narzędzie ma swoje określone zastosowanie i nie powinno być używane poza tym kontekstem, co jest kluczowe dla zachowania standardów jakości i bezpieczeństwa w badaniach geotechnicznych.

Pytanie 30

Czy próbkę laboratoryjną przechowuje się w lodówce, gdy występuje w niej

A. chłonięcie wody
B. degradacja termiczna
C. rozpad promieniotwórczy
D. utrata lotnych składników
Rozpatrując odpowiedzi dotyczące przechowywania próbki laboratoryjnej, warto zauważyć, że niektóre podejścia są mylące i mogą prowadzić do nieprawidłowych wniosków. Rozpad promieniotwórczy nie jest procesem, który można kontrolować przez działanie temperatury, gdyż jest to zjawisko fizyczne związane z czasem połowicznego rozpadu izotopów. Przechowywanie próbek w lodówce nie ma wpływu na ten proces, ponieważ nie eliminuje on promieniotwórczości. Podobnie, chłonięcie wody, które jest raczej zjawiskiem związanym z adsorpcją lub dyfuzją, nie jest bezpośrednio związane z degradacją termiczną. Wysoka wilgotność może wpływać na niektóre próbki, ale nie jest to główny powód, dla którego próbki przechowuje się w chłodniach. Utrata lotnych składników, chociaż może być istotna, dotyczy raczej zjawisk, które są efektem obróbki lub analizy, a nie samym procesem przechowywania. Właściwe przechowywanie próbek jest zatem kluczowe, aby uniknąć degradacji termicznej, a nie zjawisk związanych z promieniotwórczością czy adsorpcją. W praktyce, nieprawidłowe zrozumienie tych procesów może prowadzić do błędów w analizach laboratoryjnych, co w konsekwencji wpływa na diagnostykę medyczną i wyniki badań. Przechowywanie próbek w odpowiednich warunkach zgodnych z wytycznymi branżowymi jest kluczowe dla zapewnienia ich stabilności i właściwej analizy.

Pytanie 31

Wykorzystując pipetę gazową, pobrano próbkę azotu (Mn2 = 28 g/mol) o objętości 250 cm3 w standardowych warunkach. Jaką masę ma zmierzony azot?

A. 0,1563 g
B. 0,3125 g
C. 3,1250 g
D. 1,5635 g
Odpowiedź 0,3125 g jest prawidłowa, ponieważ można ją obliczyć za pomocą wzoru na masę gazu w warunkach normalnych. W warunkach normalnych (0°C i 1 atm) 1 mol gazu zajmuje objętość 22,4 litra (22400 cm³). Mając objętość 250 cm³, możemy obliczyć ilość moli azotu: n = V / V_m, gdzie V_m to objętość molowa gazu. Zatem n = 250 cm³ / 22400 cm³/mol = 0,01116 mol. Następnie, wykorzystując masę molową azotu (28 g/mol), obliczamy masę: m = n * M, co daje m = 0,01116 mol * 28 g/mol = 0,3125 g. W laboratoriach chemicznych, dokładne pomiary masy gazów są kluczowe, szczególnie w reakcjach, które wymagają precyzyjnych ilości reagentów. Zastosowanie pipet gazowych oraz znajomość zależności między objętością, ilością moli a masą jest fundamentalne w analityce chemicznej oraz w syntezach chemicznych, gdzie precyzja wpływa na wyniki eksperymentów oraz ich powtarzalność.

Pytanie 32

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64
A. 2,50 cm3
B. 2,15 cm3
C. 2,13 cm3
D. 2,52 cm3
Aby zrozumieć, dlaczego proponowane odpowiedzi są błędne, warto przyjrzeć się fundamentom przygotowywania roztworów chemicznych. W przypadku tego pytania, istnieje ryzyko mylenia pojęć związanych z rozcieńczeniem i molowością. Wiele osób może pomylić objętość roztworu potrzebną do uzyskania określonej molowości z ilością substancji chemicznej, co prowadzi do niewłaściwych obliczeń. Ponadto, pomijanie faktu, że roztwór 36% HCl ma inną gęstość i stężenie mólowe, może skutkować nieprawidłowymi wynikami. Często zdarza się również, że przy obliczeniach nie uwzględnia się jednostek, co prowadzi do błędnych wyników. Użytkownicy mogą także zapominać o tym, że w przypadku roztworów silnych kwasów, takich jak HCl, ważne jest, aby dokładnie znać ich właściwości i zachowanie w różnych stężeniach. Obliczenia powinny bazować na dokładnych danych o stężeniu roztworu, co jest kluczowe w chemii analitycznej. W praktyce, niezrozumienie tych zasad może prowadzić do błędów w eksperymentach laboratoryjnych i niewłaściwego przygotowania roztworów, co może mieć poważne konsekwencje w badaniach chemicznych i przemysłowych. Dlatego tak ważne jest, aby stosować się do dobrych praktyk i standardów przy wykonywaniu obliczeń chemicznych.

Pytanie 33

Osoba pracująca z lotnym rozpuszczalnikiem straciła przytomność. Jakie działania należy podjąć, aby udzielić pierwszej pomocy?

A. zwilżeniu zimną wodą czoła i karku
B. rozpoczęciu reanimacji
C. rozpoczęciu resuscytacji
D. wyniesieniu osoby poszkodowanej na świeże powietrze
Rozpoczęcie reanimacji czy resuscytacji w przypadku utraty przytomności spowodowanej działaniem lotnych rozpuszczalników jest podejściem niewłaściwym, jeżeli nie ma wyraźnych oznak zatrzymania krążenia. Reanimacja jest procedurą, którą stosuje się w sytuacjach, gdy osoba nie oddycha lub nie ma pulsu, co nie zawsze jest równoważne utracie przytomności. Przed podjęciem jakichkolwiek działań ratujących, należy najpierw ocenić stan poszkodowanego, co obejmuje sprawdzenie, czy reaguje na bodźce oraz czy oddycha. Zwilżenie czoła i karku zimną wodą może przynieść ulgę w przypadku przegrzania lub udaru cieplnego, ale nie jest to właściwa metoda w przypadku utraty przytomności spowodowanej substancjami chemicznymi. Zamiast tego, może to opóźnić skuteczne udzielenie pomocy, ponieważ kluczowe jest jak najszybsze usunięcie osoby z niebezpiecznego środowiska. Typowe błędy myślowe, które mogą prowadzić do mylnych wniosków, obejmują mylenie symptomów i nieprawidłowe przypisanie reakcji organizmu, które mogą wynikać z różnych przyczyn. Właściwe podejście do pierwszej pomocy w takich sytuacjach wymaga znajomości specyfiki działania substancji chemicznych oraz sposobów szybkiego reagowania w kryzysowych sytuacjach.

Pytanie 34

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO3
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1- 2 z użyciem H2SO4
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO3
ŻelazopH 1-2 z użyciem HNO3
UtlenialnośćpH1-2 z użyciem H2SO4, Przechowywać w ciemności
A. kwasu fosforowego(V).
B. kwasu azotowego(V).
C. kwasu siarkowego(VI).
D. kwasu solnego.
Kwas azotowy(V) (HNO3) jest powszechnie stosowanym środkiem do utrwalania próbek wody przeznaczonych do badań fizykochemicznych, zwłaszcza w kontekście oznaczania metali ciężkich. Działa poprzez stabilizację rozpuszczonych metali, takich jak glin czy żelazo, co jest kluczowe dla uzyskania dokładnych wyników analizy. Utrwalanie próbek przy użyciu HNO3 zapobiega osadzaniu się tych metali oraz ich redystrybucji w czasie transportu i przechowywania próbek. To podejście jest zgodne z wytycznymi przedstawionymi w standardach analitycznych, takich jak ISO 5667, które podkreślają znaczenie odpowiednich metod przygotowania próbek dla rzetelności wyników. Ponadto, kwas azotowy(V) zapewnia odpowiednie pH, co jest istotne dla zachowania stabilności chemicznej analizowanych substancji. W praktyce, stosowanie HNO3 w laboratoriach badawczych jest standardową procedurą, co potwierdzają liczne publikacje naukowe oraz dokumenty normatywne.

Pytanie 35

Symbol "In" znajduje się na

A. pipetach i oznacza sprzęt kalibrowany "na wylew"
B. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
C. biuretach i oznacza sprzęt kalibrowany "na wlew"
D. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
Dobra robota! Odpowiedź, którą wybrałeś, jest całkiem trafna. Symbol 'In' rzeczywiście oznacza kolby miarowe, które służą do dokładnego mierzenia objętości cieczy. Kalibracja 'na wlew' jest kluczowa, bo chodzi o to, żeby zmierzyć ciecz do poziomu krawędzi menisku. To ma ogromne znaczenie, zwłaszcza w chemii, gdzie precyzja jest na wagę złota. W laboratoriach często korzysta się z kolb, żeby mieć pewność, że każdy eksperyment jest powtarzalny i wyniki są wiarygodne. Jak napełniasz kolbę do oznaczenia, to wiesz, że używasz całej tej objętości cieczy, co minimalizuje ryzyko błędów. Dlatego warto znać te symbole, bo to podstawa w pracy każdego chemika.

Pytanie 36

Działanie podejmowane po pobraniu próbki wody, mające na celu zachowanie jej składu chemicznego podczas transportu, określa się mianem

A. oczyszczania
B. utrwalania
C. mianowania
D. rozcieńczania
Utrwalanie próbki wody po jej pobraniu jest kluczowym etapem, który ma na celu zachowanie jej oryginalnego składu chemicznego w trakcie transportu i analizy. Proces ten polega na dodaniu odpowiednich substancji chemicznych lub zastosowaniu metod fizycznych, które zapobiegają zmianom w składzie wody, takim jak rozkład mikroorganizmów czy reakcje chemiczne, które mogą zachodzić w czasie transportu. Przykładem może być dodanie kwasu solnego do próbek wody morskiej w celu zatrzymania wzrostu bakterii. W kontekście standardów, wiele organizacji, w tym EPA i ISO, podkreśla znaczenie tego etapu w procedurach pobierania i analizy próbek wody. Utrwalanie jest istotne nie tylko dla uzyskania dokładnych wyników analitycznych, ale również dla zapewnienia bezpieczeństwa zdrowotnego, ponieważ niektóre zanieczyszczenia mogą mieć poważne konsekwencje dla zdrowia publicznego. Zrozumienie tego procesu pozwala na lepsze planowanie badań i optymalizację metod analitycznych, co jest niezbędne w pracy laboratoriach środowiskowych.

Pytanie 37

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)
A. 390,5 g
B. 210,0 g
C. 469,3 g
D. 584,1 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 38

W tabeli zamieszczono temperatury wrzenia niektórych składników powietrza. Na podstawie tych danych podaj, który ze składników oddestyluje jako ostatni.

Temperatura wrzenia °CSkładniki
-245,9Neon
-182,96Tlen
-195,8Azot
-185,7Argon
A. Argon.
B. Azot.
C. Neon.
D. Tlen.
Tlen to składnik powietrza, który wrze w -182,96°C. W destylacji chodzi o to, żeby oddzielić różne składniki mieszanki na podstawie ich temperatur wrzenia. Kiedy destylujemy powietrze, najpierw oddzielają się te składniki, które mają niższe temperatury wrzenia. Tlen, mający najwyższą temperaturę w porównaniu z pozostałymi substancjami, będzie się wydobywał jako ostatni. Moim zdaniem, zrozumienie tego procesu jest naprawdę ważne, zwłaszcza w takich dziedzinach jak inżynieria chemiczna. Na przykład, w przemyśle gazowym, czysty tlen z powietrza uzyskuje się właśnie przez destylację frakcyjną. To pokazuje, jak praktyczna jest ta wiedza. Warto też pamiętać, że różne metody separacji gazów opierają się na różnych właściwościach fizycznych, jak różnice w temperaturach wrzenia. Takie poznanie na pewno się przyda inżynierom w ich pracy.

Pytanie 39

Przedstawiony na ilustracji zestaw służy do

Ilustracja do pytania
A. miareczkowania alkacymetrycznego.
B. ważenia substancji stałej.
C. pomiaru pH roztworu.
D. pobierania określonej objętości cieczy.
Urządzenie przedstawione na ilustracji jest przeznaczone do pomiaru pH roztworu, co jest charakterystyczną funkcją w laboratoriach chemicznych i analitycznych. Pomiary pH są niezwykle istotne w wielu dziedzinach, w tym w chemii, biologii, ochronie środowiska oraz w przemyśle spożywczym. Właściwy pomiar pH pozwala na określenie kwasowości lub zasadowości roztworu, co ma kluczowe znaczenie dla wielu procesów chemicznych i biologicznych. Na przykład w uprawie roślin, optymalne pH gleby jest niezbędne dla prawidłowego wzrostu, ponieważ wpływa na dostępność składników pokarmowych. Takie urządzenia stosują elektrodę pH, która reaguje na jonowy charakter roztworu, a wyświetlacz cyfrowy przedstawia zmierzoną wartość. Warto podkreślić, że zgodnie z normami analitycznymi, przy pomiarach pH należy stosować odpowiednie procedury kalibracji oraz wybierać elektrody odpowiednie do badanych roztworów, co zapewnia dokładność i niezawodność wyników pomiarów.

Pytanie 40

Które z poniższych równań ilustruje reakcję, w której powstają produkty gazowe?

A. 2HgO —> 2Hg + O2
B. Fe + S —> FeS
C. AgNO3 + KBr —> AgBr↓ + KNO3
D. Fe(CN)2 + 4KCN —> K4[Fe(CN)6]
Reakcja przedstawiona w równaniu 2HgO —> 2Hg + O2 jest klasycznym przykładem reakcji rozkładu, która skutkuje wydzieleniem produktów gazowych. W tym przypadku, pod wpływem ciepła, woda utleniona (HgO) rozkłada się na rtęć metaliczną (Hg) oraz tlen (O2), który jest gazem. Proces ten ilustruje zasady termodynamiki oraz mechanizm reakcji chemicznych. W praktyce rozkład wody utlenionej jest ważny w różnych dziedzinach, w tym w chemii analitycznej, gdzie tlen jest wykorzystywany w reakcjach utleniających. Tego typu reakcje są również istotne w kontekście bezpieczeństwa, gdyż uwolnienie gazów może mieć wpływ na warunki pracy w laboratoriach. Dobrą praktyką w chemii jest stosowanie zasad BHP w obecności gazów, które mogą być wybuchowe lub toksyczne. W związku z tym, zrozumienie reakcji gazowych jest niezbędne do prowadzenia bezpiecznych eksperymentów chemicznych oraz skutecznego zarządzania ryzykiem.