Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 5 stycznia 2026 04:01
  • Data zakończenia: 5 stycznia 2026 04:38

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Laboratoryjny stół powinien być zaopatrzony w instalację gazową oraz

A. elektryczną, próżniową oraz hydrantową
B. wodociągową i grzewczą
C. elektryczną oraz chłodniczą
D. elektryczną i wodociągowo-kanalizacyjną
Odpowiedź wskazująca na wyposażenie stołu laboratoryjnego w instalację elektryczną oraz wodociągowo-kanalizacyjną jest prawidłowa, ponieważ te dwa systemy są kluczowe dla funkcjonowania większości laboratoriów. Instalacja elektryczna zapewnia zasilanie dla urządzeń laboratoryjnych, takich jak mikroskopy, wirówki czy pipety elektroniczne, a także oświetlenie robocze, co jest niezbędne do przeprowadzania precyzyjnych eksperymentów. Z kolei instalacja wodociągowa jest niezbędna do przeprowadzania wielu procesów laboratoryjnych, takich jak mycie sprzętu, przygotowywanie roztworów czy chłodzenie aparatów. W laboratoriach stosuje się także systemy kanalizacyjne, które umożliwiają odprowadzenie zanieczyszczonych cieczy zgodnie z odpowiednimi normami ochrony środowiska. Wymagania te są zgodne z wytycznymi dotyczącymi projektowania i funkcjonowania laboratoriów, które przewidują zapewnienie odpowiednich instalacji, aby zagwarantować bezpieczeństwo i efektywność pracy. Przykładowo, w laboratoriach chemicznych niezwykle istotne jest, aby woda bieżąca była dostępna w łatwy sposób, co ułatwia codzienne czynności oraz zwiększa bezpieczeństwo pracy.

Pytanie 2

Aby podnieść stężenie mikroelementów w roztworze, próbkę należy poddać

A. zagęszczaniu
B. roztwarzaniu
C. rozcieńczaniu
D. liofilizacji
Wybór odpowiedzi związanych z roztwarzaniem, liofilizacją czy rozcieńczaniem nie odpowiada na pytanie dotyczące zwiększenia stężenia składników śladowych w roztworze. Roztwarzanie polega na procesie rozpuszczania substancji stałych w cieczy, co prowadzi do rozcieńczenia, a nie zagęszczenia. W kontekście chemii analitycznej, stosowanie roztwarzania w sytuacji, gdy celem jest zwiększenie stężenia analitu, jest błędnym podejściem, ponieważ z definicji prowadzi do obniżenia stężenia składnika. Liofilizacja, z kolei, jest procesem suszenia, który polega na usunięciu wody z substancji poprzez sublimację, a dla roztworu nie jest on odpowiedni, gdyż na ogół ma na celu uzyskanie proszków z substancji w stanie płynnym, co nie wpływa na stężenie składników w roztworze. Natomiast rozcieńczanie prowadzi do zmniejszenia stężenia substancji w roztworze poprzez dodanie rozpuszczalnika, co jest całkowicie sprzeczne z celem zwiększenia stężenia składników śladowych. Zrozumienie tych procesów jest kluczowe dla prawidłowego przygotowania prób w badaniach laboratoryjnych oraz w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne manipulowanie stężeniami składników jest niezbędne do uzyskania wiarygodnych i powtarzalnych wyników.

Pytanie 3

W wypadku oblania skóry kwasem mrówkowym należy

Wyciąg z karty charakterystyki
Skład: kwas mrówkowy 80%, woda 11-20%
Pierwsza pomoc.
Po narażeniu przez drogi oddechowe. Natychmiast wezwać lekarza.
Po kontakcie ze skórą. Zanieczyszczoną skórę natychmiast przemyć dużą ilością wody.
A. zastosować na skórę mydło w płynie.
B. przemyć skórę dużą ilością wody.
C. polać skórę środkiem zobojętniającym.
D. podać do picia dużą ilość schłodzonej wody.
Przemycie skóry dużą ilością wody w przypadku kontaktu z kwasem mrówkowym jest kluczowym działaniem, które ma na celu minimalizację uszkodzeń. Woda działa jak rozcieńczalnik, co pozwala na szybsze usunięcie szkodliwej substancji z powierzchni skóry. Zgodnie z wytycznymi zawartymi w standardach pierwszej pomocy, każdy przypadek kontaktu skóry z substancjami żrącymi powinien być traktowany jako sytuacja wymagająca natychmiastowej reakcji. W praktyce, jeśli dojdzie do kontaktu z kwasem mrówkowym, należy jak najszybciej przemyć zanieczyszczoną skórę wodą o temperaturze pokojowej przez co najmniej 15 minut. Ważne jest, aby nie stosować innych substancji ani środków chemicznych, które mogłyby reagować z kwasem, co mogłoby prowadzić do powstania dodatkowych, szkodliwych związków chemicznych. Warto również pamiętać, że w przypadku poważniejszych oparzeń chemicznych należy zawsze skontaktować się z profesjonalną pomocą medyczną, aby ocenić stan pacjenta i podjąć dalsze działania. Przechowywanie odpowiednich materiałów pierwszej pomocy w miejscach, gdzie mogą wystąpić takie wypadki, jest również zalecane jako dobra praktyka. Przykładem zastosowania jest sytuacja w laboratoriach chemicznych, gdzie pracownicy są szkoleni w zakresie reagowania na wypadki z substancjami chemicznymi.

Pytanie 4

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. siarkowym(VI)
B. chlorowodorowym
C. azotowym(V)
D. bromowodorowym
Stosowanie kwasu siarkowego(VI) do roztwarzania mosiądzu nie jest optymalnym rozwiązaniem, ponieważ mimo że kwas siarkowy jest silnym kwasem, nie jest efektywny w przypadku stopów miedzi, takich jak mosiądz. Kwas siarkowy reaguje z miedzią, ale proces ten jest wolniejszy i mniej skuteczny w porównaniu do kwasu azotowego. Użycie kwasu chlorowodorowego może również prowadzić do niepełnych reakcji, ponieważ nie jest on wystarczająco silnym utleniaczem, a jego stosowanie w kontekście metali nieżelaznych, takich jak miedź, może prowadzić do ich nierozpuszczenia. Kwas bromowodorowy, mimo że jest kwasem, również nie wykazuje właściwości utleniających, które są kluczowe w procesie analizy jakościowej. W przypadku błędnego wyboru kwasu, można napotkać problemy związane z niepełnym rozpuszczeniem próbki, co prowadzi do błędnych wyników analizy. Typowym błędem jest założenie, że każdy silny kwas może zastąpić inny w reakcjach chemicznych, co jest mylne. Efektywność rozpuszczania stopów metalowych wymaga zastosowania odpowiednich reakcji chemicznych, które nie tylko rozpuszczają próbki, ale również prowadzą do ich pełnej analizy składu chemicznego. W rezultacie, niewłaściwy wybór kwasu może skutkować nieprawidłowymi wynikami, co w praktyce laboratoryjnej jest nieakceptowalne i może prowadzić do dalszych problemów związanych z jakością i bezpieczeństwem produktów końcowych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 178 °C - 182 °C
B. 175 °C - 179 °C
C. 185 °C - 190 °C
D. 181 °C - 185 °C
Odpowiedź 181 °C - 185 °C jest poprawna, ponieważ temperatura wrzenia aniliny wynosząca 457,13 K odpowiada 184 °C. W procesie destylacji prostej, aby skutecznie oddzielić substancję, należy zbierać frakcję wrzącą wokół tej wartości, co oznacza, że optymalny zakres do zbierania frakcji to 181 °C - 185 °C. W praktyce, aby zapewnić wysoką czystość destylatu, zwykle ustawia się zakres tak, aby obejmował temperatury bliskie wartości wrzenia, z uwzględnieniem ewentualnych wahań związanych z ciśnieniem atmosferycznym i zanieczyszczeniami. Przykładem zastosowania tej wiedzy jest przemysł chemiczny, gdzie oczyszczanie substancji chemicznych, takich jak anilina, jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów temperatury i stosowania odpowiednich metod oczyszczania, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa procesów chemicznych.

Pytanie 7

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. roztwarzaniem
B. sublimacją
C. rozpuszczaniem
D. stapianiem
Stapianie to proces zmiany stanu skupienia substancji z fazy stałej na ciecz, który zachodzi w wyniku podgrzewania materiału do jego temperatury topnienia. W tym przypadku, struktura krystaliczna nie jest niszczona w sposób, w jaki ma to miejsce podczas rozpuszczania. Z kolei sublimacja odnosi się do bezpośredniej przemiany substancji z fazy stałej w gazową, omijając fazę ciekłą. Ten proces również nie dotyczy rozpuszczania, które wymaga obecności rozpuszczalnika, aby cząsteczki solutu mogły się rozproszyć. Roztwarzanie jest terminem często mylonym z rozpuszczaniem, jednak w kontekście chemicznym może odnosić się do różnych procesów, które zachodzą podczas mieszania substancji, a niekoniecznie do samego procesu rozpuszczania, gdzie zachodzi interakcja pomiędzy cząsteczkami solutu a cząsteczkami rozpuszczalnika. Typowe błędy myślowe w tej kwestii obejmują nieuzasadnione utożsamianie procesów fizycznych oraz brak zrozumienia mechanizmów, które za nimi stoją. Wiedza o tych różnicach jest kluczowa w naukach przyrodniczych, ponieważ może wpływać na interpretacje wyników eksperymentów oraz na projektowanie procesów przemysłowych związanych z rozpuszczaniem i jego zastosowaniami.

Pytanie 8

Na etykiecie próbki środowiskowej należy umieścić datę jej pobrania, lokalizację poboru oraz

A. nazwisko osoby, która pobrała próbkę
B. liczbę osób pobierających próbkę
C. typ środka transportowego
D. czas transportu próbki
Podanie nazwiska osoby pobierającej próbkę jest kluczowe dla zapewnienia odpowiedzialności oraz identyfikowalności procesu pobierania próbek środowiskowych. W praktyce, każda próbka powinna być związana z osobą, która ją pobrała, aby w razie potrzeby można było przeprowadzić dalsze wyjaśnienia lub analizy. Przykładowo, w przypadku wykrycia nieprawidłowości w wynikach badań, identyfikacja osoby pobierającej próbkę pozwala na ocenę, czy pobranie było przeprowadzone zgodnie z obowiązującymi procedurami oraz standardami jakości. Zgodnie z normami ISO 17025 oraz ISO 14001, odpowiednia dokumentacja jest kluczowym elementem systemu zarządzania jakością i ochroną środowiska. Dodatkowo, w sytuacji audytów lub kontroli, informacje o osobie odpowiedzialnej za pobranie próbki mogą być istotne dla potwierdzenia zgodności z wymaganiami regulacyjnymi i procedurami operacyjnymi. Właściwe oznaczenie próbek zwiększa również przejrzystość i wiarygodność wyników badań.

Pytanie 9

Odlanie cieczy z nad osadu to

A. filtracja
B. sedymentacja
C. destylacja
D. dekantacja
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 10

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. chemicznie czysty
B. techniczny
C. czysty
D. czysty do analizy
Odpowiedzi "czysty do analizy", "techniczny" oraz "czysty" nie są właściwe w kontekście omawianego pytania, ponieważ nie oddają one precyzyjnie specyfiki czystości chemicznej. "Czysty do analizy" może sugerować, że substancja jest wystarczająco czysta do przeprowadzenia analizy, ale nie gwarantuje, że zanieczyszczenia są na poziomie, który pozwala na stosowanie metod analitycznych wymagających wysokiej klasy czystości. Termin "techniczny" odnosi się zazwyczaj do substancji, które są odpowiednie do zastosowań przemysłowych, ale mogą zawierać zanieczyszczenia, które są akceptowalne w kontekście procesów technologicznych, jednak nie nadają się do zastosowań wymagających wysokiej czystości. Z kolei "czysty" jest terminem ogólnym, który nie precyzuje klasy czystości substancji, co sprawia, że nie jest zastosowaniem właściwe w kontekście szczególnych wymagań analitycznych. Użytkownicy mogą popełnić błąd, myśląc, że wszystkie te terminy są równoważne, podczas gdy w rzeczywistości różnią się one znacząco. Kluczowe jest zrozumienie różnic w wymaganiach dotyczących czystości, aby móc właściwie dobierać substancje do konkretnego zastosowania w laboratoriach chemicznych i przemysłowych.

Pytanie 11

Zgłębniki o konstrukcji przypominającej świder są wykorzystywane do pobierania próbek różnych materiałów

A. ciastowatych
B. sypkich
C. płynnych
D. półpłynnych
Zgłębniki w kształcie świdra, także znane jako świdry próbne, są specjalistycznymi narzędziami przeznaczonymi do pobierania próbek materiałów o konsystencji ciastowatej. Ich konstrukcja, przypominająca świdry, pozwala na efektywne wwiercanie się w bardziej gęste i lepkie substancje, co jest kluczowe w wielu dziedzinach, takich jak geologia, inżynieria materiałowa oraz nauki przyrodnicze. Przykładem zastosowania zgłębnika świdrowego jest badanie gruntów w celu określenia ich nośności lub składu, co jest istotne podczas projektowania fundamentów budynków. W praktyce, pobieranie próbek ciastowatych materiałów, jak np. gliny czy osady, jest trudne, dlatego użycie zgłębnika w kształcie świdra znacząco zwiększa precyzję i efektywność tego procesu. W standardach branżowych, takich jak ASTM D1586, opisane są metody pobierania próbek gruntów, które uwzględniają użycie takich narzędzi, co podkreśla ich fundamentalne znaczenie dla rzetelności badań geotechnicznych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

250 cm3 roztworu kwasu octowego o stężeniu 10% objętościowych zostało rozcieńczone pięciokrotnie. Jakie jest stężenie otrzymanego roztworu?

A. 1,25%
B. 2%
C. 5%
D. 2,5%
Stężenie roztworu jest kluczowym elementem w chemii analitycznej i przemysłowej. Nieprawidłowe podejście do obliczeń dotyczących stężenia po rozcieńczeniu może prowadzić do istotnych błędów w wynikach. Na przykład, wybierając 5% jako odpowiedź, można pomyśleć, że stężenie roztworu zmniejsza się o 5% przy każdym rozcieńczeniu, co jest błędne. Rozcieńczenie nie działa w ten sposób; zamiast tego, każdorazowo obliczamy nowe stężenie, dzieląc ilość substancji przez nową całkowitą objętość. Podobnie, wybór stężenia 1,25% może wynikać z przekonania, że rozcieńczenie pięciokrotne obniża stężenie do jednej piątej, co nie uwzględnia konieczności obliczeń masowych. Niepoprawne zrozumienie koncepcji stężenia i jego obliczeń jest powszechnym błędem wśród studentów i praktyków. Zrozumienie, że stężenie wyrażone w procentach odnosi się do masy substancji w określonej objętości roztworu, jest kluczowe. W kontekście praktycznym, umiejętność precyzyjnego obliczenia stężenia roztworu ma ogromne znaczenie, zwłaszcza w laboratoriach, gdzie błędy mogą prowadzić do niewłaściwych wniosków eksperymentalnych, a nawet zagrożeń dla zdrowia. Dobrze jest pamiętać o metodach analizy i praktycznych zastosowaniach, aby uniknąć tego typu błędów w przyszłości.

Pytanie 14

Z przedstawionego opisu wynika, że kluczową właściwością próbki analitycznej jest jej

Próbka analityczna to fragment materiału stworzony z myślą o przeprowadzeniu badania lub obserwacji. Powinna odzwierciedlać przeciętny skład i cechy materiału, który jest badany.

A. reprezentatywność
B. rozpuszczalność
C. jednorodność
D. roztwarzalność
Odpowiedź "reprezentatywność" jest kluczowa w kontekście próbki analitycznej, gdyż oznacza, że próbka powinna odzwierciedlać charakterystyki całego materiału badanego. W praktyce oznacza to, że próbka musi być pobrana w sposób, który gwarantuje, że jej skład i właściwości są zgodne z właściwościami całej partii materiału. Przykładem zastosowania reprezentatywności może być proces pobierania próbek w analizie jakościowej gleby, gdzie ważne jest, aby próbki były pobierane z różnych miejsc w polu, aby uzyskać dokładny obraz stanu całej gleby. Standardy takie jak ISO 5667 dostarczają wytycznych na temat pobierania próbek w różnych środowiskach, co podkreśla znaczenie reprezentatywności. Bez zapewnienia, że próbka jest reprezentatywna, wyniki badania mogą być mylące, co może prowadzić do błędnych decyzji w procesach przemysłowych czy badaniach naukowych.

Pytanie 15

Do 300 g wody o temperaturze 30oC dodano 120 g substancji, co zaowocowało powstaniem roztworu nasyconego. Jaką ma rozpuszczalność ta substancja w temperaturze 30oC?

A. 50 g
B. 20 g
C. 30 g
D. 40 g
Odpowiedź 40 g jest poprawna, ponieważ oznacza to, że w 300 g wody w temperaturze 30°C maksymalna ilość substancji, która może się w niej rozpuścić, wynosi właśnie 40 g. Rozpuszczalność jest charakterystyczną właściwością substancji i jest określona dla danej temperatury. W praktyce oznacza to, że w celu uzyskania roztworu nasyconego należy dodać substancję do wody, aż osiągnie się stan, w którym wszelka dodatkowa substancja nie rozpuści się, co jest praktycznym krokiem przy przygotowywaniu roztworów w laboratoriach chemicznych. Wartości rozpuszczalności są kluczowe w różnych zastosowaniach, na przykład w przemyśle farmaceutycznym, gdzie odpowiednia rozpuszczalność substancji aktywnej wpływa na efektywność leku. Zrozumienie tego parametru pozwala na precyzyjne formułowanie roztworów o odpowiednich stężeniach, co jest niezbędne w procesach produkcyjnych. Dodatkowo, wiedza o rozpuszczalności substancji jest istotna w analizach chemicznych oraz w ocenie wpływu czynników fizykochemicznych na procesy rozpuszczania.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Reakcja neutralizacji wodorotlenku sodu z kwasem solnym zrealizowana jest zgodnie z równaniem:
NaOH + HCl → NaCl + H2O Masy molowe: MNaOH = 40 g/mol, MHCl = 36,5 g/mol Aby zneutralizować 10 g wodorotlenku sodu, wymagane jest

A. 9,125 g roztworu kwasu solnego o stężeniu 38%
B. 36,5 g roztworu kwasu solnego o stężeniu 38%
C. 24,013 g roztworu kwasu solnego o stężeniu 38%
D. 10 g roztworu kwasu solnego o stężeniu 38%
Obliczenia związane ze zobojętnianiem kwasów i zasad są kluczowe w chemii analitycznej. Wiele osób w odpowiedziach myli masy reagentów z ich molami. Często zjawisko to prowadzi do nieprawidłowych wniosków dotyczących ilości potrzebnych substancji chemicznych. Na przykład, niektórzy mogą sądzić, że masa roztworu HCl o stężeniu 38% odpowiada bezpośrednio masie HCl, co jest błędne. Należy zrozumieć, że stężenie odnosi się do ilości substancji w łącznej masie roztworu, a nie tylko do masy czystej substancji. Stąd, jeżeli ktoś obliczałby masę roztworu jako sumę mas reagentów, pomijałby kluczowy krok dotyczący stężenia. Innym powszechnym błędem jest utożsamianie mas molowych z wagą rzeczywistą substancji w roztworze, co prowadzi do zafałszowanych wyników. Każda reakcja chemiczna wymaga precyzyjnego obliczenia ilości reagentów, a zaniedbanie tego kroku może prowadzić do niebezpiecznych sytuacji w laboratoriach. Przygotowując roztwory lub przeprowadzając reakcje chemiczne, należy zawsze wykonać dokładne obliczenia, aby uniknąć nieprawidłowych wyników, co jest szczególnie istotne w kontekście przestrzegania standardów bezpieczeństwa i jakości w pracy laboratoryjnej.

Pytanie 18

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. piaskowych
B. wodnych
C. powietrznych
D. olejowych
Ogrzewanie cieczy żrących na łaźniach powietrznych to raczej zła decyzja. Powód jest prosty – takie rozwiązanie nie daje stabilności termicznej. Ciecze żrące mogą reagować w dziwny sposób, więc nagłe zmiany temperatury mogą być niebezpieczne. Łaźnie powietrzne mogą ogrzewać w sposób nierównomierny, co może prowadzić do punktowego przegrzewania i różnych reakcji chemicznych, co wcale nie jest fajne dla zdrowia ludzi. Łaźnie olejowe z drugiej strony, mimo że lepiej regulują temperaturę, potrafią stworzyć ryzyko pożaru, jeśli dojdzie do kontaktu z tymi substancjami. Olej też potrafi reagować z niektórymi chemikaliami, co zwiększa niebezpieczeństwo. Łaźnie wodne z kolei to też kłopot, bo woda działa raczej jako chłodziwo, a nie grzałka. Zdarzają się też reakcje egzotermiczne, co może naprawdę pokrzyżować plany. Właściwie w każdej sytuacji ważne jest, żeby rozumieć, jakie substancje się używa i jakie mogą być ich ryzyka. Dobrze jest stosować najlepsze praktyki w chemii, by zapewnić sobie bezpieczeństwo i zdrowie. Jak się zaniedba te zasady, to można wpaść w spore kłopoty, które dałoby się prosto wyeliminować, stosując łaźnię piaskową.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Podczas przewozu próbek wody, które mają być badane pod kątem właściwości fizykochemicznych, zaleca się, aby te próbki były

A. schłodzone do temperatury 2-5°C
B. ogrzane do temperatury 15°C
C. ogrzane do temperatury 25°C
D. schłodzone do temperatury 6-10°C
Właściwe schłodzenie próbek wody do temperatury 2-5°C podczas transportu jest kluczowe dla zachowania ich jakości i integralności chemicznej. Niska temperatura spowalnia procesy biologiczne oraz chemiczne, które mogą prowadzić do zmiany składu chemicznego próbek, co z kolei może skutkować błędnymi wynikami analizy. Przykładem jest analiza zawartości substancji odżywczych, w których degradacja może nastąpić w wyniku działania mikroorganizmów. Zgodnie z zaleceniami takich organizacji jak EPA (Environmental Protection Agency) oraz ISO (Międzynarodowa Organizacja Normalizacyjna), transport próbek wody powinien odbywać się z zastosowaniem odpowiednich środków chłodzących. Praktyczne zastosowanie tych standardów można zauważyć w laboratoriach zajmujących się monitoringiem jakości wody, gdzie stosuje się lodowe akumulatory lub specjalne torby chłodzące. Zachowanie odpowiedniej temperatury transportu jest więc nie tylko kwestią zgodności z przepisami, ale również kluczowym elementem zapewniającym rzetelność wyników badań.

Pytanie 22

Wskaż metodę rozdzielenia układu, w którym fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz.

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały
A. Destylacja.
B. Filtracja.
C. Sedymentacja.
D. Dekantacja.
Filtracja jest kluczową metodą rozdzielania układów, w których fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz. Działa ona na zasadzie oddzielania cząstek stałych od gazów poprzez zastosowanie medium filtracyjnego, które może być wykonane z różnych materiałów, takich jak papier filtracyjny, tkaniny, czy nawet ceramika. Proces ten jest szeroko stosowany w laboratoriach chemicznych, przemysłowych systemach oczyszczania powietrza oraz w procesach związanych z produkcją leków, gdzie ważne jest usunięcie niepożądanych cząstek stałych. W praktyce, w laboratoriach chemicznych, filtracja może być stosowana do oczyszczania gazów z pyłów, co ma zastosowanie w badaniach dotyczących jakości powietrza. Zastosowanie filtracji zgodnie z uznawanymi standardami, takimi jak ISO 16890, pozwala na efektywne podejście do zarządzania jakością powietrza, co jest kluczowe w kontekście zdrowia publicznego i ochrony środowiska. Dodatkowo, filtracja umożliwia również precyzyjne kontrolowanie procesów produkcyjnych, co wpływa na jakość końcowego produktu.

Pytanie 23

Piknometr służy do określania

A. wilgotności
B. lepkości
C. gęstości
D. rozpuszczalności
Piknometr jest precyzyjnym przyrządem służącym do pomiaru gęstości substancji, co jest niezwykle istotne w wielu dziedzinach, takich jak chemia, biochemia czy inżynieria materiałowa. Gęstość jest definiowana jako masa na jednostkę objętości i ma kluczowe znaczenie w identyfikacji substancji oraz w kontrolowaniu jakości produktów. Piknometry są wykorzystywane w laboratoriach do pomiaru gęstości cieczy, a także ciał stałych po uprzednim ich przekształceniu w zawiesiny. Przykładowo, w analizie chemicznej, znajomość gęstości substancji pozwala na obliczenie stężenia roztworów, co jest krytyczne dla wielu procesów syntezy chemicznej i analitycznej. Zgodnie z zasadami metrologii, pomiar gęstości powinien być przeprowadzany w warunkach kontrolowanej temperatury, a piknometry muszą być kalibrowane, aby zapewnić wiarygodność wyników. Standardy, takie jak ASTM D1481, wyznaczają metody pomiaru gęstości z wykorzystaniem piknometrów, co dodatkowo podkreśla ich znaczenie w praktyce laboratywnej.

Pytanie 24

Na rysunku przedstawiono wagę

Ilustracja do pytania
A. precyzyjną.
B. automatyczną.
C. hydrostatyczną.
D. mikroanalityczną.
Waga precyzyjna to urządzenie laboratoryjne, które charakteryzuje się wysoką dokładnością i precyzją pomiarów masy. Na zdjęciu widoczna jest waga, która posiada cyfrowy wyświetlacz oraz przyciski kalibracji i tarowania, co jest typowe dla wag precyzyjnych. Tego rodzaju wagi znajdują zastosowanie w wielu dziedzinach, takich jak chemia, biotechnologia czy farmacja, gdzie dokładne ważenie substancji jest kluczowe dla uzyskania wiarygodnych wyników eksperymentów. Wagi precyzyjne są często wykorzystywane do ważenia małych ilości reagentów, co jest istotne w procesach analitycznych. W branży laboratoryjnej stosuje się standardy, takie jak ISO/IEC 17025, które określają wymagania dotyczące kompetencji laboratoriów badawczych i wzorcujących, co podkreśla znaczenie precyzyjnego ważenia. Dzięki zastosowaniu technologii cyfrowej, wagi te oferują również możliwość podłączenia do komputerów oraz oprogramowania, co ułatwia dokumentację i analizę danych.

Pytanie 25

Na rysunku pokazano przyrząd do poboru próbek

Ilustracja do pytania
A. materiałów sypkich.
B. o konsystencji ciastowatej.
C. mazistych lub trudno topliwych.
D. łatwo topliwych.
Odpowiedź "o konsystencji ciastowatej" jest prawidłowa, ponieważ świdro-próbnik, przedstawiony na rysunku, został zaprojektowany z myślą o pobieraniu próbek materiałów o tej specyficznej konsystencji. Jego spiralnie skręcone ostrze umożliwia wkręcanie się w materiał, co minimalizuje ryzyko uszkodzenia struktury próbki. Przykładowe zastosowania tego przyrządu obejmują badanie gleb, osadów dennych oraz innych substancji, w których zachowanie oryginalnej struktury jest kluczowe dla dokładności analizy laboratoryjnej. W branży geotechnicznej oraz ochrony środowiska, stosowanie odpowiednich narzędzi do pobierania próbek jest kluczowe dla uzyskania wiarygodnych danych. W zgodzie z dobrymi praktykami, przed pobraniem próbki zawsze powinno się przeprowadzić dokładną analizę stanu materiału, aby określić, czy właściwości ciastowate są dominujące, co potwierdza słuszność zastosowania świdro-próbnika.

Pytanie 26

Oblicz stężenie molowe 250 cm3 roztworu NaOH, w którym znajduje się 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol

A. 0,50 mol/dm3
B. 0,01 mol/dm3
C. 0,10 mol/dm3
D. 0,05 mol/dm3
Aby obliczyć stężenie molowe roztworu NaOH, należy najpierw obliczyć liczbę moli NaOH w 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol, co oznacza, że 1 mol NaOH waży 40 g. Liczba moli można obliczyć ze wzoru: liczba moli = masa (g) / masa molowa (g/mol). Dla 0,5 g NaOH obliczenia będą wyglądały następująco: 0,5 g / 40 g/mol = 0,0125 mol. Następnie przeliczamy objętość roztworu z cm³ na dm³, co daje 250 cm³ = 0,25 dm³. Stężenie molowe obliczamy, dzieląc liczbę moli przez objętość roztworu w dm³: 0,0125 mol / 0,25 dm³ = 0,05 mol/dm³. Zrozumienie tych obliczeń jest kluczowe w chemii analitycznej, gdzie precyzyjne przygotowywanie roztworów o określonym stężeniu jest niezbędne w eksperymentach i analizach. W praktyce, takie umiejętności są szczególnie ważne w laboratoriach chemicznych, gdzie dokładność i powtarzalność wyników mają kluczowe znaczenie.

Pytanie 27

Działanie podejmowane po pobraniu próbki wody, mające na celu zachowanie jej składu chemicznego podczas transportu, określa się mianem

A. rozcieńczania
B. mianowania
C. oczyszczania
D. utrwalania
Oczyszczanie, mianowanie i rozcieńczanie to terminy, które w kontekście pobierania i transportu próbek wody nie odnoszą się do istoty utrwalania. Oczyszczanie próbek wody, choć ważne w kontekście analizy, nie zabezpiecza składu chemicznego podczas transportu, a wręcz może prowadzić do usunięcia istotnych składników, co zaburza wyniki analizy. Mianowanie, czyli nadawanie próbką określonych nazw lub klasyfikacji, nie ma związku z ich zachowaniem podczas transportu. To działanie jest istotne w kontekście organizacji i dokumentacji, ale nie wpływa na stabilność chemiczną próbek. Z kolei rozcieńczanie, czyli dodawanie rozpuszczalników do próbek, może prowadzić do zmiany stężenia substancji chemicznych, co również zafałszuje wyniki analizy. Typowym błędem myślowym jest mylenie tych pojęć z procesem utrwalania, co prowadzi do niezrozumienia ich roli w analizie chemicznej wód. W praktyce, aby zapewnić wiarygodność wyników, kluczowe jest stosowanie odpowiednich metod utrwalania, co jest zgodne z najlepszymi praktykami branżowymi i wymaganiami regulacyjnymi.

Pytanie 28

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. CaCO3 → CaO + CO2
B. 2 KMnO4 → K2MnO4 + MnO2 + O2
C. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
D. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
Inne podane reakcje nie są reakcjami redoks, co może prowadzić do nieporozumień w ich interpretacji. Przykład 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4 jest typowym procesem podwójnej wymiany, w którym nie zachodzi zmiana stopni utlenienia. Zarówno sód, jak i miedź pozostają w swoich stanach utlenienia, co wyklucza tę reakcję z kategorii redoks. Kolejny przypadek, 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O, to reakcja neutralizacji kwasu i zasady, w której również nie zachodzi redukcja ani utlenienie. Podobnie, reakcja CaCO3 → CaO + CO2 jest reakcją rozkładu, w której wytwarzanie dwutlenku węgla nie wiąże się ze zmianą stopni utlenienia w znaczący sposób. Często mylone są reakcje, w których zachodzi zmiana stanu skupienia lub przekształcenie chemiczne, z reakcjami redoks. Kluczowym aspektem odróżniającym te procesy jest analiza stopni utlenienia reagentów oraz produktów, co jest istotne w edukacji chemicznej. Zrozumienie tych różnic jest niezbędne, aby uniknąć błędnych wniosków i skutkować efektywnym wykorzystaniem chemicznych reakcji w praktyce laboratoryjnej oraz przemysłowej.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(II) z azotu
B. kwasu azotowego(III) z azotu
C. kwasu azotowego(V) z azotu
D. kwasu azotowego(IV) z azotu
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 31

Jaką metodę poboru próbek przedstawiono na rysunku?

Ilustracja do pytania
A. Proporcjonalną.
B. Warstwową.
C. Systematyczną.
D. Losową.
Wybrana odpowiedź, czyli metoda losowa, jest właściwa, ponieważ na przedstawionym rysunku próbki są rozmieszczone w sposób przypadkowy, co nie wykazuje żadnych regularnych wzorców. W praktycznych zastosowaniach, metoda losowa jest często wykorzystywana w badaniach statystycznych, gdzie istotne jest, aby każda jednostka miała równą szansę na bycie wybraną. Przykładem może być badanie opinii publicznej, gdzie losowo wybrani respondenci reprezentują całą populację, co pozwala na uzyskanie obiektywnych wyników. Dobrą praktyką jest stosowanie tej metody, aby uniknąć biasów, które mogą wystąpić w przypadku innych technik poboru próbek. Ważne jest również, aby podczas realizacji takich badań stosować odpowiednie narzędzia statystyczne, które pozwalają na analizę wyników w kontekście losowości oraz szacowania błędów pomiarowych. Zastosowanie metody losowej wzmacnia wiarygodność wyników i umożliwia lepsze wnioskowanie na temat całej populacji na podstawie zebranych danych.

Pytanie 32

Czy próbkę laboratoryjną przechowuje się w lodówce, gdy występuje w niej

A. degradacja termiczna
B. chłonięcie wody
C. rozpad promieniotwórczy
D. utrata lotnych składników
Rozpatrując odpowiedzi dotyczące przechowywania próbki laboratoryjnej, warto zauważyć, że niektóre podejścia są mylące i mogą prowadzić do nieprawidłowych wniosków. Rozpad promieniotwórczy nie jest procesem, który można kontrolować przez działanie temperatury, gdyż jest to zjawisko fizyczne związane z czasem połowicznego rozpadu izotopów. Przechowywanie próbek w lodówce nie ma wpływu na ten proces, ponieważ nie eliminuje on promieniotwórczości. Podobnie, chłonięcie wody, które jest raczej zjawiskiem związanym z adsorpcją lub dyfuzją, nie jest bezpośrednio związane z degradacją termiczną. Wysoka wilgotność może wpływać na niektóre próbki, ale nie jest to główny powód, dla którego próbki przechowuje się w chłodniach. Utrata lotnych składników, chociaż może być istotna, dotyczy raczej zjawisk, które są efektem obróbki lub analizy, a nie samym procesem przechowywania. Właściwe przechowywanie próbek jest zatem kluczowe, aby uniknąć degradacji termicznej, a nie zjawisk związanych z promieniotwórczością czy adsorpcją. W praktyce, nieprawidłowe zrozumienie tych procesów może prowadzić do błędów w analizach laboratoryjnych, co w konsekwencji wpływa na diagnostykę medyczną i wyniki badań. Przechowywanie próbek w odpowiednich warunkach zgodnych z wytycznymi branżowymi jest kluczowe dla zapewnienia ich stabilności i właściwej analizy.

Pytanie 33

Metoda oczyszczania substancji, która opiera się na różnicy w rozpuszczalności substancji docelowej oraz zanieczyszczeń w zastosowanym rozpuszczalniku, nosi nazwę

A. ekstrakcją
B. sublimacją
C. dekantacją
D. krystalizacją
W przypadku sublimacji, proces ten polega na przejściu substancji ze stanu stałego bezpośrednio w stan gazowy. Ta metoda oczyszczania nie bazuje na różnicy rozpuszczalności, lecz na różnicach ciśnienia i temperatury, co sprawia, że nie jest odpowiednia w kontekście podanego pytania. Ekstrakcja z kolei to proces, w którym jedna substancja jest wydobywana z roztworu do innego medium, najczęściej przy użyciu rozpuszczalnika, który selektywnie rozpuszcza jedne składniki, ale nie inne. Chociaż ekstrakcja może być stosowana do oczyszczania, nie opiera się bezpośrednio na różnicy rozpuszczalności, co czyni ją mniej odpowiednią odpowiedzią w tym kontekście. Dekantacja natomiast to technika oddzielania cieczy od osadu poprzez powolne wlewanie cieczy do innego naczynia, co również nie wykorzystuje różnicy rozpuszczalności, a raczej różnice gęstości. Zrozumienie tych procesów jest kluczowe dla analizy chemicznej oraz praktyk laboratoryjnych, a błędne przypisanie metodologii do opisanych zjawisk może prowadzić do nieprawidłowych wyników i ocen w laboratoriach badawczych.

Pytanie 34

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.
A. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
B. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
C. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
D. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
Wybór niepoprawnej odpowiedzi często wynika z braku zrozumienia specyfikacji narzędzi laboratoryjnych oraz ich zastosowania w konkretnych procedurach analitycznych. Wiele z błędnych odpowiedzi sugeruje użycie cylinderów o pojemności 100 cm3 lub zlewek, co w przypadku analizy kwasowości mleka jest niewłaściwe. Cylinder miarowy o pojemności 100 cm3 jest zbyt duży do precyzyjnego odmierzania niewielkich objętości wody destylowanej, co może prowadzić do błędów w obliczeniach. Zlewa nie jest narzędziem stosowanym do precyzyjnego odmierzania substancji, co czyni ją nieodpowiednią do zastosowań wymagających dokładności. Ponadto, użycie pipet wielomiarowych zamiast jednomiarowych może prowadzić do nieścisłości w pobieraniu prób, gdyż pipety jednomiarowe są zaprojektowane do precyzyjnego odmierzania pojedynczych objętości. W laboratoriach stosuje się standardy, które nakładają wymogi co do dokładności przygotowywanych roztworów, stąd konieczność przestrzegania procedur opartych na uznanych metodach analitycznych. Przygotowanie roztworów powinno odbywać się z użyciem odpowiednich narzędzi, a ich dobór ma kluczowe znaczenie dla jakości wyników, co podkreśla znaczenie znajomości sprzętu laboratoryjnego i jego funkcji.

Pytanie 35

Dokonano pomiaru pH dwóch roztworów, uzyskując wartości pH= 2 oraz pH= 5. Wskaźnij poprawnie sformułowany wniosek.

A. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy wyższe niż w roztworze o pH = 2
B. Stężenie jonów [H+] w roztworze o pH= 5 jest trzykrotnie mniejsze niż w roztworze o pH = 2
C. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy mniejsze niż w roztworze o pH = 2
D. Stężenie jonów [H+] w roztworze o pH= 5 jest większe o 3 mol/dm3 niż w roztworze o pH = 2
Niezrozumienie konsekwencji skali pH prowadzi do błędnych wniosków. W przypadku stwierdzenia, że stężenie jonów [H+] w roztworze o pH=5 jest 3 razy mniejsze niż w roztworze o pH=2, pomija się kluczowy fakt o logarytmicznej naturze skali pH. Zmiana pH o jednostkę oznacza dziesięciokrotną różnicę w stężeniu jonów, co tworzy mylne przekonanie, że różnice są liniowe. W konsekwencji, jeśli pH zmienia się z 2 na 5, stężenie [H+] nie zmniejsza się o 3, ale o 1000 razy. Twierdzenie, że stężenie w roztworze pH=5 jest 1000 razy większe niż w pH=2, także jest błędne, ponieważ ignoruje właściwości pH jako miary stężenia jonów. Odpowiedź sugerująca, że stężenie w roztworze o pH=5 jest większe o 3 mol/dm3 niż w pH=2, wskazuje na brak zrozumienia skali i jednostek. W rzeczywistości różnice te nie są mierzone w molach, ale w proporcjach logarytmicznych. Błędem jest również myślenie, że takie zmiany można analizować w sposób prosty, liniowy, co jest sprzeczne z podstawowymi zasadami chemii kwasowo-zasadowej. Aby unikać takich nieporozumień, należy stosować dokładne obliczenia oparte na logarytmach oraz zrozumienie, jak pH wpływa na różne procesy chemiczne i biologiczne.

Pytanie 36

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. potrzebą wyrównania temperatury roztworu z otoczeniem
B. opóźnieniem w osiągnięciu równowagi dysocjacji
C. koniecznością dokładnego wymieszania roztworu
D. opóźnieniem w ustaleniu się kontrakcji objętości
Podczas analizy niepoprawnych odpowiedzi warto zauważyć, że zwłoka w ustaleniu się równowagi dysocjacji, choć istotna w kontekście niektórych roztworów, nie jest głównym powodem oczekiwania przed dopełnieniem roztworu. Dysocjacja substancji chemicznych, takie jak kwasów czy zasad, rzeczywiście może wymagać czasu, ale w kontekście dopełniania do kreski w kolbie miarowej, kluczowe jest wyrównanie temperatury. Ponadto, wskazanie na konieczność dobrego wymieszania roztworu nie jest wystarczające, gdyż samo wymieszanie nie uwzględnia wpływu temperatury na objętość cieczy. Koncentracje i właściwości roztworów są ściśle związane z temperaturą, co oznacza, że dopełnienie w momencie, gdy roztwór ma różne temperatury od otoczenia, może prowadzić do błędów w pomiarach. Wspomniana zwłoka w ustaleniu się kontrakcji objętości dotyczy bardziej specyficznych sytuacji, które nie są powszechnie rozpatrywane w kontekście standardowych praktyk przygotowywania roztworów. Typowe błędy myślowe w tym przypadku mogą obejmować brak zrozumienia, jak temperatura wpływa na objętość cieczy oraz jakie są konsekwencje niedopasowania temperatury dla właściwości roztworu. Kluczowe jest zrozumienie, że każde przygotowywanie roztworu wymaga staranności i uwagi na detale, aby zapewnić dokładność i niezawodność wyników analitycznych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Określ, jakie informacje powinny być zarejestrowane w ewidencji wydania substancji niebezpiecznych, stosowanych w badaniach laboratoryjnych?

A. Ilości wydane, stan magazynowy, imię i nazwisko osoby, której przekazano substancję
B. Data ważności, forma substancji
C. Metoda wydania, imię i nazwisko osoby wydającej
D. Liczba przeprowadzonych prób z użyciem tej substancji, data wydania
Odpowiedź dotycząca zapisania wydanych ilości, stanu zapasów oraz nazwiska osoby, której substancja została wydana, jest prawidłowa, ponieważ ewidencja rozchodu substancji niebezpiecznych wymaga szczegółowego dokumentowania tych informacji w celu zapewnienia bezpieczeństwa i zgodności z przepisami. Wydane ilości umożliwiają śledzenie zużycia substancji, co jest niezbędne do oceny ich dostępności i planowania zakupów. Stan zapasów pozwala na zarządzanie zasobami, minimalizując ryzyko ich niedoboru, co jest istotne w kontekście ciągłości pracy laboratorium. Imię i nazwisko osoby, której substancja została wydana, pozwala na identyfikację użytkownika, co jest kluczowe w przypadku ewentualnych incydentów związanych z bezpieczeństwem. W praktyce, takie podejście jest zgodne z normami ISO 14001, które podkreślają znaczenie dokumentacji w zarządzaniu substancjami niebezpiecznymi, a także z dobrą praktyką laboratoryjną (GLP), która nakłada obowiązek ścisłego rejestrowania obiegu substancji chemicznych.

Pytanie 40

Eliminacja substancji organicznych z próbki poprzez jej spalenie nazywa się

A. roztworzenie
B. mineralizacja sucha
C. ekstrakcja do fazy stałej
D. mineralizacja mokra
Mineralizacja mokra to proces, który różni się znacząco od mineralizacji suchej. W mineralizacji mokrej organiczne substancje są rozkładane w obecności reagentów chemicznych, takich jak kwasy, co sprawia, że charakter tego procesu jest zupełnie inny. Technika ta jest często stosowana do analizy materiałów, w których nie można zastosować wysokich temperatur ze względu na ryzyko degradacji próbki. W kontekście mineralizacji suchej, na przykład, często pojawia się mylne przekonanie, że można połączyć te metody, co prowadzi do nieścisłości w interpretacji wyników. Ekstrakcja do fazy stałej to zupełnie odmienny proces, który polega na wydobywaniu związków chemicznych z próbki za pomocą materiałów adsorpcyjnych, a nie na ich spalaniu. Z kolei roztworzenie odnosi się do procesu rozpuszczania substancji w cieczy, co również nie jest związane z mineralizacją. Często błędnie sądzimy, że wszystkie te procesy mają podobne zastosowania, podczas gdy ich mechanizmy działania, efektywność oraz cel są odmienne. Kluczowa jest umiejętność rozróżnienia tych technik, co pozwala na uniknięcie nieporozumień i błędnych wniosków w analizach chemicznych.