Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 24 stycznia 2026 17:10
  • Data zakończenia: 24 stycznia 2026 17:31

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie umieszczonego oznaczenia na szybie pojazdu wskaż jej miesiąc produkcji.

Ilustracja do pytania
A. Czerwiec.
B. Grudzień.
C. Lipiec.
D. Styczeń.
Odpowiedzi 'Czerwiec', 'Styczeń', 'Lipiec' oraz 'Grudzień' wskazują na nieprawidłowe zrozumienie systemu oznaczeń stosowanych przez producentów szyb. Wiele osób może mylić miesiące z tygodniami, co prowadzi do błędnych konkluzji. Na przykład, czerwiec to szósty miesiąc w roku, co nie ma związku z 129 tygodniem. W obliczeniach związanych z produkcją, kluczowe jest rozumienie, że tygodnie są klasyfikowane w obrębie roku kalendarzowego i każdy tydzień przypada na określony miesiąc, co jest niezbędne do precyzyjnego określenia daty produkcji. W szczególności, błędne uznawanie stycznia za miesiąc produkcji może wynikać z braku znajomości konwencji DOT, która zawiera informacje o tygodniu produkcji w odniesieniu do całego roku. Tego rodzaju błędy mogą wynikać z braku praktycznej wiedzy o cyklach produkcji oraz o tym, jak różne elementy pojazdów są oznaczane. Dlatego tak istotne jest, aby osoby zajmujące się zakupem lub serwisowaniem pojazdów były dobrze zaznajomione z tymi standardami, co pozwoli uniknąć nieporozumień i problemów związanych z wiekiem i historią produkcji elementów pojazdu.

Pytanie 2

Oznaczenie 7 1/2 J x 15 umieszczone na obręczy koła samochodowego wskazuje na obręcz

A. wypukłą o szerokości 15 cali, średnicy 7,5 cala, z obrzeżem J
B. wypukłą o szerokości 7,5 cala, średnicy 15 cali, z obrzeżem J
C. wklęsłą o szerokości 7,5 cala, średnicy 15 cali, z obrzeżem J
D. wklęsłą o szerokości 15 cali, średnicy 7,5 cala, z obrzeżem J
Wszystkie inne odpowiedzi są oparte na błędnych interpretacjach oznaczeń obręczy. Jeśli chodzi o szerokość i średnicę, trzeba pamiętać, że szerokość obręczy zawsze musi być większa od średnicy. To dosyć istotne w inżynierii pojazdów. Szerokość 15 cali w kontekście obręczy byłaby mega nietypowa, bo standardowe szerokości w samochodach osobowych zazwyczaj nie przekraczają 10 cali. Wprowadzenie takich błędnych danych może prowadzić do problemów z dobraniem opon, co z kolei może skutkować nieprawidłowym prowadzeniem auta i większym ryzykiem wypadków. Poza tym, pojęcie obrzeża J jest kluczowe, ale w błędnych odpowiedziach nie jest zrozumiane. To oznaczenie ma wpływ na to, jak opona przylega do obręczy, co jest bardzo ważne dla stabilności i bezpieczeństwa. W praktyce brak znajomości tych parametrów może zaprowadzić do złego wyboru części, co potem wpłynie na wydajność i komfort jazdy. Dlatego warto dobrze znać te oznaczenia i wiedzieć, jak je stosować w inżynierii motoryzacyjnej.

Pytanie 3

Przedstawiony na ilustracji zespół jest elementem

Ilustracja do pytania
A. układu napędowego.
B. układu wydechowego.
C. układu hamulcowego.
D. układu zawieszenia.
Wybór odpowiedzi, która nie odnosi się do układu napędowego, może wynikać z nieporozumienia dotyczącego podstawowych funkcji poszczególnych układów w pojeździe. Na przykład, układ wydechowy ma na celu odprowadzanie spalin z silnika, co jest zupełnie inną funkcją niż przenoszenie napędu na koła. Układ zawieszenia jest odpowiedzialny za zapewnienie stabilności pojazdu oraz komfortu jazdy, co również nie ma nic wspólnego z przenoszeniem mocy silnika. Wybierając układ hamulcowy, można pomyśleć o jego roli w zatrzymywaniu pojazdu, co również nie dotyczy przenoszenia momentu obrotowego. Typowym błędem myślowym w tym przypadku jest skupienie się na funkcji elementu, zamiast na jego specyficznej roli w kontekście całego układu napędowego. Każdy z tych układów pełni odrębne funkcje, które są niezwykle ważne dla bezpieczeństwa i efektywności pojazdu, jednak elementy te nie są ze sobą bezpośrednio powiązane w kontekście przenoszenia napędu. Dlatego kluczowe jest zrozumienie, że półoś napędowa działa w obrębie układu napędowego i jej funkcje są niezastąpione w procesie ruchu pojazdu.

Pytanie 4

Jakie materiały stosuje się do produkcji wysoko obciążonych pierścieni tłokowych?

A. z stali żaroodpornej
B. z stopów aluminium
C. z stali nierdzewnej
D. z żeliwa sferoidalnego
Stal nierdzewna, mimo że ma doskonałą odporność na korozję, nie jest odpowiednim materiałem na pierścienie tłokowe w aplikacjach wysokoobciążonych. Jej właściwości mechaniczne, takie jak twardość, mogą prowadzić do szybszego zużycia w skrajnych warunkach pracy silników, gdzie występują ekstremalne temperatury i ciśnienia. Stal żaroodporna również wykazuje pewne ograniczenia, jeśli chodzi o odporność na ścieranie i zmęczenie materiału, ponieważ nie jest w stanie utrzymać optymalnych właściwości w długotrwałym użytkowaniu, co jest kluczowe w kontekście pierścieni tłokowych. Stopy aluminium, choć lekkie i dobrze przystosowane do wielu zastosowań, nie oferują wystarczającej wytrzymałości na ściskanie i mogą być stosowane jedynie w mniej obciążonych układach. Typowe błędy myślowe, które prowadzą do wyboru tych materiałów, wynikają z przekonania, że wszystkie materiały metalowe są odpowiednie do zastosowań mechanicznych. W rzeczywistości, odpowiedni wybór materiałów w inżynierii jest kluczowy dla zapewnienia trwałości i wydajności komponentów, co potwierdzają standardy przemysłowe i dobre praktyki inżynieryjne, które zalecają stosowanie materiałów takich jak żeliwo sferoidalne w kontekście wysokich obciążeń.

Pytanie 5

W trakcie wymiany wtryskiwaczy konieczne jest również zastąpienie

A. przewodów paliwowych powrotnych
B. spinek zabezpieczających przewody powrotne
C. pierścieni uszczelniających wtryskiwacze
D. przewodów paliwowych wysokiego ciśnienia
Wymiana pierścieni uszczelniających wtryskiwaczy jest kluczowym elementem podczas serwisowania układu wtryskowego. Te niewielkie komponenty mają za zadanie zapewnienie szczelności połączenia pomiędzy wtryskiwaczem a głowicą cylindrów, co jest niezwykle istotne dla prawidłowego funkcjonowania silnika. Uszkodzone lub zużyte pierścienie mogą prowadzić do wycieków paliwa, co w efekcie może powodować nieefektywne spalanie, zwiększenie emisji spalin, a także uszkodzenia silnika. Standardy branżowe, takie jak SAE (Society of Automotive Engineers), zalecają regularne sprawdzanie i wymianę tych uszczelek podczas serwisowania wtryskiwaczy, aby zapewnić ich prawidłowe działanie oraz długowieczność całego układu. Ważne jest również, aby używać wysokiej jakości zamienników, które odpowiadają specyfikacjom producenta, co zminimalizuje ryzyko awarii i zapewni optymalne parametry pracy silnika. Przykładowo, podczas wymiany wtryskiwaczy w silniku Diesla, nieprzestrzeganie zaleceń dotyczących wymiany pierścieni uszczelniających może prowadzić do kosztownych napraw związanych z uszkodzeniem pompy wtryskowej lub systemu wtryskowego.

Pytanie 6

Pojawiające się w zbiorniczku wyrównawczym systemu chłodzenia pęcherzyki powietrza mogą być efektem uszkodzenia

A. głowicy silnika
B. termostatu
C. pompy wody
D. nagrzewnicy
Odpowiedzi dotyczące nagrzewnicy, termostatu oraz pompy wody jako potencjalnych źródeł pęcherzyków powietrza w układzie chłodzenia są nieprawidłowe z kilku powodów. Nagrzewnica, pomimo że jest istotnym elementem układu chłodzenia, działa jako wymiennik ciepła, który nie jest bezpośrednio odpowiedzialny za wprowadzanie powietrza do obiegu. Jej uszkodzenie może prowadzić do wycieków płynu chłodzącego, ale nie generuje pęcherzyków powietrza z powodu nieszczelności. Z kolei termostat, który reguluje przepływ płynu chłodzącego w układzie, również nie jest bezpośrednio związany z pojawianiem się pęcherzyków powietrza. Jego uszkodzenie może prowadzić do nieprawidłowego działania układu chłodzenia, jednak nie wprowadza powietrza do obiegu. Pompa wody, na której zadaniem jest cyrkulacja płynu chłodzącego, może powodować problemy w przypadku awarii, ale pęcherzyki powietrza nie są jej typowym symptomem. Typowym błędem myślowym jest utożsamianie problemów z układem chłodzenia z niesprawnością wszystkich jego elementów, podczas gdy kluczowe jest zrozumienie, że każdy z tych komponentów ma specyficzne funkcje i usterki, które nie zawsze są ze sobą powiązane. Aby skutecznie diagnozować problemy związane z układem chłodzenia, ważne jest przeprowadzenie szczegółowej analizy stanu technicznego poszczególnych elementów, zaczynając od najczęstszych przyczyn, jak właśnie uszkodzenia głowicy silnika.

Pytanie 7

Czas wymiany uszczelki podgłowicowej w silniku wynosi 2,3 rbg, a całkowity koszt części zamiennych to 339,00 zł netto. Jaki jest całkowity koszt brutto naprawy (VAT 23%), przy założeniu, że cena za 1 rbg to 70,00 zł netto?

A. 595,00 zł
B. 600,00 zł
C. 500,00 zł
D. 615,00 zł
Obliczanie całkowitego kosztu naprawy silnika wymaga precyzyjnego uwzględnienia zarówno kosztów pracy, jak i części zamiennych. W przypadku błędnych odpowiedzi, które nie uwzględniają zarówno stawki za roboczogodzinę, jak i VAT, pojawiają się podstawowe błędy koncepcyjne. Na przykład, niektóre odpowiedzi mogą ignorować konieczność dodawania VAT do całkowitego kosztu netto. Przyjęcie, że koszt pracy jest stały, a następnie nie uwzględnienie VAT, prowadzi do zaniżenia całkowitych kosztów naprawy. Ważne jest również, aby zrozumieć, że każde zlecenie naprawy powinno być dokładnie kalkulowane na podstawie rzetelnych danych, co jest zgodne z najlepszymi praktykami w branży. Dobre praktyki obejmują dokładne przeliczanie godzin pracy oraz materiałów, a także transparentność w stosunku do klienta, co pozwala na uniknięcie nieporozumień. Zrozumienie pełnego procesu kosztorysowania, w tym wpływu VAT na cenę końcową usługi, jest kluczowe dla efektywnego zarządzania finansami w warsztatach. Ignorowanie tych elementów może prowadzić do nie tylko błędnych ocen kosztów, ale także do utraty zaufania klientów oraz nieefektywności operacyjnej.

Pytanie 8

W standardowym układzie napędowym do połączenia skrzyni biegów z tylnym mostem wykorzystywany jest

A. łącznik z tworzywa sztucznego
B. wał korbowy
C. przegub kulowy
D. wał napędowy
Wał napędowy jest kluczowym elementem w klasycznym układzie napędowym, który łączy skrzynię biegów z mostem napędowym. Jego główną rolą jest przenoszenie momentu obrotowego z silnika, który jest generowany przez skrzynię biegów, na koła pojazdu. Wał napędowy jest zazwyczaj wykonany z materiałów o wysokiej wytrzymałości, takich jak stal, aby wytrzymać duże obciążenia oraz drgania, które występują podczas pracy. W praktyce, wał napędowy jest także wyposażony w przeguby, które pozwalają na kompensację ruchów zawieszenia. Dzięki temu, nawet jeśli koła nie poruszają się na tej samej wysokości, wał napędowy może efektywnie przenosić moc. W nowoczesnych pojazdach stosuje się różne rozwiązania, takie jak wały o zmiennej długości czy systemy tłumienia drgań, które poprawiają komfort jazdy oraz wydajność układu napędowego. Standardy branżowe, takie jak ISO 9001, kładą nacisk na jakość materiałów oraz precyzję wykonania, co jest kluczowe dla bezpieczeństwa i efektywności działania wałów napędowych.

Pytanie 9

W samochodzie z przednim zablokowanym układem napędowym, podczas przyspieszania i skrętu w prawo, słychać stuki z przedniego koła. Te objawy mogą sugerować zużycie

A. mechanizmu różnicowego
B. sprzęgła
C. przegubu napędowego
D. łożysk w piaście
Sprzęgło, łożyska w piaście koła i mechanizm różnicowy to elementy, które pełnią różne funkcje w układzie napędowym pojazdu. Sprzęgło odpowiada za łączenie silnika z skrzynią biegów oraz umożliwia płynne przenoszenie momentu obrotowego. W przypadku uszkodzenia sprzęgła zazwyczaj występują problemy z przenoszeniem mocy, a nie specyficzne stuki przy skręcie, które są bardziej charakterystyczne dla problemów z przegubem napędowym. Z kolei łożyska w piaście koła wpływają na obrót koła, a ich uszkodzenie objawia się najczęściej szumem, a nie stukaniem. Mechanizm różnicowy z kolei umożliwia różnicowanie prędkości obrotowej kół podczas skrętu, ale jego awaria zazwyczaj skutkuje innymi objawami, takimi jak poślizg kół lub szarpanie podczas jazdy. Właściwe zrozumienie funkcji tych elementów jest kluczowe w diagnostyce problemów w pojeździe. Często błędne przypisywanie objawów do niewłaściwych komponentów wynika z niepełnej analizy sytuacji lub braku doświadczenia. W praktyce, aby uniknąć takich pomyłek, mechanicy powinni stosować metody diagnostyczne, które pozwalają na dokładne zidentyfikowanie źródła problemu oraz jego przyczyn.

Pytanie 10

Metaliczny dźwięk pochodzący z górnej części silnika może świadczyć

A. o uszkodzeniu pierścieni tłokowych
B. o luzach w łożyskach wału korbowego
C. o zbyt dużym luzie zaworów
D. o wyeksploatowaniu łańcucha rozrządu
Zrozumienie problemów związanych z dźwiękami silnika jest kluczowe dla prawidłowej diagnostyki i konserwacji. W przypadku stwierdzenia regularnych metalicznych stuków, wiele osób może mylnie zidentyfikować źródło problemu. Wybór zużycia łańcucha rozrządu jako przyczyny może wynikać z faktu, że nieprawidłowe napięcie łańcucha może prowadzić do głośniejszej pracy silnika, jednak objawy związane z uszkodzeniem łańcucha rozrządu są zazwyczaj bardziej złożone i obejmują także problemy z synchronizacją pracy silnika. Natomiast luz łożysk wału korbowego, choć również może generować nieprzyjemne dźwięki, zazwyczaj manifestuje się one w inny sposób, z charakterystycznymi wibracjami i głośniejszymi odgłosami przy obciążeniu silnika. Z kolei uszkodzenie pierścieni tłokowych prowadzi do wycieków oleju, spadku kompresji i nieprawidłowego spalania, co niekoniecznie objawia się metalicznym stukiem w górnej części silnika. Przykładowo, objawy mogą być bardziej związane z utratą mocy oraz dymieniem z wydechu. Diagnosticzne pomylenie tych problemów może prowadzić do nieefektywnej naprawy, dlatego ważne jest, aby w procesie diagnostyki stosować odpowiednie metody, takie jak pomiar luzów zaworowych czy analiza dźwięków silnika przy użyciu odpowiednich narzędzi. Starannie przeprowadzona diagnoza i znajomość potencjalnych źródeł problemów to klucz do uniknięcia kosztownych napraw i przywrócenia silnika do prawidłowego stanu.

Pytanie 11

Przy oddawaniu pojazdu do naprawy w Autoryzowanym Serwisie Obsługi należy przygotować

A. zlecenie serwisowe
B. harmonogram prac naprawczych
C. zamówienie magazynowe
D. fakturę VAT
Zlecenie serwisowe jest kluczowym dokumentem w procesie obsługi samochodu w autoryzowanym serwisie. To właśnie na nim zapisuje się szczegółowe informacje dotyczące przyjęcia pojazdu, takie jak dane właściciela, dane pojazdu, opis zgłaszanych usterek oraz zakres planowanych prac. Wypełnienie zlecenia serwisowego pozwala na prawidłowe zorganizowanie procesu naprawy i zapewnia, że wszystkie etapy są zgodne z wymaganiami zgodnymi z procedurami stosowanymi w autoryzowanych serwisach. Ponadto, zlecenie serwisowe stanowi podstawę do późniejszego wystawienia faktury oraz gwarantuje, że wszystkie usługi wykonane w serwisie są zgodne z zaleceniami producenta. W praktyce, każdy autoryzowany serwis ma swoje specyficzne formularze, które są dostosowane do wymogów producenta pojazdu, co jest standardem w branży. Dobrą praktyką jest również archiwizowanie takich zleceń, co może być pomocne w przypadku reklamacji lub późniejszych usterek. W ten sposób zlecenie serwisowe pełni rolę nie tylko informacyjną, ale i prawną, zabezpieczając interesy zarówno serwisu, jak i klienta.

Pytanie 12

Zgodnie z informacjami od producenta, właściwa zbieżność kół przednich pojazdu powinna wynosić
1,5 mm ± 1,5 mm. Która z podanych wartości nie mieści się w zakresie tolerancji?

A. 2 mm
B. 4 mm
C. 1 mm
D. 3 mm
Odpowiedź 3 mm jest poprawna, ponieważ znajduje się ona poza zakresem tolerancji podanym przez producenta, który wynosi 1,5 mm ± 1,5 mm, co oznacza, że akceptowalne wartości powinny mieścić się w przedziale od 0 mm do 3 mm. Wartość 4 mm przekracza maksymalny dopuszczalny limit tolerancji, co może prowadzić do problemów z geometrią zawieszenia, a w efekcie wpływać na bezpieczeństwo i komfort jazdy. Utrzymanie właściwej zbieżności kół jest kluczowe dla równomiernego zużycia opon oraz optymalnej przyczepności pojazdu. Należy regularnie monitorować zbieżność kół, zwłaszcza po wymianie opon lub po kolizjach, aby zapewnić ich prawidłowe ustawienie. W praktyce serwisowej zaleca się korzystanie z profesjonalnych narzędzi do pomiaru zbieżności, które pozwalają na precyzyjne dostosowanie ustawień pojazdu według norm producenta.

Pytanie 13

Wymianę pasa napędowego sprzętu silnika należy zrealizować

A. podczas wymiany rozrządu
B. w trakcie przymusowego badania technicznego
C. przy wymianie pompy wodnej
D. po określonym przebiegu i stopniu zużycia
Wymiana paska napędowego osprzętu silnika nie powinna się odbywać przy wymianie pompy wody czy podczas przeglądów technicznych. Jak wymieniasz pompę wody, to nie musisz koniecznie wymieniać paska, chyba że widzisz, że jest jakiś problem. Pompa może działać z paskiem, ale nie jest tak, że jak wymieniasz jedną, to drugą musisz też. Przeglądy techniczne są głównie o stanie technicznym pojazdu, a niekoniecznie o konkretnej wymianie, więc pasek nie jest tam szczegółowo sprawdzany. A jak chodzi o rozrząd, to też nie mylmy tego z wymianą paska – czasem trzeba go zdjąć, ale nie znaczy to, że trzeba go zmieniać, chyba że masz odpowiednie wskazówki od producenta. Niektórzy mechanicy mają podejście 'jeśli działa, to nie ruszaj' i to jest kiepskie podejście. Pamiętaj, że każdy pasek ma swoją żywotność i powinno się go regularnie kontrolować. Ignorowanie tego może prowadzić do poważnych usterek, które będą niebezpieczne oraz drogie w naprawie.

Pytanie 14

Który z poniższych elementów służy do redukcji wibracji w układzie zawieszenia?

A. Amortyzator
B. Sworzeń kulowy
C. Półosie napędowe
D. Wahacz
Amortyzator to kluczowy element układu zawieszenia w samochodzie, którego główną funkcją jest tłumienie wibracji i drgań wywołanych przez nierówności nawierzchni. Działa poprzez zamianę energii kinetycznej na ciepło, co pozwala na stabilizację pojazdu i zapewnienie komfortu jazdy. Dzięki amortyzatorom koła pojazdu mają stały kontakt z nawierzchnią, co nie tylko podnosi komfort, ale także zwiększa bezpieczeństwo poprzez poprawę trakcji i skrócenie drogi hamowania. Amortyzatory są zaprojektowane, by działać w połączeniu ze sprężynami zawieszenia, co pozwala na optymalne rozłożenie ciężaru pojazdu i absorpcję energii podczas jazdy po nierównościach. Z mojego doświadczenia, dobrze dobrane amortyzatory mogą znacząco poprawić właściwości jezdne pojazdu, a ich regularna kontrola i wymiana są kluczowe dla długowieczności innych komponentów zawieszenia. W praktyce, stosowanie wysokiej jakości amortyzatorów jest uznawane za standard branżowy, co ma bezpośredni wpływ na redukcję zmęczenia materiału innych elementów zawieszenia oraz na ogólne bezpieczeństwo jazdy.

Pytanie 15

Na szczelność przestrzeni roboczej cylindrów nie oddziałuje

A. szczelność układu wylotowego
B. szczelność połączenia bloku cylindra z głowicą
C. luz tłok-pierścienie-cylinder
D. szczelność przylegania zaworów
Szczelność układu wylotowego rzeczywiście nie ma wpływu na szczelność przestrzeni roboczej cylindrów. Układ wylotowy odpowiada za odprowadzanie spalin z silnika, a jego szczelność dotyczy jedynie utrzymania ciśnienia i kontroli emisji. Z punktu widzenia pracy silnika, szczelność cylindrów jest bezpośrednio związana z zjawiskami zachodzącymi wewnątrz samego cylindra, takimi jak luz tłok-pierścienie-cylinder czy szczelność zaworów. Dobre praktyki w zakresie konserwacji silnika wymagają regularnego sprawdzania stanu pierścieni tłokowych, co pozwala na utrzymanie odpowiedniego ciśnienia sprężania. Przykładem zastosowania tej wiedzy jest wymiana uszkodzonych pierścieni tłokowych w silniku, co znacznie poprawia jego osiągi i efektywność paliwową. W sytuacji, gdy układ wylotowy jest nieszczelny, może to prowadzić do zwiększenia emisji spalin, ale nie wpłynie to bezpośrednio na ciśnienie robocze w cylindrze.

Pytanie 16

Na rysunku przedstawiono nadwozie pojazdu typu

Ilustracja do pytania
A. hatchback.
B. uniwersalnego.
C. sedan.
D. kombi.
Odpowiedź 'sedan' jest poprawna, ponieważ nadwozie przedstawione na rysunku charakteryzuje się wyraźnie oddzieloną przestrzenią bagażową od kabiny pasażerskiej, co jest typowe dla pojazdów tego typu. Sedan to kluczowy element w segmencie samochodów osobowych, zaliczany do nadwozi trójbryłowych. W praktyce oznacza to, że samochody te oferują zrównoważony kompromis pomiędzy komfortem a funkcjonalnością. Pojazdy typu sedan często są preferowane ze względu na ich elegancki wygląd oraz lepszą aerodynamikę w porównaniu do innych typów nadwozia. W branży motoryzacyjnej, sedany są powszechnie używane jako samochody rodzinne oraz służbowe, co czyni je uniwersalnym wyborem dla wielu kierowców. Dobrze zaprojektowane sedany, takie jak modele premium, często oferują zaawansowane systemy bezpieczeństwa i komfortu, co dodatkowo podnosi ich atrakcyjność w oczach konsumentów. Przykłady popularnych modeli sedanów to Toyota Camry, BMW serii 3 oraz Audi A4, które są cenione za swoje właściwości jezdne oraz przestronność.

Pytanie 17

Aby zamówić właściwe części do naprawy pojazdu,

A. wystarczy podać numer VIN.
B. wystarczy podać rok produkcji pojazdu.
C. wystarczy podać jego markę oraz model.
D. należy dostarczyć uszkodzony element do porównania z zamiennikiem.
Podanie numeru VIN (Vehicle Identification Number) jest kluczowe w procesie zamawiania części do pojazdu, ponieważ ten unikalny identyfikator zawiera wszystkie istotne informacje dotyczące konkretnego egzemplarza samochodu. Numery VIN składają się z 17 znaków, które obejmują m.in. informacje o marce, modelu, roku produkcji, miejscu produkcji oraz specyfikacji silnika. Dzięki temu, kiedy zamawiamy części, dostawcy mogą dokładnie zidentyfikować, które elementy będą odpowiednie do danego pojazdu, co pozwala zminimalizować ryzyko pomyłek i niezgodności. Przykładowo, dwa modele tego samego pojazdu mogą mieć różniące się specyfikacje, a użycie VIN zapewnia, że zamówione części będą idealnie pasować. W praktyce, stosowanie numeru VIN jest standardem w branży motoryzacyjnej, co z kolei wspiera procesy logistyczne i serwisowe, podnosząc efektywność obsługi klienta oraz zmniejszając koszty związane z błędnymi zamówieniami.

Pytanie 18

Jak powinno odbywać się przetransportowanie osoby poszkodowanej z podejrzeniem urazu kręgosłupa?

A. z użyciem twardych noszy
B. z użyciem miękkich noszy
C. na wózku inwalidzkim
D. na materacu piankowym
Transport poszkodowanego z podejrzeniem urazu kręgosłupa powinien być przeprowadzany z wykorzystaniem twardych noszy, ponieważ zapewniają one stabilizację i unieruchomienie kręgosłupa w trakcie transportu. W przypadku urazów kręgosłupa niezwykle istotne jest minimalizowanie ruchów, które mogą pogorszyć stan poszkodowanego lub prowadzić do dodatkowych obrażeń. Twarde nosze są zaprojektowane tak, aby równomiernie rozkładać ciężar ciała oraz skutecznie blokować wszelkie ruchy w obrębie kręgosłupa. Przykładem zastosowania twardych noszy jest ich wykorzystywanie w sytuacjach wypadków komunikacyjnych, gdzie konieczne jest szybkie, ale bezpieczne przeniesienie osoby poszkodowanej do szpitala. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji oraz standardami ratownictwa medycznego, użycie twardych noszy jest najlepszą praktyką, gdy istnieje ryzyko urazu kręgosłupa. Ponadto, stosowanie tych noszy ułatwia również dalszą diagnostykę oraz interwencje medyczne, ponieważ pacjent pozostaje w stabilnej pozycji do momentu podjęcia odpowiednich działań przez personel medyczny.

Pytanie 19

Aby ustalić przyczynę braku maksymalnych wydajności silnika przy całkowicie otwartej przepustnicy, gdy nie stwierdza się innych symptomów, należy w pierwszej kolejności przeprowadzić pomiar

A. ciśnienia paliwa
B. napięcia ładowania
C. ciśnienia smarowania
D. ciśnienia sprężania
Napięcie ładowania, ciśnienie smarowania oraz ciśnienie sprężania to elementy, które choć są istotne w ogólnej diagnostyce silnika, nie powinny być pierwszymi parametrami do zbadania w przypadku braku maksymalnych osiągów silnika. Napięcie ładowania skupia się na wydajności alternatora i stanie akumulatora, co nie ma bezpośredniego wpływu na ciśnienie paliwa, a tym samym na wydajność silnika przy pełnym otwarciu przepustnicy. Zbyt niskie napięcie może powodować problemy z zasilaniem elektroniki, ale nie jest główną przyczyną braku mocy. Ciśnienie smarowania dotyczy smarowania ruchomych części silnika, co jest ważne dla jego długowieczności, lecz nie wpływa bezpośrednio na jego osiągi przy pełnym obciążeniu. Ciśnienie sprężania jest krytyczne dla właściwego spalania mieszanki paliwowo-powietrznej, ale nie jest to kluczowy parametr w diagnostyce osiągów w sytuacji, gdy inne objawy nie są obecne. W takich przypadkach, koncentrowanie się na ciśnieniu paliwa, które dostarcza odpowiednią ilość paliwa do komory spalania, jest znacznie bardziej trafne. Zrozumienie, że każdy z tych parametrów pełni określoną rolę, ale nie wszystkie są równie istotne w danym kontekście, jest kluczowe dla skutecznej diagnostyki i naprawy silników spalinowych.

Pytanie 20

Przedstawiona na rysunku kontrolka umieszczana na desce rozdzielczej pojazdu

Ilustracja do pytania
A. informuje o przegrzaniu silnika.
B. jest stosowana tylko w pojazdach z silnikiem Diesla.
C. dotyczy wyłącznie samochodów z napędem elektrycznym.
D. oznacza awarię układu ładowania.
Kontrolka przedstawiona na rysunku to symbol świec żarowych, które rzeczywiście są używane wyłącznie w silnikach Diesla. Świece te odgrywają kluczową rolę w procesie rozruchu silnika, zwłaszcza w warunkach niskotemperaturowych, gdzie podgrzewają mieszankę paliwową w komorze spalania, co umożliwia łatwiejszy i bardziej niezawodny rozruch. W samochodach z silnikiem Diesla, kontrolka ta zapala się na desce rozdzielczej, informując kierowcę, że świece są aktywne. Gdy osiągną odpowiednią temperaturę, kontrolka gaśnie, co oznacza, że silnik może być uruchomiony. Zgodnie z branżowymi standardami, takie symbole informacyjne są niezbędne dla bezpieczeństwa i funkcjonalności pojazdów. Właściwe zrozumienie działania świec żarowych oraz ich oznaczenia na desce rozdzielczej jest istotne zarówno dla mechaników, jak i dla użytkowników pojazdów, aby mogli oni prawidłowo reagować na sytuacje związane z uruchamianiem silnika.

Pytanie 21

Niski wynik uzyskany w pomiarze przeprowadzonym metodą Eusama wskazuje na potrzebę wymiany

A. stabilizatory
B. hamulce tarczowe
C. sprężyny śrubowe zawieszenia
D. amortyzatory
Stabilizatory, hamulce tarczowe i sprężyny śrubowe mają różne zadania w zawieszeniu, ale niekoniecznie są związane z tym niskim wynikiem z metody Eusama. Stabilizatory, które też nazywamy stabilizatorami przechyłów, pomagają w utrzymaniu pojazdu w równowadze podczas zakrętów, co wprawdzie wpływa na komfort jazdy, ale ich uszkodzenie nie oznacza, że amortyzatory działają źle. Hamulce tarczowe są oczywiście istotne dla bezpieczeństwa, ale tu także nie mają nic wspólnego z pomiarami amortyzatorów. No i sprężyny śrubowe, to one zbierają energię, ale też nie wpływają bezpośrednio na wyniki amortyzatorów. Często ludzie mylą, jakie funkcje mają poszczególne elementy zawieszenia. Ważne, żeby pamiętać, że amortyzatory tłumią drgania i to jest kluczowe dla stabilności auta. Dobrze zdiagnozowany układ zawieszenia jest niezbędny dla bezpieczeństwa i komfortu jazdy, więc mechanicy muszą wiedzieć, co robią przy każdej części.

Pytanie 22

Jakie są metody weryfikacji efektywności działania hamulca roboczego po dokonaniu naprawy?

A. podczas próby na drodze
B. na stanowisku do badania podwozi
C. na płycie testowej
D. przeprowadzając symulację
Odpowiedź 'podczas testu drogowego' jest poprawna, ponieważ testy drogowe są kluczowym elementem weryfikacji skuteczności hamulców roboczych po ich naprawie. W trakcie takiego testu można ocenić rzeczywiste zachowanie pojazdu w warunkach rzeczywistych, co pozwala na uwzględnienie zmiennych takich jak obciążenie, przyczepność nawierzchni czy interakcje z innymi systemami pojazdu. Test drogowy pozwala na monitorowanie czasu reakcji hamulców, ich efektywności w różnych prędkościach oraz na różnorodnych nawierzchniach. W praktyce, mechanicy oraz technicy często przeprowadzają takie testy na zamkniętych torach lub w warunkach kontrolowanych, aby zapewnić bezpieczeństwo. Dobrą praktyką jest również stosowanie procedur opisanych w normach technicznych, takich jak ISO 17215, które dotyczą testowania systemów hamulcowych. Tylko poprzez kompleksowe testy drogowe można w pełni ocenić efektywność i bezpieczeństwo działania hamulców po ich naprawie.

Pytanie 23

Pierwszym krokiem przed przeprowadzeniem badania okresowego w Stacji Kontroli Pojazdów jest

A. pobranie informacji o badanym pojeździe z Centralnej Ewidencji Pojazdów
B. sprawdzenie oraz regulacja ciśnienia w oponach do wartości nominalnych
C. pomiar zadymienia spalin silnika ZI
D. sprawdzenie indeksu tłumienia amortyzatorów osi przedniej
Prawidłowa odpowiedź to pobranie danych badanego pojazdu z Centralnej Ewidencji Pojazdów (CEP). Jest to kluczowy krok w procesie przeprowadzania badania okresowego, ponieważ pozwala na weryfikację tożsamości pojazdu oraz jego historii. Centralna Ewidencja Pojazdów zawiera dane dotyczące właścicieli, zarejestrowanych pojazdów, a także informacje o ich stanie technicznym oraz ewentualnych stłuczkach czy wypadkach. Praktyczne zastosowanie tego kroku polega na unikaniu nieporozumień związanych z identyfikacją pojazdu, co jest nie tylko zgodne z przepisami prawa, ale również zwiększa bezpieczeństwo podczas przeprowadzania badań. Zgodnie z dobrą praktyką branżową, każda stacja kontroli pojazdów powinna mieć dostęp do CEP, aby móc sprawdzić, czy pojazd spełnia wymogi stawiane przez prawo. Dodatkowo, pozyskanie danych z CEP pozwala na ocenę, czy pojazd został poddany wcześniejszym badaniom, co może wskazywać na jego stan techniczny oraz potrzebne naprawy.

Pytanie 24

Wskaźnik TWI określa minimalną głębokość bieżnika dla opon wielosezonowych, która wynosi

A. 3,0 mm
B. 1,6 mm
C. 4,6 mm
D. 1,0 mm
Wskazania dotyczące minimalnej głębokości bieżnika, które wynoszą 1,0 mm, 4,6 mm czy 3,0 mm, są niezgodne z aktualnie obowiązującymi standardami bezpieczeństwa. Odpowiedzi te mogą wynikać z nieporozumienia dotyczącego przepisów regulujących minimalne wartości głębokości bieżnika opon. Na przykład, głębokość 1,0 mm jest zbyt niska i nie zapewnia odpowiedniej przyczepności, szczególnie w warunkach deszczowych, gdzie ryzyko aquaplaningu znacznie wzrasta. Opony z tak płytkim bieżnikiem mogą wykazywać niewystarczające właściwości trakcyjne, co prowadzi do zwiększonego ryzyka wypadków. Z kolei wskazania 4,6 mm i 3,0 mm mogą być mylące, ponieważ nie są standardowymi wartościami określonymi dla minimalnych wymagań, ale mogą odnosić się raczej do optymalnych głębokości bieżnika, które zapewniają maksymalne bezpieczeństwo i wydajność. Ważne jest, aby kierowcy i zarządcy flot byli dobrze poinformowani o tych standardach, aby uniknąć niebezpiecznych sytuacji. Błędy myślowe, prowadzące do przyjęcia niepoprawnych wartości, mogą wynikać z braku odpowiedniej wiedzy na temat wpływu głębokości bieżnika na bezpieczeństwo jazdy oraz z nieaktualnych informacji na temat norm i regulacji w obszarze motoryzacji.

Pytanie 25

Aby wykonać odczyt pamięci błędów systemu ABS, należy zastosować

A. multimetru
B. licznika RPM
C. skanera OBD
D. oscyloskopu
Skaner OBD (On-Board Diagnostics) to narzędzie diagnostyczne, które umożliwia odczytanie kodów błędów z systemów w pojazdach, w tym z układu ABS. Układ ABS (Antilock Braking System) jest odpowiedzialny za zapobieganie blokowaniu kół podczas hamowania, a jego prawidłowe działanie jest kluczowe dla bezpieczeństwa pojazdu. Skanery OBD są zaprojektowane do komunikacji z jednostką sterującą pojazdu (ECU) i umożliwiają nie tylko odczytu kodów błędów, ale także monitorowanie parametrów pracy poszczególnych systemów. W praktyce, aby przeprowadzić odczyt pamięci błędów ABS, należy podłączyć skaner do złącza diagnostycznego OBD-II, które jest standardowo umieszczone w każdym nowoczesnym pojeździe. Wykorzystując skaner, można szybko zidentyfikować ewentualne błędy w systemie ABS i podjąć odpowiednie kroki naprawcze. Zgodność z normą OBD-II jest powszechnym standardem w branży motoryzacyjnej, co zapewnia, że skanery OBD są wszechstronnie stosowane w wielu różnych pojazdach.

Pytanie 26

W jakich sytuacjach stosuje się spawanie jako metodę naprawy?

A. Przy naprawie uszkodzonych gwintów w kadłubie silnika
B. Przy usuwaniu pęknięć w bloku silnika
C. Podczas eliminacji odkształceń na powierzchni uszczelniającej głowicy
D. W trakcie naprawy gładzi cylindra
Spawanie jest jedną z kluczowych metod naprawy w kontekście usuwania pęknięć bloku silnika. Blok silnika jest elementem krytycznym dla prawidłowego funkcjonowania jednostki napędowej, a pęknięcia mogą prowadzić do poważnych awarii, takich jak utrata ciśnienia oleju czy problemy z chłodzeniem. Proces spawania polega na połączeniu dwóch lub więcej elementów metalowych poprzez ich stopienie i utworzenie jednorodnego połączenia. W przypadku naprawy bloku silnika stosuje się najczęściej metodę TIG (Tungsten Inert Gas) lub MIG (Metal Inert Gas), które zapewniają precyzyjne i trwałe łączenie materiałów. Właściwe przygotowanie powierzchni, dobór odpowiednich materiałów spawalniczych oraz kontrola parametrów spawania są kluczowe dla uzyskania wysokiej jakości naprawy. Przykładem zastosowania spawania w praktyce jest użycie spawania do rekonstrukcji pęknięć w bloku silnika V8, gdzie precyzyjna kontrola temperatury jest niezbędna, aby uniknąć dalszych odkształceń. Dobre praktyki w tej dziedzinie obejmują również stosowanie technik badań nieniszczących, takich jak ultradźwięki, aby potwierdzić jakość naprawy.

Pytanie 27

W skład systemu kierowniczego nie zalicza się

A. drążek reakcyjny
B. końcówka drążka kierowniczego
C. drążek kierowniczy
D. przekładnia ślimakowa
Drążek reakcyjny jest komponentem, który nie należy do układu kierowniczego. W skrócie, układ kierowniczy pojazdu składa się z elementów odpowiedzialnych za kontrolowanie kierunku jazdy, co obejmuje drążek kierowniczy, końcówkę drążka kierowniczego oraz przekładnię ślimakową. Drążek reakcyjny jest stosowany w systemach hydraulicznych, a jego funkcja polega na przenoszeniu sił reakcyjnych, co nie jest konieczne do bezpośredniego działania układu kierowniczego. Zastosowanie drążków kierowniczych oraz ich końcówek jest kluczowe dla zapewnienia precyzyjnego manewrowania pojazdem, co jest regulowane przez normy takie jak ISO 26262 dotyczące bezpieczeństwa funkcjonalnego. W praktyce, właściwe zrozumienie funkcji poszczególnych elementów układu kierowniczego pozwala na efektywniejsze projektowanie oraz serwisowanie pojazdów, co z kolei wpływa na bezpieczeństwo jazdy.

Pytanie 28

Elementem odpowiedzialnym za wyrównanie prędkości obrotowych sprzęganych komponentów działających w mechanicznej skrzyni biegów jest

A. łożysko ślizgowe
B. sprzęgło cierne jednotarczowe
C. synchronizator
D. koło zębate skrzyni
Wybór sprzęgła ciernego jednotarczowego, koła zębatego skrzyni lub łożyska ślizgowego jako rozwiązania do wyrównania prędkości obrotowych elementów w skrzyni biegów jest nieprawidłowy, ponieważ każdy z tych komponentów pełni inną funkcję w systemie napędowym. Sprzęgło cierne jednotarczowe służy do rozłączania i łączenia napędu, co umożliwia zmianę biegów, ale nie jest zaprojektowane do synchronizacji prędkości obrotowych. Jego działanie polega na przekazywaniu momentu obrotowego, a nie na ich wyrównywaniu, co czyni je niewłaściwym wyborem w tej sytuacji. Koło zębate skrzyni biegów ma na celu przenoszenie momentu obrotowego i zmianę przełożeń, ale w momencie zmiany biegów nie jest w stanie wyrównać prędkości obrotowych. Z kolei łożysko ślizgowe służy do podparcia i minimalizacji tarcia pomiędzy ruchomymi elementami, co również nie ma związku z kwestią synchronizacji prędkości. Dlatego błędne jest myślenie, że te komponenty mogą zastąpić rolę synchronizatora, który jest specjalnie zaprojektowany do tego celu. W praktyce, niezrozumienie funkcji tych elementów może prowadzić do problemów z działaniem skrzyni biegów i obniżenia jej efektywności oraz trwałości. Standardy branżowe, takie jak ISO 26262, dotyczące bezpieczeństwa systemów elektronicznych w pojazdach, również podkreślają znaczenie odpowiedniego doboru komponentów, co czyni wybór synchronizatora kluczowym dla prawidłowego działania układu napędowego.

Pytanie 29

Srednicówka czujnikowa jest wykorzystywana do pomiaru średnicy

A. tarczy hamulcowej
B. wewnętrznej cylindra
C. czopa wału korbowego
D. trzonka zaworu
Srednicówka czujnikowa to narzędzie pomiarowe, które umożliwia precyzyjne określenie średnicy wewnętrznej cylindra. Jej zastosowanie jest kluczowe w przemyśle motoryzacyjnym oraz w produkcji maszyn, gdzie dokładność pomiarów ma istotne znaczenie dla funkcjonowania mechanizmów. Pomiar średnicy wewnętrznej jest istotny, ponieważ niewłaściwe wymiary mogą prowadzić do błędów montażowych, a także wpływać na efektywność działania silników oraz innych komponentów. W praktyce, średnicówki czujnikowe są wykorzystywane do inspekcji komponentów takich jak tuleje, cylindry hydrauliczne czy elementy silników spalinowych. Dzięki zastosowaniu technologii czujnikowej, narzędzie to zapewnia wysoką powtarzalność i dokładność pomiarów. W przemysłowych standardach jakości, takich jak ISO 9001, podkreśla się znaczenie precyzyjnych pomiarów w procesach produkcyjnych, co czyni średnicówki czujnikowe niezbędnym elementem każdej zorganizowanej linii produkcyjnej.

Pytanie 30

Termin DOHC odnosi się do układu

A. dolnozaworowego z jednym wałkiem rozrządu w kadłubie
B. górnozaworowego z jednym wałkiem rozrządu umieszczonym w kadłubie
C. górnozaworowego z dwoma wałkami rozrządu zainstalowanymi w głowicy
D. górnozaworowego z pojedynczym wałkiem rozrządu w głowicy
Analizując inne odpowiedzi, można zauważyć, że pomieszanie terminologii oraz konstrukcji układów rozrządu prowadzi do nieporozumień. W pierwszej z błędnych odpowiedzi wspomniano o górnozaworowym układzie z jednym wałkiem rozrządu w kadłubie. Rzeczywiście, jednym z popularnych układów jest SOHC (Single Overhead Camshaft), który wykorzystuje tylko jeden wałek rozrządu, jednak jego umiejscowienie w kadłubie jest nieprawidłowe, ponieważ w przypadku SOHC wałek również znajduje się w głowicy silnika. Odpowiedź mówiąca o dolnozaworowym układzie z jednym wałkiem rozrządu w kadłubie odnosi się do konstrukcji, która była popularna w starszych silnikach, jednak nie jest to układ, który by się zaliczał do standardów współczesnych konstrukcji, gdzie dominują układy górnozaworowe. Współczesne silniki są projektowane z myślą o optymalizacji osiągów i efektywności, co czyni układ DOHC standardem w silnikach o wyższej mocy. Zrozumienie różnicy pomiędzy tymi terminami jest kluczowe, aby właściwie rozpoznać oraz ocenić funkcjonalność silnika w kontekście jego zastosowania, co jest niezbędne w profesjonalnych dyskusjach na temat inżynierii silników.

Pytanie 31

Na podstawie informacji zawartych w tabeli określ koszt brutto wymiany ogumienia letniego na zimowewykonywane przez jednego pracownika. Stawka VAT wynosi 23%.

Lp.nazwa części/usługicena netto
1opona zimowa 1 szt.250,00 zł
2wymiana opony z wyważeniem 1 szt.25,00 zł
3wyważenie koła 1szt10,00 zł
A. 1 353,00 zł
B. 1 100,00 zł
C. 1 140,00 zł
D. 1 420,20 zł
Poprawna odpowiedź, czyli 1 353,00 zł, została obliczona zgodnie z zasadami rachunkowości dotyczącej kosztów usług związanych z wymianą ogumienia. Aby obliczyć koszt brutto, należy zsumować koszty netto wymiany i wyważenia każdej opony oraz koszt netto zakupu opon zimowych. W tym przypadku koszt netto wymiany i wyważenia jednej opony wynosi 285,00 zł (25,00 zł za wymianę oraz 10,00 zł za wyważenie, do czego należy dodać koszt zakupu opony zimowej, wynoszący 250,00 zł). Zatem koszt netto wymiany czterech opon zimowych to 1 140,00 zł (285,00 zł x 4). Po dodaniu podatku VAT w wysokości 23% otrzymujemy końcowy koszt brutto, który wynosi 1 353,00 zł. Prawidłowe obliczenie kosztów jest kluczowe nie tylko w kontekście zarządzania finansami firmy, lecz także w obliczaniu cen oferowanych usług. Znajomość zasad naliczania VAT oraz umiejętność prawidłowego obliczania kosztów netto i brutto są niezbędne dla każdego specjalisty w branży motoryzacyjnej, a także dla właścicieli warsztatów samochodowych, co pozwala na efektywne zarządzanie budżetem oraz poprawne określenie cen usług.

Pytanie 32

Na rysunku przedstawiono sposób

Ilustracja do pytania
A. demontażu koła pasowego.
B. wymiany filtra oleju.
C. regulacji wydajności pompy oleju.
D. blokowania wału korbowego.
Blokowanie wału korbowego, regulacja wydajności pompy oleju i wymiana filtra oleju to różne rzeczy, które mają swoje własne narzędzia i zasady. Więc tak, blokowanie wału korbowego przydaje się przy wymianie rozrządu, ale ściągacz do kół pasowych nie jest potrzebny. Ludzie mogą czasami mylić rysunek z tym procesem, bo nie zawsze wiedzą, czym się różnią te narzędzia. Regulacja wydajności pompy oleju to bardziej sprawa ustawień, a demontaż koła pasowego nie jest z tym związany. No i wymiana filtra oleju też nie ma nic wspólnego ze ściągaczem. Więc trzeba być ostrożnym w myśleniu o tych różnych operacjach, bo pomylenie ich może prowadzić do złych wyborów narzędzi i problemów przy pracy. Każda operacja ma swoje specyficzne wymagania, a ich pomylenie może być naprawdę kłopotliwe.

Pytanie 33

Jakim przyrządem wykonujemy pomiar ciśnienia powietrza w oponach?

A. wakuometrem
B. areometrem
C. manometrem
D. pasametrem
Prawidłowa odpowiedź to manometr, który jest urządzeniem pomiarowym przeznaczonym do pomiaru ciśnienia. W kontekście ogumienia pojazdów, manometr pozwala na dokładne określenie ciśnienia powietrza w oponach, co jest kluczowe dla bezpieczeństwa jazdy oraz efektywności paliwowej. Odpowiednie ciśnienie w oponach zapewnia lepszą przyczepność, zmniejsza zużycie paliwa oraz obniża ryzyko uszkodzenia opon. Standardy dotyczące ciśnienia w oponach są określone przez producentów pojazdów i mogą różnić się w zależności od modelu oraz obciążenia. Regularne sprawdzanie ciśnienia za pomocą manometru to dobra praktyka, która powinna być wykonywana co najmniej raz w miesiącu oraz przed dłuższymi podróżami. Warto także pamiętać, że ciśnienie w oponach należy sprawdzać na zimno, czyli przed rozpoczęciem jazdy, aby uzyskać najbardziej dokładny wynik pomiaru.

Pytanie 34

Podczas realizacji wymiany łożysk kół przednich, dla zapewnienia bezpieczeństwa pracy oraz właściwej pozycji mechanika, powinno się

A. ustawić oś przednią na klinach
B. uniesić oś przednią przy użyciu podnośnika śrubowego
C. uniesić oś przednią za pomocą podnośnika hydraulicznego
D. podnieść pojazd za pomocą podnośnika kolumnowego
Podniesienie osi przedniej podnośnikiem hydraulicznym nie jest zalecane w przypadku wymiany łożysk kół przednich, ponieważ tego typu urządzenia mogą nie zapewnić odpowiedniej stabilności pojazdu. Podnośniki hydrauliczne są często używane w mniej wymagających zadaniach, jednak ich konstrukcja może prowadzić do niebezpiecznych sytuacji, zwłaszcza gdy pojazd jest podnoszony tylko z jednej strony. W przypadku zastosowania klinów, takie podejście nie gwarantuje odpowiedniego unieruchomienia pojazdu, co może skutkować jego przesunięciem podczas pracy, a tym samym narażeniem mechanika na niebezpieczeństwo. W sytuacjach, gdy używa się podnośnika śrubowego, podobnie jak w przypadku hydraulicznego, istnieje ryzyko niestabilności. Koncepcje te prowadzą do typowych błędów myślowych, które opierają się na przekonaniu, że każda forma podnoszenia pojazdu jest wystarczająca, co jest mylnym założeniem. Bezpieczeństwo w warsztacie jest kluczowe, a stosowanie odpowiednich urządzeń, jak podnośnik kolumnowy, jest zgodne z najlepszymi praktykami branżowymi, które zalecają unikanie ryzykownych metod podnoszenia, aby zminimalizować ryzyko wypadków oraz kontuzji.

Pytanie 35

Na podstawie zamieszczonego wyniku uzyskanego podczas badania spalin, zawartość węglowodorów wynosi

Ilustracja do pytania
A. 0.907
B. 15.30 %
C. 35 ppm
D. 0.06 %
Odpowiedź "35 ppm" jest poprawna, ponieważ przedstawia zawartość węglowodorów (HC) w badaniu spalin wyrażoną w jednostkach części na milion. Wartość ta jest powszechnie stosowana w analizach jakości spalin, jako że pozwala na precyzyjne określenie stężenia substancji szkodliwych w emitowanych gazach. W praktyce, pomiar węglowodorów w spalinach jest istotny dla oceny efektywności procesów spalania oraz dla spełniania norm emisji zanieczyszczeń, takich jak te określone w dyrektywie Europejskiej 2010/75/UE o emisji przemysłowych. Duże stężenia węglowodorów mogą wskazywać na niepełne spalanie paliwa, co może prowadzić do zwiększonej emisji szkodliwych substancji oraz niższej wydajności energetycznej. W przemyśle automotive, analiza spalin w kontekście węglowodorów jest kluczowa dla oceny działania systemów oczyszczania spalin, takich jak katalizatory i filtry cząstek stałych. Wartości ppm są także wykorzystywane w kontekście norm emisji, które często wymagają utrzymania stężenia węglowodorów poniżej określonych progów, aby chronić zdrowie publiczne oraz środowisko.

Pytanie 36

Trudności w włączaniu biegów mogą być spowodowane

A. zużyciem zębatek w skrzyni biegów
B. nadmiernym skokiem jałowym pedału sprzęgła
C. niewystarczającym skokiem jałowym pedału sprzęgła
D. zużyciem łożysk w skrzyni biegów
Utrudnione włączanie biegów może być mylnie interpretowane jako wynik zbyt małego skoku jałowego pedału sprzęgła lub zużycia kół zębatych w skrzyni biegów. Zbyt mały skok jałowy pedału sprzęgła może rzeczywiście prowadzić do problemów, jednak w takim przypadku kierowca zazwyczaj odczuwa nadmierne wibracje i trudności z całkowitym rozłączeniem sprzęgła, co sprawia, że włączanie biegów staje się bardziej oporne, ale nie jest to najczęstsza przyczyna. Zużycie kół zębatych w skrzyni biegów, pomimo że może prowadzić do zgrzytów i hałasów podczas zmiany biegów, nie jest bezpośrednio związane z trudnościami w włączaniu biegów, gdyż zazwyczaj objawia się to w inny sposób. Wiele osób myli różne objawy, co prowadzi do nieprawidłowych wniosków. Kluczowe jest zrozumienie, że problemy z biegami często są wynikiem złożonego działania wielu elementów, w tym również stanu technicznego sprzęgła oraz płynu hydraulicznego. Dlatego ważne jest, aby podczas diagnostyki samochodu uwzględniać wszystkie możliwe czynniki, a nie skupiać się tylko na jednym elemencie. Właściwa konserwacja oraz regularne przeglądy techniczne mogą znacząco wpłynąć na unikanie takich problemów.

Pytanie 37

Jaka jest wartość temperatury, do której należy rozgrzać silnik w celu jego zdiagnozowania pod kątem emisji zanieczyszczeń gazowych spalin?

Temperatura olejuTemperatura cieczy chłodzącej
A.min. 70°Cmin. 80°C
B.min. 80°Cmin. 70°C
C.max. 60°Cmax. 70°C
D.max. 70°Cmax. 80°C
A. D.
B. A.
C. B.
D. C.
Nieprawidłowe odpowiedzi mogą wynikać z nieporozumienia dotyczącego wymagań temperaturowych silnika w kontekście diagnostyki emisji spalin. Wiele osób może sądzić, że niższe temperatury, takie jak 60°C, są wystarczające do pomiarów emisji, jednak takie podejście jest błędne. Przy temperaturze poniżej 70°C wiele procesów chemicznych w silniku nie jest w pełni aktywowanych, co prowadzi do niekompletnych spalania paliwa i w konsekwencji do zaniżonych wartości emisji. Często występującym błędem jest także ignorowanie roli lepkości oleju przy niższych temperaturach – przy zbyt niskiej temperaturze olej może nie zapewnić optymalnego smarowania, co prowadzi do zwiększenia oporów mechanicznych i zniekształcenia wyników pomiarów. Ponadto, diagnostyka przeprowadzana w warunkach nienormalnych, takich jak zbyt niska temperatura, daje wyniki, które mogą być mylące i nieadekwatne do rzeczywistych warunków pracy silnika. Przestrzeganie standardów dotyczących temperatury roboczej silnika jest kluczowe dla uzyskania wiarygodnych danych o emisji, a w przypadku niedostosowania się do tych norm, może to prowadzić do nieprawidłowych wniosków o stanie technicznym pojazdu oraz jego wpływie na środowisko.

Pytanie 38

Największa dopuszczalna różnica w sile hamowania pomiędzy kołami tej samej osi wynosi

A. 30%
B. 20%
C. 10%
D. 40%
Maksymalna dopuszczalna różnica sił hamowania pomiędzy kołami tej samej osi wynosząca 30% jest zgodna z normami i standardami bezpieczeństwa w motoryzacji. Taki limit ma na celu zapewnienie równomiernego rozkładu siły hamowania, co jest kluczowe dla stabilności pojazdu podczas hamowania. Nierównomierne hamowanie może prowadzić do utraty kontroli nad pojazdem, zwłaszcza w trudnych warunkach, takich jak mokra lub śliska nawierzchnia. Przykładem może być sytuacja, gdy jedno z kół hamuje znacznie mocniej niż drugie, co może spowodować obrót pojazdu lub zablokowanie kół. Dobrą praktyką w diagnostyce układów hamulcowych jest regularne sprawdzanie wydajności hamowania oraz równowagi sił na osiach, co może być realizowane podczas przeglądów technicznych. Spełnianie norm dotyczących siły hamowania jest istotne nie tylko z punktu widzenia bezpieczeństwa, ale także w kontekście przepisów prawa, które regulują dopuszczalne parametry techniczne pojazdów.

Pytanie 39

Gdy samochód wjeżdża na wzniesienie, obroty silnika rosną, podczas gdy prędkość liniowa pojazdu spada, co może być tego przyczyną?

A. nieodpowiedni dobór przełożenia
B. niesprawne sprzęgło
C. uszkodzony mechanizm różnicowy
D. za mała moc silnika
Niewłaściwy dobór przełożenia może prowadzić do suboptymalnych osiągów pojazdu, jednak nie jest to główny powód wzrostu prędkości obrotowej silnika przy malejącej prędkości liniowej. Przełożenia są projektowane w taki sposób, aby umożliwić silnikowi osiąganie odpowiednich obrotów w różnych warunkach. Zbyt niskie przełożenie może powodować, że silnik będzie osiągał wyższe obroty, ale przy dobrze dobranym przełożeniu, zmiana prędkości obrotowej nie powinna aż tak drastycznie odbiegać od zmiany prędkości liniowej. Zbyt mała moc silnika to kolejna koncepcja, która może być myląca. Choć rzeczywiście, silnik o ograniczonej mocy może mieć trudności w pokonywaniu wzniesień, to nie jest bezpośrednią przyczyną wzrostu obrotów przy spadku prędkości. Silniki są projektowane z myślą o różnych warunkach pracy, a ich moc jest często wystarczająca do pokonywania przeszkód, pod warunkiem, że wszystkie systemy, takie jak sprzęgło, działają prawidłowo. Niesprawne sprzęgło jest bardziej bezpośrednią przyczyną problemu, ponieważ jego awaria skutkuje utratą połączenia między silnikiem a układem napędowym. Uszkodzony mechanizm różnicowy również wpłynąłby na wydajność jazdy, ale nie spowodowałby wzrostu obrotów silnika w tej konkretnej sytuacji. Takie nieprawidłowe wnioski często wynikają z braku zrozumienia, jak różne komponenty pojazdu współpracują ze sobą, co podkreśla wagę prawidłowej diagnostyki i konserwacji wszystkich systemów samochodowych.

Pytanie 40

Zanim rozpoczniesz badanie poprawności funkcjonowania układu hamulcowego w Stacji Kontroli Pojazdów, co należy zrobić w pierwszej kolejności?

A. zmierzyć ciśnienie w oponach
B. sprawdzić zawartość wody w płynie hamulcowym
C. sprawdzić grubość klocków hamulcowych
D. ocenić działanie serwomechanizmu
Sprawdzanie ciśnienia w oponach to naprawdę ważny krok, zanim zaczniemy badać hamulce w samochodzie. Jak opony mają odpowiednie ciśnienie, to pojazd lepiej się zachowuje podczas hamowania, a hamulce działają skuteczniej. Gdy ciśnienie jest za niskie, to można mieć problem z rozkładem sił przy hamowaniu, a to zwiększa ryzyko poślizgu czy wydłużenia drogi hamowania. Producent pojazdu podaje normy dotyczące ciśnienia, więc dobrze jest je mieć na uwadze. Regularne sprawdzanie ciśnienia to po prostu część dbania o auto. Przed testowaniem hamulców mechanik koniecznie powinien upewnić się, że ciśnienie w oponach jest w normie. Można to znaleźć w dokumentacji, albo na naklejce przy drzwiach kierowcy. W końcu odpowiednie ciśnienie w oponach to nie tylko kwestia bezpieczeństwa, ale też komfortu jazdy i mniejszego zużycia paliwa.