Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 4 grudnia 2025 11:12
  • Data zakończenia: 4 grudnia 2025 11:52

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Schemat którego silnika przedstawiono na ilustracji?

Ilustracja do pytania
A. Indukcyjnego klatkowego.
B. Obcowzbudnego prądu stałego.
C. Indukcyjnego pierścieniowego.
D. Synchronicznego z obcym wzbudzeniem.
Schemat przedstawia silnik indukcyjny pierścieniowy, co jest łatwe do zauważenia dzięki obecności pierścieni ślizgowych, które są integralną częścią konstrukcji wirnika. Silniki te są szczególnie cenione w aplikacjach wymagających regulacji prędkości obrotowej oraz momentu obrotowego, ponieważ umożliwiają stosunkowo łatwą kontrolę tych parametrów poprzez dobór odpowiednich rezystorów w obwodzie pierścieni ślizgowych. W praktyce, silniki indukcyjne pierścieniowe są często wykorzystywane w przemysłowych aplikacjach, takich jak napędy w ciężkich maszynach, gdzie wymagana jest duża moc oraz elastyczność w regulacji prędkości. W odróżnieniu od silników klatkowych, które mają prostszą konstrukcję wirnika, silniki pierścieniowe pozwalają na lepsze dostosowanie charakterystyki pracy do specyficznych wymagań aplikacji. Warto również zauważyć, że w standardach IEC dotyczących silników elektrycznych, silniki indukcyjne pierścieniowe są klasyfikowane jako bardziej zaawansowane technologicznie, co podkreśla ich znaczenie w nowoczesnych rozwiązaniach inżynieryjnych.

Pytanie 2

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do indukcyjnych sprzęgieł dwukierunkowych
B. Do transformatorów
C. Do prądnic tachometrycznych
D. Do wzmacniaczy maszynowych
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 3

Na rysunku przedstawiono sposób podłączenia podtynkowego

Ilustracja do pytania
A. łącznika grupowego.
B. gniazda antenowego.
C. gniazda komputerowego.
D. łącznika świecznikowego.
Gniazdo komputerowe, które znajduje się na zdjęciu, jest przedstawione w formie złącza RJ45. To standardowe gniazdo wykorzystywane w instalacjach sieciowych, które obsługuje przewody Ethernet. Jego charakterystyczną cechą jest obecność ośmiu pinów, które umożliwiają podłączenie odpowiednich kabli, co zapewnia stabilne połączenie sieciowe. Gniazda RJ45 są powszechnie stosowane w biurach, szkołach i innych miejscach, gdzie wymagana jest szybka wymiana danych. Warto również zaznaczyć, że zgodnie z normą TIA/EIA-568, gniazda te są kluczowe dla budowy infrastruktury sieciowej, a ich poprawne podłączenie gwarantuje wysoką jakość sygnału oraz minimalizację zakłóceń. Wiedza na temat gniazd komputerowych oraz ich zastosowania w praktyce jest niezbędna dla każdego, kto zajmuje się budową lub serwisowaniem sieci komputerowych.

Pytanie 4

Który rodzaj wirującej maszyny elektrycznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Asynchroniczną pierścieniową.
B. Komutatorową prądu przemiennego.
C. Bocznikową prądu stałego.
D. Synchroniczną.
Odpowiedź 'synchroniczna' jest prawidłowa, ponieważ na ilustracji przedstawiono maszynę elektryczną, której konstrukcja jednoznacznie wskazuje na typ synchroniczny. Charakterystyczne oznaczenia biegunów magnetycznych 'S' i 'N' sugerują wykorzystanie stałego magnesu, co jest typowe dla maszyn synchronicznych. Dodatkowo, trójfazowe uzwojenie stojana (U, V, W) jest kluczowym elementem, który współpracuje z wirnikiem, aby utrzymać prędkość obrotową zsynchronizowaną z częstotliwością prądu w sieci, co czyni te maszyny niezwykle stabilnymi w działaniu. Maszyny synchroniczne mają szerokie zastosowania, od produkcji energii w elektrowniach po napędy w różnorodnych aplikacjach przemysłowych. Dzięki ich zdolności do pracy z wysoką efektywnością i kontrolą mocy czynnej oraz biernej, są one preferowanym rozwiązaniem w wielu systemach zasilania. W branży energetycznej, zgodność z normami IEC 60034-1 jest kluczowa dla zapewnienia jakości i bezpieczeństwa działania tych maszyn.

Pytanie 5

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±1,5% + 3 cyfry
B. ±2,5% + 1 cyfra
C. ±2,0% + 2 cyfry
D. ±1,0% + 4 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 6

Jakiego urządzenia pomiarowego używa się do weryfikacji ciągłości przewodu PE w systemie elektrycznym?

A. Amperomierza
B. Miernika z funkcją pomiaru rezystancji
C. Woltomierza
D. Miernika z funkcją pomiaru pojemności
Miernik z funkcją pomiaru rezystancji jest narzędziem, które niezwykle skutecznie pozwala na sprawdzenie ciągłości przewodu ochronnego (PE) w instalacji elektrycznej. Pomiar rezystancji jest kluczowy, ponieważ ciągłość przewodu ochronnego jest niezbędna dla zapewnienia bezpieczeństwa w przypadku wystąpienia awarii. W praktyce, aby przeprowadzić taki pomiar, należy zastosować miernik, który wysyła prąd przez przewód PE i mierzy opór, jaki napotyka. Zgodnie z normami PN-IEC 60364 i PN-EN 61557, rezystancja ciągłości przewodu ochronnego powinna wynosić mniej niż 1 Ω. Przykładowo, w instalacjach zasilających urządzenia o dużym poborze mocy, takich jak silniki elektryczne, zapewnienie niskiej rezystancji przewodu PE jest kluczowe dla minimalizacji ryzyka porażenia prądem. Używając miernika rezystancji, technik może również identyfikować potencjalne uszkodzenia mechaniczne lub korozję w instalacji, co zwiększa niezawodność całego systemu elektrycznego.

Pytanie 7

Który układ połączeń watomierza jest zgodny z przedstawionym schematem pomiarowym?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Niepoprawne odpowiedzi pokazują, jakie błędy można zrobić, gdy interpretujemy schematy połączeń watomierzy. Na przykład w odpowiedzi A przewód L jest źle podłączony, więc pomiar prądu nie będzie miał sensu. Może się to wziąć z mylnego przekonania, że w obwodzie można zmierzyć napięcie, gdy przewód prądowy jest pominięty. Z kolei schemat B może oznaczać, że przewody zostały pomieszane, co jest typowym błędem u osób, które nie mają dużego doświadczenia. Tego typu pomyłki mogą prowadzić do odczytów, które nie pokazują prawdziwego zużycia energii. Z kolei odpowiedź D ilustruje zupełnie błędne połączenie, gdzie zarówno L, jak i N są podłączone w nieodpowiedni sposób, co uniemożliwia prawidłowe pomiary. W praktyce ważne jest, żeby znać podstawowe zasady działania watomierzy i jak je prawidłowo podłączać, bo to ma kluczowe znaczenie dla dokładności pomiarów i norm w instalacjach elektrycznych. Złe połączenia mogą doprowadzić do poważnych konsekwencji, jak uszkodzenie urządzeń czy zagrożenie dla osób obsługujących instalację, więc warto znać zasady, żeby uniknąć problemów związanych z bezpieczeństwem i wydajnością energetyczną.

Pytanie 8

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. ZL-PE
B. ZL-L
C. ZL-N
D. ZL-PE RCD
Odpowiedź "ZL-PE RCD" jest prawidłowa, ponieważ pomiar impedancji pętli zwarcia w układzie z urządzeniem różnicowoprądowym (RCD) wymaga uwzględnienia przewodu ochronnego PE oraz przewodu fazowego L. Zrozumienie tego zagadnienia jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. W praktyce, pomiar ZL-PE RCD pozwala na ocenę skuteczności ochrony przeciwporażeniowej, co jest istotne w kontekście norm bezpieczeństwa, takich jak PN-IEC 60364. Przykładowo, w instalacjach, gdzie stosuje się RCD, odpowiedni pomiar zapewnia, że w przypadku zwarcia, prąd różnicowy (ΔI) nie przekroczy wartości granicznych, co pozwala na szybkie wyłączenie zasilania i minimalizację ryzyka porażenia prądem. Warto również zauważyć, że pomiar ten powinien być wykonywany przez wykwalifikowanych specjalistów, aby zapewnić dokładność i wiarygodność wyników. W kontekście praktycznym, wyniki pomiaru można wykorzystać do analizy stanu instalacji oraz planowania ewentualnych działań serwisowych, co jest zgodne z dobrymi praktykami w branży elektrycznej.

Pytanie 9

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Wkrętaka płaskiego.
B. Wkrętaka imbusowego.
C. Szczypiec typu Segera.
D. Szczypiec uniwersalnych.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 10

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 7 i 8
B. 4 i 8
C. 1 i 4
D. 1 i 7
Wybrane odpowiedzi sugerują błędne podejście do analizy schematu połączeń czujnika kontroli i zaniku faz z cewką stycznika. W przypadku odpowiedzi 1 i 4, wyprowadzenia 1 oraz 4 nie są przeznaczone do szeregowego połączenia z cewką, co oznacza, że nie będą monitorować obecności faz w sposób wymagany do zabezpieczenia silnika. Podobnie, połączenie 1 i 7 oraz 4 i 8 również nie spełnia kryteriów, które pozwoliłyby na efektywne działanie czujnika. Typowym błędem myślowym jest zakładanie, że wystarczą dowolne wyprowadzenia czujnika do zabezpieczenia urządzenia. Ważne jest, aby zrozumieć, że czujnik zaniku faz ma specyficzne wyprowadzenia, które muszą być stosowane zgodnie z zaleceniami producenta, aby uniknąć niepożądanych sytuacji, takich jak zbyt wczesne wyłączenie silnika lub jego uszkodzenie w wyniku pracy w warunkach braku zasilania. Niezrozumienie zasad działania systemów zabezpieczeń może prowadzić do poważnych awarii, a w konsekwencji do wysokich kosztów napraw i przestojów produkcji. W związku z tym kluczowe jest, aby każdy inżynier miał pełne zrozumienie schematów oraz zasad działania urządzeń, z którymi pracuje.

Pytanie 11

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 3.
B. Symbolem 1.
C. Symbolem 4.
D. Symbolem 2.
Symbol 2 jest poprawnym oznaczeniem instalacji prowadzonej na drabinkach kablowych, zgodnie z aktualnymi normami i standardami branżowymi, takimi jak PN-IEC 60617. Drabinki kablowe są powszechnie stosowane w infrastrukturze elektroenergetycznej, gdzie służą do organizacji i prowadzenia okablowania w sposób uporządkowany i estetyczny. W praktyce, instalacje prowadzone na drabinkach kablowych charakteryzują się równoległymi liniami, które symbolizują drabinki, oraz dodatkowymi poprzeczkami, które mogą ilustrować mocowania kabli. Ważne jest, aby znać te symbole, gdyż są one niezbędnymi elementami dokumentacji technicznej, a ich poprawne użycie może znacząco ułatwić identyfikację i konserwację instalacji. Użycie symbolu 2 w schematach pozwala na łatwe zrozumienie rozmieszczenia instalacji przez techników oraz inżynierów, co przyczynia się do większego bezpieczeństwa i efektywności pracy. Dodatkowo, znajomość takich symboli jest kluczowa w kontekście współpracy z innymi specjalistami w branży, co może przyspieszyć procesy projektowe i wykonawcze.

Pytanie 12

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych Un = 500 V, In = 25 A?

Ilustracja do pytania
A. Wstawkę 4.
B. Wstawkę 1.
C. Wstawkę 3.
D. Wstawkę 2.
Dobranie wstawki kalibrowej to ważna sprawa, bo ma bezpośredni wpływ na bezpieczeństwo obwodów elektrycznych. Gdy mamy do czynienia z bezpiecznikiem typu D gL, musimy zwrócić uwagę na napięcie i prąd znamionowy. Na przykład, używając wstawki 25A 500V, mamy pewność, że jest to zgodne z wymaganiami dla prądu 25 A i napięcia 500 V. Dzięki temu bezpiecznik działa jak należy i chroni całą instalację przed przeciążeniami oraz zwarciami. Z mojego doświadczenia, to poprawne dobranie elementów zabezpieczających sprawia, że systemy elektryczne stają się bardziej niezawodne. A to w wielu branżach, jak budownictwo czy przemysł, jest naprawdę na wagę złota. Nie zapominaj też o normach IEC 60269, bo one pomagają mieć pewność, że wszystko działa zgodnie z najlepszymi praktykami.

Pytanie 13

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Stycznik elektromagnetyczny
B. Przekaźnik priorytetowy
C. Czujnik zaniku fazy
D. Odgromnik
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 14

Która z przedstawionych opraw oświetleniowych najlepiej nadaje się do oświetlenia ogólnego?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Odpowiedź C jest poprawna, ponieważ reprezentuje oprawę oświetleniową typu żyrandola, która jest idealna do zastosowania w oświetleniu ogólnym. Żyrandole montowane na suficie emitują światło w sposób równomierny, co pozwala na oświetlenie całego pomieszczenia, eliminując cienie i ciemne kąty. Tego typu oprawy są często stosowane w przestrzeniach takich jak salony, jadalnie czy biura, gdzie kluczowe jest zapewnienie odpowiedniego poziomu oświetlenia dla komfortu użytkowników. Żyrandole mogą również pełnić funkcję dekoracyjną, a ich design często wzbogaca estetykę wnętrza. W standardach oświetleniowych, takich jak normy EN 12464-1, określa się zalecane poziomy oświetlenia dla różnych typów pomieszczeń, co podkreśla znaczenie zastosowania odpowiednich opraw do osiągnięcia wymaganej wydajności świetlnej. W praktyce, wybór żyrandola do oświetlenia ogólnego powinien opierać się na wielkości pomieszczenia oraz jego przeznaczeniu, co pozwoli na optymalizację zarówno funkcjonalności, jak i stylu.

Pytanie 15

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 16

Która z przedstawionych opraw oświetleniowych charakteryzuje się najwyższym stopniem ochrony IK ze względu na wytrzymałość mechaniczną?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź C jest prawidłowa, ponieważ oprawa oświetleniowa przedstawiona w tej opcji wykazuje najwyższy stopień ochrony IK, co odzwierciedla jej zdolność do wytrzymywania uderzeń mechanicznych. W standardach IEC 62262 klasyfikacja IK odnosi się do stopnia ochrony obudów urządzeń elektrycznych przed uderzeniami, co jest kluczowe w warunkach, gdzie oświetlenie jest narażone na uszkodzenia. Oprawa C jest zaprojektowana z myślą o wytrzymałości; jej płaska i zamknięta powierzchnia ogranicza dostęp do delikatnych elementów, co znacząco zwiększa jej odporność na mechaniczne uszkodzenia. Przykłady zastosowań takich opraw obejmują miejsca przemysłowe, magazyny oraz przestrzenie zewnętrzne, gdzie narażone są na intensywne użytkowanie. Wybór oprawy z wysokim stopniem ochrony IK jest zgodny z dobrą praktyką w projektowaniu instalacji oświetleniowych, zwłaszcza w trudnych warunkach. Zastosowanie opraw o wysokiej odporności mechanicznej przyczynia się do zwiększenia żywotności oświetlenia oraz obniżenia kosztów konserwacji.

Pytanie 17

W układzie jak na rysunku po załączeniu wskazówka watomierza W1 wychyliła się w lewą stronę. Po zamianie zacisków napięciowych watomierz wskazał moc 350 W. Jaka jest całkowita moc pobierana przez odbiornik, jeśli watomierz W2 wskazuje 800 W?

Ilustracja do pytania
A. 1150W
B. 800W
C. 450W
D. 350W
Poprawna odpowiedź to 450W, co wynika z analizy sytuacji w układzie z dwoma watomierzami. W1 wskazuje moc ujemną przed zamianą zacisków, co sugeruje, że urządzenie odbierające energię pracuje w trybie, w którym moc oddawana przez źródło przewyższa moc pobieraną przez odbiornik. Po zamianie zacisków, watomierz W1 wykazuje moc 350W, co oznacza, że odbiornik pobiera tę moc od źródła. Z kolei watomierz W2 wskazuje moc 800W, co wskazuje na całkowity pobór mocy przez system. W takim przypadku, aby obliczyć całkowitą moc pobieraną przez odbiornik, należy uwzględnić, że moc wskazywana przez W1 była wcześniej negatywna. Zatem całkowita moc wynosi 350W + 800W = 1150W, jednakże z uwagi na negatywny pomiar W1, rzeczywista moc wynosi 450W. To podejście jest zgodne z zasadami analizy obwodów elektrycznych i pokazuje, jak ważne jest rozumienie wskazań urządzeń pomiarowych oraz ich interpretacja w kontekście działania całego układu. Takie analizy są kluczowe w inżynierii elektrycznej, gdzie dokładność pomiarów i ich interpretacja wpływają na optymalizację pracy systemów energetycznych.

Pytanie 18

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. kg
B. kgˑm2
C. Nˑm
D. Pa
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 19

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 2,5 mm2
B. 4 mm2
C. 1,5 mm2
D. 10 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 20

W którym obwodzie sieci elektrycznej mierzona jest impedancja pętli zwarcia przez miernik parametrów instalacji włączony jak na rysunku?

Ilustracja do pytania
A. L-PE
B. L-L
C. N-PE
D. L-N
Zgadza się, pomiar impedancji pętli zwarcia w tym przypadku jest dokonywany między przewodem fazowym (L) a przewodem ochronnym (PE). W kontekście ochrony przeciwporażeniowej, jest to kluczowy proces, który pozwala na ocenę efektywności systemu zabezpieczeń w instalacji elektrycznej. Poprawne połączenie między L i PE jest niezbędne do zapewnienia, że w przypadku zwarcia doziemnego, prąd zwarciowy będzie mógł przepływać do ziemi, co wywoła działanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe. Zgodnie z normą PN-IEC 60364, pomiar impedancji pętli zwarcia powinien być wykonywany regularnie w celu utrzymania bezpieczeństwa instalacji. W praktyce oznacza to, że każdy instalator powinien umieć interpretować wyniki tych pomiarów oraz wdrażać zalecenia dotyczące poprawy skuteczności ochrony, na przykład poprzez odpowiednie uziemienie. Takie działania są kluczowe, aby zminimalizować ryzyko porażenia prądem oraz pożarów spowodowanych błędami w instalacji. Jakiekolwiek odstępstwa od tej procedury mogą prowadzić do poważnych konsekwencji dla użytkowników oraz mienia.

Pytanie 21

Który przekaźnik oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Impulsowy.
B. Wielofunkcyjny.
C. Priorytetowy.
D. Czasowy.
Przekaźnik impulsowy, który widzisz na rysunku w pytaniu, to fajne urządzenie, które jest często używane w automatyce. Działa tak, że przy każdym kolejnym impulsie prądu zmienia stan obwodu. To pozwala na lepsze zarządzanie sygnałami i sterowanie różnymi procesami. W praktyce można go spotkać w systemach zabezpieczeń, automatycznych włącznikach światła czy w urządzeniach do zdalnego sterowania. Jak to działa? Pierwszy impuls zamyka obwód, a następny go otwiera. Dzięki temu można robić różne rzeczy, takie jak liczenie impulsów czy przełączanie. Fajnie, że są normy IEC 60947, które mówią o bezpieczeństwie i niezawodności tych przekaźników, bo to sprawia, że są naprawdę ważnym elementem w nowoczesnych systemach sterowania.

Pytanie 22

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. IT
B. TT
C. TN-C
D. TN-S
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 23

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NO stycznika Q2
B. NC stycznika Q2
C. NC stycznika Q1
D. NO stycznika Q1
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów w analizowanym układzie. W przypadku odpowiedzi wskazujących na NC stycznika Q2, czy NO stycznika Q2, można zauważyć typowy błąd myślowy związany z nieprawidłowym przypisaniem roli poszczególnych styków. Styk NC stycznika Q2 nie ma bezpośredniego wpływu na możliwość załączenia tego stycznika, gdyż jego działanie uzależnione jest od aktywacji innych elementów sterujących. Z kolei styk NO stycznika Q1, mimo że może wydawać się istotny, nie może aktywować Q2, jeśli sam Q1 nie jest w stanie przełączyć się do pozycji NO. To wskazuje na uwagę do relacji pomiędzy różnymi elementami w obwodzie. Niezrozumienie zasady działania styku NO i NC oraz ich wpływu na całkowity obwód często prowadzi do błędnych wniosków i wyborów. W praktyce, dobrym nawykiem jest analizowanie całej ścieżki sygnałowej oraz zależności pomiędzy poszczególnymi elementami w systemach automatyki, co pozwala na szybszą identyfikację potencjalnych problemów oraz ich źródeł. Prawidłowa analiza obwodu wymaga zrozumienia, że uszkodzenie jednego elementu może wpływać na działanie całego systemu, co jest kluczowe w kontekście bezpieczeństwa i niezawodności operacji w automatyce przemysłowej.

Pytanie 24

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 2,3 Ω
B. 3,8 Ω
C. 6,6 Ω
D. 4,0 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 25

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. TT
B. IT
C. TN-S
D. TN-C
Układy TN-C, TN-S oraz TT różnią się od systemu IT pod względem połączenia punktu neutralnego z ziemią oraz sposobu uziemienia. W systemie TN-C punkt neutralny jest połączony z ziemią, co oznacza, że w przypadku uszkodzenia izolacji, prąd może przepływać do ziemi, co stwarza ryzyko porażenia prądem elektrycznym. System ten, mimo że dobrze sprawdza się w standardowych zastosowaniach, nie jest zalecany w obiektach o wysokim ryzyku, ponieważ awaria może prowadzić do poważnych konsekwencji. Z kolei w układzie TN-S występuje oddzielne uziemienie dla przewodu ochronnego i neutralnego, co poprawia bezpieczeństwo, ale nadal zakłada połączenie z ziemią. W przypadku systemu TT, gdzie również punkt neutralny jest uziemiony, występuje możliwość wystąpienia prądów upływowych, które mogą prowadzić do porażenia. Typowe błędy w rozumieniu tych układów to mylenie izolacji z bezpieczeństwem. W rzeczywistości, systemy TN i TT, mimo że stosowane są szeroko, nie oferują tego samego poziomu ochrony jak system IT, zwłaszcza w sytuacjach awaryjnych. Dlatego, chcąc zapewnić najwyższy poziom bezpieczeństwa, warto rozważyć zastosowanie układu IT w obiektach o krytycznym znaczeniu."

Pytanie 26

Którym z kluczy należy dokręcić nakrętkę kotwy przedstawionej na ilustracji?

Ilustracja do pytania
A. Płaskim.
B. Imbusowym.
C. Oczkowym.
D. Nasadowym.
Wybór innych typów kluczy niż klucz płaski do dokręcania nakrętki kotwy jest niewłaściwy z kilku względów. Klucz nasadowy, mimo że jest uniwersalnym narzędziem, dedykowanym często do elementów z łbem sześciokątnym, nie pasuje do nakrętki o specyficznym kształcie, jaką ma kotwa przedstawiona na ilustracji. Użycie klucza nasadowego może skutkować niemożnością pełnego uchwycenia nakrętki, co prowadzi do poślizgu i potencjalnych uszkodzeń. Z kolei klucz imbusowy, zaprojektowany do elementów z gniazdem sześciokątnym wewnętrznym, nie ma zastosowania w tym kontekście, gdyż nakrętka kotwy nie posiada takiego gniazda. W przypadku klucza oczkowego, jego konstrukcja również nie będzie odpowiednia, ponieważ nie pozwala na objęcie nakrętki w sposób, który zapewni stabilność i siłę dokręcania. W praktyce, niewłaściwy dobór klucza prowadzi nie tylko do problemów z dokręcaniem, ale także może skutkować uszkodzeniami narzędzi oraz elementów, co narazi użytkownika na dodatkowe koszty naprawy. Kluczowe jest zrozumienie, że w każdej sytuacji technicznej, wybór odpowiedniego narzędzia powinien być oparty na jego specyfikacji oraz na charakterystyce łączonych elementów. Zastosowanie niewłaściwego klucza to klasyczny błąd myślowy, który wynika z braku analizy sytuacji i nieznajomości podstawowych zasad doboru narzędzi.

Pytanie 27

Które oznaczenie dotyczy przedstawionego trzonka elektrycznego źródła światła?

Ilustracja do pytania
A. GU10
B. G9
C. MR16
D. E14
Odpowiedzi E14, G9 i MR16 nawiązują do innych typów trzonków, które różnią się zarówno budową, jak i zastosowaniem. Trzonek E14, znany także jako "mały trzonek Edisona", ma gwint o średnicy 14 mm i jest najczęściej stosowany w lampach dekoracyjnych oraz żarówkach do użytku domowego. Jest to standard, który nie ma zastosowania w reflektorach, co czyni go niewłaściwym wyborem w kontekście przedstawionego źródła światła. Trzonek G9 charakteryzuje się wtykiem, który również nie pasuje do opisanego trzonka GU10, a jego zastosowanie jest najczęściej w lampach halogenowych o małej mocy. MR16 to natomiast standard, który oznacza reflektory o niskim napięciu z wtykiem typu GU5.3, co dodatkowo różni go od GU10. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków często wynikają z mylenia funkcji poszczególnych typów trzonków. Ważne jest, aby zrozumieć, że każdy typ trzonka ma swoje specyficzne zastosowanie oraz wymogi techniczne, dlatego nieprzemyślane dobieranie trzonków może prowadzić do nieprawidłowego działania systemów oświetleniowych oraz zwiększonego ryzyka uszkodzenia sprzętu. Znajomość tych różnic jest kluczowa dla efektywnego projektowania i instalacji oświetlenia.

Pytanie 28

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. A.
B. C.
C. B.
D. D.
Wybór odpowiedzi, która nie uwzględnia parametrów prądu znamionowego i prądu różnicowego, prowadzi do niewłaściwych wniosków dotyczących wymiany wyłącznika różnicowoprądowego. Wyłączniki różnicowoprądowe są projektowane w sposób, który musi zapewniać bezpieczeństwo instalacji elektrycznej, co oznacza, że nie można stosować urządzeń o nieodpowiednich parametrach. Na przykład, jeśli wybierzemy wyłącznik o prądzie różnicowym 300 mA, zignorujemy ryzyko porażenia prądem, ponieważ standardowe parametry dla instalacji domowych wymagają prądu różnicowego 30 mA, aby skutecznie zareagować na niewielkie upływy prądu. Wybór wyłącznika z inną liczbą biegunów, jak na przykład 4P, również nie jest odpowiedni dla trójfazowej instalacji z jednym przewodem neutralnym, co może skutkować złą funkcjonalnością i potencjalnym zagrożeniem. Wiele osób popełnia błąd, zakładając, że każda zamiana wyłącznika na inny model, bez uwzględnienia szczegółowych parametrów technicznych, jest wystarczająca. Kluczowe jest, aby przy takich decyzjach kierować się nie tylko dostępnością danego wyłącznika, ale przede wszystkim jego parametrami, które powinny być zgodne z wymaganiami instalacji oraz aktualnymi normami, jak PN-EN 61008-1. Właściwy dobór wyłączników jest nie tylko kwestią zgodności z normami, ale przede wszystkim zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji elektrycznej.

Pytanie 29

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Watomierza
B. Megaomomierza
C. Megawoltomierza
D. Omomierza
Wybór nieodpowiednich przyrządów pomiarowych do oceny rezystancji izolacji może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa, jak i funkcjonalności instalacji elektrycznej. Watomierz, wykorzystujący zjawisko pomiaru mocy w obwodach elektrycznych, nie jest przeznaczony do oceny stanu izolacji. Jego zastosowanie ogranicza się do pomiaru energii elektrycznej, co jest całkowicie odmiennym zadaniem. Omomierz, mimo że mierzy opór, jest stosowany przy normalnych warunkach pracy, co oznacza, że nie uwzględnia on stanu izolacji pod wpływem wysokich napięć, które są kluczowe w tym kontekście. W przypadku megawoltomierza, jest to urządzenie służące do pomiaru napięcia, a nie rezystancji, co czyni go zupełnie nieprzydatnym w tym aspekcie. Typowym błędem jest założenie, że każdy przyrząd pomiarowy, który mierzy opór, spełni wymagania dla pomiaru izolacji, podczas gdy w rzeczywistości tylko megaomomierz, działający w odpowiednich warunkach napięciowych, może dostarczyć wiarygodne dane. Właściwe zrozumienie zastosowania każdego z tych urządzeń oraz ich ograniczeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 30

Jaki błąd został popełniony podczas pomiaru rezystancji izolacji instalacji elektrycznej, której schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Zabezpieczenie główne powinno być zamknięte.
B. Przewód ochronny powinien być odłączony.
C. Zabezpieczenie silnika powinno być otwarte.
D. Wyłącznik główny powinien być zamknięty.
Pomiar rezystancji izolacji to mega ważny proces, który ocenia stan izolacji w instalacjach elektrycznych. Jak się nie uważa na zabezpieczenia i wyłączniki, to można narobić błędów. Jeśli główne zabezpieczenie czy zabezpieczenie silnika są zamknięte podczas pomiaru, to mogą dodać jakieś dodatkowe rezystancje, co zafałszuje wyniki. Główny wyłącznik powinien być otwarty, żeby mieć pełny dostęp do obwodów, a przewody ochronne odłączone, bo one też mogą coś namieszać. Ważne jest też to, żeby przed pomiarem wszystko było odłączone od prądu, żeby uniknąć niebezpieczeństw związanych z porażeniem prądem. W branży przyjęte są zasady, że przed każdym pomiarem trzeba sprawdzić stan instalacji i upewnić się, że wszystko jest zgodne z normami. Dlatego tak istotne jest, żeby wiedzieć, jak te pomiary robić i jakie są ich procedury, żeby uzyskać wiarygodne wyniki.

Pytanie 31

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk "TEST"
B. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
C. Wykonując kontrolne doziemienie
D. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 32

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia urządzeń w rozdzielniach
B. czyszczenia lamp oświetleniowych
C. wymiany gniazd zasilających
D. montażu nowych punktów świetlnych
Wiesz, konserwacja instalacji elektrycznych to głównie dbanie o to, co już istnieje. Czyszczenie lamp czy tablic rozdzielczych jest mega ważne, bo brud może doprowadzić do różnych problemów, jak przegrzewanie się czy mniejsza efektywność. Wymiana gniazdek też jest istotna, bo często się zużywają i mogą stwarzać niebezpieczeństwo. Zrozumienie różnicy między montażem a konserwacją to kluczowa sprawa. Często zapominamy, że to różne rzeczy, które wymagają różnych umiejętności. Trzymanie się norm, jak PN-IEC 60364, to podstawa, żeby wszystko działało bezpiecznie i sprawnie. Myślę, że ważne, by nie mylić tych dwóch procesów, bo może to prowadzić do kłopotów.

Pytanie 33

Który z podanych symboli oznacza urządzenie, którym należy zastąpić element instalacji elektrycznej przedstawiony na rysunku?

Ilustracja do pytania
A. S 191 B20
B. FAZ B10/1
C. SM 320 230-2z
D. CF16-25/2/003
Wybór odpowiedzi innej niż "S 191 B20" może wynikać z niewłaściwego zrozumienia oznaczeń oraz funkcji urządzeń elektrycznych. Na przykład, nieprawidłowe odpowiedzi, takie jak "FAZ B10/1" czy "CF16-25/2/003", wskazują na niewłaściwą interpretację prądów znamionowych i charakterystyk. Odpowiedź "FAZ B10/1" oznacza wyłącznik automatyczny o charakterystyce B i prądzie znamionowym 10A. Zastosowanie go w miejsce urządzenia o prądzie 20A jest niewłaściwe, ponieważ spowoduje to nieodpowiednie zabezpieczenie obwodu. Z kolei odpowiedzi "SM 320 230-2z" i "CF16-25/2/003" odnoszą się do urządzeń, które nie spełniają wymagań dotyczących charakterystyki i prądu znamionowego dla konkretnego zastosowania w danym obwodzie. Niezrozumienie znaczenia oznaczeń może prowadzić do wyboru urządzeń, które nie tylko nie zapewniają odpowiedniej ochrony, ale również mogą stwarzać zagrożenie dla bezpieczeństwa instalacji. Fundamentalnym błędem jest przyjęcie niewłaściwej wartości prądu znamionowego lub charakterystyki, co w praktyce może doprowadzić do awarii i uszkodzenia urządzeń oraz zwiększonego ryzyka pożaru. Dlatego kluczowe jest, aby przed dokonaniem wyboru odpowiednich urządzeń elektrycznych dokładnie zrozumieć ich parametry oraz standardy, takie jak PN-EN 60898, które regulują zasady ich stosowania w instalacjach elektrycznych.

Pytanie 34

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (3÷5) · In
B. (5÷10) · In
C. (2÷3) · In
D. (5÷20) · In
Wybrałeś wartość (5÷10) · In, czyli zakres krotności prądu znamionowego, w którym uruchamia się wyzwalacz elektromagnetyczny w wyłączniku instalacyjnym typu C. To jest właśnie zgodne z normą PN-EN 60898-1 – tzw. „eski” typu C mają za zadanie chronić instalację przed skutkami zwarć i większych przeciążeń. Moim zdaniem dobrze znać ten przedział, bo pozwala to dobrać charakterystykę zabezpieczeń do rodzaju obciążenia w instalacji. Typ C jest najbardziej uniwersalny – stosuje się go w mieszkaniach, biurach, czasem w niewielkich zakładach, czyli wszędzie tam, gdzie mogą się pojawić wyższe prądy rozruchowe, np. od silników czy transformatorów. Prąd wyzwalający elektromagnetycznie musi być wystarczająco wysoki, żeby nie rozłączać obwodu przy każdym chwilowym skoku, ale też na tyle niski, żeby chronić przed zwarciem. Z mojego doświadczenia, jeśli założy się wyłącznik o zbyt „czułej” charakterystyce, to potem są telefony od użytkowników, że „wywala korki” przy włączaniu odkurzacza czy wiertarki. Typ C ze swoim zakresem 5 do 10 razy prądu znamionowego naprawdę dobrze sprawdza się w praktyce, bo łączy szybkość reakcji na zwarcie z odpornością na krótkie impulsy prądowe.

Pytanie 35

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Docinania przewodu.
B. Zaciskania końcówek tulejkowych.
C. Ściągania izolacji z przewodu.
D. Zaciskania końcówek oczkowych.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.

Pytanie 36

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω
A. Przerwa w uzwojeniu fazy V
B. Zwarcie międzyzwojowe w fazie V
C. Zwarcie międzyzwojowe w fazie W
D. Przerwa w uzwojeniu fazy W
Wybór odpowiedzi związanych z przerwami w uzwojeniach fazy V lub W oraz zwarciami międzyzwojowymi w fazie V jest błędny. Kluczowym aspektem, który należy wziąć pod uwagę przy analizie pomiarów rezystancji uzwojeń, jest to, że przerywanie jednego z uzwojeń skutkuje brakiem możliwości zasilania danej fazy, co objawia się znacznym spadkiem wartości rezystancji, a nie wyraźnym różnicowaniem między poszczególnymi uzwojeniami. Odpowiedzi te mogą prowadzić do błędnych wniosków, gdyż nie uwzględniają fundamentalnych zasad działania silników indukcyjnych, gdzie zwarcie międzyzwojowe w fazie W wskazuje na fakt, że występuje tam wewnętrzne uszkodzenie, które skutkuje zmniejszeniem rezystancji. Ignorowanie takich różnic może prowadzić do niepoprawnej analizy stanu silnika, co z kolei skutkuje nieadekwatnym podejściem do diagnostyki. W praktyce, zdiagnozowanie uszkodzeń w silnikach indukcyjnych wymaga starannego podejścia oraz znajomości specyfikacji technicznych, które definiują normy operacyjne dla urządzeń. Wartości rezystancji uzwojeń powinny być monitorowane regularnie, aby wykrywać wszelkie anomalie, co jest zgodne z najlepszymi praktykami w zarządzaniu konserwacją i diagnostyką urządzeń elektrycznych.

Pytanie 37

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Nóż monterski, wiertarka, zestaw kluczy.
B. Piła do cięcia, przecinak, młotek.
C. Wiertarka, wiertło, piła do cięcia, wkrętak.
D. Zestaw kluczy, wkrętarka, wiertło, przecinak.
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 38

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 4.
B. Końcówki 1.
C. Końcówki 2.
D. Końcówki 3.
Wybór niewłaściwej końcówki wkrętaka do demontażu wyłącznika nadprądowego z szyny TH 35 może prowadzić do szeregu problemów technicznych oraz zwiększenia ryzyka uszkodzeń. Końcówki 1., 3. i 4. są nieodpowiednie, ponieważ mają różne kształty, które nie są dostosowane do typowych złączy śrubowych stosowanych w tej aplikacji. Końcówka 1. najprawdopodobniej jest typu krzyżowego lub pozbawiona odpowiedniej płaskości, co utrudni prawidłowe wkręcanie czy wykręcanie. Z kolei końcówki 3. i 4. mogą być przeznaczone do specyficznych zastosowań, takich jak śruby torx czy inne nietypowe złącza, a ich użycie w montażu wyłączników nadprądowych może spowodować uszkodzenia elementów lub niepewne połączenia. Błędem myślowym jest zatem założenie, że wszelkie końcówki mogą być stosowane zamiennie, co jest sprzeczne z dobrymi praktykami w branży elektroinstalacyjnej. W praktyce kluczowe jest korzystanie z narzędzi, które są odpowiednio dobrane do specyfiki i standardów instalacji, aby zapewnić bezpieczeństwo oraz niezawodność działania urządzeń. Niezastosowanie się do tych zasad może prowadzić do awarii systemu elektrycznego oraz stwarzać ryzyko wystąpienia zagrożeń, takich jak zwarcia czy przegrzanie.

Pytanie 39

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Zaprasowywania przewodów w połączeniach wsuwanych.
B. Zaciskania końcówek tulejkowych na żyłach przewodu.
C. Formowania oczek na końcach żył.
D. Montażu zacisków zakleszczających.
Poprawna odpowiedź to formowanie oczek na końcach żył, co jest kluczowym zastosowaniem kleszczy w instalacjach elektrycznych. Narzędzie to, o charakterystycznym kształcie szczęk, pozwala na precyzyjne formowanie oczek, które są następnie używane do trwałego mocowania przewodów na zaciskach w rozdzielnicach elektrycznych. Przygotowanie końcówek przewodów w postaci oczek jest zgodne z najlepszymi praktykami branżowymi, ponieważ zapewnia ono zarówno bezpieczeństwo, jak i stabilność połączeń. Odpowiednio uformowane oczka minimalizują ryzyko wystąpienia luzów i zwarć, co jest kluczowe dla właściwego działania instalacji elektrycznej. Dobrze przygotowane połączenia wpływają również na estetykę instalacji, co jest istotne w kontekście zewnętrznych przeglądów oraz konserwacji. W praktyce, formowanie oczek przed podłączeniem do zacisków pozwala na łatwiejsze i szybsze wykonywanie prac instalacyjnych, a także na ich późniejsze modyfikacje.

Pytanie 40

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
B. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
C. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
D. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań dotyczących dokumentacji technicznej po wykonaniu modernizacji sieci. Kluczowym błędem jest pomijanie istotnych informacji, co może prowadzić do problemów w przyszłości, takich jak trudności w ustaleniu odpowiedzialności czy brak możliwości weryfikacji wyników badań. Na przykład, odpowiedzi sugerujące dodanie nazwy zakładu energetycznego zamiast nazwiska zleceniodawcy nie uwzględniają faktu, że to właśnie osoby fizyczne (zleceniodawcy i wykonawcy) są odpowiedzialne za realizację projektu oraz jakość wykonania pomiarów. Istotne jest, aby protokół odnosił się do konkretnych osób, co ma kluczowe znaczenie w kontekście odpowiedzialności prawnej. W przypadku, gdyby wystąpiły jakiekolwiek nieprawidłowości w funkcjonowaniu sieci, łatwiejsze będzie ustalenie, kto był odpowiedzialny za konkretne etapy pracy. Ważne jest także, aby czas wykonywania pomiarów został udokumentowany, ponieważ pozwala to na analizę ewentualnych opóźnień i ich wpływu na projekt. Prawidłowo sporządzony protokół powinien być zgodny z obowiązującymi normami branżowymi, co pozwala na zachowanie wysokich standardów jakości. Dlatego pominięcie jakiejkolwiek z tych informacji prowadzi do niekompletności dokumentacji, a tym samym do potencjalnych problemów w przyszłości.