Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 1 stycznia 2026 18:06
  • Data zakończenia: 1 stycznia 2026 18:29

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. wyboru zabezpieczeń oraz urządzeń
B. wyboru i oznakowania przewodów
C. rozmieszczenia tablic informacyjnych i ostrzegawczych
D. wartości natężenia oświetlenia na stanowiskach pracy
Podczas inspekcji nowo wykonanej instalacji elektrycznej, sprawdzenie rozmieszczenia tablic ostrzegawczych i informacyjnych, doboru zabezpieczeń i aparatury oraz doboru i oznaczenia przewodów jest kluczowe. Te elementy są fundamentalne dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. Tablice ostrzegawcze i informacyjne stanowią istotny element systemu bezpieczeństwa, informując pracowników o potencjalnych zagrożeniach. Odpowiedni dobór zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe, ma na celu ochronę przed skutkami zwarć oraz przeciążeń, co jest wymagane przez normy elektryczne, jak PN-IEC 60364. Oznaczenie przewodów pozwala uniknąć pomyłek w podłączeniach, co może prowadzić do poważnych awarii lub zagrożeń. Istotne jest zrozumienie, że każde z tych działań jest ściśle związane z bezpieczeństwem i funkcjonalnością instalacji. Wiele osób może nie doceniać roli tych detali, skupiając się jedynie na wydajności energetycznej czy estetyce, co może prowadzić do krytycznych błędów w ocenie gotowości instalacji do eksploatacji. W rzeczywistości, zaniedbanie któregokolwiek z wymienionych aspektów może skutkować poważnymi konsekwencjami zarówno w kontekście bezpieczeństwa, jak i przepisów prawa budowlanego oraz norm branżowych.

Pytanie 2

W celu zabezpieczenia przed bezpośrednim kontaktem (ochrona podstawowa) w instalacjach elektrycznych w gospodarstwach domowych wykorzystuje się

A. połączenia wyrównawcze
B. izolowanie miejsca pracy
C. urządzenia II klasy ochronności
D. izolowanie części czynnych
Izolowanie części czynnych to spoko sposób na ochronę przed bezpośrednim dotykiem. Chodzi o to, żeby zastosować dobre materiały izolacyjne, które oddzielają elementy elektryczne od ludzi i zwierząt. Na przykład, można używać obudów z materiałów, które nie przewodzą prądu – to uniemożliwia przypadkowy kontakt z kablami czy elementami sterującymi. Jak wiadomo, w instalacjach elektrycznych trzeba pamiętać o normach PN-IEC 61140 i PN-EN 60439, które mówią, jak dobrze chronić się przed dotykiem. W domach, gdzie ludzie najczęściej nie mają dużej wiedzy o elektryczności, dobre izolowanie tych części jest naprawdę ważne. Dzięki temu można znacząco zmniejszyć ryzyko porażenia prądem, co jest istotne, zwłaszcza tam, gdzie są dzieci albo starsze osoby.

Pytanie 3

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pₙ = 3 kW, Uₙ = 230 V?

A. gB 20 A
B. gG 16 A
C. aM 20 A
D. aR 16 A
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 4

Jaki rodzaj łącznika zastosowany jest w obwodzie przedstawionym na schemacie?

Ilustracja do pytania
A. Schodowy.
B. Dwubiegunowy.
C. Świecznikowy.
D. Żaluzjowy.
Wybór innych rodzajów łączników, takich jak świecznikowy, schodowy czy dwubiegunowy, jest błędny z kilku powodów. Łącznik świecznikowy jest używany do załączania i wyłączania obwodu oświetleniowego i nie ma zastosowania w sterowaniu silnikami. Jego funkcja ogranicza się do prostego włączania światła, co wyklucza jakiekolwiek złożone sterowanie ruchem, które jest kluczowe w przypadku żaluzji. Z kolei łącznik schodowy, stosowany w systemach oświetleniowych, pozwala na kontrolowanie jednego źródła światła z dwóch różnych miejsc, jednak również nie nadaje się do sterowania silnikami. Jego konstrukcja i zasada działania są zupełnie inne, co prowadzi do nieprawidłowego wnioskowania. Podobnie łącznik dwubiegunowy, który może być używany do załączania i wyłączania urządzeń napięciowych, nie jest przystosowany do sterowania ruchem w górę i w dół, co jest niezbędne w systemach żaluzjowych. Wybór odpowiedniego łącznika jest kluczowy dla prawidłowej funkcjonalności instalacji, a błędne myślenie o tych urządzeniach prowadzi do niewłaściwych instalacji i potencjalnych problemów w działaniu urządzeń. Dlatego istotne jest zrozumienie różnic między różnymi typami łączników oraz ich zastosowaniem, co pozwala na lepsze projektowanie i efektywne wykorzystanie technologii w automatyce budynkowej.

Pytanie 5

Którego z narzędzi należy użyć do wkręcenia przedstawionego elementu w nagwintowany otwór?

Ilustracja do pytania
A. Klucza nasadowego.
B. Wkrętaka krzyżowego.
C. Klucza ampulowego.
D. Wkrętaka typu torks.
Klucz ampulowy, znany także jako klucz imbusowy, jest narzędziem przeznaczonym do pracy z śrubami i wkrętami, które mają łeb sześciokątny wewnętrzny. W przypadku opisanej sytuacji, użycie klucza ampulowego jest kluczowe, ponieważ idealnie pasuje do profilu łba śruby, co zapewnia skuteczne i bezpieczne wkręcanie lub wykręcanie. Tego typu klucze są szeroko stosowane w różnych dziedzinach, takich jak mechanika, elektronika czy budownictwo, co czyni je niezastąpionym narzędziem w zestawie każdego profesjonalisty. W praktyce, klucz ampulowy pozwala na uzyskanie dużego momentu obrotowego przy niewielkim wysiłku, co jest szczególnie ważne przy pracy z metalowymi elementami, które mogą być narażone na korozję lub inne uszkodzenia. Dodatkowo, klucze te są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do różnych śrub, zgodnie z normami ISO i DIN. Użycie odpowiedniego narzędzia z pewnością przyczyni się do wydajności pracy oraz do ograniczenia ryzyka uszkodzeń elementów montażowych.

Pytanie 6

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji uzwojeń silników
R₂₀ = K₂₀·Rₜ
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K₂₀0,670,730,810,901,001,101,211,341,48
A. 8,11 MΩ
B. 8,20 MΩ
C. 6,57 MΩ
D. 6,40 MΩ
Poprawna odpowiedź to 6,57 MΩ, co można obliczyć przy użyciu wzoru R20 = k20 * Rs. W tym przypadku, k20 wynosi 1,00, a Rs to zmierzona rezystancja w temperaturze 17 °C, która wynosi 7,3 MΩ. Zgodnie z danymi z tabeli, k17 = 0,90. Obliczamy współczynnik przeliczeniowy: k20/k17 = 1,00/0,90 = 1,11. Następnie, mnożymy tę wartość przez zmierzoną rezystancję: R20 = 1,11 * 7,3 MΩ ≈ 8,11 MΩ. Wartość ta jest istotna, ponieważ rezystancja izolacji jest kluczowym parametrem w ocenie stanu technicznego uzwojeń silników elektrycznych. Zbyt niska rezystancja może prowadzić do zwarć lub uszkodzeń, dlatego regularne pomiary i obliczenia te są konieczne dla zachowania bezpieczeństwa i efektywności pracy urządzeń. Zgodnie z normami, takich jak IEC 60034-1, zaleca się regularne monitorowanie rezystancji izolacji, aby zapewnić długotrwałą i niezawodną pracę silników.

Pytanie 7

Właściciel lokalu w budynku wielorodzinnym, zasilanym z trójfazowej sieci elektrycznej, skarży się na znacznie częstsze od sąsiadów przepalanie żarówek. Jakie mogą być przyczyny tej usterki?

A. Poluzowany przewód neutralny w rozdzielnicy mieszkaniowej
B. Zamiana przewodu neutralnego z ochronnym
C. Poluzowany przewód neutralny w głównym złączu budynku
D. Zamiana przewodu neutralnego z fazowym
Jak wiadomo, poluzowany przewód neutralny w rozdzielnicy może namieszać w całej instalacji elektrycznej. Gdy przewód neutralny jest uszkodzony albo poluzowany, to prąd, który powinien wracać do zasilania, może nie mieć odpowiedniej drogi. To może sprawić, że napięcie na innych przewodach fazowych wzrośnie. Zdarza się wtedy, że żarówki się przepalają, bo napięcie przekracza to, co powinny wytrzymać. Dobrze jest od czasu do czasu sprawdzić stan połączeń elektrycznych, szczególnie w rozdzielnicach, żeby uniknąć takich kłopotów. Ważne jest też, aby dbać o odpowiednie napięcie i zabezpieczenia w instalacji, na przykład stosując różne urządzenia ochronne, jak wyłączniki nadprądowe czy różnicowoprądowe, które są zgodne z normami. Moim zdaniem, warto też wybierać żarówki, które są bardziej odporne na zmiany napięcia, to może wydłużyć ich żywotność w niepewnych warunkach zasilania.

Pytanie 8

Którego miernika należy użyć do pomiaru natężenia oświetlenia w pomieszczeniu biurowym?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Luksomierz to specjalistyczne urządzenie zaprojektowane do pomiaru natężenia oświetlenia, co czyni go idealnym narzędziem do oceny warunków oświetleniowych w pomieszczeniach biurowych. Pomiar natężenia oświetlenia jest kluczowy, aby zagwarantować odpowiednią ergonomię i komfort pracy. Standardy, takie jak PN-EN 12464-1, zalecają minimalne poziomy oświetlenia w różnych typach pomieszczeń, co podkreśla znaczenie tego pomiaru w kontekście zdrowia i wydajności pracowników. Używając luksomierza, można z łatwością określić, czy oświetlenie spełnia wymagania norm dotyczących natężenia oświetlenia, umożliwiając wprowadzenie odpowiednich korekt w celu poprawy warunków pracy. Praktyczne zastosowania luksomierza obejmują także monitorowanie zmian w oświetleniu w ciągu dnia czy ocenę efektywności różnych źródeł światła, co jest nieocenione w projektowaniu przestrzeni biurowych i utrzymaniu zgodności z regulacjami budowlanymi.

Pytanie 9

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. C16
B. D10
C. C20
D. B25
Wybrałeś odpowiedź B25 i to jest całkiem dobra decyzja. Wyłącznik nadmiarowo-prądowy typu B o prądzie znamionowym 25 A sprawdzi się w instalacji, gdzie prąd zwarciowy wynosi 150 A. Z tego co wiem, te wyłączniki są zazwyczaj stosowane w obwodach, gdzie prąd rozruchowy nie jest za duży, jak na przykład w oświetleniu lub gniazdkach. Kiedy mamy do czynienia z większym prądem zwarciowym, musimy dobrze dobrać wyłącznik, tak żeby nie doszło do uszkodzeń instalacji ani do przegrzewania się przewodów. W praktyce wydaje mi się, że wyłącznik B25 będzie odpowiedni i da dobrą ochronę. Warto pamiętać przy projektowaniu elektryki, żeby dobrze policzyć przewidywany prąd zwarciowy i wybrać właściwe wyłączniki, bo to naprawdę ma znaczenie. Zgadzam się, że również trzeba przestrzegać lokalnych przepisów budowlanych oraz elektrycznych, żeby zapewnić bezpieczeństwo.

Pytanie 10

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 6,9 kW
B. 2,9 kW
C. 3,9 kW
D. 9,6 kW
Poprawna odpowiedź wynosi 6,9 kW, co odpowiada maksymalnej mocy, jaką można uzyskać z wyłącznika nadprądowego typu S-303 CLS6-C10/3. Wyłączniki nadprądowe klasy C są przeznaczone do ochrony obwodów, w których występują prądy rozruchowe, co jest typowe dla urządzeń takich jak kuchenki elektryczne. Wyłącznik C10 oznacza, że jego maksymalny prąd znamionowy wynosi 10 A, co przy napięciu 230 V (typowym dla obwodów kuchennych w mieszkaniach) pozwala na obliczenie mocy: P = U x I, czyli 230 V x 10 A = 2300 W (2,3 kW). Jednak w przypadku kuchni elektrycznej zasilanej z trójfazowego zasilania 400 V, możemy zastosować również moc obliczoną z trzech faz: P = √3 x U x I = √3 x 400 V x 10 A = 6928 W, co daje nam 6,9 kW. Stosowanie wyłączników nadprądowych zgodnych z normami PN-EN 60898 jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej instalacji. W praktyce, zainstalowanie kuchenki elektrycznej o mocy 6,9 kW umożliwia wygodne gotowanie oraz korzystanie z różnych funkcji, takich jak pieczenie i gotowanie na parze, bez ryzyka przeciążenia obwodu zasilającego.

Pytanie 11

Wskaż symbol graficzny przycisku zwiernego.

Ilustracja do pytania
A. Symbol 2.
B. Symbol 3.
C. Symbol 4.
D. Symbol 1.
Symbol 1 jest prawidłowym przedstawieniem graficznego symbolu przycisku zwiernego. Graficzne oznaczenie to jest zgodne z międzynarodowymi standardami, takimi jak IEC 60417, które definiują symbole dla urządzeń elektrycznych. Przyciski zwierne są powszechnie stosowane w różnych aplikacjach, takich jak systemy alarmowe, automatyka budynkowa i interfejsy użytkownika w urządzeniach elektronicznych. Ich funkcjonowanie polega na zamykaniu obwodu elektrycznego po naciśnięciu przycisku, co powoduje rozpoczęcie określonego działania, na przykład włączenie światła lub aktywację alarmu. W praktycznej aplikacji, przyciski zwierne mogą być używane w różnych konfiguracjach, takich jak przyciski chwilowe, które wracają do stanu początkowego po zwolnieniu, lub przyciski z latarką, które mogą być używane do aktywacji procedur awaryjnych. Zrozumienie tego symbolu jest więc kluczowe dla projektantów systemów elektrycznych i automatyki, ponieważ umożliwia im prawidłowe dobieranie elementów w projekcie oraz zapewnienie zgodności z wiodącymi normami branżowymi.

Pytanie 12

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Temperaturę barwową światła.
B. Luminancję.
C. Natężenie oświetlenia.
D. Światłość.
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 13

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla zmywarki
B. zasilającego gniazdka w łazience oraz kuchni
C. oddzielnego dla urządzeń gospodarstwa domowego
D. zasilającego gniazdka jedynie w kuchni
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 14

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć wszystkie wyłączniki nadprądowe.
B. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
C. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
D. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
Wyłączenie wyłącznika różnicowoprądowego P312 B25A przed wymianą uszkodzonego wyłącznika nadprądowego B16 jest prawidłowym działaniem, ponieważ pozwala na zachowanie zasilania innych obwodów. Wyłącznik P312 B25A zabezpiecza obwody, w których znajdują się wyłączniki nadprądowe B6, B16 i B6, a więc jego wyłączenie pozwala na bezpieczną wymianę wyłącznika B16 bez pozbawiania zasilania płyty grzewczej i piekarnika, które są zasilane z innych obwodów. Praktyka ta jest zgodna z zaleceniami dotyczącymi bezpieczeństwa pracy w instalacjach elektrycznych, które nakazują minimalizowanie wyłączeń zasilania tam, gdzie to możliwe. Warto również pamiętać o dokumentacji instalacji elektrycznej, która powinna zawierać schematy, umożliwiające szybką identyfikację obwodów i ich zabezpieczeń. Dobrą praktyką jest również przeprowadzenie próby pomiarowej, aby upewnić się, że zasilanie zostało odłączone przed przystąpieniem do jakichkolwiek prac.

Pytanie 15

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. omomierza
B. wskaźnika kolejności faz
C. mostka LC
D. miernika izolacji
Użycie omomierza do sprawdzenia ciągłości żył w przewodzie YDY 4x2,5 mm2 jest właściwym wyborem, ponieważ omomierz jest urządzeniem pomiarowym, które pozwala na dokładne zmierzenie oporu elektrycznego. W przypadku sprawdzania ciągłości żył, omomierz umożliwia wykrycie ewentualnych przerw w obwodzie, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej. Przykładowo, podczas montażu instalacji elektrycznych w budynkach, konieczne jest potwierdzenie, że wszystkie przewody są prawidłowo podłączone i nie wykazują zbyt wysokiego oporu, co mogłoby wskazywać na problemy z połączeniami lub uszkodzenia. Zgodnie z normą PN-EN 60364, sprawdzenie ciągłości przewodów ochronnych jest obowiązkowe przed oddaniem instalacji do użytku. Dobre praktyki zalecają wykonywanie pomiarów w warunkach, gdy przewody są odłączone od źródła zasilania, co zwiększa bezpieczeństwo oraz dokładność pomiarów. Omomierz jest więc narzędziem nie tylko funkcjonalnym, ale i niezbędnym w codziennej pracy elektryka.

Pytanie 16

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 2,5 mm2
B. 4 mm2
C. 6 mm2
D. 10 mm2
Wybór przekroju żył przewodu czterożyłowego o przekroju 6 mm² dla obciążenia 36 A jest zgodny z zasadami doboru przewodów elektrycznych. W tabelach obciążalności długotrwałej, przewody ułożone na ścianie, na uchwytach, są klasyfikowane w kolumnach, które uwzględniają różne warunki ułożenia i obciążenia. W przypadku prądu znamionowego 36 A, najbliższą większą wartością w tabeli jest 43 A, co odpowiada przekrojowi 6 mm². Przekrój ten zapewnia odpowiednie zabezpieczenie przed przegrzaniem przewodów, co jest kluczowe dla bezpieczeństwa instalacji. Należy również pamiętać, że w praktyce, wybór odpowiedniego przekroju żył powinien uwzględniać nie tylko prąd znamionowy, ale także długość przewodu, rodzaj materiału (miedź czy aluminium) oraz warunki zewnętrzne, takie jak temperatura otoczenia. W przypadku zastosowań domowych, gdzie wymagane jest zasilanie urządzeń o dużym poborze mocy, takich jak piece trójfazowe, właściwy dobór przekroju przewodów ma istotne znaczenie dla zapewnienia ich niezawodności i bezpieczeństwa. Ogólnie rzecz biorąc, przestrzeganie norm i standardów, takich jak PN-EN 60204-1, jest niezbędne dla każdego elektryka.

Pytanie 17

Którego aparatu należy użyć w celu zastąpienia bezpieczników topikowych w modernizowanej instalacji w obwodzie zasilającym silnik trójfazowy?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Aparat zabezpieczający oznaczony jako "A" jest najodpowiedniejszym rozwiązaniem do zastąpienia bezpieczników topikowych w nowoczesnych instalacjach zasilających silniki trójfazowe. Posiada on trzy wejścia i wyjścia, co jest kluczowe dla prawidłowego zasilania silnika trójfazowego, gdzie każda faza wymaga oddzielnego obwodu. Oznaczenie "C16" wskazuje na charakterystykę wyzwalania, co oznacza, że aparat ten zadziała w odpowiednim czasie w przypadku przeciążenia, a także przy zwarciach, chroniąc w ten sposób silnik przed uszkodzeniem. W przypadku silników trójfazowych, zgodnie z normami IEC 60947-4-1, ważne jest, aby zabezpieczenia były dobrane odpowiednio do prądu znamionowego silnika oraz jego charakterystyki pracy. Należy również pamiętać, że stosowanie nowoczesnych aparatów zabezpieczających, takich jak wyłączniki automatyczne, zapewnia większą niezawodność oraz łatwość w obsłudze w porównaniu do tradycyjnych bezpieczników topikowych, które wymagają wymiany po zadziałaniu. Profesjonalne podejście do doboru zabezpieczeń jest kluczowe dla efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 18

Który symbol graficzny oznacza na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź C faktycznie jest trafna, bo symbol podany w tej opcji świetnie pokazuje, jak powinny być prowadzone przewody w listwie przypodłogowej, co można zobaczyć na zdjęciu. Wiele instalacji elektrycznych korzysta z listew przypodłogowych, bo to nie tylko estetyczne, ale też bezpieczne. Dzięki temu przewody są dobrze schowane i nie wystają na wierzch, co na pewno jest lepsze w projektowaniu wnętrz. Z tego, co wiem, normy IEC również zalecają używanie takich kanałów kablowych, jak w symbolu C, aby zapewnić bezpieczeństwo i przestrzegać przepisów budowlanych. Takie rozwiązanie można spotkać w biurach, mieszkaniach, a nawet w miejscach publicznych, gdzie estetyka i bezpieczeństwo są bardzo ważne.

Pytanie 19

W instalacji elektrycznej, której schemat przedstawiono na rysunku, po wykonanym montażu włączono pierwszy klawisz łącznika i wszystkie żarówki się tylko żarzyły, natomiast po włączeniu drugiego klawisza, przy włączonym pierwszym, zaświeciły się cztery żarówki. W celu ustalenia przyczyny nieprawidłowego działania instalacji należy sprawdzić poprawność połączeń przewodów do zacisków

Ilustracja do pytania
A. żyrandola.
B. gniazda wtyczkowego.
C. puszki zasilającej.
D. łącznika.
Błędne podejście do analizy problemu może prowadzić do mylnych wniosków i nieefektywnego rozwiązania problemów w instalacji elektrycznej. Wskazanie na łącznik jako źródło problemu z pewnością jest nieprecyzyjne, ponieważ działanie łącznika powinno być zgodne z jego przeznaczeniem, a ewentualne usterki w tym obszarze zazwyczaj objawiają się innym rodzajem awarii, np. brakiem działania całej instalacji. Podobnie, puszka zasilająca czy gniazdo wtyczkowe pełnią kluczowe funkcje w instalacji, ale w omawianym przypadku, ich poprawność działania nie jest wystarczającym wyjaśnieniem. Oparcie się na tych elementach w kontekście problemu nieprawidłowego działania żarówek jest błędne, ponieważ nie uwzględnia specyfiki obwodu, który powinien być analizowany jako całość. Typowym błędem rozumowania jest przenoszenie odpowiedzialności na elementy, które w rzeczywistości nie mają wpływu na zaobserwowane zjawisko. Właściwa diagnoza problemu wymaga szczegółowego zrozumienia interakcji pomiędzy poszczególnymi komponentami instalacji, co w tym przypadku jednoznacznie wskazuje na żyrandol jako miejsce potencjalnych usterek, a nie na elementy zasilające czy łączące.

Pytanie 20

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. 0
B. I
C. II
D. III
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 21

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Zamiana zużytych urządzeń na nowe
B. Wymiana uszkodzonych gniazd wtyczkowych
C. Instalacja nowych punktów świetlnych
D. Przesunięcie miejsc montażu opraw oświetleniowych
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 22

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Rysunek C został poprawnie zidentyfikowany jako schemat montażowy, ponieważ spełnia kluczowe kryteria związane z przedstawianiem układów elektrycznych. Schemat montażowy jest niezbędnym narzędziem w projektowaniu i wykonawstwie instalacji elektrycznych, umożliwiającym zrozumienie, jak poszczególne elementy urządzeń są połączone i rozmieszczone. W kontekście praktycznym, schemat montażowy dostarcza informacji na temat lokalizacji i sposobu montażu urządzeń, co jest kluczowe dla prawidłowego działania i bezpieczeństwa instalacji. Zawiera on także szczegóły odnośnie do przewodów, co ułatwia identyfikację i unikanie potencjalnych błędów podczas instalacji. Przykładem zastosowania schematów montażowych może być instalacja rozdzielnicy elektrycznej w budynku mieszkalnym, gdzie poprawne odwzorowanie połączeń elektrycznych gwarantuje nie tylko efektywność, ale i bezpieczeństwo użytkowników. Ponadto, zgodność z normami takimi jak PN-IEC 60364, która definiuje wymagania dotyczące instalacji elektrycznych, podkreśla znaczenie dokładności i czytelności schematów montażowych w praktyce inżynieryjnej.

Pytanie 23

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Uniwersalnych.
B. Asynchronicznych klatkowych.
C. Synchronicznych.
D. Asynchronicznych pierścieniowych.
Wirnik, który widzisz na obrazku, to typowy element silników asynchronicznych klatkowych. Te silniki są naprawdę powszechne w przemyśle, bo są proste w budowie i bardzo niezawodne. Mówi się na nie często 'klatka wiewiórki'. Jak to działa? No, wirnik składa się z prętów przewodzących, które są zamknięte na końcach pierścieniami. Dzięki temu mają świetne właściwości elektromagnetyczne. Co ciekawe, te silniki idealnie nadają się tam, gdzie potrzebna jest duża moc przy niskich kosztach. Przykładowo, używa się ich w wentylatorach, pompach czy kompresorach. W takich aplikacjach stała prędkość obrotowa i łatwość obsługi są mega ważne. Dodatkowo, są zgodne z międzynarodowymi standardami efektywności energetycznej, co jest dużym plusem dla środowiska. Nie zapominajmy też, że ich konstrukcja ułatwia konserwację, co jest naprawdę istotne w dłuższej perspektywie. Dlatego wybór silnika asynchronicznego klatkowego w przemyśle ma sens zarówno pod względem technicznym, jak i finansowym.

Pytanie 24

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 1-20 krotności prądu znamionowego
B. 5-10 krotności prądu znamionowego
C. 3-5 krotności prądu znamionowego
D. 20-30 krotności prądu znamionowego
Wybór odpowiedzi "5-10 krotności prądu znamionowego" dla charakterystyki C wyłączników nadprądowych jest poprawny, ponieważ odpowiada on standardowym wartościom zdefiniowanym w normach elektrotechnicznych. Wyłączniki charakteryzujące się tym zakresem są zaprojektowane tak, aby reagować na przeciążenia oraz krótkie spięcia w sytuacjach, gdy prąd wzrasta do poziomów znacznie wyższych niż prąd znamionowy. W praktyce oznacza to, że wyłączniki te skutecznie chronią instalacje elektryczne przed uszkodzeniami, które mogą być spowodowane nagłymi skokami prądu. Przykładem zastosowania wyłączników o charakterystyce C mogą być instalacje elektryczne w obiektach przemysłowych, gdzie urządzenia takie jak silniki i transformatory mogą generować znaczne prądy rozruchowe. Dobrze dobrany wyłącznik nadprądowy, zgodnie z normą PN-EN 60898, w odpowiednich sytuacjach zabezpiecza przed skutkami przeciążeń, co jest kluczowe dla bezpiecznej eksploatacji urządzeń oraz minimalizowania ryzyka pożarów i awarii.

Pytanie 25

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
B. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
C. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
D. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
Przekaźnik bistabilny to element automatyki, który po zadziałaniu przechodzi w stan, w którym pozostaje do momentu ponownego zadziałania. Parametry techniczne, takie jak napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania oraz sygnalizacja załączenia, są kluczowe dla jego prawidłowego funkcjonowania. Napięcie zasilania określa, jakie napięcie musi być dostarczone do przekaźnika, aby mógł on prawidłowo działać. Prąd obciążenia to maksymalny prąd, który może przechodzić przez styk przekaźnika, co jest istotne przy doborze urządzenia do konkretnych aplikacji. Wartość prądu impulsu sterującego wskazuje, jaki prąd jest potrzebny do zmiany stanu przekaźnika i jest kluczowa dla jego efektywności. Opóźnienie zadziałania pozwala na określenie czasu reakcji, co jest istotne w aplikacjach wymagających precyzyjnego sterowania. Sygnalizacja załączenia informuje użytkownika o stanie przekaźnika, co ma znaczenie w kontekście bezpieczeństwa i diagnostyki. Przykładowo, w systemach automatyki budynkowej, przekaźniki bistabilne mogą być używane do kontroli oświetlenia oraz zarządzania innymi urządzeniami, co czyni je niezbędnymi w inteligentnych instalacjach. Zrozumienie tych parametrów jest kluczowe dla projektowania i wdrażania systemów automatyki zgodnych z obowiązującymi standardami branżowymi.

Pytanie 26

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Ściąganie izolacji z przewodu.
B. Zaciskanie końcówki tulejkowej.
C. Klejenie na gorąco przewodu kabelkowego.
D. Zaciskanie opaski kablowej.
Odpowiedź "Zaciskanie opaski kablowej" jest prawidłowa, ponieważ na zdjęciu przedstawiono narzędzie służące do zaciskania opasek kablowych. Opaski kablowe są powszechnie stosowane w instalacjach elektrycznych oraz w organizacji kabli w różnych aplikacjach, takich jak urządzenia komputerowe, automatyka przemysłowa czy instalacje domowe. Zaciskanie opaski kablowej pozwala na skuteczne zabezpieczenie wiązek przewodów, co zwiększa bezpieczeństwo instalacji oraz zapobiega przypadkowemu uszkodzeniu kabli. Stosując opaski kablowe, należy zwrócić uwagę na ich odpowiednią szerokość oraz materiał, z którego są wykonane, aby były zgodne z obowiązującymi standardami. Dobrą praktyką jest również stosowanie narzędzi mechanicznych, co pozwala uniknąć nadmiernego nacisku na przewody i ich uszkodzenia. Właściwe użycie opasek kablowych wpływa nie tylko na estetykę instalacji, ale także na jej funkcjonalność i trwałość.

Pytanie 27

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. bezpośredniego - klasy I.
B. pośredniego - klasy V.
C. przeważnie pośredniego - klasy IV.
D. przeważnie bezpośredniego - klasy II.
Wybrane odpowiedzi, które nie wskazują na pośrednie emitowanie światła, mogą prowadzić do mylnych wniosków dotyczących realnych właściwości opraw oświetleniowych. Na przykład, odpowiedź sugerująca, że oprawa emituje światło przeważnie bezpośrednio, zakłada, że źródło światła jest skierowane bezpośrednio na oświetlaną powierzchnię, co jest sprzeczne z przedstawionym rysunkiem. Oprawy oświetleniowe klasy I najczęściej wiążą się z bezpośrednim oświetleniem, które może powodować intensywne cienie oraz oślepienie, co negatywnie wpływa na komfort użytkowników. Podobnie, klasy IV i V, które z reguły dotyczą więcej pośredniego lub rozproszonego światła, nie są odpowiednie dla opraw, które mają emitować światło w sposób przeważnie bezpośredni. Kluczowym błędem w analizie tego pytania jest niezrozumienie różnicy między tymi dwoma typami oświetlenia oraz ich wpływem na środowisko pracy. Na rysunku powinno być zauważone, że emisja światła poprzez mleczne szkło wskazuje na zamierzenie projektanta, aby zminimalizować oślepienie, co nie jest zgodne z oprawami klasy I. Zrozumienie zasad projektowania systemów oświetleniowych oraz ich klasyfikacji jest niezbędne dla prawidłowego doboru rozwiązań w dziedzinie architektury i ergonomii oświetleniowej.

Pytanie 28

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,69
B. 0,49
C. 0,84
D. 0,39
Odpowiedzi, które nie zgadzają się z poprawnym wynikiem, zazwyczaj wynikają z błędów w obliczeniach lub złego zrozumienia podstawowych pojęć związanych z mocą silników elektrycznych. Na przykład, wartość 0,69 może sugerować, że obliczenia nie uwzględniają współczynnika mocy lub są oparte na błędnie podanych danych. Często można się spotkać z błędnym założeniem, że moc czynna jest równa mocy mechanicznej, co jest nieprawdziwe, ponieważ moc dostarczona do silnika zawsze jest większa niż moc wyjściowa ze względu na straty energetyczne. Inne odpowiedzi, takie jak 0,49 czy 0,39, mogą wynikać z niepoprawnego przeliczenia wartości mocy czynnej, co w praktyce prowadzi do znacznego niedoszacowania efektywności silnika. Niezrozumienie roli współczynnika mocy w obliczeniach sprawności także często prowadzi do błędnych wyników. Warto zaznaczyć, że efektywność silników ma ogromne znaczenie w kontekście zrównoważonego rozwoju, a wybór silników o wyższej sprawności wpływa na oszczędności energii oraz redukcję emisji CO2. Prawidłowe obliczenia związane z mocą czynnościową oraz jasne zrozumienie relacji między mocą a sprawnością są kluczowe w projektowaniu i eksploatacji systemów napędowych.

Pytanie 29

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź C jest w porządku, bo na tym rysunku widzimy detektor przewodów, który jest super ważnym narzędziem w elektryce. Detektory, takie jak te od Boscha, pomagają znaleźć ukryte kable pod tynkiem, co jest mega przydatne, gdy robimy remonty lub zakładamy nowe systemy elektryczne. Dzięki detektorowi możemy uniknąć uszkodzenia już istniejących instalacji, co może prowadzić do naprawdę poważnych problemów, jak zwarcia czy uszkodzenie sprzętu. W branży ważne jest, żeby dokładnie lokalizować przewody, co mówi norma IEC 60364. Poza tym, te urządzenia potrafią też rozpoznać różne typy przewodów, co bardzo ułatwia planowanie prac budowlanych i remontowych, moim zdaniem to spora oszczędność czasu.

Pytanie 30

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Schemat C został zaprezentowany w sposób, który odpowiada zasadom prawidłowego montażu instalacji elektrycznych. W tym schemacie przewód fazowy (L) jest właściwie podłączony do jednego z łączników, co umożliwia sterowanie oświetleniem w sposób zgodny z normami. Przewód neutralny (N) nie jest połączony z łącznikami, co jest zgodne z dobrymi praktykami w instalacjach oświetleniowych, gdzie przewody neutralne zazwyczaj podłączane są bezpośrednio do źródła światła lub rozdzielnicy. Taki układ zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażenia prądem. Zastosowanie schematu C w praktyce pozwala na efektywne i bezpieczne sterowanie oświetleniem, co jest kluczowe w projektowaniu oraz wykonawstwie instalacji elektrycznych. Warto również zwrócić uwagę na konieczność przestrzegania odpowiednich norm, takich jak PN-IEC 60364, które regulują sposób wykonywania instalacji elektrycznych, aby były one zarówno funkcjonalne, jak i bezpieczne dla użytkowników.

Pytanie 31

Na rysunku przedstawiono sposób podłączenia

Ilustracja do pytania
A. trójfazowego transformatora separacyjnego.
B. dławików w trójfazowej oprawie świetlówkowej.
C. przekładników prądowych w trzech fazach.
D. trójfazowego licznika energii elektrycznej.
Trójfazowy licznik energii elektrycznej to urządzenie służące do pomiaru zużycia energii elektrycznej w systemach trójfazowych, które są powszechnie stosowane w przemyśle oraz w dużych obiektach komercyjnych. Na rysunku przedstawiono schemat, gdzie widoczne są trzy linie fazowe L1, L2, L3 oraz przewód neutralny N, co jest zgodne z typową konfiguracją podłączenia do takiego licznika. Liczniki energii elektrycznej muszą spełniać normy takie jak PN-EN 62053, które określają dokładność pomiarów oraz wymagania dotyczące instalacji. Przykładowo, w przypadku monitorowania zużycia energii w zakładzie przemysłowym, zastosowanie trójfazowego licznika pozwala na precyzyjne określenie, ile energii jest konsumowane przez różne maszyny, co z kolei umożliwia optymalizację kosztów operacyjnych oraz efektywności energetycznej. Odpowiednia symbolika graficzna na schemacie, jaką zastosowano w tym przypadku, jednoznacznie wskazuje na licznik, co jest zgodne z normami PN-EN 60617, które dotyczą symboliki w dokumentacji elektrycznej.

Pytanie 32

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 16 A
B. 26 A
C. 20 A
D. 6 A
Zrozumienie mocy oraz obciążenia w obwodach elektrycznych jest kluczowe dla prawidłowego działania instalacji. Wybór niewłaściwej wartości prądu, na przykład 6 A, 16 A lub 26 A, wynika z typowych błędów myślowych związanych z analizą schematu. Udzielając odpowiedzi 6 A lub 16 A, można sądzić, że prąd ograniczający jest możliwy do przyjęcia na podstawie zastosowanych komponentów. Jednakże, wyłącznik B20 oraz stycznik SM-320, które są kluczowe w tym obwodzie, mogą bezpiecznie obsłużyć znacznie wyższy prąd – aż do 20 A. Wybór 26 A jest również niewłaściwy, ponieważ przekracza maksymalną wartość obciążenia, co prowadziłoby do ryzyka uszkodzenia elementów instalacji. Warto również zauważyć, że w praktyce inżynierskiej wymagane jest przestrzeganie standardów znamionowych oraz zapewnienie odpowiednich marginesów bezpieczeństwa. Właściwy dobór elementów i obliczeń jest zatem kluczowy dla bezpieczeństwa i długowieczności instalacji elektrycznych, a każdy element w obwodzie powinien być dostosowany do jego przewidywanego obciążenia. Analizując powyższe, nie powinno się pomijać znaczenia norm i przepisów, które mają na celu ochronę zarówno osób, jak i mienia przed niebezpieczeństwami wynikającymi z niewłaściwego doboru lub eksploatacji instalacji elektrycznych.

Pytanie 33

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Odpowiedź D. jest poprawna, ponieważ detektor przewodów elektrycznych to specjalistyczne narzędzie, które umożliwia lokalizację przewodów w ścianach oraz innych elementach budowlanych. W przypadku instalacji podtynkowych, gdzie przewody są ukryte, kluczowe jest precyzyjne określenie ich położenia, aby uniknąć uszkodzeń podczas prac remontowych czy budowlanych. Detektory te działają na zasadzie wykrywania pola elektromagnetycznego emitowanego przez przewody, co pozwala na ich skuteczną lokalizację bez potrzeby przeprowadzania skomplikowanych badań. Dzięki zastosowaniu detektorów, można również zminimalizować ryzyko uszkodzenia istniejących instalacji. W branży elektrycznej stosowanie tego typu przyrządów jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami, co podkreśla ich znaczenie w planowaniu i realizacji instalacji elektrycznych.

Pytanie 34

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 20-30 krotności prądu znamionowego
B. 5-10 krotności prądu znamionowego
C. 3-5 krotności prądu znamionowego
D. 10-20 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 35

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. urządzenia różnicowoprądowe ochronne
B. umiejscowienie poza zasięgiem dłoni
C. separację elektryczną
D. ogrodzenia oraz obudowy
Ochrona przed dotykiem pośrednim jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych. Wiele osób może mylnie sądzić, że zastosowanie ochronnych urządzeń różnicowoprądowych jest wystarczające do zapewnienia bezpieczeństwa. Choć te urządzenia są istotnym elementem ochrony przed porażeniem prądem, ich rola polega głównie na wykrywaniu różnic w prądzie, co nie eliminuje całkowicie ryzyka dotyku pośredniego. Ponadto, stosowanie ogrodzeń i obudów, choć przydatne, nie jest skutecznym sposobem na ochronę przed dotykiem pośrednim, ponieważ nie zawsze zapewnia odpowiednie zabezpieczenie w przypadku awarii czy uszkodzeń. Lokowanie elementów elektrycznych poza zasięgiem ręki również nie jest wystarczającym środkiem ochronnym, gdyż nie eliminuje ryzyka wystąpienia sytuacji niebezpiecznych w przypadku, gdy użytkownicy mają dostęp do takich urządzeń. W rzeczywistości kluczowym elementem zapobiegania porażeniom jest zapewnienie odpowiedniej separacji elektrycznej, która gwarantuje, że użytkownicy nie mają fizycznego kontaktu z częściami instalacji narażonymi na działanie napięcia. Z tego powodu, koncentrując się na tych błędnych podejściach, można zrozumieć, jak istotne jest właściwe projektowanie systemów elektrycznych w celu zapewnienia maksymalnego bezpieczeństwa użytkowników. Zachowanie odpowiednich standardów, takich jak norma PN-EN 61140, jest niezbędne, aby wyeliminować ryzyko porażenia prądem i zapewnić skuteczną ochronę przed dotykiem pośrednim.

Pytanie 36

Którym z przedstawionych na rysunkach wyłączników różnicowoprądowych można zastąpić w trójfazowej instalacji elektrycznej 230/400 V, zabezpieczonej wyłącznikiem S314 B50, uszkodzony mechanicznie wyłącznik RCD o prądzie IΔn = 0,03 A?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór innego wyłącznika różnicowoprądowego niż A może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa instalacji elektrycznej. Przykładowo, wyłącznik B o prądzie znamionowym I_n równym 0,3 A nie jest odpowiedni, ponieważ znacznie przekracza wymaganą wartość 0,03 A. Taki wyższy prąd znamionowy może nie zadziałać w przypadku realnej awarii, co może prowadzić do porażenia prądem lub pożaru. Wyłącznik C, mimo że również ma prąd znamionowy 0,03 A, może mieć inne specyfikacje, które nie odpowiadają wymaganiom instalacji trójfazowej, co czyni go niewłaściwym do zastosowania. W przypadku wyłącznika D, który również ma prąd znamionowy 0,3 A, zgubimy kluczową ochronę, jaką zapewniają wyłączniki RCD, a ich niezastosowanie w odpowiednich parametrach może skutkować poważnymi uszkodzeniami sprzętu elektrycznego oraz zagrażać bezpieczeństwu użytkowników. Zrozumienie wymagań dotyczących wyłączników różnicowoprądowych jest kluczowe dla utrzymania prawidłowego poziomu bezpieczeństwa w instalacjach elektrycznych, dlatego ważne jest, aby zawsze dobierać urządzenia zgodnie z ich specyfikacjami i normami branżowymi.

Pytanie 37

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Licznik przedpłatowy, taki jak przedstawiony w odpowiedzi B, jest specjalistycznym urządzeniem zaprojektowanym do umożliwienia użytkownikom płacenia za energię elektryczną przed jej zużyciem. Jest to szczególnie korzystne w kontekście budżetowania wydatków na energię, ponieważ użytkownik może kontrolować swoje wydatki na bieżąco. W liczniku tym znajduje się klawiatura numeryczna oraz wyświetlacz, co umożliwia wprowadzenie kodów doładowujących, które można nabyć w sklepach lub przez internet. Taki system zachęca do oszczędzania energii, gdyż użytkownicy są bardziej świadomi swojego zużycia. Instalacje elektryczne z licznikami przedpłatowymi są zgodne z normami branżowymi, takimi jak IEC 62053, które określają wymagania dla liczników energii elektrycznej. Wiele nowoczesnych liczników przedpłatowych oferuje również funkcje zdalnego monitorowania, co ułatwia zarządzanie zużyciem energii w czasie rzeczywistym.

Pytanie 38

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±1,0% + 4 cyfry
B. ±2,5% + 1 cyfra
C. ±2,0% + 2 cyfry
D. ±1,5% + 3 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 39

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
B. niskonapięciowych liniach elektroenergetycznych.
C. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
D. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 40

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Zwiększenie wytrzymałości mechanicznej
B. Niepalność
C. Odporność na ciepło
D. Odporność na olej
Wybór złej odpowiedzi może wprowadzić w błąd, gdy chodzi o materiały izolacyjne. Odporność na olej jest przydatna w przemyśle, gdzie przewody mają styczność z chemikaliami, ale to nie to, co oznacza LYc. Inżynierowie patrzą na różne czynniki przy wyborze materiałów elektrycznych, ale w przypadku oznaczenia LYc chodzi głównie o to, jak przewód znosi ciepło. Zwiększanie wytrzymałości na naprężenia mechaniczne jest ważne w wielu przypadkach, ale nie zawsze znaczy, że przewód będzie odporny na wysokie temperatury. To może prowadzić do problemów, jeżeli użyjesz go w nieodpowiednich warunkach. Niepalność to również ważna cecha, ale to nie ma nic wspólnego z oznaczeniem LYc. Kluczowe jest, żeby znać standardy i normy związane z materiałami, żeby uniknąć zagrożeń przy ich używaniu.