Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:50
  • Data zakończenia: 7 grudnia 2025 11:14

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Z 250 g benzenu (M = 78 g/mol) uzyskano 350 g nitrobenzenu (M = 123 g/mol). Jaka jest wydajność reakcji nitrowania?

A. 93,4%
B. 83,5%
C. 88,8%
D. 77,7%
Wydajność reakcji nitrowania obliczamy, porównując masę uzyskanego produktu z maksymalną masą, którą moglibyśmy otrzymać, bazując na ilości reagenta. W przypadku benzenu, z jego masy molowej (M = 78 g/mol) możemy obliczyć, ile moli benzenu mamy w 250 g: 250 g / 78 g/mol = 3,21 mol. Reakcja nitrowania benzenu do nitrobenzenu produkuje jeden mol nitrobenzenu na każdy mol benzenu. Dlatego teoretycznie moglibyśmy otrzymać 3,21 mol nitrobenzenu, co przekłada się na masę: 3,21 mol * 123 g/mol = 394,83 g nitrobenzenu. Jednak w praktyce uzyskaliśmy tylko 350 g. Aby obliczyć wydajność, stosujemy wzór: (masa uzyskana / masa teoretyczna) * 100%. W naszym przypadku wydajność wynosi (350 g / 394,83 g) * 100% = 88,8%. Taka analiza i obliczenia są kluczowe w przemyśle chemicznym, ponieważ pozwalają na ocenę skuteczności procesów oraz optymalizację wykorzystania surowców, co jest zgodne z najlepszymi praktykami w zakresie zarządzania produkcją chemiczną.

Pytanie 2

Na podstawie zamieszczonych w tabeli opisów metod rozdzielania mieszanin, dobierz odpowiadające im nazwy.

Tabela. Metody rozdzielania mieszanin
Lp.Opis metody
I.Zlewanie cieczy znad osadu.
II.Przeprowadzenie ciekłego rozpuszczalnika w stan pary.
III.Wyodrębnianie z mieszaniny ciał stałych lub cieczy składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał żądany związek chemiczny.
IV.Powolne opadanie cząstek substancji stałej w cieczy pod wpływem własnego ciężaru.
A. I – sedymentacja II– krystalizacja, III – ekstrakcja, IV – dekantacja.
B. I – dekantacja, II – odparowanie, III – ekstrakcja, IV – sedymentacja.
C. I – dekantacja, II – sublimacja, III – filtracja, IV – sedymentacja.
D. I – sedymentacja, II – sublimacja, III – destylacja, IV – dekantacja.
Dekantacja, odparowanie, ekstrakcja oraz sedymentacja to metody wykorzystywane w laboratoriach chemicznych oraz procesach przemysłowych do separacji substancji. Dekantacja polega na oddzieleniu cieczy od osadu poprzez zlanie cieczy znad osadu, co jest powszechną praktyką w procesach oczyszczania. Odparowanie to proces, w którym ciecz zostaje przekształcona w parę, co pozwala na oddzielenie substancji rozpuszczonych. Jest to często stosowane w przemyśle spożywczym, jak na przykład w koncentracji soków. Ekstrakcja polega na wydobywaniu substancji rozpuszczalnych z mieszaniny za pomocą odpowiednich rozpuszczalników, co jest kluczowe w produkcji leków oraz w laboratoriach chemicznych. Sedymentacja natomiast, polegająca na osadzaniu się ciał stałych w cieczy pod wpływem grawitacji, jest powszechnie stosowana w oczyszczaniu wód. Zrozumienie tych metod i ich zastosowania jest kluczowe dla efektywnego przeprowadzania procesów chemicznych i technologicznych w różnych dziedzinach.

Pytanie 3

Z próbek przygotowuje się ogólną próbkę

A. analitycznych
B. laboratoryjnych
C. wtórnych
D. pierwotnych
Wybór odpowiedzi dotyczących próbek analitycznych, wtórnych czy laboratoryjnych wskazuje na pewne nieporozumienia związane z podstawowymi koncepcjami dotyczącymi prób w procesie analitycznym. Próbki analityczne są zazwyczaj wyselekcjonowane z prób pierwotnych, ale nie są one same w sobie źródłem reprezentatywnych danych; są to próbki, które zostały już poddane pewnym procesom przygotowawczym. W praktyce, aby uzyskać wartościowe analizy, konieczne jest, aby próbki analityczne były pozyskiwane z próbek pierwotnych. Podobnie, próbki wtórne to te, które powstają na podstawie wcześniejszych analiz lub prób, co oznacza, że nie odzwierciedlają one bezpośrednio warunków z miejsca wydobycia. W przypadku próbek laboratoryjnych, termin ten odnosi się do próbek, które są już przetwarzaną i analizowaną formą materiału, co również nie jest zgodne z zasadą przygotowywania próbki ogólnej. W praktyce, błędne wnioskowanie w tym zakresie może prowadzić do nieprawidłowych analiz, fałszywych wyników oraz błędnych decyzji zarówno w badaniach naukowych, jak i w procesach przemysłowych. Kluczowe jest, aby zrozumieć, że odpowiednia metodologia i procedury pobierania próbek są fundamentem dla uzyskiwania wiarygodnych danych oraz analizy, co jest zgodne z najlepszymi praktykami w branży analitycznej.

Pytanie 4

Ile węglanu sodu trzeba odmierzyć, aby uzyskać 200 cm3 roztworu o stężeniu 8% (m/v)?

A. 16,0 g
B. 9,6 g
C. 8,0 g
D. 1,6 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 200 cm³ roztworu o stężeniu 8% (m/v), możemy zastosować podstawowe wzory chemiczne. Stężenie masowe (m/v) odnosi się do masy substancji rozpuszczonej w jednostce objętości roztworu. W przypadku 8% roztworu oznacza to, że w 100 cm³ roztworu znajduje się 8 g węglanu sodu. Dla 200 cm³ roztworu odpowiednia masa wynosi zatem 8 g x 2 = 16 g. W kontekście praktycznym, przygotowanie roztworów o określonym stężeniu jest kluczowe w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne pomiary są wymagane dla zapewnienia jakości produktów. Na przykład, w analizach chemicznych czy syntezach, właściwe przygotowanie roztworów z odpowiednimi stężeniami ma zasadnicze znaczenie dla uzyskania powtarzalnych i dokładnych wyników. Zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy stosować odpowiednie metody ważeń oraz kalibracji sprzętu, aby zapewnić dokładność i wiarygodność uzyskanych wyników.

Pytanie 5

Jakie jest znaczenie skrótu: cz. na etykiecie reagentu chemicznego?

A. Czysty
B. Czystość chemiczna
C. Czystość do analizy
D. Czystość spektralna
Skrót 'cz.' na etykiecie odczynnika chemicznego oznacza 'czysty'. Jest to termin powszechnie używany w chemii, który wskazuje, że dany odczynnik jest odpowiedniej jakości i spełnia określone standardy czystości. Czystość odczynnika jest kluczowym aspektem w badaniach analitycznych, gdyż zanieczyszczenia mogą wpływać na wyniki pomiarów oraz jakość przeprowadzanych reakcji chemicznych. Na przykład w spektroskopii czy chromatografii ważne jest, aby stosowane substancje były jak najbardziej czyste, aby uniknąć interferencji. W praktyce, odczynniki oznaczone jako czyste są używane w laboratoriach do analizy chemicznej, syntezy chemicznej oraz w innych zastosowaniach, gdzie zanieczyszczenia mogą prowadzić do błędnych wyników. Standardy takie jak ASTM i ISO dostarczają wytycznych dotyczących jakości odczynników, co pomaga w zapewnieniu ich odpowiedniej czystości.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Który sposób przechowywania próbek żywności jest niezgodny z Rozporządzeniem Ministra Zdrowia?

Fragment Rozporządzenia Ministra Zdrowia w sprawie pobierania i przechowywania próbek żywności przez zakłady żywienia zbiorowego typu zamkniętego
(...)
Zakład przechowuje próbki, przez co najmniej 3 dni, licząc od chwili, kiedy cała partia została spożyta w miejscu wyłącznym właściwym do tego celu oraz w warunkach zapewniających utrzymanie temperatury +4°C lub niższej, w zależności od przechowywanego produktu.
Miejsce przechowywania próbek musi być tak zabezpieczone, aby dostęp do niego posiadał tylko kierujący zakładem lub osoba przez niego upoważniona.
A. Przechowywanie w temperaturze maksymalnej +4°C.
B. Przechowywanie przez maksymalnie 3 dni od czasu pobrania próbek.
C. Przechowywanie przez co najmniej 3 dni od czasu spożycia całej partii żywności.
D. Przechowywanie w specjalnie do tego celu wyznaczonym miejscu, do którego dostęp posiada kierownik zakładu lub osoba przez niego upoważniona.
Odpowiedź wskazująca na przechowywanie próbek przez maksymalnie 3 dni od czasu ich pobrania jest poprawna, ponieważ jest sprzeczna z przepisami zawartymi w Rozporządzeniu Ministra Zdrowia. Zgodnie z tymi regulacjami, zakład ma obowiązek przechowywać próbki przez co najmniej 3 dni, liczonych od momentu spożycia całej partii żywności. Ta zasada jest istotna, aby zapewnić odpowiednią kontrolę jakości i bezpieczeństwa żywności. W praktyce oznacza to, że próbki żywności muszą być dostępne do analizy przez określony czas, co jest kluczowe w przypadku wykrycia problemów zdrowotnych związanych z danym produktem. Zastosowanie tej regulacji wspiera przejrzystość procesu zarządzania jakością oraz umożliwia przeprowadzenie niezbędnych badań, co jest zgodne z dobrymi praktykami w branży spożywczej, takimi jak HACCP (Analiza Zagrożeń i Krytyczne Punkty Kontroli). Przechowywanie w odpowiednich warunkach i przez określony czas jest niezbędne dla zachowania integralności próbek i ich przydatności do analizy.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Urządzeniem pomiarowym nie jest

A. konduktometr
B. eksykator
C. termometr
D. pehametr
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.

Pytanie 11

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. rozcieńczyć wodą destylowaną
B. zneutralizować kwasem solnym lub zasadą sodową
C. zasypać wodorowęglanem sodu
D. przeprowadzić w trudnorozpuszczalne związki i odsączyć
Neutralizowanie odpadów laboratoryjnych kwasem solnym lub zasadą sodową to podejście, które może wydawać się logiczne, jednak nie jest to skuteczna metoda w przypadku odpadów zawierających metale ciężkie. Metale te, takie jak ołów, rtęć czy kadm, nie reagują w sposób, który pozwalałby na ich bezpieczne usunięcie za pomocą prostych reakcji kwas-zasada. Ponadto, takie działania mogą prowadzić do powstawania niebezpiecznych gazów, które mogą być toksyczne. Przykładowo, reakcja z kwasem solnym może uwolnić chlorowodór, co stwarza dodatkowe zagrożenie dla zdrowia. Zasypywanie odpadów wodorowęglanem sodu to kolejna niewłaściwa metoda, ponieważ nie prowadzi do skutecznego usuwania metali ciężkich, a jedynie może neutralizować pH, co nie eliminuje problemu samego zanieczyszczenia. Rozcieńczanie wodą destylowaną to kolejna strategia, która nie rozwiązuje problemu, a jedynie rozcieńcza substancje toksyczne, co może prowadzić do ich dalszego rozprzestrzeniania się w środowisku. W kontekście dobrych praktyk laboratoryjnych, istotne jest zrozumienie, że odpady powinny być najpierw klasyfikowane, a następnie poddawane odpowiednim procesom unieszkodliwiania, które zapewnią ich bezpieczne i ekologiczne usunięcie. Laboratoria muszą przestrzegać regulacji dotyczących gospodarki odpadami, takich jak ustawy o ochronie środowiska, które wymagają od nich podejmowania świadomych decyzji w sprawie zarządzania odpadami niebezpiecznymi.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakiego odczynnika chemicznego, oprócz Na2Cr2O7, należy użyć do sporządzenia mieszaniny chromowej do czyszczenia sprzętu szklarskiego w laboratorium?

A. HCI
B. K2CrO4
C. H2SO4
D. H2CrO4
Wybór HCl lub K2CrO4 jako alternatywnych reagentów do przygotowania mieszaniny chromowej wykazuje kilka istotnych nieporozumień dotyczących zasad działania tych substancji i ich zastosowania w kontekście czyszczenia szkła laboratoryjnego. Kwas solny (HCl), będący mocnym kwasem, nie ma wystarczających właściwości utleniających, aby efektywnie wspomagać proces usuwania zanieczyszczeń z powierzchni szkła. Jego zastosowanie w tym kontekście może prowadzić do nieefektywnego czyszczenia, a w niektórych przypadkach może nawet powodować uszkodzenia szkła, zwłaszcza w obecności metali ciężkich. W przypadku K2CrO4, mimo że jest to źródło chromu, jego działanie w czyszczeniu szkła jest ograniczone w porównaniu do H2SO4. K2CrO4 jest stosunkowo mało reaktywny, a w połączeniu z kwasami nie tworzy tak aktywnych kompleksów, jak w przypadku H2SO4. Niewłaściwe podejście do wyboru reagentu może prowadzić do nieporozumień w laboratoriach, a także do niewłaściwego interpretowania skuteczności czyszczenia. Często błędne myślenie o roli poszczególnych reagentów w reakcjach chemicznych prowadzi do wyboru substancji, które nie są optymalne dla zamierzonego celu. Wiedza na temat chemicznych właściwości substancji oraz ich interakcji jest kluczowa dla prawidłowego doboru reagentów, co powinno być zgodne z najlepszymi praktykami w laboratoriach chemicznych.

Pytanie 14

Wskaż sprzęt, którego należy użyć, aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3.

12345
naczynko wagowewaga analitycznakolba stożkowakolba miarowa
pojemności 50 cm3
kolba miarowa
pojemności 100 cm3
A. 1,2,3
B. 1,2,4
C. 1,2,5
D. 2,3,4
Aby przygotować 100 cm<sup>3</sup> roztworu NaOH o stężeniu 0,1 mol/dm<sup>3</sup>, konieczne jest zastosowanie odpowiedniego sprzętu laboratoryjnego. W pierwszej kolejności, do odważenia 0,4 g NaOH, wykorzystujemy naczynko wagowe oraz wagę analityczną, które zapewniają wysoką precyzję ważenia. Zgodnie z dobrymi praktykami laboratoryjnymi, waga analityczna powinna być kalibrowana przed każdym użyciem, co gwarantuje dokładność pomiarów. Następnie, do przygotowania roztworu używamy kolby miarowej o pojemności 100 cm<sup>3</sup>. Kolba miarowa umożliwia precyzyjne odmierzanie objętości roztworu, co jest kluczowe dla uzyskania żądanego stężenia. Przygotowanie roztworu w kolbie miarowej jest standardową procedurą w chemii analitycznej i przemysłowej, pozwalającą na powtarzalność wyników. Użycie niewłaściwego naczynia, takiego jak kolby o innych pojemnościach, może prowadzić do błędnych stężeń, co ma istotne znaczenie w kontekście reakcji chemicznych, w których stosunki molowe są kluczowe.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W trakcie pobierania próbek wody, które mają być analizowane pod kątem składników podatnych na rozkład fotochemiczny, należy

A. stosować opakowania nieprzezroczyste
B. obniżyć temperaturę próbek do 10oC
C. dodać do próbek roztwór H3PO4 w celu zakwaszenia
D. wykorzystywać pojemniki z jasnego szkła z dokładnie dopasowanym korkiem
Stosowanie opakowań nieprzezroczystych jest kluczowe podczas pobierania próbek wody przeznaczonych do analizy składników podatnych na rozkład fotochemiczny. Promieniowanie UV i widzialne światło mogą powodować niepożądane reakcje chemiczne, które mogą prowadzić do degradacji analizowanych substancji. Dlatego materiały używane do przechowywania próbek powinny skutecznie blokować dostęp światła. Przykłady odpowiednich materiałów to ciemne szkło lub tworzywa sztuczne, które zapewniają ochronę przed światłem. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi oraz standardami, np. ISO 5667, które podkreślają znaczenie odpowiednich technik pobierania i przechowywania próbek dla uzyskania wiarygodnych wyników analitycznych. Zastosowanie nieprzezroczystych opakowań również minimalizuje ryzyko błędów analitycznych wynikających z niekontrolowanej fotolizy substancji w próbce. W kontekście badań środowiskowych, używanie odpowiednich pojemników jest fundamentalne dla zachowania integralności próbki do momentu przeprowadzenia analizy.

Pytanie 17

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64
A. 2,15 cm3
B. 2,13 cm3
C. 2,50 cm3
D. 2,52 cm3
Aby zrozumieć, dlaczego proponowane odpowiedzi są błędne, warto przyjrzeć się fundamentom przygotowywania roztworów chemicznych. W przypadku tego pytania, istnieje ryzyko mylenia pojęć związanych z rozcieńczeniem i molowością. Wiele osób może pomylić objętość roztworu potrzebną do uzyskania określonej molowości z ilością substancji chemicznej, co prowadzi do niewłaściwych obliczeń. Ponadto, pomijanie faktu, że roztwór 36% HCl ma inną gęstość i stężenie mólowe, może skutkować nieprawidłowymi wynikami. Często zdarza się również, że przy obliczeniach nie uwzględnia się jednostek, co prowadzi do błędnych wyników. Użytkownicy mogą także zapominać o tym, że w przypadku roztworów silnych kwasów, takich jak HCl, ważne jest, aby dokładnie znać ich właściwości i zachowanie w różnych stężeniach. Obliczenia powinny bazować na dokładnych danych o stężeniu roztworu, co jest kluczowe w chemii analitycznej. W praktyce, niezrozumienie tych zasad może prowadzić do błędów w eksperymentach laboratoryjnych i niewłaściwego przygotowania roztworów, co może mieć poważne konsekwencje w badaniach chemicznych i przemysłowych. Dlatego tak ważne jest, aby stosować się do dobrych praktyk i standardów przy wykonywaniu obliczeń chemicznych.

Pytanie 18

Elementami brakującymi w zestawie przedstawionym na rysunku są

Ilustracja do pytania
A. stojak, łącznik oraz termometr
B. bagietka, termometr oraz siatka
C. stojak, termometr oraz siatka
D. stojak, łącznik i łapa
Wybór innych odpowiedzi często wiąże się z niepełnym zrozumieniem roli, jaką poszczególne elementy odgrywają w laboratoriach. Bagietka, będąca elementem używanym w kuchni, nie ma zastosowania w kontekście laboratoryjnym. Jej obecność w zestawie nie tylko nie pasuje do środowiska laboratorium, ale także wskazuje na brak wiedzy o standardowych narzędziach wykorzystywanych w procesach eksperymentalnych. Termometr, choć ważny w wielu pomiarach, nie jest elementem strukturalnym, który wspierałby stabilność zestawów montażowych. Odpowiedzi zawierające termometr pomijają kluczowe komponenty, takie jak statyw i łącznik, które są nieodzowne w każdym eksperymencie wymagającym precyzyjnego pomiaru. Z kolei łącznik i łapa, będące istotnymi elementami w laboratoriach, są fundamentalne dla łączenia i stabilizacji, co jest kluczowe dla uniknięcia wypadków w trakcie doświadczeń. Często popełnianym błędem jest skupianie się na pojedynczych narzędziach, zamiast na całościowej konfiguracji sprzętu, co prowadzi do nieporozumień. Właściwe zrozumienie komplementarności elementów sprzętu laboratoryjnego jest kluczowe dla ich efektywnego wykorzystania w praktyce.

Pytanie 19

Na skutek krystalizacji 18 g kwasu benzoesowego uzyskano 8 g czystego produktu. Jaką wydajność miała ta krystalizacja?

A. 2,25 g
B. 2,25%
C. 44,44 g
D. 44,44%
Wydajność procesu krystalizacji oblicza się jako stosunek masy uzyskanego produktu do masy surowca, wyrażony w procentach. W tym przypadku, otrzymując 8 g czystego kwasu benzoesowego z 18 g użytego surowca, wydajność wynosi: (8 g / 18 g) * 100% = 44,44%. Taka wydajność jest ważna w kontekście procesów technologicznych, ponieważ pozwala ocenić, jak efektywnie surowce zostały wykorzystane. W praktyce, wysoka wydajność jest pożądana, ponieważ obniża koszty materiałowe i zwiększa rentowność produkcji. W kontekście przemysłu farmaceutycznego lub chemicznego, osiągnięcie wysokiej wydajności krystalizacji jest kluczowe dla zapewnienia czystości i jakości produktów końcowych, co odpowiada standardom takim jak GMP (Good Manufacturing Practices). Dodatkowo, analiza wydajności może pomóc w identyfikacji potencjalnych problemów w procesie produkcyjnym i dostosowywaniu parametrów, aby zoptymalizować proces.

Pytanie 20

Przeprowadzono reakcję 13 g cynku z kwasem solnym zgodnie z równaniem: Zn + 2 HCl → ZnCl2 + H2↑. Otrzymano 1,12 dm3 wodoru (w warunkach normalnych). Masy molowe to: MZn = 65 g/mol, MH = 1g/mol, MCl = 35,5g/mol. Jaka jest wydajność tego procesu?

A. 75%
B. 50%
C. 60%
D. 25%
Aby obliczyć wydajność reakcji, należy najpierw ustalić, ile moli wodoru zostało uzyskanych oraz ile moli powinno być teoretycznie wyprodukowanych na podstawie reakcji. Z równania reakcji: Zn + 2 HCl → ZnCl2 + H2 wynika, że 1 mol cynku produkuje 1 mol wodoru. Masy molowe podane w zadaniu umożliwiają obliczenie, że 13 g cynku to około 0,2 mola (13 g / 65 g/mol). Teoretycznie, z 0,2 mola cynku powinniśmy uzyskać 0,2 mola wodoru, co odpowiada 4,48 dm³ (0,2 mola * 22,4 dm³/mol) przy warunkach normalnych. Zgodnie z danymi, zebrano 1,12 dm³ wodoru, co wskazuje, że uzyskano 25% teoretycznej ilości. W praktyce, wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, szczególnie w przemyśle, gdzie każda strata surowców wpływa na koszty produkcji. Zrozumienie i obliczanie wydajności jest niezbędne w procesach produkcyjnych, aby optymalizować reakcje i minimalizować straty, co jest zgodne z zasadami zrównoważonego rozwoju.

Pytanie 21

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 65,80%
B. 34,20%
C. 81,77%
D. 18,33%
Aby obliczyć straty acetonu w procesie destylacji, najpierw musimy zrozumieć, ile acetonu faktycznie było w zanieczyszczonym surowcu. Wprowadzone 200 cm³ zanieczyszczonego acetonu o gęstości 0,9604 g/cm³ zawiera 90% masowych czystego acetonu. Obliczamy masę całkowitą zanieczyszczonego acetonu: 200 cm³ * 0,9604 g/cm³ = 192,08 g. Następnie obliczamy masę czystego acetonu: 192,08 g * 90% = 172,872 g. Po procesie destylacji otrzymano 113,74 g czystego acetonu. Straty acetonu można obliczyć, odejmując masę uzyskaną od masy początkowej: 172,872 g - 113,74 g = 59,132 g. Następnie obliczamy procent strat: (59,132 g / 172,872 g) * 100% = 34,20%. Taki sposób analizy jest zgodny z dobrymi praktykami w przemyśle chemicznym, gdzie kontrola strat substancji jest kluczowa dla efektywności procesów produkcyjnych i ekonomiki operacji.

Pytanie 22

Rozpuszczalnik stosowany w procesie krystalizacji powinien

A. rozpuszczać zanieczyszczenia w przeciętnym zakresie
B. doskonale rozpuszczać zanieczyszczenia lub w niewielkim stopniu
C. wchodzić w reakcję z substancją krystalizowaną
D. być substancją łatwopalną
Rozpuszczalnik używany do krystalizacji odgrywa kluczową rolę w procesie uzyskiwania czystych kryształów substancji chemicznych. Poprawna odpowiedź, dotycząca rozpuszczania zanieczyszczeń bardzo dobrze lub w nieznacznym stopniu, jest istotna, ponieważ umożliwia selektywne wydobycie pożądanej substancji. W idealnym scenariuszu, rozpuszczalnik powinien dobrze rozpuszczać czystą substancję, pozwalając na jej krystalizację podczas schładzania lub odparowania. Na przykład, podczas krystalizacji soli, rozpuszczalniki takie jak woda są wykorzystywane, ponieważ dobrze rozpuszczają NaCl, ale nie rozpuszczają innych zanieczyszczeń, jak np. siarczany. W praktyce, techniki jak recrystalizacja często wykorzystują różne temperatury i stężenia, aby maksymalizować czystość finalnego produktu. Zgodnie z dobrą praktyką laboratoryjną, wybór odpowiedniego rozpuszczalnika i jego właściwości fizykochemiczne mają istotny wpływ na efektywność procesu krystalizacji, dlatego ważne jest, aby stosować właściwe metody analizy przed wyborem rozpuszczalnika.

Pytanie 23

Na rysunku przedstawiono przyrząd do pobierania próbek

Ilustracja do pytania
A. ciastowatych.
B. mazistych.
C. ciekłych.
D. sypkich.
Odpowiedź "sypkich" jest poprawna, ponieważ przyrząd przedstawiony na rysunku został zaprojektowany do pobierania próbek materiałów sypkich, takich jak ziarna, proszki czy inne substancje suche. Jego budowa, w tym rurka oraz mechanizm otwierania, pozwala na skuteczne pobranie próbki z różnych głębokości materiału, co jest kluczowe w wielu aplikacjach przemysłowych i laboratoryjnych. W praktyce, przyrządy tego typu są często wykorzystywane w branży rolniczej do analizy jakości gleby, w przemyśle spożywczym do badania surowców, a także w laboratoriach chemicznych do analizy substancji sypkich. Zastosowanie odpowiednich narzędzi do pobierania próbek sypkich jest niezbędne do zapewnienia reprezentatywności analizowanych materiałów, co jest zgodne z normami ISO oraz dobrymi praktykami analitycznymi. Użycie niewłaściwych przyrządów może prowadzić do zafałszowania wyników, dlatego tak istotne jest, aby wybierać sprzęt odpowiedni do specyfiki badanych substancji.

Pytanie 24

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. dokładności
B. instrumentalnym
C. paralaksy
D. losowym
Wybór 'paralaksy' to strzał w dziesiątkę! To dotyczy błędu w odczycie, który ma związek z tym, jak nasze oczy widzą coś z określonego kąta. Tak naprawdę paralaksa to ciekawe zjawisko optyczne – jakby obiekt wydaje się zmieniać, kiedy patrzymy na niego z różnych miejsc. W laboratorium, przy pomiarach cieczy w kolbie miarowej, bardzo ważne jest, żeby dobrze ustawić wzrok na menisku. Jak nie patrzymy z odpowiedniego poziomu, to możemy źle odczytać, ile płynu mamy. To jest kluczowe, zwłaszcza w chemii, gdzie dokładność to podstawa. No i jest kilka standardów, jak ISO 8655, które mówią, jak powinno się to robić, żeby wyniki były wiarygodne. Także pamiętaj, patrząc na menisk, rób to na wysokości oczu, żeby uniknąć błędów – to naprawdę robi różnicę.

Pytanie 25

W którym wierszu są zapisane nazwy wyłącznie rozpuszczalników palnych?

Właściwości wybranych rozpuszczalników.
RozpuszczalnikGęstość
[g/cm3]
Temperatura
wrzenia
[°C]
Temperatura
zapłonu
[°C]
Rozpuszczalność
w wodzie
[g/100 cm3]
Eter dietylowy0,7135-457
Heksan0,6660-80-230,01
Aceton0,7957-18
Benzen0,8880-110,07
Chloroform1,4961-0,82
Tetrachlorometan1,5977-0,08
Etanol0,817812
Chlorometan1,3441-2
A. Aceton, etanol, benzen.
B. Heksan, benzen, tetrachlorometan.
C. Aceton, etanol, chloroform.
D. Chloroform, chlorometan, tetrachlorometan.
Odpowiedź "Aceton, etanol, benzen" jest poprawna, ponieważ wszystkie te substancje są klasyfikowane jako łatwopalne rozpuszczalniki. Kluczowym parametrem, który pozwala na ich identyfikację, jest temperatura zapłonu. Aceton, ze swoją temperaturą zapłonu wynoszącą -18°C, etanol z 12°C oraz benzen z -11°C, charakteryzują się niskimi wartościami, co czyni je niebezpiecznymi w kontekście pożaru. W praktyce, znajomość właściwości chemicznych rozpuszczalników jest niezbędna dla bezpieczeństwa w laboratoriach oraz w przemyśle chemicznym. Właściwe magazynowanie tych substancji oraz przestrzeganie norm bezpieczeństwa, takich jak zachowanie odpowiednich odległości od źródeł zapłonu, jest kluczowe dla uniknięcia niebezpieczeństw. Przykładowo, w laboratoriach stosuje się odpowiednie pojemniki i wentylację, aby zminimalizować ryzyko wybuchu. Ponadto, znajomość tych substancji jest istotna w kontekście ochrony środowiska, ponieważ łatwopalne rozpuszczalniki mogą mieć szkodliwy wpływ na atmosferę i zdrowie ludzi, jeśli nie są odpowiednio używane lub utylizowane.

Pytanie 26

Jaką substancję należy koniecznie oddać do utylizacji?

A. Gliceryna
B. Sodu chlorek
C. Glukoza
D. Chromian(VI) potasu
Chromian(VI) potasu to substancja chemiczna, która jest klasyfikowana jako niebezpieczny odpad. Ze względu na swoje właściwości toksyczne oraz rakotwórcze, jego pozostałości muszą być traktowane z najwyższą ostrożnością i nie mogą być usuwane w sposób standardowy. Zgodnie z regulacjami dotyczącymi gospodarki odpadami, takie substancje powinny być przekazywane do specjalistycznych zakładów zajmujących się ich utylizacją. Przykładowo, chromiany są szeroko stosowane w przemyśle, w tym w procesach galwanicznych oraz w produkcji barwników, dlatego ważne jest, aby procesy te były zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące zarządzania odpadami niebezpiecznymi. Utylizacja chromianu VI wymaga zastosowania odpowiednich metod, takich jak stabilizacja chemiczna, aby zapobiec przedostawaniu się szkodliwych substancji do gruntu czy wód gruntowych. Właściwe postępowanie z tymi materiałami jest kluczowe dla ochrony zdrowia publicznego oraz ochrony środowiska.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Na ilustracji numery rzymskie wskazują

A. I – chłodnicę, II – sublimat
B. I – rozdzielacz, II – sublimat
C. I – rozdzielacz, II – destylat
D. I – chłodnicę, II – destylat
Wybór odpowiedzi, w której I oznaczono jako rozdzielacz, a II jako sublimat, prowadzi do kilku kluczowych nieporozumień. Rozdzielacz jest urządzeniem, które służy do oddzielania różnych faz, na przykład cieczy od gazów, co nie jest jego funkcją w kontekście destylacji. Destylacja to proces, w którym składniki mieszaniny cieczy są oddzielane na podstawie różnicy ich temperatur wrzenia, a nie za pomocą rozdzielaczy. Sublimacja, z drugiej strony, to proces, w którym substancja przechodzi bezpośrednio ze stanu stałego do gazowego, omijając fazę ciekłą, co nie znajduje zastosowania w kontekście chłodnicy i destylacji. Odpowiedzi, które określają II jako sublimat, pomijają zrozumienie, że sublimacja nie jest zjawiskiem zachodzącym w pracy chłodnicy, a tym bardziej w procesie destylacyjnym. Często obserwowanym błędem jest niewłaściwe utożsamianie procesów termicznych i stanów skupienia substancji. Ważne jest, aby przy analizie procesów chemicznych zrozumieć różnice między podziałem na fazy oraz transformacjami fizycznymi, do których należy sublimacja. Dobrym przykładem są procesy odparowywania i skraplania, które są kluczowe w kontekście destylacji, a pomylenie tych pojęć prowadzi do nieprawidłowych wniosków dotyczących zastosowania urządzeń i ich funkcji. Konieczne jest przyswojenie sobie tych definicji, aby skutecznie operować w obszarze chemii i inżynierii procesowej.

Pytanie 29

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. filtracji
B. destylacji
C. krystalizacji
D. koagulacji
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 30

W tabeli zamieszczono temperatury wrzenia niektórych składników powietrza. Na podstawie tych danych podaj, który ze składników oddestyluje jako ostatni.

Temperatura wrzenia °CSkładniki
-245,9Neon
-182,96Tlen
-195,8Azot
-185,7Argon
A. Argon.
B. Neon.
C. Azot.
D. Tlen.
Tlen to składnik powietrza, który wrze w -182,96°C. W destylacji chodzi o to, żeby oddzielić różne składniki mieszanki na podstawie ich temperatur wrzenia. Kiedy destylujemy powietrze, najpierw oddzielają się te składniki, które mają niższe temperatury wrzenia. Tlen, mający najwyższą temperaturę w porównaniu z pozostałymi substancjami, będzie się wydobywał jako ostatni. Moim zdaniem, zrozumienie tego procesu jest naprawdę ważne, zwłaszcza w takich dziedzinach jak inżynieria chemiczna. Na przykład, w przemyśle gazowym, czysty tlen z powietrza uzyskuje się właśnie przez destylację frakcyjną. To pokazuje, jak praktyczna jest ta wiedza. Warto też pamiętać, że różne metody separacji gazów opierają się na różnych właściwościach fizycznych, jak różnice w temperaturach wrzenia. Takie poznanie na pewno się przyda inżynierom w ich pracy.

Pytanie 31

Wybór lokalizacji do poboru próbek wody z rzeki nie jest uzależniony od

A. usytuowania dopływów
B. usytuowania źródeł zanieczyszczeń
C. rodzaju pojemników do ich przechowywania
D. celu oraz zakresu badań
Wybór miejsca pobierania próbek wody z rzeki jest kluczowym elementem badań jakości wody, a rodzaj naczyń do ich przechowywania nie ma wpływu na lokalizację ich pobierania. Istotne jest, aby miejsce poboru było reprezentatywne dla badanego obszaru i odpowiadało celom oraz zakresowi badań. Na przykład, jeśli celem jest ocena wpływu zanieczyszczeń przemysłowych, należy wybierać miejsca w pobliżu źródeł tych zanieczyszczeń. Z kolei lokalizacja dopływów może wskazywać na różne warunki hydrologiczne i chemiczne wody. Zarówno standardy ISO, jak i normy krajowe dotyczące monitorowania jakości wody podkreślają znaczenie odpowiedniego doboru punktów poboru. Przechowywanie próbek w odpowiednich naczyniach, takich jak butelki szklane lub plastikowe, ma z kolei na celu zapewnienie, że próbki nie ulegną zanieczyszczeniu ani degradacji w czasie transportu do laboratorium. Dlatego rodzaj naczyń jest istotny, ale nie wpływa na wybór miejsca ich pobierania.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. pojemnik
B. aspirator
C. czerpak
D. barometr
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 34

Jakie czynniki wpływają na zmiany jakościowe w składzie próbki?

A. przeprowadzonych analiz.
B. wiedzy i umiejętności próbobiorcy.
C. lokalizacji pobrania.
D. składu biologicznego próbki.
Skład biologiczny próbki jest kluczowym czynnikiem wpływającym na jakość i właściwości badanej próbki. Zmiany jakościowe w składzie próbki mogą być wynikiem różnorodnych procesów biologicznych, chemicznych czy fizycznych, które zachodzą w jej obrębie. Na przykład, mikroorganizmy obecne w próbce mogą wpływać na degradację substancji biologicznych, a ich działalność może prowadzić do powstawania metabolitów o różnej aktywności. W praktyce, zrozumienie składu biologicznego próbki pozwala na lepsze projektowanie eksperymentów i interpretację wyników badań. W dziedzinach takich jak biotechnologia czy analiza środowiskowa, istotne jest uwzględnienie takich czynników jak pH, temperatura czy obecność składników odżywczych, które mogą modyfikować skład biologiczny. Dobre praktyki laboratoryjne, takie jak odpowiednie przechowywanie próbek i unikanie kontaminacji, mają na celu minimalizowanie wpływu zmian jakościowych na wyniki badań. Wiedza na temat składu biologicznego próbki jest zatem fundamentem skutecznego przeprowadzania badań analitycznych oraz interpretacji ich rezultatów.

Pytanie 35

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. aluminium
B. szkła sodowego
C. ceramiki
D. polietylenu wysokiej gęstości (HDPE)
Polietylen wysokiej gęstości (HDPE) to materiał, który najczęściej wykorzystuje się do pobierania i przechowywania próbek wody przeznaczonych do analizy zawartości metali ciężkich. Przede wszystkim HDPE jest tworzywem chemicznie obojętnym wobec większości metali. To ogromna zaleta, bo nie wchodzi w reakcje z badanymi jonami, nie adsorbuje ich na swojej powierzchni i nie emituje zanieczyszczeń, które mogłyby zaburzyć wyniki. W praktyce laboratoria stosują butelki HDPE zarówno w analizach środowiskowych, jak i przemysłowych. Bardzo ważne jest też to, że HDPE jest wytrzymały mechanicznie, odporny na pęknięcia i łatwy do mycia oraz dekontaminacji przed kolejnym użyciem. Takie pojemniki są rekomendowane przez międzynarodowe normy, np. ISO 5667 dotyczące pobierania próbek wody. Z mojego doświadczenia wynika, że HDPE to pewność, że próbka nie zostanie zanieczyszczona metalami z materiału opakowania ani nie dojdzie do strat analitu przez związanie z powierzchnią. To naprawdę kluczowe, żeby nie zafałszować wyników, szczególnie przy bardzo niskich stężeniach metali ciężkich.

Pytanie 36

Zastosowanie łaźni wodnej nie jest zalecane w trakcie prac, w których stosuje się

A. glicerynę
B. etanol
C. sód
D. cynk
Odpowiedź 'sodu' jest prawidłowa, ponieważ sód reaguje gwałtownie z wodą, co prowadzi do wydzielania wodoru i może spowodować niebezpieczne eksplozje. Z tego powodu, podczas prac związanych z sodem, stosowanie łaźni wodnej jest całkowicie niewskazane. W praktyce, jeśli zajmujesz się sodem, powinieneś używać innych metod chłodzenia lub podgrzewania, takich jak piekarniki lub inne systemy grzewcze, które nie wchodzą w reakcję z tym pierwiastkiem. W laboratoriach chemicznych i podczas produkcji chemikaliów, standardy bezpieczeństwa, takie jak te określone przez OSHA (Occupational Safety and Health Administration) oraz EPA (Environmental Protection Agency), zalecają unikanie kontaktu sodu z wodą. Dlatego ważne jest, aby stosować odpowiednie materiały i metody pracy, aby uniknąć potencjalnych wypadków i zapewnić bezpieczeństwo w miejscu pracy.

Pytanie 37

Substancje kancerogenne to

A. mutagenne
B. uczulające
C. rakotwórcze
D. enzymatyczne
Kancerogenne substancje to związki chemiczne, które mają zdolność wywoływania nowotworów w organizmach żywych. Są one klasyfikowane jako rakotwórcze, co oznacza, że mogą prowadzić do transformacji komórek normalnych w komórki nowotworowe. Przykłady takich substancji to azbest, benzen oraz formaldehyd, które są powszechnie znane z ich szkodliwego wpływu na zdrowie i są regulowane przez różne normy, takie jak Międzynarodowa Agencja Badań nad Rakiem (IARC) czy OSHA (Occupational Safety and Health Administration). Wiedza o kancerogenności substancji ma kluczowe znaczenie w przemyśle, szczególnie w kontekście ochrony pracowników oraz zachowania zdrowia publicznego. Organizacje muszą wdrażać programy oceny ryzyka oraz strategie minimalizacji ekspozycji na te substancje w celu ochrony zdrowia ludzi i środowiska. W wielu krajach istnieją również regulacje prawne, które wymagają oznaczania produktów zawierających kancerogenne substancje, co pozwala konsumentom na podejmowanie świadomych decyzji.

Pytanie 38

Na rysunku przedstawiono

Ilustracja do pytania
A. destylator.
B. zestaw do oczyszczania cieczy.
C. lepkościomierz Englera.
D. aspirator do poboru próbek gazu.
Wybór odpowiedzi, która nie jest aspiratorem do poboru próbek gazu, wskazuje na nieporozumienie dotyczące zasadniczych funkcji oraz konstrukcji przedstawionego urządzenia. Zestaw do oczyszczania cieczy, który mógłby być mylnie utożsamiony z aspiratorem, zazwyczaj obejmuje szereg elementów filtracyjnych oraz osadnikowych, co nie znajduje odzwierciedlenia w uproszczonej budowie rysunku. Lepkościomierz Englera, używany do pomiaru lepkości cieczy, ma inną konstrukcję i zasadę działania, a jego zastosowanie jest ograniczone do analizy fizykochemicznej cieczy, co nie współczesne z funkcją poboru gazu. Natomiast destylator, który składa się z kolby destylacyjnej i chłodnicy zwrotnej, służy do oddzielania składników mieszanin cieczy na podstawie różnicy ich temperatur wrzenia. Takie pomyłki mogą wynikać z braku zrozumienia różnic w zastosowaniach tych urządzeń. Kluczowe jest, aby zrozumieć, że aspirator operuje w oparciu o różnice ciśnień, a nie na zasadzie filtracji czy destylacji, jak w pozostałych urządzeniach, co jest istotne w kontekście analizy gazów. W związku z tym, umiejętność rozróżniania tych narzędzi oraz ich funkcji jest niezbędna dla każdego specjalisty pracującego w obszarze chemii analitycznej czy ochrony środowiska.

Pytanie 39

Zgłębniki o konstrukcji przypominającej świder są wykorzystywane do pobierania próbek różnych materiałów

A. płynnych
B. ciastowatych
C. sypkich
D. półpłynnych
Wybór innych odpowiedzi, takich jak sypkie, płynne czy półpłynne, wynika z niepełnego zrozumienia właściwości materiałów oraz zastosowania zgłębnika w kształcie świdra. Materiały sypkie, takie jak piasek czy żwir, są najczęściej pobierane poprzez metody bardziej odpowiednie do ich struktury, na przykład za pomocą zgłębnika cylindrycznego. Zgłębniki te są przystosowane do uzyskiwania próbek z luźnych i sypkich materiałów, gdzie nie jest wymagane wwiercanie się w substancje o większej lepkości. W przypadku materiałów płynnych, takich jak woda czy oleje, stosuje się zupełnie inne metody, na przykład pompy lub próbniki ciśnieniowe, które są bardziej efektywne w pozyskiwaniu próbek z płynnych mediów. Natomiast materiały półpłynne, takie jak niektóre rodzaje osadów, mogą wymagać zastosowania innych narzędzi, które są bardziej odpowiednie do ich specyfiki. Typowym błędem myślowym jest założenie, że jeden typ zgłębnika może być użyty do różnych typów materiałów bez uwzględnienia ich właściwości fizycznych. Dlatego ważne jest zrozumienie, że zgłębniki w kształcie świdra są zoptymalizowane do pracy z substancjami ciastowatymi, co czyni je nieodpowiednimi do innych materiałów.

Pytanie 40

Rysunek przedstawia wagę techniczną. Numerem 7 oznaczono

Ilustracja do pytania
A. uczulacz.
B. pryzmat.
C. pryzmat boczny.
D. tarownik.
Wybór odpowiedzi, które nie wskazują na tarownik, wykazuje pewne nieporozumienia dotyczące funkcji poszczególnych elementów wagi technicznej. Na przykład, pryzmat, chociaż ważny w kontekście optyki, nie jest elementem stosowanym w wagach, co prowadzi do błędnego wnioskowania na temat jego zastosowania w tym kontekście. Uczulacz jest terminem związanym z biotechnologią i nie ma zastosowania w metrologii, co znacząco odbiega od tematyki związanej z wagami. Pryzmat boczny, podobnie jak jego odpowiednik, prawdopodobnie odnosi się do zjawisk optycznych, które nie mają związku z konstrukcją ani funkcją wagi technicznej. W zrozumieniu tego zagadnienia istotne jest, aby zwrócić uwagę na to, że waga techniczna posiada określone komponenty, których funkcje są ściśle zdefiniowane. Tarownik, jako kluczowy element, odpowiada za równoważenie masy, co czyni go nieodłącznym w procesie precyzyjnego ważenia. Wybór niepoprawnych odpowiedzi może sugerować niepełne zrozumienie podstawowych zasad metrologii oraz wskazywać na potrzebę dalszej edukacji w zakresie budowy i funkcjonowania wag. Dlatego istotne jest, aby dokładnie studiować i analizować poszczególne elementy oraz ich zastosowania, aby uniknąć mylnych interpretacji w przyszłości.