Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 22 października 2025 16:00
  • Data zakończenia: 22 października 2025 16:17

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Gdzie w instalacji jednofazowej należy umieścić wyłącznik RCD?

A. w przewodzie fazowym i fazowym
B. w przewodzie neutralnym i ochronnym
C. w przewodzie fazowym i neutralnym
D. w przewodzie fazowym i ochronnym
Wyłącznik RCD (Residual Current Device) jest istotnym urządzeniem w systemach elektrycznych, służącym do ochrony przed porażeniem prądem elektrycznym oraz do zapobiegania pożarom spowodowanym upływem prądu. Montuje się go w przewodach fazowym i neutralnym, ponieważ jego głównym zadaniem jest monitorowanie różnicy prądów między tymi dwoma przewodami. W przypadku, gdy wystąpi różnica prądu, na przykład w wyniku uszkodzenia izolacji, urządzenie natychmiast odłącza zasilanie. Dzięki temu, gdy prąd wypływa do ziemi, wyłącznik RCD minimalizuje ryzyko porażenia prądem oraz potencjalnych zagrożeń pożarowych. Przykładem zastosowania wyłącznika RCD są instalacje elektryczne w domach jednorodzinnych oraz w miejscach użyteczności publicznej, gdzie zwiększone ryzyko kontaktu z wodą wymaga dodatkowych zabezpieczeń. W Polsce, zgodnie z normą PN-EN 61008-1, stosowanie RCD w instalacjach elektrycznych jest zalecane jako standardowa praktyka w celu zwiększenia bezpieczeństwa użytkowników.

Pytanie 3

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. pierścienia zwierającego
B. lakieru izolacyjnego
C. drutu nawojowego
D. izolacji żłobkowej
Nieprawidłowe koncepcje dotyczące odpowiedzi związane z drutem nawojowym, izolacją żłobkową i lakierem izolacyjnym mogą wynikać z nieporozumienia dotyczącego funkcji tych elementów w budowie silnika indukcyjnego. Drut nawojowy jest kluczowym elementem, ponieważ to właśnie z niego składają się uzwojenia stojana. Jego jakość oraz odpowiedni dobór materiału mają bezpośrednie przełożenie na wydajność i sprawność silnika. Izolacja żłobkowa zapewnia, że uzwojenia nie zwarcia się nawzajem, co jest niezbędne do prawidłowego funkcjonowania silnika. Lakier izolacyjny dodatkowo chroni uzwojenia przed wilgocią i zanieczyszczeniami, co może prowadzić do uszkodzeń. Ignorowanie roli tych elementów może prowadzić do błędnych wniosków na temat konstrukcji silników. Często problemy dotyczące ich zastosowania mogą wynikać z braku znajomości norm branżowych, które zalecają konkretne materiały i metody izolacji, co jest kluczowe dla bezpieczeństwa oraz wydajności pracy silników. Wszelkie niedopatrzenia w tych kwestiach mogą prowadzić do awarii silnika, a także zwiększenia kosztów eksploatacji z powodu nieefektywności energetycznej. W związku z tym, ważne jest zrozumienie, że każdy z wymienionych elementów pełni istotną rolę w prawidłowym działaniu silnika indukcyjnego.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jaka przyczyna powoduje rozbieżność w działaniu silnika bocznikowego prądu stałego?

A. Luzy w łożyskach
B. Przerwa w uzwojeniu twornika
C. Brak obciążenia
D. Przerwa w uzwojeniu wzbudzenia
Jak masz przerwę w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego, to silnik zaczyna się rozbiegać. Dlaczego? No bo to uzwojenie odpowiada za wytwarzanie pola magnetycznego, które jest potrzebne, żeby silnik działał. Bez tego pola, silnik nie ma żadnego oporu, a to skutkuje tym, że kręci się bez kontroli. To może być naprawdę niebezpieczne, bo prowadzi do uszkodzeń. Żeby tego uniknąć, ważne są regularne kontrole i konserwacje. W przemyśle, według norm IEC 60034, trzeba monitorować stan uzwojeń i mieć systemy ochrony, które coś wykryją, gdy coś się popsuje. W silnikach używanych w różnych sprzętach, jak taśmociągi, warto też pomyśleć o dodatkowych zabezpieczeniach, żeby nie było niekontrolowanego działania silnika, gdy uzwojenie zawiedzie.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jak często powinno się przeprowadzać przeglądy okresowe sprzętu ochronnego, takiego jak: drążki izolacyjne do manipulacji, kleszcze oraz uchwyty izolacyjne, a także dywaniki i chodniki gumowe?

A. Co 3 lata
B. Co 1 rok
C. Co 5 lat
D. Co 2 lata
Odpowiedzi sugerujące rzadziej przeprowadzane badania okresowe, takie jak co 5 lat, co 3 lata czy co 1 rok, opierają się na błędnym zrozumieniu znaczenia regularnych przeglądów sprzętu ochronnego. Zwłaszcza w przypadku urządzeń izolacyjnych, jak drążki czy kleszcze, standardy bezpieczeństwa wyraźnie wskazują, że ich właściwości izolacyjne mogą ulegać degradacji z czasem, nawet przy normalnym użytkowaniu. Przeprowadzanie badań co 5 lat może prowadzić do sytuacji, w której sprzęt, który powinien już zostać wymieniony, nadal jest używany, co stwarza ogromne ryzyko porażenia prądem. Co więcej, odpowiedzi sugerujące przeglądy co 3 lata lub co 1 rok również mogą nie spełniać wymogów bezpieczeństwa, ponieważ nie uwzględniają specyfiki i intensywności użytkowania sprzętu w różnych warunkach. W praktyce, nieprzestrzeganie zalecanych cykli przeglądów może skutkować zarówno uszkodzeniem sprzętu, jak i narażeniem pracowników na niebezpieczeństwo. Właściwe zrozumienie tych zasad jest kluczowe dla ochrony zdrowia i życia osób pracujących w branży elektrycznej, a także dla zachowania zgodności z obowiązującymi normami i przepisami prawa, co jest niezwykle istotne w kontekście odpowiedzialności prawnej i etycznej pracodawców.

Pytanie 8

Jaki jest cel uziemienia ochronnego w instalacjach elektrycznych?

A. Zwiększenie mocy znamionowej urządzeń elektrycznych
B. Zabezpieczenie ludzi przed porażeniem elektrycznym
C. Redukcja zużycia energii elektrycznej w instalacjach elektrycznych
D. Poprawa jakości sygnału w instalacjach telekomunikacyjnych
Uziemienie ochronne ma na celu przede wszystkim zabezpieczenie ludzi przed porażeniem elektrycznym, co jest jednym z najważniejszych aspektów bezpieczeństwa w instalacjach elektrycznych. W praktyce oznacza to, że obudowy urządzeń elektrycznych są połączone z ziemią, co umożliwia szybkie odprowadzenie prądu w przypadku zwarcia lub uszkodzenia izolacji. Dzięki temu, jeżeli np. przewód fazowy zetknie się z metalową obudową urządzenia, prąd popłynie do ziemi, a nie przez ciało człowieka, co znacząco zmniejsza ryzyko porażenia. Takie uziemienie jest wymagane przez normy bezpieczeństwa elektrycznego, takie jak PN-IEC 60364. W skrócie, uziemienie ochronne działa jako środek zapobiegawczy, który minimalizuje ryzyko wypadków i zwiększa ogólne bezpieczeństwo użytkowników instalacji elektrycznych. Dodatkowo, uziemienie ochronne pomaga w stabilizacji napięcia sieci i eliminuje potencjalne różnice napięcia, co jest kluczowe w utrzymaniu właściwego działania urządzeń elektrycznych. To nie tylko praktyka, ale też standard w branży, który musi być przestrzegany, by zapewnić bezpieczne i efektywne działanie instalacji.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W jakim zakresie powinien znajdować się mierzony rzeczywisty prąd różnicowy IN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby był dopuszczony do użytkowania?

A. Od 0,5 IN do 1,2 IN
B. Od 0,3 IN do 1,0 IN
C. Od 0,3 IN do 0,8 IN
D. Od 0,5 IN do 1,0 IN
Analizując inne możliwe odpowiedzi, można zauważyć, że podane zakresy nie spełniają wymogów dotyczących prawidłowej eksploatacji wyłącznika różnicowoprądowego typu AC. Przykładowo, zakres od 0,3 I_N do 0,8 I_N jest niewłaściwy, ponieważ zbyt niski prąd różnicowy może prowadzić do braku reakcji wyłącznika na małe prądy upływowe, co stwarza ryzyko porażenia prądem. Ustalony przez normy poziom 0,5 I_N jako dolna granica jest kluczowy, aby zapewnić reaktywność urządzenia. Z kolei zakres od 0,5 I_N do 1,2 I_N również nie jest akceptowalny, ponieważ 1,2 I_N nie mieści się w standardowych granicach pracy wyłącznika, co może prowadzić do fałszywych alarmów lub nawet uszkodzenia urządzenia. Odpowiedzi te bazują na niepełnym zrozumieniu zasad działania wyłączników różnicowoprądowych, które mają za zadanie wyłączać zasilanie tylko w przypadku wykrycia niebezpiecznego prądu różnicowego. Warto również zauważyć, że pomijanie zasady, iż wyłącznik powinien być w stanie zareagować na prąd różnicowy w odpowiednim czasie, prowadzi do niebezpiecznych sytuacji w instalacjach elektrycznych. Dlatego tak ważne jest, aby stosować się do określonych norm i praktyk, aby zapewnić bezpieczeństwo zarówno użytkowników, jak i całej instalacji.

Pytanie 11

Aby naprawić uszkodzenie przerwanego przewodu pomiędzy sąsiednimi puszkami łączeniowymi w instalacji elektrycznej podtynkowej, która znajduje się w rurce, konieczne jest

A. odkręcić w puszkach uszkodzony przewód, wymienić go na nowy i połączyć
B. pozostawić uszkodzony przewód, a puszki połączyć przewodem natynkowym
C. wykuć bruzdę i wymienić rurkę instalacyjną z przewodami na przewód podtynkowy
D. odkręcić w puszkach uszkodzony przewód, zlutować, zaizolować i połączyć
Odpowiedź polegająca na odkręceniu przerwanego przewodu w puszkach i zastąpieniu go nowym jest prawidłowa, ponieważ zapewnia trwałe i bezpieczne rozwiązanie problemu uszkodzonej instalacji elektrycznej. Zgodnie z zasadami dobrej praktyki, usunięcie uszkodzonego przewodu i zastąpienie go nowym jest kluczowe dla zapewnienia ciągłości obwodu oraz minimalizacji ryzyka wystąpienia zwarcia czy pożaru. W przypadku przerwania przewodu, jego naprawa poprzez zlutowanie może być nietrwała i narażać na ryzyko, zwłaszcza w instalacjach podtynkowych, gdzie dostęp do uszkodzeń jest ograniczony. Wymiana przewodu jest standardem w branży i pozwala na zachowanie pełnej funkcjonalności instalacji. Dodatkowo, przy wykonywaniu takiej naprawy należy stosować odpowiednie materiały, które przeznaczone są do instalacji elektrycznych, a także przestrzegać norm PN-IEC 60364, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. Przykładowo, przy wyborze nowego przewodu warto kierować się jego parametrami elektrycznymi oraz odpowiednią izolacją, co zwiększy efektywność i bezpieczeństwo całej instalacji.

Pytanie 12

Jakie zadanie związane z utrzymaniem sprawności technicznej instalacji elektrycznej spoczywa na dostawcy energii?

A. Nadzór nad jakością realizacji prac eksploatacyjnych
B. Prowadzenie dokumentacji dotyczącej eksploatacji obiektu
C. Zachowanie zasad bezpieczeństwa korzystania z urządzeń elektrycznych
D. Okresowa legalizacja, naprawa lub wymiana licznika energii
Odpowiedź dotycząca okresowej legalizacji, naprawy lub wymiany licznika energii jest poprawna, ponieważ dostawcy energii są odpowiedzialni za zapewnienie, że urządzenia pomiarowe są w dobrym stanie technicznym i zgodne z obowiązującymi normami. Legalizacja licznika oznacza jego zatwierdzenie przez odpowiednie organy, co gwarantuje, że pomiary energii są wiarygodne i zgodne z przepisami prawa. W praktyce, dostawcy przeprowadzają regularne kontrole i konserwacje liczników, aby upewnić się, że działają one z wymaganymi tolerancjami. Na przykład, zgodnie z normą PN-EN 62053-21, liczniki energii elektrycznej muszą być regularnie sprawdzane, aby zapewnić ich dokładność. Dobre praktyki w tym zakresie obejmują również prowadzenie szczegółowej dokumentacji dotyczącej stanu technicznego liczników oraz przeprowadzonych działań, co pozwala na łatwe monitorowanie i zarządzanie infrastrukturą pomiarową. Współpraca między dostawcami a organami regulacyjnymi w zakresie legalizacji liczników jest kluczowa dla utrzymania jakości usług i ochrony konsumentów.

Pytanie 13

Która z poniższych informacji powinna być wyeksponowana na elektrycznym urządzeniu napędowym?

A. Strzałka wskazująca wymagany kierunek obrotu
B. Termin kolejnego przeglądu technicznego
C. Poziom odchylenia napięcia zasilającego
D. Typ zastosowanych zabezpieczeń przeciwzwarciowych
Wybór informacji, które powinny być umieszczone na elektrycznym urządzeniu napędowym, jest kluczowy dla bezpieczeństwa oraz efektywności jego działania. W przypadku poziomu odchylenia napięcia zasilania, chociaż ważne jest monitorowanie tego parametru dla optymalizacji pracy maszyn, nie jest to informacja, która musi być bezpośrednio przedstawiona na urządzeniu. W praktyce, pomiar napięcia zasilania dokonuje się z użyciem urządzeń pomiarowych, a nadmierne umieszczanie takich informacji na samych urządzeniach mogłoby prowadzić do złożoności i zamieszania. Rodzaj zastosowanych zabezpieczeń zwarciowych również nie jest bezpośrednio wymagany do umieszczenia na widocznej części urządzenia. Informacje te są często dostępne w dokumentacji technicznej lub instrukcjach obsługi i powinny być znane personelowi odpowiedzialnemu za konserwację. Data następnego przeglądu technicznego, choć istotna, jest także informacją, którą można umieścić w systemach zarządzania utrzymaniem ruchu, a niekoniecznie na samym urządzeniu. Kluczowym błędem w tym podejściu jest myślenie, że wszystkie dane techniczne powinny być widoczne na samych maszynach. Ważne jest, aby informacje były dostępne w sposób przejrzysty i użyteczny, ale priorytetem powinny być te, które bezpośrednio wpływają na operacyjność i bezpieczeństwo, jak oznaczenie kierunku wirowania, które jest krytyczne dla prawidłowego funkcjonowania urządzenia.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. podniesienia obciążalności prądowej
B. obniżenia obciążalności prądowej
C. zmiany wytrzymałości mechanicznej przewodu
D. wzrostu wytrzymałości mechanicznej przewodu
Wybór odpowiedzi dotyczącej zmniejszenia wytrzymałości mechanicznej przewodu YKY 2,5 mm² w porównaniu do OWY 2,5 mm² jest trafny z kilku powodów. Przewody OWY, wykonane z miedzi i zwykle stosowane w instalacjach, charakteryzują się większą elastycznością i odpornością na uszkodzenia mechaniczne. W przeciwieństwie do nich, przewody YKY, chociaż mają lepsze właściwości izolacyjne i są bardziej odporne na działanie chemikaliów, są również sztywniejsze. Zmiana na przewód YKY w zastosowaniach, gdzie przewód jest narażony na ruch, może prowadzić do łatwiejszych uszkodzeń związanych z nadmiernym zginaniem czy przecieraniem. To bardzo ważne w kontekście projektowania instalacji elektrycznych, gdzie przewody często muszą być elastyczne, aby wytrzymać różne ruchy i wibracje. W praktyce, standardy takie jak PN-EN 60228 definiują różne parametry przewodów i ich zastosowań, co podkreśla znaczenie wyboru odpowiedniego typu w zależności od środowiska operacyjnego. Dlatego w kontekście zastosowania przewodów w instalacjach ruchomych, zmiana na YKY może nie być optymalnym rozwiązaniem.

Pytanie 16

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
B. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
C. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
D. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 17

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Ogrodzenie terenu, na którym prowadzone są prace
B. Przyłączenie wyłączonej linii do uziemienia
C. Realizowanie pracy w zespole
D. Używanie sprzętu izolacyjnego
Stosowanie sprzętu izolacyjnego w kontekście prac przy wyłączonej linii napowietrznej jest często mylone z koniecznością w sytuacjach, gdzie napięcie jest obecne. Gdy linia jest wyłączona i odpowiednio zabezpieczona, sprzęt izolacyjny nie jest konieczny, ponieważ nie ma ryzyka porażenia prądem. Jednakże, w praktyce, jego użycie może być zalecane w celu dodatkowego zabezpieczenia oraz w sytuacjach, gdzie istnieje ryzyko nieprzewidzianych okoliczności, takich jak przypadkowe włączenie linii. Na przykład, w zgodzie z normami BHP, stosowanie sprzętu izolacyjnego jest kluczowe podczas pracy w pobliżu niepewnych źródeł napięcia. Zawsze warto stosować zasadę ostrożności i posiadać odpowiednie szkolenie w zakresie użycia tego sprzętu. Pracownicy powinni być również świadomi procedur dotyczących oznakowania i blokowania urządzeń, aby zapewnić, że linie pozostaną wyłączone podczas realizacji prac.

Pytanie 18

W którym z poniższych miejsc podczas pracy z urządzeniami elektrycznymi nie wolno stosować izolacji stanowiska jako zabezpieczenia przed dotykiem pośrednim?

A. Pracownia szkolna
B. Warsztat sprzętu RTV
C. Plac budowy
D. Laboratorium
Plac budowy to miejsce, gdzie występują szczególne warunki pracy, które wymagają szczegółowych zasad bezpieczeństwa. Izolowanie stanowiska jako ochrona przed dotykiem pośrednim, choć teoretycznie może być stosowane, w praktyce nie jest wystarczające ze względu na dynamiczny charakter tego środowiska. Na placu budowy często występują zagrożenia związane z wilgocią, zmiennymi warunkami atmosferycznymi oraz możliwością uszkodzenia izolacji przez inne urządzenia lub materiały budowlane. Dlatego w takich miejscach kluczowe jest stosowanie bardziej zaawansowanych systemów ochronnych, takich jak urządzenia różnicowoprądowe oraz odpowiednie uziemienie, które zapewniają znacznie większą ochronę przed porażeniem prądem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, na placach budowy należy stosować zabezpieczenia, które są dostosowane do specyfiki tego typu pracy, co podkreśla istotność stosowania wielowarstwowych metod ochrony, a nie tylko polegania na izolacji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaką maksymalną wartość prądu zadziałania można ustawić na przekaźniku termobimetalowym w obwodzie zasilającym silnik asynchroniczny o parametrach UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It=1,15 A
B. It=1,33 A
C. It=0,88 A
D. It=1,05 A
Prąd zadziałania 1,15 A na przekaźniku termobimetalowym to naprawdę dobry wybór do ochrony silnika asynchronicznego o takich danych jak U<sub>N</sub> = 400 V, P<sub>N</sub> = 0,37 kW oraz I = 1,05 A. W praktyce przekaźniki termobimetalowe ustawiamy na wartość trochę wyższą od prądu znamionowego silnika. W tym przypadku 1,15 A to dobra decyzja, bo zapewnia odpowiednią ochronę przed przeciążeniem, a jednocześnie daje trochę luzu na krótkie wzrosty prądu, które mogą wystąpić na przykład podczas rozruchu. Ta zasada jest zgodna z normą PN-EN 60204-1, która mówi o bezpieczeństwie w instalacjach elektrycznych maszyn. Dzięki temu silnik nie będzie miał problemów z uszkodzeniami spowodowanymi długotrwałym przeciążeniem, co w efekcie wydłuża jego żywotność i zwiększa niezawodność całego systemu. Na przykład, w przemyśle silnik napędzający wentylator potrzebuje odpowiednio ustawionych przekaźników, żeby wszystko działało bez zarzutu i żeby zminimalizować ryzyko awarii.

Pytanie 21

Osoby wykonujące wymianę instalacji elektrycznej o napięciu 230/400 V w obiekcie przemysłowym powinny mieć kwalifikacje potwierdzone świadectwem, które jest co najmniej typu

A. D do 1 kV
B. E do 30 kV
C. E do 1 kV
D. D do 15 kV
Odpowiedź E do 1 kV jest prawidłowa, ponieważ osoby wykonujące prace przy instalacjach elektrycznych o napięciu do 1 kV muszą posiadać odpowiednie kwalifikacje. W Polsce, zgodnie z przepisami prawa, uprawnienia te potwierdzane są świadectwem kwalifikacyjnym, które powinno być wydane przez odpowiednie instytucje. Prace w obiektach przemysłowych, w których napięcie wynosi 230/400 V, są najczęściej związane z instalacjami niskonapięciowymi. Wymagania dotyczące szkoleń i certyfikacji osób zajmujących się instalacjami elektrycznymi są ściśle określone w normach, takich jak PN-EN 50110-1, która odnosi się do eksploatacji urządzeń elektrycznych. Pracownicy muszą być świadomi zagrożeń związanych z elektrycznością oraz umieć stosować odpowiednie środki ochrony osobistej. Przykładowo, osoby z uprawnieniami E do 1 kV będą w stanie wykonać wymianę osprzętu elektrycznego, takich jak gniazda, włączniki czy oświetlenie, zapewniając jednocześnie bezpieczeństwo pracy oraz zgodność z obowiązującymi normami.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakie skutki dla instalacji mieszkalnej przyniesie zamiana przewodu YDY 3x1,5 mm2 na YADY 3 x 1,5 mm2?

A. Obciążalność długotrwała instalacji zostanie zmniejszona
B. Przewodność elektryczna przewodów ulegnie zwiększeniu
C. Rezystancja przewodów ulegnie zmniejszeniu
D. Wytrzymałość elektryczna izolacji wzrośnie
Jest trochę zamieszania, jeśli chodzi o różnice między YDY a YADY, co prowadzi do mylnych przekonań. Wydaje się, że ludzie myślą, że przewodność elektryczna się zwiększa z innym materiałem, ale to nie tak działa. Przewody 1,5 mm2 z obu typów mają tę samą przewodność, bo to zależy od przekroju, a nie od samego materiału. Też, jak mowa o wytrzymałości izolacji, to YADY wcale nie jest lepszy. Właściwości izolacyjne YADY są gorsze niż YDY, więc nie ma szans, że YADY jest bardziej odporny na wysokie napięcia. I wiesz, rezystancja też się nie zmienia, bo to zależy od materiału i długości, a nie od typu przewodu. W praktyce dobór przewodu powinien być oparty na normach, takich jak PN-IEC 60364, bo jak się użyje złych przewodów, to może być niebezpiecznie. Awaria sprzętu, przegrzewanie – to nie są rzeczy, które chcesz mieć na głowie.

Pytanie 24

Korzystając z danych zamieszczonych w tabeli wyznacz, wartość rezystancji jednej żyły przewodu YDY 3×2,5 mm2 o długości 100 m.

Dane techniczne przewodu YDY
Ilość i przekrój znamionowy żyłGrubość znamionowa izolacjiMax. rezystancja żyłOrientacyjna masa przewodu o długości 1 km
mm²mmΩ/kmkg/km
2x10,818,181
2x1,50,812,197
2x2,50,87,41125
2x40,94,61176
2x60,93,08228
3x10,918,196
3x1,50,912,1116
3x2,50,97,41153
A. 741,0 Ω
B. 0,741 Ω
C. 74,10 Ω
D. 7,410 Ω
No, tu trzeba przyznać, że coś poszło nie tak. Jak wybierasz 7,410 Ω czy 741,0 Ω, to widać, że jest tu jakiś zgrzyt z rozumieniem obliczeń. Te odpowiedzi pewnie wynikają z błędnego przeliczenia jednostek albo pomylenia długości z rezystancją. Przewód o długości 100 m wymaga, żeby przeliczyć rezystancję na 1 km, a nie brać to na sztywno. Na przykład, 7,410 Ω to rezystancja na 1 km, a to nie zadziała w Twoim przypadku. Podobnie 74,10 Ω to już całkiem złe obliczenia. W inżynierii elektrycznej takie błędy mogą prowadzić do większych strat energii, co z kolei może spowodować przegrzewanie się przewodów i inne problemy. Chociaż może się wydawać to skomplikowane, poprawne obliczenie rezystancji jest naprawdę ważne, żeby wszystko działało jak należy.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Na podstawie przedstawionych w tabeli wyników pomiarów, dotyczących silnika prądu stałego, określ które z wymienionych uszkodzeń wystąpiło w tym silniku.

Rezystancja uzwojeń pomiędzy zaciskami:Rezystancja izolacji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Nadpalenie izolacji między uzwojeniem bocznikowym, a obudową.
B. Przerwa w uzwojeniu twornika.
C. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
D. Przebicie izolacji uzwojenia twornika do obudowy.
Zwarcie międzyzwojowe w uzwojeniu bocznikowym to uszkodzenie, które może prowadzić do poważnych problemów w działaniu silnika prądu stałego. W analizowanej tabeli rezystancji, zauważalne różnice w wartościach wskazują na to, że rezystancja między zaciskami E1-E2 jest znacząco wyższa niż w innych punktach. W przypadku zwarcia międzyzwojowego, następuje zmniejszenie efektywnej rezystancji, co prowadzi do przegrzewania się uzwojenia i potencjalnych awarii. W praktyce, aby zdiagnozować to uszkodzenie, ważne jest regularne monitorowanie rezystancji uzwojeń oraz prowadzenie testów izolacji, zgodnie z normami branżowymi. Pomiar rezystancji izolacji powinien być wykonywany w cyklach, aby wykrywać nieprawidłowości zanim doprowadzą do poważnych uszkodzeń. Zastosowanie odpowiednich metod diagnostycznych, takich jak pomiary rezystancji czy testy wysokonapięciowe, pozwala na wczesne wykrycie problemów i ich skuteczne eliminowanie, co jest kluczowe dla zapewnienia długotrwałej efektywności silników prądu stałego.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Uzwojenie pierwotne transformatora jednofazowego jest zrobione z drutu nawojowego

A. o większej średnicy i wyższej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i niższej liczbie zwojów niż uzwojenie wtórne
C. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i niższej liczbie zwojów niż uzwojenie wtórne
Wybrane odpowiedzi mylą podstawowe zasady działania transformatorów. Uzwojenie pierwotne nie powinno być wykonane z drutu o większej średnicy ani mniejszej liczbie zwojów niż uzwojenie wtórne, ponieważ takie podejście skutkuje osłabieniem indukcji elektromagnetycznej. Przy mniejszej liczbie zwojów w uzwojeniu pierwotnym, pole magnetyczne generowane w rdzeniu byłoby niewystarczające do efektywnego przekazywania energii, co prowadziłoby do niskiej wydajności transformatora. Kolejnym błędem jest założenie, że większa średnica drutu w uzwojeniu pierwotnym sprzyja zwiększeniu efektywności. W rzeczywistości, cieńszy drut z większą liczbą zwojów pozwala na skoncentrowanie pola magnetycznego, co jest kluczowe dla działania transformatora. W przypadku stosowania drutu o większej średnicy, efektywność transformacji napięcia uległaby znacznemu pogorszeniu, a straty energii z powodu efektu Joule'a wzrosłyby. Ponadto, w kontekście inżynierii elektrycznej, projektowanie uzwojeń opiera się na zasadach indukcji elektromagnetycznej oraz na optymalizacji parametrów, co sprawia, że wiedza o liczbie zwojów oraz ich średnicy jest niezbędna do stworzenia efektywnego urządzenia. Użycie niewłaściwych wartości nie tylko obniża efektywność, ale również może prowadzić do awarii urządzenia.

Pytanie 30

Aby zidentyfikować części silników w wersji przeciwwybuchowej, które mają podwyższoną temperaturę, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu silnika nie powinno się przeprowadzać tych pomiarów?

A. Na tarczy łożyskowej, od strony napędowej w pobliżu pokrywy łożyska
B. W sąsiedztwie pokrywy wentylatora
C. W centralnej części obudowy blisko skrzynki przyłączeniowej
D. Na końcu obudowy w rejonie napędu
Wybór niewłaściwego miejsca do pomiaru temperatury silnika może prowadzić do błędnych wniosków i niskiej efektywności działania urządzenia. Odpowiedzi dotyczące pomiarów w różnych lokalizacjach są wynikiem typowych pomyłek związanych z rozumieniem działania silnika i wpływu otoczenia. Pomiar w pośrodku obudowy w pobliżu skrzynki zaciskowej, choć może wydawać się sensowny, nie oddaje rzeczywistej temperatury roboczej. Skrzynka zaciskowa jest miejscem, gdzie często gromadzą się ciepło i energia, co może prowadzić do zafałszowania wyników. Z kolei pomiar na końcu obudowy od strony napędowej również nie jest idealny, ponieważ w tym miejscu temperatura może być zmieniana przez intensywny ruch powietrza lub obciążenia mechaniczne, co również wpływa na wynik. Zmienne takie jak wentylacja i lokalizacja czujnika mogą tworzyć iluzję normalnego stanu pracy. Tak samo, pomiar na tarczy łożyskowej, choć wydaje się logiczny ze względu na bliskość ruchomych części, może być nieodpowiedni, gdyż nie uwzględnia całej obudowy silnika oraz potencjalnych strat ciepła w wyniku tarcia. Te nieporozumienia zazwyczaj wynikają z braku znajomości zasad działania i specyfikacji technicznych urządzeń w wykonaniu przeciwwybuchowym, co podkreśla znaczenie starannego doboru lokalizacji dla pomiarów temperatury.

Pytanie 31

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Wzrost prędkości obrotowej wirnika silnika
B. Całkowite zniszczenie wirnika silnika
C. Spadek prędkości obrotowej wirnika silnika
D. Nawrót wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jaką wartość powinno mieć napięcie testowe podczas pomiaru rezystancji izolacyjnej uzwojenia wtórnego transformatora ochronnego?

A. 250 V
B. 2 000 V
C. 500 V
D. 1 000 V
Wybór wartości napięcia probierczego spośród 1000 V, 500 V oraz 2000 V może być wynikiem niepełnego zrozumienia specyfiki pomiarów rezystancji izolacji uzwojeń wtórnych transformatorów bezpieczeństwa. Przy pomiarze rezystancji izolacji kluczowe jest zrozumienie, że transformator bezpieczeństwa jest przeznaczony do pracy w niskonapięciowych systemach elektrycznych, co wymaga zastosowania odpowiednich wartości napięcia probierczego. Napięcia na poziomie 1000 V i 2000 V są zbyt wysokie i mogą prowadzić do uszkodzenia izolacji oraz wrażliwych komponentów elektrycznych, co w konsekwencji zagraża bezpieczeństwu użytkowników. Napięcie 500 V, choć niższe od 1000 V, nadal jest zbyt wysokie dla niektórych zastosowań, szczególnie w kontekście transformatorów bezpieczeństwa, gdzie obowiązują normy ograniczające stosowane napięcia probiercze. Wybierając niewłaściwe napięcie, można również pominąć kluczowe testy, które powinny być przeprowadzane zgodnie z najlepszymi praktykami branżowymi. Dlatego istotne jest, aby podczas określania wartości napięcia probierczego kierować się zaleceniami takich norm jak IEC 61557, które wyraźnie wskazują na 250 V jako optymalną wartość dla takich pomiarów. Niezrozumienie tej kwestii może prowadzić do nieodpowiednich wniosków oraz potencjalnych zagrożeń, co podkreśla wagę znajomości i przestrzegania obowiązujących standardów w branży.

Pytanie 35

Jaką wartość ma maksymalna dozwolona rezystancja uziomu RA przewodu ochronnego, który łączy uziom z częścią przewodzącą przy nominalnym prądzie różnicowym IΔN = 30 mA oraz napięciu dotykowym 50 V AC wyłącznika różnicowoprądowego?

A. 4 000 Ω
B. Około 1660 Ω
C. Około 830 Ω
D. 2 000 Ω
Największa dopuszczalna rezystancja uziomu R_A dla przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną w przypadku prądu różnicowego I_ΔN = 30 mA i napięcia dotykowego 50 V AC wynosząca około 1660 Ω wynika z obliczeń opartych na zasadach bezpieczeństwa elektrycznego. W przypadku, gdy wystąpi prąd różnicowy, uziemienie ma za zadanie zapewnić skuteczne odprowadzenie prądu do ziemi, aby zminimalizować ryzyko porażenia prądem. Przy napięciu dotykowym 50 V AC maksymalna dopuszczalna rezystancja uziomu może być obliczona z równania: R = U/I, gdzie U to napięcie dotykowe, a I to prąd różnicowy. Zatem R = 50 V / 0,030 A = 1666,67 Ω. Praktyczne zastosowanie tej wiedzy ma kluczowe znaczenie w projektowaniu instalacji elektrycznych, gdzie zapewnienie skutecznego uziemienia jest niezbędne dla ochrony ludzi oraz sprzętu. Utrzymywanie odpowiednich wartości rezystancji uziomu jest zgodne z normami europejskimi, takimi jak PN-EN 61140, które wskazują na konieczność regularnych pomiarów oraz konserwacji systemów uziemiających, aby zapewnić ich skuteczność i bezpieczeństwo.

Pytanie 36

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm, średnicy wewnętrznej tarczy łożyskowej D = 37 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6001
B. 6700
C. 6200
D. 6301
Odpowiedź 6301 jest prawidłowa, ponieważ dokładnie spełnia wszystkie wymagane wymiary dla danego zastosowania. Średnica wału o wartości 12 mm odpowiada średnicy otworu wewnętrznego łożyska 6301, który wynosi również 12 mm. Dodatkowo, średnica zewnętrzna tego łożyska wynosi 37 mm, co idealnie pasuje do średnicy wewnętrznej tarczy łożyskowej, a jego szerokość wynosząca 12 mm również jest zgodna z wymaganiami. W praktyce, dobór odpowiedniego łożyska jest kluczowy dla trwałości i niezawodności maszyn. Wybór łożyska zgodnego z wymiarami zapewnia optymalne przenoszenie obciążeń i minimalizuje zużycie. Zgodnie z międzynarodowymi standardami, właściwy dobór łożysko wpływa na efektywność działania silników i urządzeń, co często przekłada się na obniżenie kosztów eksploatacji oraz wydłużenie żywotności komponentów. W branży inżynieryjnej, stosowanie łożysk takich jak 6301 jest powszechne w silnikach elektrycznych, gdzie kluczowym aspektem jest redukcja tarcia, co z kolei zwiększa efektywność energetyczną.

Pytanie 37

Który z podanych wyłączników nadprądowych powinien być użyty w obwodzie zasilającym tylko rezystancyjny grzejnik elektryczny z trzema grzałkami o mocy 3 kW każda, połączonymi w trójkąt i zasilanym z sieci 3/N/PE ~ 400/230 V 50 Hz?

A. CLS6-B16/3N
B. CLS6-B16/4
C. CLS6-B16/3
D. CLS6-C16/1N
Pozostałe odpowiedzi nie spełniają wymagań dotyczących ochrony obwodu zasilającego grzejnik elektryczny. Odpowiedź CLS6-C16/1N nie jest właściwa, ponieważ jest to wyłącznik jednofazowy, a obwód, w którym zainstalowany jest grzejnik, jest trójfazowy. Zastosowanie wyłącznika jednofazowego w obwodzie trójfazowym prowadziłoby do nieprawidłowej ochrony, a w przypadku awarii mogłoby to skutkować poważnymi uszkodzeniami instalacji. Odpowiedź CLS6-B16/4 jest także błędna ze względu na to, że wyłącznik ten ma cztery bieguny, co nie ma zastosowania w obwodach trójfazowych z przewodem neutralnym. W instalacjach trójfazowych wykorzystuje się zazwyczaj wyłączniki trójbiegowe, co czyni tę opcję niewłaściwą. Z kolei wyłącznik CLS6-B16/3N, mimo że teoretycznie mógłby być odpowiedni z uwagi na obecność przewodu neutralnego, nie jest optymalnym wyborem dla obwodu głównie rezystancyjnego, jakim jest grzejnik elektryczny. Obciążenia rezystancyjne charakteryzują się stabilnym prądem, co oznacza, że wyłączniki B są bardziej odpowiednie niż N, które są zaprojektowane do ochrony obwodów z obciążeniami nieliniowymi. Dlatego ważne jest, aby dobór wyłącznika nadprądowego był zgodny z charakterem obciążenia oraz wymaganiami normatywnymi, co zapewnia bezpieczeństwo oraz odpowiednią funkcjonalność instalacji elektrycznej.

Pytanie 38

Jakie oznaczenie ma elektryczny silnik, który jest przeznaczony do pracy cyklicznej w trybie: 4 minuty – działanie, 6 minut – przerwa?

A. S2 40
B. S2 60
C. S3 40%
D. S3 60%
Odpowiedzi wskazujące na S2, zarówno w wersji z 60%, jak i 40%, są mylące, gdyż odnoszą się do zupełnie innego trybu pracy silnika elektrycznego. Oznaczenie S2 dotyczy silników, które są przystosowane do pracy przez określony czas, lecz nie przewidują przerwy w cyklu roboczym. W przypadku S2 silnik może pracować przez krótki czas, a jego zdolność do pracy nie jest dostosowana do częstych cykli przerywanych, co może prowadzić do przegrzania i uszkodzenia urządzenia. Typowe cykle pracy S2 są krótsze i nie przewidują długich okresów przerwy. Oznaczenie S3 natomiast jest dedykowane do pracy przerywanej, co czyni je bardziej odpowiednim w kontekście podanego pytania. Warto również zauważyć, że wybierając niewłaściwe oznaczenia, można wprowadzić w błąd nie tylko w kontekście efektywności energetycznej, ale także w kwestiach bezpieczeństwa operacyjnego. Silniki muszą być odpowiednio dostosowane do zakładanych warunków pracy, aby uniknąć nadmiernego zużycia czy nawet awarii. Typowe błędy myślowe obejmują nieprawidłowe interpretowanie cykli pracy oraz mylenie ich z obciążeniem, co może prowadzić do wyboru niewłaściwego silnika dla danej aplikacji.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.