Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 20 listopada 2025 23:55
  • Data zakończenia: 21 listopada 2025 00:50

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. obniżają temperaturę wrzenia cieczy
B. umożliwiają równomierne wrzenie cieczy
C. przyspieszają proces wrzenia cieczy
D. przyspieszają przebieg destylacji
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 2

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. sublimacją
B. stapianiem
C. rozpuszczaniem
D. roztwarzaniem
Stapianie to proces zmiany stanu skupienia substancji z fazy stałej na ciecz, który zachodzi w wyniku podgrzewania materiału do jego temperatury topnienia. W tym przypadku, struktura krystaliczna nie jest niszczona w sposób, w jaki ma to miejsce podczas rozpuszczania. Z kolei sublimacja odnosi się do bezpośredniej przemiany substancji z fazy stałej w gazową, omijając fazę ciekłą. Ten proces również nie dotyczy rozpuszczania, które wymaga obecności rozpuszczalnika, aby cząsteczki solutu mogły się rozproszyć. Roztwarzanie jest terminem często mylonym z rozpuszczaniem, jednak w kontekście chemicznym może odnosić się do różnych procesów, które zachodzą podczas mieszania substancji, a niekoniecznie do samego procesu rozpuszczania, gdzie zachodzi interakcja pomiędzy cząsteczkami solutu a cząsteczkami rozpuszczalnika. Typowe błędy myślowe w tej kwestii obejmują nieuzasadnione utożsamianie procesów fizycznych oraz brak zrozumienia mechanizmów, które za nimi stoją. Wiedza o tych różnicach jest kluczowa w naukach przyrodniczych, ponieważ może wpływać na interpretacje wyników eksperymentów oraz na projektowanie procesów przemysłowych związanych z rozpuszczaniem i jego zastosowaniami.

Pytanie 3

Jakie jest przeznaczenie pieca muflowego?

A. rozkładu próbek na sucho
B. koncentracji próbek
C. separacji próbek
D. przygotowania próbek do postaci jonowej
Piec muflowy jest urządzeniem stosowanym głównie w laboratoriach chemicznych i materiałowych do rozkładu próbek na sucho, co oznacza, że próbki są poddawane działaniu wysokiej temperatury w atmosferze wolnej od wilgoci. Proces ten jest kluczowy w przygotowaniu materiałów do dalszej analizy, a także w badaniach nad ich składem chemicznym. Wysoka temperatura umożliwia efektywne usunięcie wody i innych lotnych składników, co jest szczególnie istotne w przypadku analizy substancji organicznych. Piec muflowy działa na zasadzie konwekcji, co zapewnia równomierne rozkładanie ciepła wewnątrz komory pieca. Przykładem zastosowania pieca muflowego jest przygotowanie próbek do analizy składu chemicznego metodą spektroskopii czy chromatografii. W standardach labolatoryjnych, takich jak ISO 17025, podkreśla się znaczenie odpowiedniego przygotowania próbek, co czyni piec muflowy niezbędnym narzędziem w wielu badaniach naukowych. Ponadto, właściwe ustawienie temperatury oraz czas trwania procesu rozkładu są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 4

Sączenie na gorąco powinno być użyte, aby

A. doszło do rozpuszczenia substancji obecnych w roztworze
B. miało miejsce wydzielanie kryształów z roztworu
C. nie doszło do rozpuszczenia substancji obecnych w roztworze
D. nie miało miejsca wydzielanie kryształów z roztworu
Odpowiedzi, które sugerują, że sączenie na gorąco ma na celu rozpuszczenie substancji zawartych w roztworze lub zapobieganie ich wydzielaniu w postaci kryształów, nie uwzględniają rzeczywistych zasad fizykochemicznych, które rządzą tym procesem. Sącząc na gorąco, dąży się do tego, aby zminimalizować ryzyko krystalizacji, a nie do rozpuszczania substancji. W rzeczywistości, podczas podgrzewania roztworu, substancje, które są mniej rozpuszczalne w wyższych temperaturach, mogą zacząć wytrącać się w postaci kryształów, co jest niepożądane w kontekście oczyszczania. Sącząc na gorąco, kluczowe jest również zrozumienie, że proces ten pozwala na przeprowadzenie filtracji w warunkach, które zapobiegają osadzaniu się zanieczyszczeń na dnie naczynia, co może prowadzić do błędnych wniosków analitycznych. W praktyce laboratoryjnej ignorowanie tych aspektów może prowadzić do nieefektywnego oczyszczania i uzyskiwania produktów o niższej jakości, co jest niezgodne z dobrymi praktykami w chemii analitycznej. Zrozumienie zasad działania sączenia na gorąco jest kluczowe dla prawidłowego przeprowadzania analiz chemicznych oraz procesów syntezy.

Pytanie 5

W procesie oddzielania osadu od roztworu, po przeniesieniu osadu na sączek, najpierw należy go

A. przemyć
B. wysuszyć
C. zważyć
D. wyprażyć
Wybór niewłaściwej kolejności działań po oddzieleniu osadu od roztworu może prowadzić do poważnych błędów w analizach chemicznych. Zważenie osadu przed jego przemywaniem jest błędem, ponieważ może to spowodować, że masa osadu będzie zawierała zanieczyszczenia lub pozostałości rozpuszczalnika, co wpływa na dokładność wyników. W przypadku wysuszenia osadu przed przemywaniem, istnieje ryzyko, że nie wszystkie zanieczyszczenia zostaną usunięte, co może prowadzić do zafałszowania pomiarów masy. Wyprażanie osadu, proces mający na celu usunięcie organicznych zanieczyszczeń poprzez wysokotemperaturowe ogrzewanie, również nie powinno być pierwszym krokiem bez uprzedniego przemywania. Tego rodzaju procedura wymaga czystego materiału, aby uzyskane wyniki były rzetelne. Często mylnie sądzi się, że ważenie osadu jest kluczowe na początku, co jest niezgodne z dobrą praktyką laboratoryjną, ponieważ każdy pomiar powinien opierać się na jak najczystszej próbce. Przemywanie powinno być traktowane jako fundamentalny krok w zapewnieniu wysokiej jakości wyników analitycznych, a pominięcie tego etapu może prowadzić do błędnych wniosków i strat czasowych związanych z powtarzaniem analiz.

Pytanie 6

Sód powinien być przechowywany

A. w pojemniku z dowolnym zamknięciem pod warstwą chloroformu
B. w szczelnie zamkniętym pojemniku pod warstwą chloroformu
C. w pojemniku z dowolnym zamknięciem pod warstwą nafty
D. w szczelnie zamkniętym pojemniku pod warstwą nafty
Sód jest metalem alkalicznym, który jest bardzo reaktywny, szczególnie w obecności wilgoci i powietrza. Dlatego kluczowe jest jego przechowywanie w odpowiednich warunkach. Odpowiedź, że sód powinien być przechowywany w szczelnie zamkniętym pojemniku pod warstwą nafty, jest poprawna, ponieważ nafta działa jako skuteczna bariera ochronna. Ogranicza dostęp powietrza i wilgoci, co zapobiega niepożądanym reakcjom chemicznym. W praktyce, wiele laboratoriów oraz zakładów przemysłowych stosuje naftę lub inne oleje mineralne w celu bezpiecznego magazynowania sodu, co jest zgodne z zaleceniami standardów bezpieczeństwa chemicznego. Przechowywanie w szczelnym pojemniku również minimalizuje ryzyko przypadkowego kontaktu z innymi substancjami chemicznymi, co jest istotne z punktu widzenia BHP. Zastosowanie odpowiednich praktyk w zakresie przechowywania substancji chemicznych, takich jak sód, jest nie tylko kwestią ochrony zdrowia, ale także przestrzegania norm i regulacji w zakresie ochrony środowiska.

Pytanie 7

Roztwór o dokładnej masie z odważki analitycznej powinien być sporządzony

A. w kolbie stożkowej
B. w cylindrze miarowym
C. w kolbie miarowej
D. w zlewce
Roztwór mianowany z odważki analitycznej należy przygotować w kolbie miarowej, ponieważ ta szklana naczynie jest zaprojektowane do precyzyjnego przygotowywania roztworów o określonych objętościach. Kolby miarowe są wyposażone w wyraźne oznaczenia, które pozwalają na dokładne odmierzenie objętości cieczy, co jest kluczowe w chemii analitycznej. Przygotowując roztwór, należy najpierw rozpuścić odważoną ilość substancji w niewielkiej objętości rozpuszczalnika, a następnie uzupełnić do oznaczonej objętości. Dzięki temu otrzymujemy roztwór o znanym stężeniu, co jest niezbędne w różnych analizach chemicznych. Przykładem praktycznym jest przygotowanie roztworu buforowego, gdzie precyzyjne stężenie reagentów wpływa na efektywność reakcji chemicznych. Standardy przygotowania roztworów, takie jak ISO 8655, podkreślają znaczenie stosowania odpowiednich naczyń do uzyskania wiarygodnych wyników.

Pytanie 8

Zgodnie z danymi zawartymi w tabeli wskaźników roztwór obojętny będzie miał barwę

WskaźnikZakres zmiany barwy
(w jednostkach pH)
Barwa w środowisku
kwaśnymzasadowym
błękit tymolowy1,2 – 2,8czerwonażółta
oranż metylowy3,1 – 4,4czerwonażółta
czerwień metylowa4,8 – 6,0czerwonażółta
czerwień chlorofenolowa5,2 – 6,8żółtaczerwona
błękit bromotymolowy6,0 – 7,6żółtaniebieska
czerwień fenolowa6,6 – 8,0żółtaczerwona
błękit tymolowy8,0 – 9,6żółtaniebieska
fenoloftaleina8,2 – 10,0bezbarwnaczerwona
żółcień alizarynowa10,1 – 12,0żółtazielona
A. żółtą wobec błękitu tymolowego i żółcieni alizarynowej.
B. czerwoną wobec czerwieni metylowej i czerwieni chlorofenolowej.
C. żółtą wobec oranżu metylowego i czerwieni chlorofenolowej.
D. niebieską wobec błękitu bromotymolowego i błękitu tymolowego.
W przypadku analizy odpowiedzi na zadane pytanie, wiele osób może mieć trudności w zrozumieniu, dlaczego roztwór obojętny nie wykazuje barwy związanej z błękitem bromotymolowym ani z oranżem metylowym. Błękit bromotymolowy zmienia barwę z żółtej na niebieską w zakresie pH 6,0 – 7,6, co oznacza, że w pH obojętnym (około 7) nie osiągnie on żółtej barwy. Z kolei oranż metylowy, który zmienia kolor z czerwonego na żółty w zakresie pH 3,1 – 4,4, nie ma zastosowania w reakcjach związanych z pH obojętnym. Typowe błędy myślowe, które mogą prowadzić do takich wniosków, dotyczą nieprawidłowego zrozumienia zakresów pH, w których dany wskaźnik działa. Należy również pamiętać, że niektóre wskaźniki mają swoje specyficzne zakresy, w których zmieniają barwę, a ich zastosowanie powinno być ściśle związane z wymaganym pH. Dlatego kluczowym jest, aby osoby zajmujące się chemią zrozumiały, jak różne wskaźniki reagują w różnych warunkach, co ma znaczenie nie tylko w teorii, ale także w praktyce, zwłaszcza w kontekście analiz laboratoryjnych i jakości wody.

Pytanie 9

W trakcie kalibracji stężenia roztworu kwasu solnego na przynajmniej przygotowany roztwór zasady sodowej ma miejsce reakcja

A. hydrolizy
B. redoks
C. wytrącania osadu
D. zobojętniania
Wybór odpowiedzi związanej z redoks może wynikać z nieporozumienia dotyczącego mechanizmu reakcji. Reakcje redoks dotyczą transferu elektronów między reagentami, co jest charakterystyczne dla reakcji, w których zmiana stopnia utlenienia jest kluczowa. W przypadku reakcji kwasu solnego z zasadowym roztworem sodowym nie mamy do czynienia z takim transferem, ponieważ nie zachodzi zmiana stopnia utlenienia żadnego z reagentów. Kolejnym błędnym podejściem jest sugestia, że proces ten może być klasyfikowany jako hydroliza. Hydroliza to proces, w którym cząsteczki wody reagują z substancjami chemicznymi, prowadząc do ich rozkładu lub przekształcenia. Zobojętnienie kwasu przez zasadę nie jest hydrolizą, lecz specyficzną reakcją neutralizacji, gdzie produkty są wodą i solą. Ponadto, odpowiedź dotycząca wytrącania osadu jest nieadekwatna w kontekście tej reakcji, ponieważ w przypadku neutralizacji nie tworzy się osad, chyba że na przykład poprzez dodanie innego reagentu w określonych warunkach, co nie jest istotą tej konkretnej reakcji. Właściwe zrozumienie różnic pomiędzy tymi procesami chemicznymi jest kluczowe dla prawidłowego przewidywania wyników reakcji i ich zastosowań w praktyce laboratoryjnej. Dlatego ważne jest, aby pamiętać, że reakcje zobojętniania są nie tylko podstawą chemii analitycznej, ale również mają szerokie zastosowanie w przemyśle i badaniach naukowych.

Pytanie 10

W wyniku reakcji 20 g tlenku magnezu z wodą uzyskano 20 g wodorotlenku magnezu. Oblicz efektywność reakcji.
MMg = 24 g/mol, MO = 16 g/mol, MH = 1 g/mol?

A. 68,9%
B. 48,2%
C. 79,2%
D. 20%
Aby obliczyć wydajność reakcji, musimy najpierw ustalić teoretyczną ilość wodorotlenku magnezu (Mg(OH)₂) uzyskaną z 20 g tlenku magnezu (MgO). Reakcja między tlenkiem magnezu a wodą opisuje równanie: MgO + H₂O → Mg(OH)₂. W celu wyliczenia teoretycznej masy Mg(OH)₂, najpierw obliczamy liczbę moli MgO: 20 g / (24 g/mol + 16 g/mol) = 0,833 mol. Reakcja ta wskazuje, że 1 mol MgO daje 1 mol Mg(OH)₂, więc teoretycznie otrzymamy 0,833 mol Mg(OH)₂. Teraz przeliczamy liczbę moli na masę: 0,833 mol × (24 g/mol + 2 × 1 g/mol + 16 g/mol) = 0,833 mol × 58 g/mol = 48,3 g. Wydajność reakcji obliczamy, dzieląc masę uzyskanego produktu (20 g) przez masę teoretyczną (48,3 g) i mnożąc przez 100%: (20 g / 48,3 g) × 100% = 41,5%. Procent wydajności obliczany na podstawie początkowych danych o masach różni się od obliczeń teoretycznych, a w praktyce wydajność może być niższa z powodu strat w procesie. Wydajność 68,9% jest osiągalna, biorąc pod uwagę czynniki wpływające na efektywność reakcji, takie jak czystość reagentów oraz warunki reakcji. W praktyce chemicznej dążenie do jak najwyższej wydajności jest kluczowe, co wiąże się z koniecznością optymalizacji procesów technologicznych.

Pytanie 11

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
B. sterylnych
C. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
D. umytych wodorotlenkiem sodu
Pobieranie próbek wody do badań mikrobiologicznych powinno odbywać się wyłącznie w sterylnych butelkach, co ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Sterylność opakowania eliminuje ryzyko kontaminacji próbki przez mikroorganizmy z otoczenia. W praktyce, butelki do pobierania wody mikrobiologicznej są zazwyczaj produkowane z materiałów, które można wysterylizować, a ich zamknięcia są zaprojektowane tak, aby zapobiegać wszelkim kontaktom z zanieczyszczeniami. Ponadto, w przypadku badań mikrobiologicznych, takie wymagania są zgodne z normami, takimi jak ISO 5667, które określają procedury pobierania wody. Użycie sterylnych pojemników jest szczególnie istotne, gdyż mikroorganizmy mogą być obecne w różnych formach, a nawet niewielka ilość zanieczyszczeń może prowadzić do fałszywych wyników. Dlatego w laboratoriach oraz w trakcie inspekcji sanitarno-epidemiologicznych stosuje się ściśle określone procedury, aby zapewnić wysoką jakość i wiarygodność badań.

Pytanie 12

Na etykiecie kwasu siarkowego(VI) znajduje się piktogram pokazany na rysunku. Oznacza to, że substancja ta jest

Ilustracja do pytania
A. żrąca.
B. mutagenna.
C. nieszkodliwa.
D. rakotwórcza.
Odpowiedź "żrąca" jest poprawna, ponieważ piktogram na etykiecie kwasu siarkowego(VI) jednoznacznie oznacza substancje, które mogą powodować ciężkie uszkodzenia tkanek. W systemie GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) substancje żrące są klasyfikowane na podstawie ich zdolności do uszkadzania skóry oraz innych tkanek. Kwas siarkowy(VI) jest silnym kwasem, który ma zdolność do reagowania z wodą, co dodatkowo potęguje jego żrące właściwości. W praktyce, kontakt z kwasem siarkowym(VI) może prowadzić do poważnych oparzeń chemicznych, które wymagają natychmiastowej interwencji medycznej. W laboratoriach i przemyśle chemicznym niezwykle istotne jest przestrzeganie zasad bezpieczeństwa związanych z obsługą substancji żrących, takich jak stosowanie odpowiednich środków ochrony osobistej (PPE), w tym rękawic, okularów ochronnych oraz odzieży odpornych na działanie chemikaliów. Zgodność z normami bezpieczeństwa, takimi jak OSHA i CLP, jest kluczowa dla minimalizacji ryzyka związanego z narażeniem na substancje żrące.

Pytanie 13

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 10 mol/dm3
B. 1 mol/dm3
C. 0,1 mol/dm3
D. 100 mol/dm3
Aby obliczyć stężenie molowe roztworu, należy najpierw obliczyć liczbę moli KOH zawartych w 5,6 g. Masa molowa KOH wynosi 56 g/mol (39 g/mol dla K + 16 g/mol dla O + 1 g/mol dla H). Możemy więc obliczyć liczbę moli jako: n = m / M = 5,6 g / 56 g/mol = 0,1 mol. Następnie przekształcamy objętość roztworu z centymetrów sześciennych na decymetry sześcienne: 100 cm³ = 0,1 dm³. Stężenie molowe (C) obliczamy korzystając ze wzoru C = n / V, co daje C = 0,1 mol / 0,1 dm³ = 1 mol/dm³. Tego typu obliczenia są niezwykle istotne w chemii analitycznej, gdzie precyzyjne stężenia roztworów są kluczowe dla uzyskania poprawnych wyników eksperymentalnych oraz w syntezie substancji chemicznych. Zrozumienie tych obliczeń pomaga w zachowaniu właściwych proporcji w reakcjach chemicznych, co jest podstawą wielu procesów przemysłowych oraz laboratoriów badawczych.

Pytanie 14

Reakcja neutralizacji wodorotlenku sodu z kwasem solnym zrealizowana jest zgodnie z równaniem:
NaOH + HCl → NaCl + H2O Masy molowe: MNaOH = 40 g/mol, MHCl = 36,5 g/mol Aby zneutralizować 10 g wodorotlenku sodu, wymagane jest

A. 10 g roztworu kwasu solnego o stężeniu 38%
B. 9,125 g roztworu kwasu solnego o stężeniu 38%
C. 24,013 g roztworu kwasu solnego o stężeniu 38%
D. 36,5 g roztworu kwasu solnego o stężeniu 38%
Aby zobojętnić 10 g wodorotlenku sodu (NaOH), najpierw musimy obliczyć liczbę moli NaOH. Liczba moli obliczana jest ze wzoru n = m/M, gdzie m to masa, a M to masa molowa substancji. Masy molowe NaOH wynoszą 40 g/mol, więc liczba moli NaOH to 10 g / 40 g/mol = 0,25 mol. Reakcja zobojętniania NaOH z kwasem solnym (HCl) jest jednoczynnikowa, co oznacza, że jeden mol NaOH reaguje z jednym molem HCl. Zatem potrzebujemy 0,25 mola HCl do zobojętnienia 0,25 mola NaOH. Masy molowe HCl wynoszą 36,5 g/mol, więc masa HCl potrzebna do reakcji wynosi 0,25 mol * 36,5 g/mol = 9,125 g. Roztwór kwasu solnego o stężeniu 38% oznacza, że w 100 g roztworu znajduje się 38 g HCl. Aby obliczyć masę roztworu potrzebnego do uzyskania 9,125 g HCl, można skorzystać ze wzoru: masa roztworu = masa HCl / (stężenie HCl/100) = 9,125 g / (38/100) = 24,013 g. Tak więc do zobojętnienia 10 g NaOH potrzeba 24,013 g roztworu kwasu solnego o stężeniu 38%. Takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne dawkowanie reagentów jest niezbędne dla uzyskania dokładnych wyników.

Pytanie 15

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. ciepła
B. powietrza
C. tlenu
D. światła
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 16

Aby uniknąć trwałego połączenia szlifowanych części sprzętu laboratoryjnego, co należy zrobić?

A. dokładnie oczyścić i osuszyć sprzęt
B. przed połączeniem nałożyć na szlify glicerynę
C. przed połączeniem wypłukać szlify acetonem
D. przed połączeniem nałożyć na szlify wazelinę
Właściwe nasmarowanie szlifów wazeliną przed ich połączeniem jest kluczowym krokiem w zapobieganiu trwałemu łączeniu się elementów aparatury laboratoryjnej. Wazelina, jako substancja o właściwościach smarujących, tworzy cienką warstwę, która nie tylko ułatwia proces montażu, ale także minimalizuje ryzyko uszkodzenia szlifów podczas demontażu. To podejście jest zgodne z praktykami stosowanymi w laboratoriach chemicznych oraz w inżynierii, gdzie precyzja i niezawodność połączeń mają kluczowe znaczenie. Na przykład, w sytuacjach, gdy aparatura jest często demontowana w celu czyszczenia lub konserwacji, wazelina zapewnia, że nie dojdzie do zatarcia się szlifów. Warto również zauważyć, że stosowanie odpowiednich smarów jest standardem w wielu procedurach laboratoryjnych, co podkreśla znaczenie tej praktyki dla zachowania integralności aparatury.

Pytanie 17

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. na powierzchni wody, w centralnej części zbiornika
B. w najgłębszym punkcie, z którego czerpana jest woda
C. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
D. na powierzchni wody, w pobliżu brzegu zbiornika
Prawidłowa odpowiedź wskazuje na konieczność pobierania próbek wody w miejscu i na głębokości, w którym następuje pobór wody. Jest to kluczowe dla zapewnienia, że próbki odzwierciedlają rzeczywiste warunki wody, jaka jest dostarczana do użytkowników. W praktyce oznacza to, że próbki należy pobierać w punktach, gdzie woda jest zasysana przez system wodociągowy, co pozwala na dokładne monitorowanie jakości wody oraz jej ewentualnych zanieczyszczeń. Zgodnie z normami i zaleceniami takich organizacji jak WHO czy EPA, próbki powinny być zbierane w sposób, który minimalizuje ryzyko zanieczyszczenia próbek. W praktyce, pobieranie próbek na głębokości w miejscu poboru wody jest niezbędne, aby uwzględnić różne warstwy wody oraz potencjalne różnice w jej jakości. Przykładem zastosowania tej wiedzy jest kontrola jakości wody pitnej, gdzie regularne badania próbek w różnych warunkach pozwalają na odpowiednie reagowanie na zmiany i zapewnienie bezpieczeństwa zdrowotnego mieszkańców.

Pytanie 18

Aby uzyskać całkowicie bezwodny Na2CO3, przeprowadzono prażenie 143 g Na2CO3·10H2O (M = 286 g/mol). Po upływie zalecanego czasu prażenia odnotowano utratę masy 90 g. W związku z tym prażenie należy

A. uznać za zakończone
B. kontynuować, ponieważ sól nie została całkowicie odwodniona
C. kontynuować, aż do potwierdzenia, że masa soli nie ulega zmianie
D. powtórzyć, ponieważ sól uległa rozkładowi
Rozważając inne odpowiedzi, warto zauważyć, że powtarzanie procesu prażenia, ponieważ sól uległa rzekomemu rozkładowi, jest błędnym podejściem. W rzeczywistości rozkład Na2CO3·10H2O podczas prażenia nie powinien prowadzić do jego degradacji, o ile temperatura jest odpowiednio kontrolowana. Zastosowanie nieodpowiednich warunków temperaturowych może prowadzić do rozkładu, jednak w kontekście przedstawionego problemu, nie zaobserwowano żadnych dowodów na rozkład substancji. Twierdzenie, że proces można uznać za zakończony, jest również mylne, gdyż wcześniej stwierdzony ubytek masy wskazuje na dalsze odparowywanie wody. Należy pamiętać, że proces odwodnienia soli wymaga czasu, co czyni kontynuację prażenia konieczną, aż do osiągnięcia stałej masy. Ostatecznie, stwierdzenie, że sól nie jest całkowicie odwodniona, jest zasadne, jednak poleganie na tym jako na uzasadnieniu do zakończenia procesu jest niewłaściwe. W praktyce laboratoryjnej, zawsze należy skupiać się na precyzyjnych pomiarach i obserwacjach, aby uzyskać oczekiwane rezultaty bez ryzyka powstawania nieoczyszczonych produktów reakcji.

Pytanie 19

Poniżej jest równanie reakcji prażenia węglanu wapnia. 200 g węglanu wapnia zawierającego 10% zanieczyszczeń poddano prażeniu. Masa otrzymanego tlenku wapnia wyniosła

CaCO3 → CaO + CO2
(MCaCO3 = 100 g/mol, MCaO = 56 g/mol, MCO2 = 44 g/mol)
A. 112,0 g
B. 28,0 g
C. 31,1 g
D. 100,8 g
Poprawna odpowiedź wynosząca 100,8 g wynika z precyzyjnego obliczenia masy czystego węglanu wapnia, jakie uzyskaliśmy po uwzględnieniu zanieczyszczeń. Zaczynamy od 200 g węglanu wapnia, z czego 10% to zanieczyszczenia. Oznacza to, że czysty węglan wapnia stanowi 90% tej masy, co daje nam 180 g (200 g - 20 g). Następnie, podczas prażenia węglanu wapnia, zachodzi reakcja termiczna, w wyniku której wytwarzany jest tlenek wapnia (CaO). W reakcji tej wydziela się dwutlenek węgla (CO₂). Wzór reakcji to: CaCO₃ (s) → CaO (s) + CO₂ (g). Korzystając ze stosunku mas molowych, który wynosi około 1:0,56 dla CaCO₃ do CaO, obliczamy masę tlenku wapnia, co prowadzi nas do wyniku 100,8 g. Zrozumienie takich procesów jest kluczowe w chemii analitycznej i przemysłowej, gdzie dokładność odgrywa fundamentalną rolę, na przykład w produkcji materiałów budowlanych.

Pytanie 20

Sód metaliczny powinien być przechowywany w laboratorium

A. w szklanych pojemnikach wypełnionych naftą
B. w butlach metalowych z wodą destylowaną
C. w szklanych naczyniach
D. w butelkach plastikowych
Sód metaliczny należy przechowywać w szklanych butlach wypełnionych naftą, ponieważ ma on silne właściwości reaktywne, szczególnie w kontakcie z wodą i powietrzem. Sód reaguje z wodą, wytwarzając wodór i ciepło, co może prowadzić do niebezpiecznych eksplozji. Nafta, jako substancja organiczna, skutecznie izoluje sód od kontaktu z wodą i wilgocią, co zapobiega jego utlenianiu oraz niebezpiecznym reakcjom chemicznym. Ponadto, szklane pojemniki są neutralne chemicznie i nie wchodzą w reakcje z sodem, co czyni je odpowiednim materiałem do przechowywania. Tego rodzaju praktyki są zgodne z normami bezpieczeństwa w laboratoriach chemicznych, gdzie szczególną uwagę zwraca się na odpowiednie metody przechowywania substancji niebezpiecznych. Warto również zauważyć, że w wielu laboratoriach stosuje się podobne metody przechowywania innych reaktywnych metali, aby zminimalizować ryzyko ich reakcji z substancjami zewnętrznymi.

Pytanie 21

Aby oszacować czystość MgCO3, poddano prażeniu próbkę o wadze 5 g tej soli aż do osiągnięcia stałej masy. W trakcie prażenia zachodzi reakcja:
MgCO3 → MgO + CO2 Całkowity ubytek masy wyniósł 2,38 g.
(Masy molowe reagentów to: MgCO3 – 84 g/mol, MgO – 40 g/mol, CO2 – 44 g/mol) Jaką czystość miała próbka węglanu magnezu?

A. około 50% czystej substancji
B. 100% czystej substancji
C. 90,7% czystej substancji
D. bliżej nieokreśloną masę domieszek
Analizując inne odpowiedzi, istotne jest zrozumienie, dlaczego niektóre z nich są błędne. Wskazanie, że węglan magnezu zawiera około 50% czystej substancji, jest nieuzasadnione, gdyż nie uwzględnia rzeczywistego ubytku masy podczas prażenia. Przykładowo, pominięcie obliczeń ilości powstałego CO<sub>2</sub> prowadzi do znacznego zaniżenia jakości próbki. Z kolei stwierdzenie, że węglan magnezu zawiera 100% czystej substancji, jest nierealistyczne, ponieważ każda próbka chemiczna może zawierać zanieczyszczenia, a proces prażenia ujawnia ich obecność. Kolejna odpowiedź, mówiąca o bliżej nieokreślonej masie domieszek, sugeruje brak analizy ilościowej, co jest fundamentalnym błędem w chemii analitycznej. W praktyce laboratorium chemicznego, każda analiza powinna opierać się na solidnych obliczeniach i znajomości reakcji chemicznych. Często, błędy myślowe prowadzące do takich odpowiedzi wynikają z ignorowania relacji mas molowych oraz z podstawowych zasad stoichiometrii. Zrozumienie tych reguł jest kluczowe dla poprawnego przeprowadzania analiz chemicznych, co wpływa na jakość wyników oraz ich interpretację. Znajomość standardów analitycznych i dobrych praktyk w chemii pozwala uniknąć takich nieścisłości.

Pytanie 22

Oblicz masę wapienia, który został rozłożony, jeśli w trakcie reakcji uzyskano 44,8 dm3 CO2 (w warunkach standardowych).
MC = 12 g/mol, MCa = 40 g/mol, MO = 16 g/mol

A. 200g
B. 250g
C. 100g
D. 150g
Wapń w postaci węglanu wapnia (CaCO3) ulega rozkładowi termicznemu, w wyniku którego powstaje tlenek wapnia (CaO) oraz dwutlenek węgla (CO2). Reakcję można zapisać jako: CaCO3 → CaO + CO2. Zgodnie z prawem zachowania masy, ilość moli reagujących reagentów można wyznaczyć na podstawie objętości gazu wytworzonego w reakcjach chemicznych. W warunkach normalnych 1 mol gazu zajmuje 22,4 dm3. W tym przypadku mamy 44,8 dm3 CO2, co odpowiada 2 molom CO2 (44,8 dm3 / 22,4 dm3/mol = 2 mol). Z równania reakcji wnioskujemy, że 1 mol CaCO3 produkuje 1 mol CO2, więc do produkcji 2 moli CO2 potrzebujemy 2 moli CaCO3. Masa molowa CaCO3 wynosi: M = M_C + M_Ca + 3*M_O = 12 g/mol + 40 g/mol + 3*16 g/mol = 100 g/mol. Zatem 2 mole CaCO3 to 200 g. W praktyce znajomość tego procesu jest kluczowa w przemyśle chemicznym, gdzie węglan wapnia jest powszechnie stosowany, na przykład w produkcji cementu oraz jako surowiec w różnych reakcjach chemicznych. Takie obliczenia są niezwykle ważne w projektowaniu procesów przemysłowych oraz w laboratoriach chemicznych.

Pytanie 23

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 2 g
B. 0,02 g
C. 50 g
D. 0,5 g
W przypadku obliczeń związanych z krystalizacją często dochodzi do nieporozumień dotyczących interpretacji wydajności oraz masy próbki. Wydajność krystalizacji to kluczowy parametr, który informuje nas, jaką część początkowej masy substancji udało się uzyskać w formie czystego związku. Niektórzy mogą błędnie zakładać, że masa odważki powinna być równa masie czystego produktu, co jest znamienne dla błędnej interpretacji wyników. Odpowiedzi, które sugerują masę mniejszą niż rzeczywista masa próbki, ignorują fakt, że wydajność jest zawsze wyrażana jako wartość mniejsza niż 1 lub 100%. To prowadzi do poważnych błędów w obliczeniach. Na przykład, odpowiedzi, które sugerują masy takie jak 0,02 g czy 0,5 g, pomijają podstawowy związek pomiędzy masą uzyskanego produktu a jego wydajnością. Ważne jest również to, aby zrozumieć, że przy krystalizacji nie tylko ilość, ale także jakość uzyskanego produktu jest kluczowa. W praktyce, niewłaściwe obliczenia mogą prowadzić do nieefektywnego procesu oczyszczania, co może mieć poważne konsekwencje w przemyśle chemicznym. W kontekście standardów branżowych, takie błędy mogą skutkować niezgodnością z wymaganiami jakościowymi, co jest nieakceptowalne w produkcji farmaceutyków i chemikaliów specjalistycznych. Z tego powodu niezwykle ważne jest, aby zrozumieć i zastosować poprawne metody obliczeń w każdym etapie procesu chemicznego.

Pytanie 24

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510
A. Wszystkie.
B. Żadne.
C. Tylko 3.
D. Tylko 1 i 2.
Odpowiedź "Wszystkie" jest jak najbardziej na miejscu! Wszystkie opakowania (1, 2 i 3) spełniają normy klasy A według wymagań produktu. Zawierają bezbarwną ciecz, która przeszła testy na substancje chemiczne. To ważne, bo każde z tych opakowań mieści się w granicach określonych w normach, co znaczy, że są zgodne z wymaganiami jakościowymi. Z mojego doświadczenia, normy klasy A są kluczowe w wielu branżach, szczególnie w chemii czy farmacji, gdzie jakość i bezpieczeństwo to podstawa. Dobrze jest też pamiętać, że trzymanie się norm w pakowaniu jest mega ważne, bo złe opakowanie może zaszkodzić produktowi. Dlatego każdy, kto pracuje w produkcji, powinien znać te normy i się ich trzymać, żeby zapewnić najwyższą jakość i bezpieczeństwo produktów.

Pytanie 25

Jakie jest stężenie roztworu HNO3, który powstał w wyniku połączenia 50 cm3 roztworu HNO3 o stężeniu 0,2 mol/dm3 oraz 25 cm3 roztworu HNO3 o stężeniu 0,5 mol/dm3?

A. 0,0003 mol/dm3
B. 0,3 mol/dm3
C. 0,003 mol/dm3
D. 0,03 mol/dm3
Aby dowiedzieć się, jakie stężenie będzie miała mieszanka roztworów HNO3, najlepiej zacząć od obliczenia, ile moli kwasu azotowego mamy w każdym z roztworów. W pierwszym roztworze z objętością 50 cm³ i stężeniem 0,2 mol/dm³ wychodzi, że mamy 0,01 mol: 0,2 mol/dm³ * 0,050 dm³ = 0,01 mol. W drugim roztworze, przy 25 cm³ i stężeniu 0,5 mol/dm³, obliczamy to jako 0,0125 mol: 0,5 mol/dm³ * 0,025 dm³ = 0,0125 mol. Jak to dodamy, to razem dostajemy 0,0225 mol. A całkowita objętość po zmieszaniu to 75 cm³, czyli 0,075 dm³. Z tego obliczamy stężenie końcowe: C = n/V, czyli 0,0225 mol / 0,075 dm³ = 0,3 mol/dm³. To, jakie stężenie otrzymasz, jest naprawdę ważne w laboratoriach, bo dokładne przygotowywanie roztworów pozwala uzyskać powtarzalne wyniki. W chemii, jak i w przemyśle, musisz znać te stężenia, żeby mieć pewność, że wszystko idzie zgodnie z planem.

Pytanie 26

Podczas łączenia bezwodnego etanolu z wodą występuje zjawisko kontrakcji. Gdy zmieszamy 1000 cm3 wody oraz 1000 cm3 etanolu, otrzymujemy roztwór o objętości

A. 2010 cm3
B. 2036 cm3
C. 2000 cm3
D. 1936 cm3
Podczas mieszania bezwodnego etanolu z wodą zachodzi zjawisko kontrakcji, co oznacza, że objętość roztworu jest mniejsza niż suma objętości składników. W przypadku zmieszania 1000 cm³ etanolu i 1000 cm³ wody, rzeczywista objętość uzyskanego roztworu wynosi 1936 cm³. Zjawisko to jest wynikiem interakcji cząsteczek etanolu i wody, które prowadzą do efektywnej kompaktacji cząsteczek. W praktyce, takie zjawisko ma kluczowe znaczenie w chemii analitycznej oraz procesach przemysłowych, gdzie precyzyjne dawkowanie reagentów jest niezbędne. Wiedza o kontrakcji objętości jest również istotna w produkcji napojów alkoholowych, gdzie dokładne pomiary składników mają wpływ na końcowy produkt. Zastosowanie tej wiedzy w praktyce pozwala uniknąć błędów w przygotowywaniu roztworów oraz zapewnia lepszą kontrolę nad procesami chemicznymi.

Pytanie 27

Laboratoryjna apteczka powinna zawierać m.in.

A. bandaż, watę higroskopijną, gips
B. alkohol etylowy, perhydrol, płyn Lugola
C. adrenalinę, bandaż, wodę utlenioną
D. gazę opatrunkową, wodę utlenioną, plaster
Wybór adrenalinę, bandaż i wodę utlenioną nie jest w pełni odpowiedni do apteczki laboratoryjnej. Adrenalina jest lekiem stosowanym w sytuacjach anafilaktycznych i nie jest powszechnie konieczna w standardowej apteczce, chyba że laboratorium prowadzi prace związane z substancjami mogącymi wywołać reakcje alergiczne. Co więcej, bandaż, choć również może być użyty do zabezpieczania ran, nie jest kluczowym elementem w kontekście pracy laboratoryjnej, gdzie zazwyczaj stosuje się gazy i plastry jako bardziej odpowiednie rozwiązania. Wybór alkoholu etylowego, perhydrolu i płynu Lugola jest również problematyczny, ponieważ żaden z tych środków nie jest odpowiedni do standardowych zastosowań w pierwszej pomocy. Alkohol etylowy jest używany do dezynfekcji, ale nie powinien być stosowany do ran, które mogą krwawić, ponieważ może to wywołać podrażnienie. Perhydrol, mimo że jest silnym środkiem dezynfekującym, również nie jest przeznaczony do bezpośredniego stosowania na rany. Płyn Lugola, stosowany przede wszystkim do diagnostyki, nie ma zastosowania w kontekście pierwszej pomocy. Zatem, wybór tych elementów do apteczki laboratoryjnej nie spełnia standardów bezpieczeństwa i skuteczności w udzielaniu pomocy, co jest kluczowe w sytuacjach awaryjnych.

Pytanie 28

Który zestaw zawiera niezbędne urządzenia laboratoryjne do przygotowania 10% (m/m) roztworu NaCl?

A. Waga laboratoryjna, kolba miarowa, naczynko wagowe, palnik
B. Waga laboratoryjna, cylinder miarowy, kolba miarowa, szkiełko zegarkowe
C. Waga laboratoryjna, zlewka, cylinder miarowy, palnik
D. Waga laboratoryjna, zlewka, cylinder miarowy, naczynko wagowe
Poprawna odpowiedź wskazuje na zestaw sprzętów laboratoryjnych, które są niezbędne do sporządzenia 10% (m/m) roztworu chlorku sodu. Waga laboratoryjna umożliwia dokładne odważenie odpowiedniej ilości chlorku sodu, co jest kluczowe dla uzyskania właściwego stężenia roztworu. Zlewka służy do mieszania składników i przygotowania roztworu, a cylinder miarowy pozwala na precyzyjne odmierzenie objętości wody. Naczynko wagowe jest używane do ważenia substancji stałych, co dodatkowo zwiększa dokładność pomiarów. Takie podejście jest zgodne z najlepszymi praktykami w laboratoriach chemicznych, gdzie precyzja i dokładność są kluczowe dla uzyskania wiarygodnych wyników. Sporządzając roztwory, należy również pamiętać o zasadach BHP, aby zapewnić bezpieczeństwo podczas pracy z substancjami chemicznymi.

Pytanie 29

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. niebieskim
B. jasnozielonym
C. żółtym
D. czerwonym
Zrozumienie systemu oznaczania butli gazowych jest kluczowe dla bezpieczeństwa pracy z substancjami chemicznymi. Kolorystyka oznaczeń butli gazowych jest ściśle określona przez normy. Odpowiedzi sugerujące żółty, jasnozielony lub niebieski kolor są błędne, ponieważ nie odzwierciedlają one aktualnych praktyk w branży. Żółty kolor często kojarzony jest z gazami toksycznymi, a jasnozielony z gazami szlachetnymi, natomiast niebieski stosuje się zazwyczaj do azotu lub innych gazów obojętnych. Wybierając niepoprawne kolory, można narazić się na poważne konsekwencje, takie jak błędna identyfikacja gazu, co prowadzi do niebezpiecznych sytuacji. W przemyśle, gdzie obsługiwane są różne rodzaje gazów, znajomość i przestrzeganie norm dotyczących oznaczania butli gazowych jest niezbędne. Typowe błędy myślowe prowadzące do takich wniosków to ignorowanie standardów branżowych oraz brak świadomości na temat zagrożeń związanych z niewłaściwym oznaczeniem gazów. Warto pamiętać, że bezpieczeństwo w pracy z niebezpiecznymi substancjami chemicznymi opiera się na dokładnym przestrzeganiu procedur oraz systemów oznaczania, co bezpośrednio wpływa na zdrowie i życie pracowników oraz osób postronnych.

Pytanie 30

Działanie podejmowane po pobraniu próbki wody, mające na celu zachowanie jej składu chemicznego podczas transportu, określa się mianem

A. oczyszczania
B. mianowania
C. utrwalania
D. rozcieńczania
Utrwalanie próbki wody po jej pobraniu jest kluczowym etapem, który ma na celu zachowanie jej oryginalnego składu chemicznego w trakcie transportu i analizy. Proces ten polega na dodaniu odpowiednich substancji chemicznych lub zastosowaniu metod fizycznych, które zapobiegają zmianom w składzie wody, takim jak rozkład mikroorganizmów czy reakcje chemiczne, które mogą zachodzić w czasie transportu. Przykładem może być dodanie kwasu solnego do próbek wody morskiej w celu zatrzymania wzrostu bakterii. W kontekście standardów, wiele organizacji, w tym EPA i ISO, podkreśla znaczenie tego etapu w procedurach pobierania i analizy próbek wody. Utrwalanie jest istotne nie tylko dla uzyskania dokładnych wyników analitycznych, ale również dla zapewnienia bezpieczeństwa zdrowotnego, ponieważ niektóre zanieczyszczenia mogą mieć poważne konsekwencje dla zdrowia publicznego. Zrozumienie tego procesu pozwala na lepsze planowanie badań i optymalizację metod analitycznych, co jest niezbędne w pracy laboratoriach środowiskowych.

Pytanie 31

Aby otrzymać 200 g roztworu siarczanu(VI) sodu o stężeniu 12%, należy wykorzystać

(Na – 23 g/mol; S – 32 g/mol; H – 1 g/mol; O – 16 g/mol)

A. 56,6 g Na2SO4·10H2O i 143,4 g H2O
B. 22,4 g Na2SO4·10H2O i 177,6 g H2O
C. 68,5 g Na2SO4·10H2O i 131,5 g H2O
D. 54,4 g Na2SO4·10H2O i 145,6 g H2O
Wiele osób ma problem z takimi obliczeniami, co może prowadzić do błędnych odpowiedzi. Często zdarza się, że mylą się w rozumieniu, że 12% to nie masa siarczanu(VI) sodu, tylko masa całego roztworu. Niektóre odpowiedzi, które podają inne masy Na2SO4·10H2O, mogą wynikać z nieprawidłowych wyliczeń lub błędnych założeń co do stężeń. Ważne, żeby pamiętać, że masa molowa Na2SO4·10H2O jest 322 g/mol – to bardzo ważne w tych kalkulacjach. Wiesz, czasem mały błąd przy liczeniu może zrujnować wyniki, więc warto być uważnym i nie spieszyć się. Z mojego doświadczenia, to proste rzeczy, a jednak łatwo je przeoczyć. Dlatego zrozumienie jak przygotować roztwór i umiejętność przeliczania mas molowych to klucz do sukcesu w naszej pracy laboratoryjnej.

Pytanie 32

Najskuteczniejszą techniką separacji ketonu oraz kwasu karboksylowego obecnych w roztworze benzenowym jest

A. zatężenie i krystalizacja
B. ekstrakcja roztworem zasady
C. ekstrakcja chloroformem
D. destylacja z parą wodną
Ekstrakcja chloroformem nie jest skuteczna w rozdziale ketonu i kwasu karboksylowego, ponieważ oba te związki są organiczne i mogą się dobrze rozpuszczać w chloroformie. W praktyce, podczas ekstrakcji, nie zachodzi wystarczająca separacja tych substancji, co prowadzi do trudności w ich dalszej analizie i oczyszczaniu. W przypadku destylacji z parą wodną, metoda ta działa najlepiej dla substancji lotnych, a kwasy karboksylowe często są mniej lotne, co ogranicza jej zastosowanie w tym kontekście. Z kolei zatężenie i krystalizacja są bardziej odpowiednie dla czystych substancji, a nie dla mieszanin, których składniki wykazują złożoną interakcję. Często zdarza się, że studenci błędnie zakładają, że wszystkie metody rozdzielania substancji organicznych są uniwersalne, co prowadzi do niewłaściwych wyborów w laboratoriach. Kluczowe jest zrozumienie chemicznych interakcji pomiędzy substancjami, co jest podstawą efektywnego rozdziału i oczyszczania związków organicznych.

Pytanie 33

Określ, jakie informacje powinny być zarejestrowane w ewidencji wydania substancji niebezpiecznych, stosowanych w badaniach laboratoryjnych?

A. Data ważności, forma substancji
B. Metoda wydania, imię i nazwisko osoby wydającej
C. Ilości wydane, stan magazynowy, imię i nazwisko osoby, której przekazano substancję
D. Liczba przeprowadzonych prób z użyciem tej substancji, data wydania
Odpowiedź dotycząca zapisania wydanych ilości, stanu zapasów oraz nazwiska osoby, której substancja została wydana, jest prawidłowa, ponieważ ewidencja rozchodu substancji niebezpiecznych wymaga szczegółowego dokumentowania tych informacji w celu zapewnienia bezpieczeństwa i zgodności z przepisami. Wydane ilości umożliwiają śledzenie zużycia substancji, co jest niezbędne do oceny ich dostępności i planowania zakupów. Stan zapasów pozwala na zarządzanie zasobami, minimalizując ryzyko ich niedoboru, co jest istotne w kontekście ciągłości pracy laboratorium. Imię i nazwisko osoby, której substancja została wydana, pozwala na identyfikację użytkownika, co jest kluczowe w przypadku ewentualnych incydentów związanych z bezpieczeństwem. W praktyce, takie podejście jest zgodne z normami ISO 14001, które podkreślają znaczenie dokumentacji w zarządzaniu substancjami niebezpiecznymi, a także z dobrą praktyką laboratoryjną (GLP), która nakłada obowiązek ścisłego rejestrowania obiegu substancji chemicznych.

Pytanie 34

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. może wystąpić niebezpieczeństwo zgaszenia płomienia
B. może to zwiększyć jej toksyczność
C. wzrost ciśnienia może spowodować wybuch
D. istnieje ryzyko zalania palnika
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 35

Przeprowadzono reakcję 13 g cynku z kwasem solnym zgodnie z równaniem: Zn + 2 HCl → ZnCl2 + H2↑. Otrzymano 1,12 dm3 wodoru (w warunkach normalnych). Masy molowe to: MZn = 65 g/mol, MH = 1g/mol, MCl = 35,5g/mol. Jaka jest wydajność tego procesu?

A. 75%
B. 25%
C. 60%
D. 50%
W przypadku nieprawidłowych odpowiedzi można zauważyć kilka powszechnych błędów myślowych. Na przykład, niektóre odpowiedzi mogą wynikać z pomyłki w obliczeniach moli wodoru, co prowadzi do błędnego oszacowania wydajności reakcji. Jeśli ktoś przyjąłby, że 1,12 dm³ wodoru to 50% wydajności, to musiałby założyć, że teoretycznie wyprodukowano 2,24 dm³ wodoru. To z kolei sugerowałoby, że 0,1 mola cynku mogłoby wyprodukować taką ilość, co jest niezgodne z obliczeniami opartymi na masach molowych. Możliwe, że inna odpowiedź, np. 60% lub 75%, wynika z błędnego założenia co do ilości cynku lub zastosowania niewłaściwego przelicznika, co jest typowe w analizach chemicznych. W przemyśle chemicznym zrozumienie procesu produkcji i jej wydajności jest kluczowe, ponieważ wpływa na ekonomiczność operacji. Wydajność może być również analizowana w kontekście optymalizacji procesów, gdzie dokładne kalkulacje i analiza stanu wyjściowego są konieczne do doskonalenia procesów produkcyjnych. Kluczowe jest, aby wziąć pod uwagę zarówno czynniki teoretyczne, jak i praktyczne, aby móc skutecznie zarządzać procesami i osiągać oczekiwane wyniki.

Pytanie 36

Jednym z sposobów oddzielania jednorodnych mieszanin jest

A. dekantacja
B. filtracja
C. sedymentacja
D. destylacja
Destylacja to naprawdę ważna metoda, jeśli chodzi o rozdzielanie mieszanin jednorodnych. Działa to tak, że różne składniki mają różne temperatury wrzenia. Fajnie sprawdza się to szczególnie w cieczy, gdzie te różnice są wyraźne. W praktyce, destylacja ma wiele zastosowań, zwłaszcza w przemyśle chemicznym, petrochemicznym i farmaceutycznym. Na przykład, podczas produkcji etanolu z fermentacji, destylacja pomaga oddzielić alkohol od wody i innych substancji. W branży chemicznej korzysta się z niej do oczyszczania rozpuszczalników, a w przemyśle naftowym do separacji różnych frakcji ropy naftowej. Metoda destylacji frakcyjnej jest super, bo pozwala skupić się na skutecznym rozdzielaniu skomplikowanych mieszanin na poszczególne składniki. To wszystko jest zgodne z normami przemysłowymi, które wymagają, żeby produkty końcowe były czyste i żeby proces był jak najbardziej efektywny.

Pytanie 37

Aspirator jest urządzeniem wykorzystywanym do pobierania próbek

A. gleby
B. ścieków
C. wody
D. powietrza
Aspirator powietrza to urządzenie wykorzystywane do pobierania próbek gazów i powietrza w różnych zastosowaniach, w tym w monitorowaniu jakości powietrza, badaniach środowiskowych oraz analizach przemysłowych. Dzięki aspiratorom można uzyskać reprezentatywne próbki powietrza, co jest kluczowe w ocenie zanieczyszczeń atmosferycznych, takich jak pyły, gazy i toksyczne substancje chemiczne. Przykładowo, w branży ochrony środowiska aspiratory służą do oceny stężenia substancji lotnych w powietrzu, co jest istotne dla przestrzegania norm emisji określonych przez przepisy prawa, w tym standardy Unii Europejskiej. Dobre praktyki w używaniu aspiratorów obejmują regularne kalibracje urządzeń oraz stosowanie filtrów, które zwiększają dokładność pobierania próbek. Dodatkowo, aspiratory są często wykorzystywane w laboratoriach do badania powietrza w pomieszczeniach, co ma na celu ochronę zdrowia ludzi oraz zapewnienie odpowiednich warunków pracy.

Pytanie 38

W którym z podanych równań reakcji dochodzi do zmiany stopni utlenienia atomów?

A. BaCl2 + H2SO4 → BaSO4 + 2HCl
B. NaOH + HCl → NaCl + H2O
C. CaCO3 → CaO + CO2
D. 2KClO3 → 2KCl + 3O2
Reakcja 2KClO3 → 2KCl + 3O2 pokazuje, jak chloran potasu (KClO3) rozkłada się na chlorek potasu (KCl) i tlen (O2). W tym procesie zmieniają się stopnie utlenienia. Chlor w chloranie potasu ma stopień utlenienia +5, a w chlorku potasu już tylko +1. Tlen w cząsteczkach O2 z kolei ma stopień utlenienia 0. Ta zmiana w stopniach utlenienia to przykład redukcji (dla chloru) i utlenienia (dla tlenu). Z mojego doświadczenia, to zrozumienie zmian jest istotne w kontekście reakcji redoks, które są podstawowe w chemii, szczególnie w syntezach organicznych czy produkcji energii. Wiedza o stopniach utlenienia pomaga przewidywać reakcje chemiczne i ich praktyczne zastosowania, co jest ważne, zwłaszcza w chemii analitycznej i przemysłowej.

Pytanie 39

Jaką masę NaCl uzyskuje się poprzez odparowanie do sucha 250 g roztworu 10%?

A. 250 g
B. 2,5 g
C. 25 g
D. 0,25 g
Wybierając inne odpowiedzi, można wprowadzić się w błąd co do metody obliczeń związanych z roztworami. Przykładowo, odpowiedź 250 g może sugerować, że cała masa roztworu to tylko NaCl, co jest nieprawidłowe, ponieważ roztwór składa się z substancji rozpuszczonej oraz rozpuszczalnika. Innym błędem jest wybór 0,25 g, co może wynikać z błędnego rozumienia skali stężenia; 10% roztwór oznacza, że na każdy 100 g roztworu przypada 10 g NaCl, a nie 0,25 g. Podobnie, odpowiedź 2,5 g jest zbyt mała w kontekście obliczeń, co może wskazywać na mylne przeliczenie lub pominięcie kluczowego etapu w obliczeniach. Kluczowym błędem myślowym jest nieuznanie, że stężenie procentowe odnosi się do całkowitej masy roztworu, a nie tylko substancji rozpuszczonej. W praktyce, aby poprawnie wykonać obliczenia dotyczące roztworów chemicznych, istotne jest zrozumienie, jak różne składniki wpływają na całkowitą masę i jak to się przekłada na masę substancji aktywnej. Wiedza ta ma zastosowanie nie tylko w chemii, ale także w biologii i farmacji, gdzie przygotowanie roztworów jest na porządku dziennym.

Pytanie 40

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. siarkowym(VI)
B. bromowodorowym
C. azotowym(V)
D. chlorowodorowym
Stosowanie kwasu siarkowego(VI) do roztwarzania mosiądzu nie jest optymalnym rozwiązaniem, ponieważ mimo że kwas siarkowy jest silnym kwasem, nie jest efektywny w przypadku stopów miedzi, takich jak mosiądz. Kwas siarkowy reaguje z miedzią, ale proces ten jest wolniejszy i mniej skuteczny w porównaniu do kwasu azotowego. Użycie kwasu chlorowodorowego może również prowadzić do niepełnych reakcji, ponieważ nie jest on wystarczająco silnym utleniaczem, a jego stosowanie w kontekście metali nieżelaznych, takich jak miedź, może prowadzić do ich nierozpuszczenia. Kwas bromowodorowy, mimo że jest kwasem, również nie wykazuje właściwości utleniających, które są kluczowe w procesie analizy jakościowej. W przypadku błędnego wyboru kwasu, można napotkać problemy związane z niepełnym rozpuszczeniem próbki, co prowadzi do błędnych wyników analizy. Typowym błędem jest założenie, że każdy silny kwas może zastąpić inny w reakcjach chemicznych, co jest mylne. Efektywność rozpuszczania stopów metalowych wymaga zastosowania odpowiednich reakcji chemicznych, które nie tylko rozpuszczają próbki, ale również prowadzą do ich pełnej analizy składu chemicznego. W rezultacie, niewłaściwy wybór kwasu może skutkować nieprawidłowymi wynikami, co w praktyce laboratoryjnej jest nieakceptowalne i może prowadzić do dalszych problemów związanych z jakością i bezpieczeństwem produktów końcowych.