Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 9 grudnia 2025 10:54
  • Data zakończenia: 9 grudnia 2025 11:16

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
B. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
C. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
D. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
Zalecenia dotyczące rozdzielenia obwodów oświetleniowych od gniazd wtyczkowych oraz zasilania gniazd wtyczkowych w kuchni z osobnego obwodu są zgodne z obowiązującymi standardami i dobrymi praktykami w zakresie projektowania instalacji elektrycznych. Rozdzielenie obwodów ma kluczowe znaczenie z punktu widzenia bezpieczeństwa; obwody oświetleniowe i gniazdowe powinny być niezależne, aby w przypadku awarii jednego z obwodów, drugi mógł funkcjonować bez zakłóceń. Gniazda w kuchni, ze względu na dużą moc odbiorników, wymagają osobnego zasilania, co jest zgodne z zaleceniami normy PN-IEC 60364-7-701, która wskazuje na ryzyko przeciążenia obwodów, a także potencjalne niebezpieczeństwo porażenia prądem. Zasilanie gniazd wtyczkowych w pojedynczym pomieszczeniu z osobnego obwodu jest błędnym podejściem, gdyż w praktyce prowadzi do nieefektywnego wykorzystania przestrzeni oraz zwiększenia kosztów instalacyjnych. W przypadku standardowych mieszkań, stosuje się obwody ogólne, które obejmują więcej niż jedno pomieszczenie, co umożliwia bardziej elastyczne i ekonomiczne podejście do projektowania instalacji. Typowym błędem w myśleniu o instalacjach elektrycznych jest skupienie się na indywidualnych potrzebach poszczególnych pomieszczeń, zamiast analizowania efektywności całego systemu oraz jego zdolności do zaspokojenia wymagań użytkowników.

Pytanie 2

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. niebieski
B. żółty
C. szary
D. czerwony
Wybór innych kolorów wkładek topikowych może prowadzić do poważnych błędów w zabezpieczeniach instalacji elektrycznych. Szary kolor odpowiada wkładkom o prądzie znamionowym 6 A, co oznacza, że zastosowanie go w miejscu o pełnym obciążeniu 20 A może skutkować ich zbyt wczesnym przepaleniem, co z kolei może doprowadzić do uszkodzeń sprzętu oraz potencjalnych zagrożeń pożarowych. Żółty oznacza wkładki o wartości 10 A, co również jest niewystarczające dla prądów sięgających 20 A. Czerwony kolor jest przypisany wkładkom o prądzie znamionowym 16 A, co również nie zabezpiecza adekwatnie instalacji, która wymaga wytrzymałości 20 A. Kluczowym błędem myślowym jest błędne założenie, że każdy kolor mógłby być stosowany wymiennie w zależności od dostępności, co jest absolutnie nieprawidłowe. Przy wyborze wkładek topikowych należy kierować się nie tylko ich dostępnością, ale przede wszystkim normami oraz prądami znamionowymi, by uniknąć ryzyka awarii. Wiedza na temat tych norm oraz ich praktyczne zastosowanie jest niezbędne dla każdego profesjonalisty w branży elektrycznej.

Pytanie 3

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Minimalny przekrój przewodów podłączonych do zacisków
B. Klasę ochronności przed porażeniem energią elektryczną
C. Najwyższą temperaturę otoczenia podczas eksploatacji
D. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 4

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. wymiany gniazd zasilających
B. czyszczenia urządzeń w rozdzielniach
C. montażu nowych punktów świetlnych
D. czyszczenia lamp oświetleniowych
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 5

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. E27
B. G9
C. MR11
D. GU10
Oprawka E27, którą widzisz na obrazku, to jedna z tych, które najczęściej spotyka się w domach i różnych lokalach. Ten duży gwint E27 sprawia, że montaż żarówek jest prosty jak dwa razy dwa. A jakbyś pomyślał o różnych rodzajach żarówek, to znajdziesz tu sporo opcji, jak energooszczędne czy LED – każdy sobie coś dobrego wybierze. Te oprawki są chętnie używane w lampach sufitowych, kinkietach i takich wolnostojących lampach, które dodają trochę charakteru. Ich popularność wynika z tego, że są wszędzie dostępne i pasują do różnych projektów oświetleniowych. Jak wymieniasz źródło światła, E27 to świetny wybór, bo wpasujesz to właściwie wszędzie, dzięki standardowym wymiarom.

Pytanie 6

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
B. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
C. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
D. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
Podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych niezwykle istotne jest przestrzeganie procedur bezpieczeństwa, które zapobiegają wypadkom. Wiele osób może pomylić kolejność działań, co prowadzi do niebezpiecznych sytuacji. Na przykład, pierwszym krokiem w odpowiedziach opisujących zabezpieczenie przed przypadkowym załączeniem przed wyłączeniem instalacji spod napięcia jest istotnym błędem. Jeśli instalacja nie została wyłączona, jakiekolwiek zabezpieczenia mogą być niewystarczające, co może skutkować niebezpieczeństwem dla osób pracujących w danym miejscu. Ponadto, potwierdzenie braku napięcia po zabezpieczeniu może prowadzić do fałszywego poczucia bezpieczeństwa. Bez uprzedniego wyłączenia instalacji, wszelkie późniejsze kroki są bezzasadne, ponieważ osoba może być narażona na ryzyko porażenia prądem. Z kolei oznakowanie miejsca pracy powinno odbywać się na końcu, co nie tylko może wprowadzić chaos, ale również nie zabezpiecza przed przypadkowymi włączeniami. Praktyczne zastosowanie tych zasad jest kluczowe; regularne szkolenia i przestrzeganie norm, takich jak PN-EN 50110-1, są niezbędne dla zapewnienia bezpieczeństwa. Ignorowanie właściwej kolejności działań naraża nie tylko pracowników, ale również instytucje na poważne konsekwencje prawne i finansowe, dlatego tak ważne jest zrozumienie i stosowanie się do ustalonych procedur.

Pytanie 7

Fragment dokumentacji technicznej określonej jako schemat zasadniczy (ideowy) znajduje się na rysunku

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór innych odpowiedzi na to pytanie może wynikać z nieporozumień dotyczących różnicy między różnymi typami schematów elektrycznych. Odpowiedzi, które nie są zgodne z rysunkiem C, mogą sugerować, że użytkownik myli schemat zasadniczy z innymi formami dokumentacji, takimi jak schematy montażowe czy schematy połączeniowe. Schemat montażowy koncentruje się na fizycznej lokalizacji komponentów i ich rozmieszczeniu, natomiast schemat połączeniowy pokazuje konkretne połączenia kabli między elementami, co nie jest celem schematu zasadniczego. Niepoprawne odpowiedzi mogą również wskazywać na błędne zrozumienie koncepcji uproszczenia, które jest kluczowe w schematach ideowych. Użytkownicy mogą mieć tendencję do przeładowania schematu zbyt dużą ilością detali, co prowadzi do utraty jego funkcji jako narzędzia do szybkiego zrozumienia systemu. Ważne jest, aby pamiętać, że celem schematu zasadniczego jest przedstawienie jedynie niezbędnych informacji, które są kluczowe dla funkcjonowania układu. Dobre praktyki w dokumentacji technicznej zalecają, aby schematy były tworzone zgodnie z normami, co pozwala na ich lepsze zrozumienie i zastosowanie w różnych kontekstach inżynieryjnych. W przypadku schematu zasadniczego, odniesienie do norm IEC 61082 powinno być punktem wyjścia dla każdego, kto zajmuje się tworzeniem dokumentacji technicznej.

Pytanie 8

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 200 V i 300 V
B. 200 V i 500 V
C. 500 V i 300 V
D. 300 V i 500 V
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 9

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. łącznik.
B. żyrandol.
C. przewód ochronny.
D. przewody zasilające.
Wybór żyrandola, przewodów zasilających lub przewodu ochronnego jako błędnie podłączonych elementów w instalacji elektrycznej nie jest uzasadniony z technicznego punktu widzenia. Żyrandol, będący źródłem światła, powinien być podłączony zgodnie z instrukcjami producenta i normami bezpieczeństwa, które zalecają podłączenie go do obwodu elektrycznego poprzez odpowiednie złącza. Niepoprawne jest postrzeganie żyrandola jako elementu, który może być źródłem poważnych problemów w instalacji, jeżeli zostanie właściwie zamontowany i użytkowany. Przewody zasilające, jako kluczowy element każdej instalacji, nie powinny być uznawane za źródło błędów, o ile są zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące ich instalacji oraz ochrony. Przewód ochronny natomiast ma na celu zabezpieczenie przed porażeniem prądem i jego poprawne podłączenie jest kluczowe dla bezpieczeństwa instalacji. Typowe błędy myślowe, które mogą prowadzić do nieprawidłowych wniosków, obejmują nieznajomość podstawowych zasad instalacji elektrycznych oraz nieuwzględnianie zasadności ich działania w codziennym użytkowaniu. Zrozumienie funkcji i zastosowania każdego z tych elementów instalacji elektrycznej jest niezbędne dla zapewnienia ich prawidłowego działania oraz bezpieczeństwa użytkowników.

Pytanie 10

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 2,0 MΩ
B. 0,5 MΩ
C. 1,0 MΩ
D. 1,5 MΩ
Wybór wartości 1,5 MΩ, 0,5 MΩ lub 2,0 MΩ jako minimalnej rezystancji izolacji dla instalacji elektrycznych do 500 V jest wynikiem nieporozumień dotyczących standardów bezpieczeństwa i wymagań technicznych. Wartość 1,5 MΩ może wydawać się odpowiednia w kontekście innych zastosowań, jednak nie spełnia podstawowych norm dla instalacji na napięcie do 500 V, które wyraźnie określają minimalną wartość na poziomie 1,0 MΩ. Z kolei wartość 0,5 MΩ jest całkowicie niewystarczająca i stwarza poważne ryzyko dla bezpieczeństwa, ponieważ nie zapewnia odpowiedniej ochrony przed przebiciem i porażeniem prądem. Natomiast 2,0 MΩ, choć wydaje się być odpowiednio wysoka, nie jest zakładanym minimum, co może prowadzić do nadmiernych kosztów w kontekście wymogów projektowych, gdzie nie zawsze jest konieczne stosowanie tak wysokiej wartości. W praktyce rzeczywiste wymagania powinny być dostosowane do specyfiki instalacji oraz jej przeznaczenia, jednak zawsze z poszanowaniem ustalonych norm i standardów. Błędem jest zatem myślenie, że wartości wyższe niż wymagane są zawsze korzystne; kluczowe jest przestrzeganie ściśle określonych norm, które zostały opracowane w celu ochrony bezpieczeństwa ludzi i mienia.

Pytanie 11

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Impedancję pętli zwarcia.
C. Prąd upływu.
D. Chwilową moc obciążenia.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 12

Którym symbolem oznacza się, przedstawiony na rysunku, przewód do wykonania instalacji oświetleniowej wtynkowej?

Ilustracja do pytania
A. YDYtżo
B. SMYp
C. YDYp
D. OMYp
Wybór niewłaściwych symboli przewodów w kontekście instalacji oświetleniowych wtynkowych może prowadzić do poważnych nieprawidłowości oraz zagrożeń. Odpowiedzi takie jak "OMYp", "YDYp" czy "SMYp" nie spełniają wymogów dotyczących przewodów wtynkowych, co jest kluczowe w projektowaniu instalacji. Symbol "OMYp" wskazuje na przewód o podwyższonej elastyczności, który nie jest odpowiedni do instalacji wtynkowych, ponieważ jego konstrukcja nie zapewnia odpowiedniej ochrony w zamkniętych przestrzeniach, co jest niezgodne z normami bezpieczeństwa. Z kolei "YDYp" nie zawiera oznaczenia dotyczącego przewodu ochronnego, co jest fundamentalne, aby zabezpieczyć instalację przed wadami izolacji. Odpowiedź "SMYp" jest związana z przewodami stosowanymi w instalacjach mobilnych, co dodatkowo potwierdza, że nie powinny być one używane w instalacjach stacjonarnych. Błędny dobór symboli wynika często z braku znajomości specyfikacji technicznych oraz norm, takich jak PN-IEC 60364, które jasno określają, jakie przewody są odpowiednie w konkretnych zastosowaniach. Dostosowanie do tych standardów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 13

Jakiego rodzaju przewód powinno się użyć do instalacji elektrycznej umieszczonej w drewnianych ścianach?

A. SMYp
B. HDGs
C. OMYp
D. YDYt
Wybór przewodów typu HDGs do instalacji elektrycznej w drewnianych ścianach jest zasadny z kilku powodów. Przewody te charakteryzują się wysoką odpornością na uszkodzenia mechaniczne oraz działanie wysokich temperatur, co jest szczególnie istotne w kontekście drewnianych konstrukcji, które mogą być bardziej narażone na ryzyko pożaru. Przewody HDGs są wykonane z miedzi, co zapewnia doskonałą przewodność elektryczną oraz odporność na korozję. Instalacje elektryczne w drewnie powinny być przeprowadzane zgodnie z normami, takimi jak PN-IEC 60083, które uwzględniają wymagania dotyczące bezpieczeństwa i ochrony przed porażeniem prądem. W praktyce, użycie przewodów HDGs w takich instalacjach zapewnia zarówno bezpieczeństwo, jak i trwałość. Przykłady zastosowania to wszelkiego rodzaju oświetlenie i gniazda elektryczne zamontowane w drewnianych ścianach domów jednorodzinnych oraz budynków użyteczności publicznej, gdzie odpowiednie zabezpieczenia są kluczowe dla zapewnienia długotrwałej eksploatacji.

Pytanie 14

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. wirnik silnika zostanie dogoniony.
B. silnik zostanie zasilony prądem przeciwnym.
C. wirnik silnika będzie w bezruchu.
D. silnik znajdzie się w stanie jałowym.
Zrozumienie zasad działania silników indukcyjnych jest kluczowe dla efektywnej ich eksploatacji, dlatego warto przyjrzeć się błędnym koncepcjom, które mogą prowadzić do mylnych wniosków. W przypadku, gdy wirnik silnika zostaje dopędzony, oznacza to, że jego prędkość zbliża się do prędkości synchronizacyjnej, co prowadzi do zmniejszenia poślizgu, a nie do uzyskania wartości równej 1. Takie zjawisko występuje w silnikach, które są zasilane zmiennym prądem i wymagają odpowiedniego momentu obrotowego, aby zrównoważyć obciążenie. Z kolei pozostawienie silnika na biegu jałowym skutkuje poślizgiem mniejszym niż 1, ponieważ wirnik wciąż kręci się, choć bez obciążenia. Zasilanie silnika przeciwprądem to sytuacja, w której występuje odwrócenie kierunku prądu w uzwojeniach, co skutkuje przeciwnym działaniem momentu obrotowego, ale nie powoduje poślizgu równego 1 w klasycznym sensie. Typowym błędem myślowym jest zrozumienie poślizgu jako czegoś, co można kontrolować niezależnie od fizycznych parametrów pracy silnika. W rzeczywistości poślizg jest wskaźnikiem funkcjonowania silnika i jest ściśle powiązany z jego obciążeniem oraz dynamiką pracy. Wiedza na temat poślizgu jest zatem fundamentalna dla inżynierów i techników zajmujących się automatyką i energetyką.

Pytanie 15

W jaki sposób należy połączyć zaciski sieci zasilającej L, N, PE do zacisków puszki zasilającej instalację elektryczną, której schemat przedstawiono na rysunku, aby połączenia były zgodne z przedstawionym schematem ideowym?

Ilustracja do pytania
A. L - 1, N - 4, PE - 3
B. L - 1, N - 3, PE - 4
C. L - 3, N - 4, PE - 1
D. L - 2, N - 3, PE - 4
Poprawna odpowiedź to L - 1, N - 3, PE - 4, co jest zgodne z obowiązującymi normami instalacji elektrycznych w Polsce. Zacisk L, odpowiadający za przesył energii elektrycznej, powinien być połączony z punktem 1. Jest to istotne, ponieważ zapewnia to prawidłowe zasilanie obwodu. Zacisk N, który jest neutralny, łączy się z punktem 3, co umożliwia bezpieczne odprowadzenie prądu wstecz do źródła. Wreszcie, zacisk PE, pełniący funkcję ochrony przed porażeniem elektrycznym, powinien być połączony z punktem 4. Takie połączenie minimalizuje ryzyko awarii oraz zapewnia bezpieczeństwo użytkowników. W praktyce, przy wykonywaniu instalacji elektrycznych, zgodność z tym schematem jest kluczowa. Ponadto, należy pamiętać o regularnych przeglądach instalacji oraz stosowaniu się do norm PN-IEC 60364, aby zapewnić trwałość oraz niezawodność sieci zasilającej.

Pytanie 16

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. przekaźnika.
B. stycznika.
C. łącznika wielofunkcyjnego.
D. wyłącznika różnicowoprądowego.
Stycznik to taka część elektryczna, która jest mega ważna w automatyzacji obwodów. Dzięki niemu można zdalnie uruchamiać duże urządzenia, co jest przydatne w różnych sytuacjach, jak na przykład oświetlenie, silniki elektryczne czy inne maszyny w fabrykach. Działa to na zasadzie elektromagnetyzmu, a cewka (A1, A2) uruchamia mechanizm, który zamyka lub otwiera obwód. Przykładowo, można go używać do automatycznego włączania silników w napędach. To wszystko jest zgodne z normami IEC 60947-4-1, które dotyczą rozdziału energii. Fajnie jest też korzystać ze styczników z dodatkowymi zabezpieczeniami, jak wyłączniki termiczne, żeby uniknąć przeciążeń i uszkodzeń. Wiedza o tym, jak działają styczniki, jest naprawdę kluczowa dla ludzi, którzy projektują i naprawiają instalacje elektryczne.

Pytanie 17

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. Schemat 2.
B. Schemat 3.
C. Schemat 1.
D. Schemat 4.
Schemat 4 to idealne rozwiązanie, gdy chcemy sterować oświetleniem z dwóch miejsc. Używa on przełączników schodowych, które są standardem w takich sytuacjach. Dzięki nim możemy włączać i wyłączać jedno źródło światła z różnych lokalizacji, co jest super praktyczne, zwłaszcza w korytarzach czy na schodach. Te przełączniki są zaprojektowane tak, żeby użytkownik nie miał problemu z zarządzaniem światłem, a ich użycie jest zgodne z normami, jak na przykład PN-EN 60669-1, które mówią o urządzeniach do sterowania oświetleniem. Dodatkowo, takie rozwiązanie pomaga oszczędzać energię, bo można łatwo wyłączyć światło, gdy nie jest potrzebne. W praktyce, dzięki takiemu ustawieniu, zwiększa się też bezpieczeństwo, bo nie trzeba chodzić w ciemności. Instalacja takich przełączników jest dosyć prosta, o ile stosuje się odpowiednie zasady, co czyni je atrakcyjną opcją dla wielu użytkowników.

Pytanie 18

Parametry techniczne którego stycznika z tabeli odpowiadają stycznikowi przedstawionemu na ilustracji?

StycznikZnamionowy prąd pracyLiczba styków NOLiczba styków NC
1.31 A40
2.31 A31
3.40 A31
4.40 A40
Ilustracja do pytania
A. Stycznika 2.
B. Stycznika 1.
C. Stycznika 4.
D. Stycznika 3.
Odpowiedzi niepoprawne wynikają z kilku powszechnych błędów myślowych, które mogą prowadzić do mylnych wniosków. Wiele osób może sugerować, że inne styczniki z tabeli mają podobne parametry, jednak kluczowe jest dokładne zwrócenie uwagi na oznaczenia i specyfikacje techniczne. Przykładowo, stycznik 2 ma inny prąd nominalny, co czyni go niewłaściwym wyborem. Jest to częsty błąd w ocenie, gdzie koncentruje się wyłącznie na liczbie styków, a nie na ich charakterystyce oraz innych istotnych parametrach, takich jak prąd roboczy czy napięcie. Podobne pomyłki można zauważyć przy ocenie stycznika 1 i 4, które również różnią się specyfikacjami od stycznika przedstawionego na ilustracji. W takich przypadkach warto zwrócić uwagę na szczegóły, które odgrywają kluczową rolę w zapewnieniu optymalnego działania urządzeń. W kontekście projektowania instalacji elektrycznych, znajomość dokładnych parametrów styczników oraz ich zgodności z normami, takimi jak IEC 60947, jest niezbędna do osiągnięcia bezpiecznych i efektywnych rozwiązań. Pominięcie tych kryteriów może prowadzić do awarii systemu oraz zwiększenia ryzyka uszkodzeń sprzętu.

Pytanie 19

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S191C25
B. S193C25
C. S191B25
D. S193B25
Wybór wyłącznika S193C25 jako zamiennika dla bezpieczników topikowych 25 A, zabezpieczających obwody silnika trójfazowego, jest właściwy ze względu na jego parametry techniczne oraz zgodność z obowiązującymi normami. Wyłącznik S193C25 charakteryzuje się prądem nominalnym 25 A oraz odpowiednią charakterystyką zabezpieczającą, co sprawia, że jest idealnym rozwiązaniem dla obwodów silnikowych. Zastosowanie wyłączników instalacyjnych zamiast bezpieczników topikowych przyczynia się do większej wygody użytkowania, gdyż wyłączniki są wielokrotnego użytku, a ich resetowanie jest prostsze. Ponadto, wyłączniki te oferują lepszą ochronę przed przeciążeniem i zwarciem, co jest kluczowe dla bezpieczeństwa instalacji. Przykładem praktycznego zastosowania wyłącznika S193C25 jest jego montaż w systemach automatyki przemysłowej, gdzie ochrona silników przed różnymi rodzajami awarii ma kluczowe znaczenie dla ciągłości produkcji. Warto również zwrócić uwagę, że wyłącznik S193C25 spełnia normy IEC, co potwierdza jego wysoką jakość oraz bezpieczeństwo użytkowania.

Pytanie 20

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,82
B. 0,57
C. 0,99
D. 0,69
Błędy w obliczeniach mogą wynikać z niepoprawnego stosowania wzorów i braku zrozumienia, jak działa współczynnik mocy. Często, przy liczeniu, zapominamy o poprawnym uwzględnieniu obydwu rodzajów mocy: czynnej i reaktywnej. Niektórzy mogą też pomieszać jednostki, obliczając moc w kW zamiast w VA, co wprowadza zamieszanie. Innym częstym problemem bywa przeliczenie napięcia z fazowego na liniowe lub odwrotnie – to łatwy sposób na zrobienie błędu w końcowym wyniku. Z moim doświadczeniem, kluczem do sukcesu jest pełne zrozumienie, jak obliczać ten współczynnik. To nie tylko pozwala ocenić efektywność urządzeń elektrycznych, ale też jest zgodne z różnymi normami dotyczącymi efektywności energetycznej. Z perspektywy ekonomicznej i ekologicznej, lepszy współczynnik mocy dla silników trójfazowych jest naprawdę ważny, bo zmniejsza obciążenie systemu i emisję zanieczyszczeń.

Pytanie 21

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 2.
B. Narzędzie 4.
C. Narzędzie 3.
D. Narzędzie 1.
Narzędzie 2, czyli ściągacz, jest kluczowym narzędziem wykorzystywanym w procesie demontażu przewietrznika z wału silnika elektrycznego. Jego konstrukcja umożliwia równomierne rozłożenie siły, co jest niezwykle istotne, aby uniknąć uszkodzenia elementów. W praktyce, ściągacz stosuje się w sytuacjach, gdy przewietrznik mocno przylega do wału, co może zdarzyć się w wyniku długotrwałego użytkowania silnika. Właściwe użycie ściągacza polega na umieszczeniu go tak, aby mocno, ale delikatnie, chwytał za brzegi demontowanego elementu. Zgodnie z najlepszymi praktykami branżowymi, przed przystąpieniem do demontażu należy zawsze upewnić się, że silnik jest odłączony od źródła zasilania. Użycie ściągacza w ten sposób minimalizuje ryzyko uszkodzenia zarówno przewietrznika, jak i wału silnika. Pozostałe narzędzia, takie jak narzędzie 1, 3 i 4, nie są dostosowane do tej specyficznej pracy, co może prowadzić do nieefektywnego demontażu i potencjalnych uszkodzeń.

Pytanie 22

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duży przekrój uszkodzonego przewodu
B. Luźne połączenie w listwie neutralnej
C. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
D. Zbyt duża moc urządzenia
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 23

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Identyfikuje przeciążenia
B. Rozpoznaje zwarcia
C. Napina sprężynę mechanizmu
D. Zatrzymuje łuk elektryczny
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym pełni kluczową rolę w detekcji zwarć w obwodach elektrycznych. Jego działanie opiera się na zasadzie pomiaru prądu płynącego przez obwód. W momencie wystąpienia zwarcia, prąd znacznie wzrasta, co prowadzi do aktywacji wyzwalacza. Przykładowo, w przypadku zwarcia doziemnego, występujące wartości prądu mogą przekroczyć normalne poziomy, co wyzwala mechanizm odłączający obwód i zabezpieczający instalację przed uszkodzeniami. Tego typu rozwiązania są zgodne z normami IEC 60947-2, które określają wymagania dotyczące sprzętu niskonapięciowego. Poprawne działanie wyzwalacza elektromagnetycznego jest zatem niezbędne dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, minimalizując ryzyko pożaru czy uszkodzenia urządzeń. W praktyce, wyłączniki nadprądowe z wyzwalaczami elektromagnetycznymi są powszechnie stosowane w domach, biurach oraz przemysłowych środowiskach pracy, gdzie ochrona przed skutkami zwarć jest kluczowa.

Pytanie 24

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Gwintową.
B. Skrętną.
C. Samozaciskową.
D. Śrubową.
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 25

Jakim urządzeniem można przeprowadzić bezpośredni pomiar rezystancji obwodu?

A. woltomierzem
B. amperomierzem
C. watomierzem
D. omomierzem
Omomierz to przyrząd elektryczny zaprojektowany specjalnie do pomiaru rezystancji, dlatego jest idealnym narzędziem do wykonywania pomiarów bezpośrednich rezystancji obwodów. Działa na zasadzie wysyłania prądu przez rezystor i pomiaru spadku napięcia, co umożliwia obliczenie rezystancji zgodnie z prawem Ohma (R = U/I). Przykładowe zastosowania omomierza obejmują testowanie ciągłości połączeń w instalacjach elektrycznych, diagnozowanie uszkodzeń w komponentach elektronicznych oraz pomiary rezystancji w aplikacjach przemysłowych. W kontekście dobrych praktyk, omomierze są często stosowane w serwisach i laboratoriach, gdzie precyzyjne pomiary rezystancji są kluczowe, szczególnie w kontekście bezpieczeństwa urządzeń elektrycznych, co jest zgodne z normami IEC 61010 dotyczącymi bezpieczeństwa przyrządów pomiarowych.

Pytanie 26

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 1000 V
B. 750 V
C. 250 V
D. 500 V
Wybór wyższych wartości napięcia pomiarowego, takich jak 1000 V, 500 V czy 750 V, jest niewłaściwy w kontekście obwodów SELV i PELV. Te obwody, które są projektowane z myślą o bezpieczeństwie, nie powinny być testowane przy użyciu napięć, które mogą prowadzić do sytuacji niebezpiecznych dla użytkowników. Przy pomiarze rezystancji izolacji w instalacjach niskonapięciowych, takich jak SELV i PELV, zastosowanie wyższego napięcia pomiarowego może nie tylko prowadzić do uszkodzeń izolacji, ale także stwarzać ryzyko porażenia prądem elektrycznym. W rzeczywistości, zastosowanie napięć wyższych niż 250 V w takich instalacjach nie jest zgodne z normami bezpieczeństwa. Często błędnie przyjmuje się, że wyższe napięcie pomiarowe pozwala na dokładniejszą ocenę stanu izolacji, co jest mylnym przekonaniem. W rzeczywistości, pomiary w wyższych zakresach napięć mogą dawać fałszywe wyniki, ponieważ mogą powodować uszkodzenia materiałów izolacyjnych, które w normalnych warunkach pracy nie występują. Stąd też kluczowe jest przestrzeganie standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 27

Na którym rysunku przedstawiono prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
W przypadku rysunków A, B i C, schematy nie spełniają wymogów dotyczących prawidłowego sterowania oświetleniem z dwóch miejsc. Wiele osób może błędnie zakładać, że wystarczy zastosować standardowe przełączniki w tych schematach, co prowadzi do niepoprawnej konfiguracji. Rysunek A może przedstawiać jedynie klasyczny przełącznik, który umożliwia włączanie i wyłączanie światła z jednego miejsca, co nie jest wystarczające w przypadku, gdy wymagane jest sterowanie z dwóch lokalizacji. Rysunek B może zawierać jedynie przełączniki pojedyncze, co nie pozwala na zdalne sterowanie oświetleniem z więcej niż jednego miejsca. Z kolei rysunek C może zawierać niewłaściwe połączenia elektryczne lub brak elementów, które umożliwiają prawidłowe funkcjonowanie systemu. Typowe błędy myślowe prowadzące do niepoprawnych wyborów obejmują brak zrozumienia podstawowych zasad działania przełączników krzyżowych oraz ignorowanie praktycznych aspektów związanych z ich zastosowaniem w instalacjach elektrycznych. Kluczowe jest zrozumienie, że tylko zastosowanie odpowiednich komponentów oraz prawidłowe ich połączenie w schemacie elektrycznym zapewnia efektywne i bezpieczne sterowanie oświetleniem z różnych miejsc.

Pytanie 28

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Podkładka sprężysta
B. Tuleja redukcyjna
C. Tuleja kołnierzowa
D. Podkładka dystansowa
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 29

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. porażeniem
B. przepięciem
C. zwarciem
D. przeciążeniem
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 30

Na zdjęciu przedstawiono

Ilustracja do pytania
A. odłącznik.
B. bezpiecznik.
C. wyłącznik.
D. rozłącznik.
Często ludzie mylą rozłącznik z innymi urządzeniami elektrycznymi, co prowadzi do zamieszania. Wyłącznik działa trochę inaczej, bo przerywa obwód automatycznie przy przeciążeniu czy zwarciu, a jego funkcja jest inna niż rozłącznika, który nie wyłącza automatycznie. Odłącznik też się myli, bo chociaż służy do rozłączania, to ma swoje ograniczenia i nie nadaje się do pracy pod obciążeniem. Wiele osób nie zdaje sobie sprawy, że odłącznik nie jest dobrym wyborem w sytuacjach, kiedy jest ryzyko rozłączania pod napięciem. Bezpiecznik to inna sprawa, działa na zasadzie przepalania się, gdy jest przeciążenie, czyli też jest zupełnie czym innym niż rozłącznik. Wiele osób myśli, że te trzy urządzenia są takie same, a to może powodować problemy przy doborze sprzętu w instalacjach elektrycznych. Dlatego zrozumienie różnic między nimi to podstawa dla każdego technika czy inżyniera, żeby wszystko działało jak należy i było bezpieczne.

Pytanie 31

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. rozdzielnicę główną
B. instalacje odbiorcze
C. złącze
D. przyłącze
Przyłącze, choć często mylone z złączem, pełni inną funkcję w systemie elektroenergetycznym. Przyłącze odnosi się do punktu, w którym instalacja elektryczna łączy się z siecią energetyczną. Jest to miejsce, gdzie energia elektryczna dostarczana jest do budynku, a nie element, który zarządza rozdzieleniem energii na kilka obwodów. W konsekwencji, przyłącze nie spełnia roli rozdzielnika dla linii wewnętrznych. Rozdzielnica główna, z kolei, jest odpowiedzialna za dystrybucję energii elektrycznej do różnych obwodów w instalacji, ale nie jest bezpośrednio przeznaczona do łączenia wielu linii zasilających w jednym punkcie, jak ma to miejsce w przypadku złącza. Instalacje odbiorcze również nie są właściwą odpowiedzią, gdyż odnosi się to do urządzeń, które pobierają energię elektryczną z sieci, takich jak oświetlenie czy urządzenia domowe. Błędne zrozumienie funkcji tych elementów może prowadzić do nieefektywnych lub niebezpiecznych rozwiązań w instalacji, dlatego istotne jest zrozumienie różnicy między złączem a innymi komponentami systemu elektroenergetycznego. Właściwe rozpoznanie funkcji złącz i innych elementów jest kluczowe dla bezpieczeństwa oraz efektywności każdej instalacji elektrycznej.

Pytanie 32

Który przewód przedstawiono na rysunku?

Ilustracja do pytania
A. H07V-K
B. H07V2-U
C. H03VVH2-F
D. H03VV-F
Przewód przedstawiony na rysunku to H03VV-F, który jest typem przewodu elastycznego przeznaczonego do zastosowań w niskonapięciowych urządzeniach przenośnych. Charakteryzuje się on wieloma żyłami o różnorodnych kolorach izolacji, co jest zgodne z normą PN-EN 50525. H03VV-F jest często wykorzystywany w urządzeniach takich jak odkurzacze, małe sprzęty AGD i inne urządzenia o niewielkim obciążeniu. Jego konstrukcja umożliwia elastyczność i odporność na uszkodzenia mechaniczne, co czyni go idealnym do użytku w warunkach, gdzie przewód może być narażony na ruch. Dodatkowo, przewód ten spełnia normy dotyczące odporności na wysoką temperaturę oraz napotykane chemikalia, co zwiększa jego trwałość i bezpieczeństwo użytkowania. Stosując ten przewód, można mieć pewność, że urządzenie z niego zasilane będzie pracowało w sposób bezpieczny i efektywny.

Pytanie 33

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór błędnej odpowiedzi może wynikać z niedostatecznej wiedzy na temat zasad dotyczących zachowywania odpowiednich odległości przy trasowaniu przewodów instalacji elektrycznych. Wiele osób może mylnie sądzić, że mniejsze odległości są wystarczające, co prowadzi do potencjalnych problemów w przyszłości. Przyjęcie niewłaściwych odległości, na przykład mniejszych niż zalecane, naraża instalację na uszkodzenia mechaniczne. Może to skutkować zwarciem, a nawet pożarem, gdyż przewody będą narażone na wpływ narzędzi oraz innych elementów konstrukcyjnych podczas późniejszych prac. Przykładowo, zbyt bliskie umiejscowienie przewodów w stosunku do krawędzi ścian może prowadzić do ich uszkodzenia podczas montażu mebli lub osprzętu, co jest częstym błędem w trakcie projektowania instalacji. Ponadto, niewłaściwe podejście do zachowania dystansu może ograniczyć dostępność instalacji do ewentualnych napraw oraz konserwacji, co generuje dodatkowe trudności i koszty w dłuższej perspektywie. Warto pamiętać, że przestrzeganie zasad dotyczących odległości nie tylko wpływa na bezpieczeństwo, ale także na komfort codziennego użytkowania budynku. Każda instalacja elektryczna powinna być zaplanowana zgodnie z obowiązującymi normami, co zapewnia nie tylko ochronę przed zagrożeniami, ale również zwiększa trwałość całego systemu.

Pytanie 34

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Schematy montażowe są kluczowym elementem w projektowaniu instalacji elektrycznych, a ich nieprawidłowe zrozumienie może prowadzić do poważnych błędów montażowych. Odpowiedzi A, B i D nie przedstawiają schematu montażowego, co skutkuje ich niepoprawnością. Odpowiedzi te mogą przedstawiać inne typy rysunków, takie jak schematy ideowe, które z kolei koncentrują się na przedstawieniu funkcji urządzeń i ich wzajemnych połączeń bez wskazywania szczegółów montażowych, lub diagramy blokowe, które ilustrują ogólną koncepcję systemu. Takie nieścisłości prowadzą do mylnych przekonań, że schemat ideowy może zastąpić schemat montażowy. Przykładem błędnego myślenia jest utożsamianie rysunków z ogólnymi zasadami działania urządzeń z dokumentacją wymagającą szczegółowych informacji o montażu. W praktyce, brak wyraźnego schematu montażowego może prowadzić do nieprawidłowego montażu, co z kolei może skutkować awarią systemu lub zagrożeniem dla bezpieczeństwa użytkowników. Dlatego kluczowe jest, aby każdy projektant instalacji elektrycznych posiadał umiejętność odróżniania schematów montażowych od innych typów dokumentacji, aby uniknąć tych nieporozumień i zapewnić zgodność z normami oraz bezpieczeństwo instalacji.

Pytanie 35

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Tylko metalowe
B. Metalowe lub gumowe
C. Z PVC lub gumowe
D. Tylko z PVC
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 36

W której ze stref wskazanych na rysunku należy zainstalować łącznik oświetlenia głównego pomieszczenia?

Ilustracja do pytania
A. SH-s (1)
B. SH-s (2)
C. SP-d (2)
D. SP-d (1)
Odpowiedź SP-d (2) jest poprawna, ponieważ zgodnie z normami budowlanymi w Polsce, łącznik oświetlenia głównego powinien być zainstalowany w łatwo dostępnym miejscu, zazwyczaj w pobliżu drzwi wejściowych do pomieszczenia. Umieszczenie łącznika w strefie SP-d (2) jest zgodne z zaleceniami dotyczącymi ergonomii i użyteczności, co pozwala użytkownikom na wygodne włączanie i wyłączanie światła od razu po wejściu do pomieszczenia. W przypadku strefy SP-d (2), łącznik znajduje się po prawej stronie drzwi, co jest standardowym rozwiązaniem w projektowaniu wnętrz, ułatwiającym dostęp do oświetlenia. Taki układ zwiększa komfort użytkowania oraz zapewnia większe bezpieczeństwo, gdyż pozwala na szybkie oświetlenie pomieszczenia, eliminując ryzyko potknięcia się w ciemności. Dobrą praktyką jest także umieszczanie łączników na odpowiedniej wysokości, co dodatkowo zwiększa ich funkcjonalność. Zastosowanie się do tych norm jest kluczowe w każdym projekcie budowlanym, aby zapewnić optymalne warunki użytkowania oraz zgodność z przepisami prawa budowlanego.

Pytanie 37

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Przeciążenie
B. Prąd błądzący
C. Przepięcie
D. Zwarcie bezimpedancyjne
Przeciążenie obwodu elektrycznego jest jedną z najczęstszych przyczyn samoczynnego zadziałania wyłącznika instalacyjnego. Przeciążenie następuje w momencie, gdy obciążenie podłączone do obwodu przekracza jego dopuszczalną wartość prądową. Wyłączniki instalacyjne, zgodnie z normami PN-EN 60898, są zaprojektowane w taki sposób, aby chronić instalację przed uszkodzeniem w wyniku zbyt dużego natężenia prądu. W przypadku obwodów o niskiej impedancji, takie jak instalacje oświetleniowe czy gniazdka, obciążenie może wzrosnąć w wyniku uruchomienia wielu urządzeń jednocześnie, co prowadzi do przeciążenia. Gdy prąd przekracza wartość znamionową wyłącznika, mechanizm wyłączający uruchamia się automatycznie, co zapobiega ewentualnym uszkodzeniom kabli czy urządzeń. W praktyce, ważne jest, aby przed podłączeniem nowych urządzeń do instalacji, upewnić się, że całkowite obciążenie nie przekroczy wartości znamionowej wyłącznika, co jest kluczowe w zarządzaniu energią i zapewnieniu bezpieczeństwa instalacji elektrycznych.

Pytanie 38

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje magnetyzm szczątkowy.
B. Likwiduje drgania zwory.
C. Zmniejsza napięcie podtrzymania cewki.
D. Zmniejsza siłę docisku zwory.
Element wskazany na ilustracji czarną strzałką w styczniku rzeczywiście pełni rolę tłumika drgań. Jego głównym zadaniem jest eliminowanie drgań zwory, które mogą wystąpić podczas cykli załączania i wyłączania stycznika. Drgania zwory, jeśli nie są skutecznie kontrolowane, mogą prowadzić do problemów z kontaktami, takich jak drgające styki, co w konsekwencji może doprowadzić do uszkodzenia urządzenia lub zakłóceń w jego pracy. W praktyce, zastosowanie tłumika drgań ma kluczowe znaczenie w systemach automatyki, gdzie stabilność i niezawodność działania elementów wykonawczych są niezwykle istotne. Zgodnie z dobrymi praktykami branżowymi, stosowanie tłumików drgań jest standardem w projektowaniu nowoczesnych styczników. Tłumiki te mogą być również wykorzystywane w innych aplikacjach, takich jak siłowniki pneumatyczne czy hydrauliczne, gdzie drgania mogą negatywnie wpływać na wydajność sprzętu. Rekomenduje się regularne sprawdzanie stanu tłumików drgań w celu zapewnienia ich efektywności oraz poprawy ogólnej niezawodności systemu.

Pytanie 39

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. III
B. 0
C. I
D. II
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 40

Układ przedstawiony na rysunku służy do pomiaru

Ilustracja do pytania
A. obciążenia układu.
B. rezystancji przewodów.
C. napięcia zadziałania wyłącznika różnicowoprądowego.
D. prądu zadziałania wyłącznika różnicowoprądowego.
Układ przedstawiony na rysunku rzeczywiście służy do pomiaru prądu zadziałania wyłącznika różnicowoprądowego (RCD). W tym układzie amperomierz jest podłączony szeregowo z rezystorem Rp, a obciążenie zostało odłączone. Taki sposób podłączenia pozwala na dokładne zbadanie prądu, przy którym wyłącznik różnicowoprądowy zareaguje, odłączając obwód. Prąd zadziałania RCD jest kluczowy dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, ponieważ jego zadaniem jest wykrywanie różnicy prądów między przewodem fazowym a neutralnym, co może wskazywać na obecność prądu upływowego. W praktyce, odpowiedni dobór wartości prądu zadziałania jest określony w normach, takich jak PN-EN 61008-1, które regulują działanie wyłączników różnicowoprądowych. Przykładem zastosowania jest montaż RCD w obwodach zasilających urządzenia o zwiększonym ryzyku porażenia prądem, takich jak urządzenia elektryczne w łazienkach czy na zewnątrz budynków. RCD przyczynia się do minimalizacji ryzyka porażenia prądem, a także pożarów spowodowanych zwarciem prowadzącym do przegrzania. Dlatego testowanie prądu zadziałania jest kluczowym elementem konserwacji i przeglądów instalacji elektrycznych.