Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 07:40
  • Data zakończenia: 8 grudnia 2025 07:51

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z wymienionych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Spawanie
B. Zgrzewanie
C. Klejenie
D. Zaginanie
Zgrzewanie, spawanie i zaginanie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co może prowadzić do nieporozumień związanych z ich zastosowaniem. Zgrzewanie polega na podgrzewaniu miejsc styku dwóch elementów do momentu ich stopienia, a następnie ich łączeniu. Proces ten tworzy jednorodną strukturę materiału, co sprawia, że połączenie jest trwałe i wytrzymałe na obciążenia. W przypadku spawania, szczególnie w kontekście tworzyw sztucznych, można używać różnych metod, takich jak spawanie gorącym powietrzem czy spawanie w kąpieli cieczy. Oba te procesy również skutkują trwałym połączeniem, które jest często porównywalne z właściwościami mechanicznymi materiału bazowego. Zaginanie natomiast polega na deformacji materiału pod wpływem siły, co w przypadku tworzyw może prowadzić do trwałego kształtowania, ale nie do połączenia dwóch elementów w sensie ich zespolenia. Wiele osób może mylić te techniki, myśląc, że każda z nich może być użyta w każdej sytuacji, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że trwałe połączenia wymagają zastosowania odpowiednich metod, które działają w oparciu o fizykę i mechanikę materiałów, a nie tylko na zasadzie chemii powierzchni. Brak znajomości różnic między tymi technikami może prowadzić do nieodpowiednich wyborów w projektach inżynieryjnych, co z kolei może skutkować osłabieniem konstrukcji i problemami w eksploatacji.

Pytanie 2

Którą technikę łączenia materiałów przedstawiono na rysunku?

Ilustracja do pytania
A. Klejenia.
B. Lutowania miękkiego.
C. Zgrzewania.
D. Lutowania twardego.
Lutowanie twarde jest jedną z kluczowych technik łączenia materiałów, wykorzystywaną w branży metalowej. W odróżnieniu od lutowania miękkiego, które stosuje spoiwa o niższej temperaturze topnienia, lutowanie twarde wykorzystuje materiały, których temperatura topnienia przekracza 450°C. Dzięki temu uzyskuje się znacznie mocniejsze i bardziej trwałe połączenia, co jest istotne w aplikacjach wymagających wysokiej wytrzymałości, takich jak w przemyśle motoryzacyjnym czy lotniczym. Technika ta jest szczególnie cenna w przypadku łączenia różnych metali, w tym stopów metali nieżelaznych. Przykłady zastosowania lutowania twardego obejmują produkcję elementów chłodniczych, rur instalacyjnych oraz komponentów elektronicznych, gdzie trwałość połączenia ma kluczowe znaczenie. Przemysłowe standardy, takie jak ISO 9453, określają wymagania dotyczące spoiw do lutowania twardego, co zapewnia wysoką jakość i niezawodność tych połączeń.

Pytanie 3

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 1,4 V
B. 0 V
C. 0,3 V
D. 0,6 V
W przypadku pomiaru spadku napięcia na podwójnym złączu półprzewodnikowym wykonanym z krzemu, wartość około 1,4 V jest typowa dla złącza p-n w stanie przewodzenia. Złącze to zachowuje się jak dioda, która wymaga określonego spadku napięcia, aby rozpocząć przewodzenie prądu. Dla diod krzemowych, wartość ta jest zazwyczaj w przedziale od 0,6 V do 0,7 V dla pierwszego złącza, a dla drugiego złącza, zwłaszcza w przypadku podwójnego złącza, wartość ta podwaja się, co daje około 1,4 V. To zjawisko jest wykorzystywane w praktycznych zastosowaniach elektroniki, takich jak prostowniki i układy regulacji napięcia. Przy pomiarze multimetrem cyfrowym ważne jest, aby upewnić się, że miernik jest ustawiony na odpowiedni zakres pomiarowy, co pozwoli na dokładne odczyty. W przypadku pomiarów diodowych, zaleca się również zwrócenie uwagi na polaryzację diody, aby uniknąć błędnych wyników. Przykładowo, w zastosowaniach takich jak zasilacze impulsowe, umiejętność prawidłowego pomiaru spadku napięcia na połączeniach półprzewodnikowych jest kluczowym elementem diagnostyki i naprawy.

Pytanie 4

Jakiego typu siłownik został przedstawiony na rysunku?

Ilustracja do pytania
A. Jednostronnego działania z dwustronnym tłoczyskiem.
B. Dwustronnego działania z dwustronnym tłoczyskiem.
C. Dwustronnego działania z jednostronnym tłoczyskiem.
D. Jednostronnego działania z jednostronnym tłoczyskiem
Poprawna odpowiedź to dwustronnego działania z jednostronnym tłoczyskiem. W siłownikach pneumatycznych charakteryzujących się dwustronnym działaniem, medium, na przykład powietrze, może być wprowadzone z obu stron tłoczyska, co umożliwia ruch tłoka w obie strony. To rozwiązanie jest szeroko stosowane w automatyzacji procesów przemysłowych, gdzie precyzyjne sterowanie ruchem jest kluczowe. Siłowniki tego typu odwzorowują działanie w wielu zastosowaniach, jak na przykład w robotyce, gdzie wymagane jest szybkie i płynne przemieszczanie elementów. Ważne jest również, aby zwracać uwagę na projektowanie systemów pneumatycznych zgodnie z normami ISO 4414, które definiują zasady bezpieczeństwa oraz optymalizacji systemów pneumatycznych. Dobre praktyki inżynieryjne obejmują również regularne przeglądy i konserwację siłowników, co przyczynia się do wydłużenia ich żywotności i efektywności operacyjnej.

Pytanie 5

Jak można zmierzyć moc pobieraną przez urządzenie zasilane napięciem 24 V DC?

A. watomierzem w układzie Arona
B. mostkiem Wheatstone'a
C. mostkiem Thompsona
D. woltomierzem i amperomierzem
Pomiar mocy pobieranej przez urządzenie zasilane napięciem 24 V DC nie może być przeprowadzony za pomocą mostka Wheatstone'a, ponieważ ten typ mostka jest używany głównie do pomiaru oporu elektrycznego, a nie mocy. Mostek Wheatstone'a działa na zasadzie równoważenia dwóch gałęzi obwodu, co umożliwia dokładne pomiary oporu, ale nie dostarcza informacji o napięciu i prądzie przepływającym przez obwód. Z tego powodu jego zastosowanie w kontekście pomiarów mocy jest niewłaściwe i prowadzi do błędnych wniosków. Z kolei mostek Thompsona, podobnie jak mostek Wheatstone'a, jest zaprojektowany do pomiaru oporu, a jego wykorzystanie w pomiarze mocy również nie ma sensu. W obu przypadkach pomiar mocy wymaga znajomości wartości napięcia i natężenia prądu, co nie jest możliwe za pomocą tych mostków. Watomierz w układzie Arona, choć jest urządzeniem dedykowanym do pomiaru mocy, nie jest najpraktyczniejszym rozwiązaniem w prostych układach prądu stałego, jak 24 V DC. Często stosowane urządzenia pomiarowe w przemyśle elektronicznym i elektrotechnicznym to woltomierze i amperomierze, które są bardziej uniwersalne i łatwe w użyciu. Użycie nieodpowiednich przyrządów pomiarowych oraz brak zrozumienia ich zastosowania mogą prowadzić do nieprecyzyjnych pomiarów oraz błędnych interpretacji wyników, co jest kluczowym zagadnieniem w praktyce inżynierskiej.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Który opis siłowników hydraulicznych przedstawionych na rysunkach jest poprawny?

Siłownik hydraulicznyA.B.C.D.
TeleskopowyRys. 1Rys. 4Rys. 3Rys. 4
Jednostronnego działaniaRys. 2Rys. 1Rys. 4Rys. 1
Dwustronnego działania z dwustronnym tłoczyskiemRys. 3Rys. 2Rys. 1Rys. 3
Dwustronnego działania z jednostronnym tłoczyskiemRys. 4Rys. 3Rys. 2Rys. 2
Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Poprawna odpowiedź to D, ponieważ rysunek 4 przedstawia siłownik teleskopowy, który jest konstrukcją wykorzystywaną w wielu zastosowaniach inżynieryjnych i przemysłowych. Siłowniki teleskopowe charakteryzują się tym, że składają się z kilku segmentów, które mogą się wysuwać jeden z drugiego, co pozwala na uzyskanie dużych skoków przy stosunkowo niewielkich wymiarach konstrukcyjnych. Tego typu siłowniki znajdują zastosowanie w budownictwie, automatyce przemysłowej, a także w systemach transportowych, gdzie przestrzeń jest ograniczona. W kontekście standardów branżowych, siłowniki teleskopowe muszą spełniać określone normy dotyczące wytrzymałości i bezpieczeństwa, co zapewnia ich niezawodność i długą żywotność w trudnych warunkach pracy. Zrozumienie różnych typów siłowników hydraulicznych, takich jak jednostronne czy dwustronne, jest kluczowe dla prawidłowego doboru komponentów w systemach hydraulicznych.

Pytanie 8

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. RS 485
B. USB
C. RS 232
D. IRDA
Wybór pozostałych standardów transmisji sygnałów cyfrowych, takich jak RS 485, USB i RS 232, wskazuje na nieporozumienie związane z ich funkcjonalnością oraz zastosowaniem. RS 485 to standard szeregowy, który jest używany w komunikacji na większe odległości, często w aplikacjach przemysłowych. Jego główną zaletą jest zdolność do pracy w trudnych warunkach, lecz nie ma on możliwości przesyłania sygnałów bezprzewodowo, ponieważ wymaga fizycznego połączenia kablowego. USB (Universal Serial Bus) to standard, który służy do podłączania urządzeń i przesyłania danych, ale również wymaga przewodowego połączenia. Co prawda, istnieją technologie USB, które współpracują z bezprzewodowymi adaptatorami, jednak sam standard USB nie jest bezprzewodowy. RS 232 to kolejny przykład standardu szeregowego, znanego ze swojej prostoty i powszechności w starszych urządzeniach, jednak podobnie jak pozostałe wymienione standardy, nie obsługuje transmisji bezprzewodowej. Typowe błędy myślowe prowadzące do wyboru tych opcji mogą wynikać z mylenia pojęć związanych z komunikacją kablową i bezprzewodową, co podkreśla znaczenie zrozumienia różnic pomiędzy tymi technologiami. W kontekście nowoczesnych rozwiązań komunikacyjnych, znajomość standardów bezprzewodowych, takich jak IRDA, jest kluczowa dla efektywnej wymiany danych oraz integracji z nowymi technologiami.

Pytanie 9

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. MAG
B. SAW
C. TIG
D. MIG
Wybór odpowiedzi dotyczących metod TIG, MIG czy SAW wskazuje na pewne nieporozumienia dotyczące zastosowania gazów w procesach spawania. Metoda TIG (Tungsten Inert Gas) opiera się na użyciu tungstenowego elektrody oraz gazu obojętnego, takiego jak argon, co oznacza brak zastosowania gazu chemicznie aktywnego. To sprawia, że metoda TIG nie jest odpowiednia do spawania materiałów podatnych na utlenianie, co czyni ją bardziej skomplikowaną w kontekście spawania stali konstrukcyjnych. Metoda MIG, podobnie jak TIG, także posługuje się gazami obojętnymi, co eliminuje możliwość wpływania aktywnych gazów na proces spawania. Na dodatek, w metodzie SAW (Submerged Arc Welding) stosuje się spawanie pod topnikiem, gdzie gaz nie jest kluczowym elementem procesu, co czyni tę metodę mniej elastyczną w kontekście zastosowań wymagających aktywnych gazów. Zrozumienie różnic między tymi technikami oraz ich odpowiednim zastosowaniem jest kluczowe dla uzyskania wysokiej jakości spoin. W praktyce, wybór odpowiedniej metody spawania powinien być podyktowany specyfiką materiałów oraz wymaganiami technologicznymi danego projektu, co jest zgodne z normami i dobrymi praktykami branżowymi.

Pytanie 10

Jaki element odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. Przełącznik obiegu.
B. Zawór ograniczający ciśnienie.
C. Element dławiący.
D. Element realizujący iloczyn logiczny.
Analizując niepoprawne odpowiedzi, można zauważyć kilka kluczowych błędów konceptualnych. Po pierwsze, element dławiący, choć również istotny w układach hydraulicznymi, służy do regulacji przepływu medium, a nie do jego przełączania. Dławik nie zmienia kierunku przepływu, lecz ogranicza jego ilość, co sprawia, że jest stosowany w innych kontekstach, takich jak kontrola prędkości silników hydraulicznych. Z kolei, element realizujący iloczyn logiczny jest komponentem stosowanym w automatyce, ale nie ma zastosowania w kontekście układów hydraulicznych czy pneumatycznych. Jest on wykorzystywany w systemach sterowania jako element decyzyjny, a nie jako mechanizm do kierowania przepływem medium. Zawór ograniczający ciśnienie, choć pełni ważną rolę w ochronie układów przed nadmiernym ciśnieniem, także nie realizuje funkcji przełączania, a jego zastosowanie koncentruje się na stabilizacji ciśnienia w systemach. Typowym błędem myślowym w przypadku wyboru tych odpowiedzi jest mylenie funkcji różnych komponentów oraz brak zrozumienia ich specyficznych ról w systemach hydraulicznych. Znajomość tych różnic jest kluczowa dla prawidłowego projektowania i eksploatacji układów, co podkreśla znaczenie odpowiedniego szkolenia i edukacji w obszarze technologii hydraulicznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

W układzie pneumatycznym przedstawionym na rysunku po włączeniu zasilania jako pierwszy wysunie się siłownik oznaczony symbolem

Ilustracja do pytania
A. 1A2
B. 1A4
C. 1A1
D. 1A3
Wybierając odpowiedzi 1A1, 1A3 lub 1A4, można napotkać na kilka powszechnych błędów w analizie schematu pneumatycznego. Siłownik 1A1 wymaga powietrza dostarczonego przez zawór, który w stanie spoczynku jest całkowicie zamknięty, co oznacza, że nie ma możliwości, aby wysunął się on jako pierwszy po włączeniu zasilania. Odpowiedzi 1A3 i 1A4 również są wynikiem błędnego zrozumienia sekwencji działania zaworu 5/2. Choć siłownik 1A3 teoretycznie mógłby być przesuwany po pewnym czasie, w pierwszej kolejności powietrze zawsze trafia do 1A2, co jest kluczowe w zastosowaniach wymagających precyzyjnego działania. Kolejnym typowym błędem jest brak uwzględnienia w schemacie działania elektromagnesu, który odgrywa kluczową rolę w przełączaniu kierunku przepływu powietrza. Ignorowanie tej zasady prowadzi do nieprawidłowych wniosków i może skutkować nieefektywnym działaniem systemu pneumatycznego. Zrozumienie interakcji między zaworami a siłownikami jest istotne, aby uniknąć pomyłek, które mogą prowadzić do awarii lub niepoprawnego działania maszyn. Umiejętność analizy schematów i zrozumienia zasad sterowania pneumatycznego jest niezbędna w każdej dziedzinie inżynierii zajmującej się automatyką i hydrauliką.

Pytanie 14

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. rękawic dielektrycznych
B. okularów ochronnych
C. ochronników słuchu
D. kasku ochronnego
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 15

Który z przedstawionych manipulatorów posiada zamknięty łańcuch kinematyczny?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedzi A, B i D mówią o manipulatorach z otwartymi łańcuchami kinematycznymi, a to zasadniczo się różni od tego, co mamy w manipulatorze z C. Te otwarte łańcuchy mają swobodny ruch, ale są bardziej skomplikowane, bo każdy element działa niezależnie. W praktyce są super do zastosowań, gdzie liczy się elastyczność, ale niekoniecznie precyzja. Mylimy tu często te pojęcia, nie zdając sobie sprawy, że delta daje lepszą stabilność i dokładność. Z mojego doświadczenia wynika, że rozumienie tych różnic jest kluczowe, jeśli projektujemy roboty. Trzeba to brać pod uwagę!

Pytanie 16

Cyfrą 1 oznaczono złącze

Ilustracja do pytania
A. IEEE 1294
B. IEE-488
C. BNC
D. D-Sub DE-9
Złącze D-Sub DE-9, oznaczone na zdjęciu cyfrą 1, odgrywa kluczową rolę w komunikacji komputerowej i elektronicznej. Jego charakterystyczna konstrukcja, z dziewięcioma pinami w układzie w kształcie litery 'D', sprawia, że jest ono powszechnie rozpoznawane w branży. To złącze jest często wykorzystywane w interfejsach RS-232 do komunikacji szeregowej, co czyni je bardzo istotnym w kontekście starszych urządzeń komputerowych oraz wielu obecnych aplikacji w automatyce przemysłowej. D-Sub DE-9 jest także często stosowane w kartach graficznych, skanerach, drukarkach oraz urządzeniach peryferyjnych. Wysoka niezawodność i łatwość podłączenia sprawiają, że złącze to pozostaje standardem do dziś. Aby lepiej zrozumieć jego zastosowanie, warto zaznaczyć, że w kontekście interfejsów komputerowych, D-Sub DE-9 umożliwia przesyłanie danych na odległość, co jest kluczowe w wielu aplikacjach przemysłowych oraz w telekomunikacji, gdzie niezawodność połączenia ma fundamentalne znaczenie.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Ile wynosi wartość pojemności kondensatora, przedstawionego na ilustracji?

Ilustracja do pytania
A. 474 μF
B. 470 μF
C. 474 nF
D. 470 nF
Odpowiedź 470 nF jest poprawna, ponieważ oznaczenie "474" na kondensatorze interpretuje się zgodnie z systemem kodowania wartości kondensatorów. Pierwsze dwie cyfry, czyli "47", oznaczają wartość podstawową, a ostatnia cyfra, "4", wskazuje mnożnik, który w tym przypadku wynosi 10^4 pF. Dlatego, przeliczając, otrzymujemy 470000 pF, co równa się 470 nF. W praktyce kondensatory takie jak ten znajdują zastosowanie w filtrach, rezonatorach czy układach czasowych. Znajomość sposobu odczytywania wartości kondensatorów jest kluczowa dla inżynierów elektroniki, ponieważ umożliwia właściwe dobieranie elementów w układach elektronicznych. Warto zaznaczyć, że zgodnie z normą IEC 60384, odpowiednie oznakowanie wartości kondensatorów jest standardem, co ułatwia ich identyfikację i zastosowanie w różnych projektach.

Pytanie 20

Który z elementów tyrystora ma funkcję sterowania?

A. Katoda
B. Bramka
C. Anoda
D. Źródło
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 21

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. awarii stojana silnika
B. przeciążenia instalacji elektrycznej, co może skutkować pożarem
C. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
D. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 22

Lampka sygnalizacyjna RUN w programowalnym sterowniku PLC wskazuje, że

A. istnieje możliwość edytowania nowego programu kontrolnego przy użyciu komputera
B. konieczna jest wymiana baterii zasilającej pamięć RAM sterownika
C. nastąpiła awaria wewnętrzna sterownika
D. program kontrolny znajduje się w pamięci RAM sterownika i może zostać uruchomiony
Świecący element sygnalizacyjny RUN w sterowniku programowalnym PLC wskazuje, że program sterowniczy jest załadowany do pamięci RAM sterownika i jest gotowy do uruchomienia. Pamięć RAM jest kluczowym elementem w systemach PLC, ponieważ służy do przechowywania aktywnego programu oraz danych operacyjnych, co pozwala na dynamiczne sterowanie procesami przemysłowymi. W praktyce oznacza to, że operator może bez problemu uruchomić proces produkcyjny, a także wprowadzać zmiany w czasie rzeczywistym, co jest niezwykle istotne w kontekście elastyczności i efektywności systemów automatyki. W standardach branżowych, takich jak IEC 61131, wyróżnia się różne tryby pracy sterowników, a sygnalizacja RUN jest jednym z podstawowych wskaźników stanu, który informuje o poprawnym działaniu systemu. Prawidłowe działanie tego wskaźnika jest także istotne w kontekście diagnostyki, gdyż pozwala na szybką weryfikację, czy urządzenie jest gotowe do pracy.

Pytanie 23

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. założyć poszkodowanemu opatrunek uciskowy na ranę
B. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
C. założyć poszkodowanemu opatrunek uciskowy poniżej rany
D. umieścić poszkodowanego w bezpiecznej pozycji bocznej
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jaką wielkość fizyczną definiuje się jako ilość ładunku elektrycznego przepływającego przez przekrój poprzeczny przewodnika w jednostce czasu?

A. Indukcyjność przewodnika
B. Rezystancja przewodnika
C. Gęstość prądu elektrycznego
D. Natężenie prądu elektrycznego
Gęstość prądu elektrycznego odnosi się do ilości ładunku elektrycznego przepływającego przez jednostkę powierzchni przekroju poprzecznego przewodnika w danym czasie, co może prowadzić do mylnych wniosków, jeśli nie zostanie właściwie zrozumiane. Podczas gdy gęstość prądu (oznaczana jako 'j') jest istotnym parametrem w kontekście analizy rozkładu prądu w przewodnikach, nie odpowiada ona bezpośrednio na postawione pytanie dotyczące ilości ładunku przepływającego przez przekrój w jednostce czasu. Indukcyjność przewodnika, z kolei, jest miarą jego zdolności do generowania siły elektromotorycznej w odpowiedzi na zmiany prądu i nie ma bezpośredniego związku z ilością ładunku przepływającego w danym czasie. Rezystancja przewodnika określa jego opór dla przepływającego prądu, co również nie jest tym samym co natężenie prądu. Typowe błędy myślowe, które prowadzą do pomyłek przy definiowaniu tych pojęć, często wynikają z mylenia definicji i jednostek, co może być szczególnie problematyczne w kontekście analizy układów elektrycznych. Zrozumienie różnicy między natężeniem prądu a innymi wielkościami, takimi jak gęstość prądu, rezystancja i indukcyjność, jest kluczowe dla prawidłowego projektowania i analizy obwodów elektrycznych oraz dla zapewnienia ich efektywności i bezpieczeństwa.

Pytanie 26

Jakie urządzenie jest wykorzystywane do pomiaru kąta?

A. sensor ultradźwiękowy
B. termoelement
C. tachometr
D. resolver
Resolver jest precyzyjnym urządzeniem stosowanym do pomiaru położenia kątowego w różnych aplikacjach inżynieryjnych, takich jak robotyka, automatyka przemysłowa oraz w systemach kontroli ruchu. Działa na zasadzie pomiaru kątów za pomocą dwóch sygnałów elektrycznych, które są proporcjonalne do aktualnego kąta obrotu. Dzięki temu, resolver zapewnia wysoką dokładność oraz możliwość pracy w trudnych warunkach, takich jak wysokie temperatury czy wibracje. Znalezienie zastosowania w systemach sterowania serwonapędami to jeden z przykładów efektywnego wykorzystania resolvera, gdzie precyzja pomiaru jest kluczowa dla prawidłowego działania układów napędowych. W praktyce, stosowanie resolverów przyczynia się do poprawy efektywności operacyjnej oraz minimalizacji błędów w systemach automatyki, co jest zgodne z najlepszymi praktykami w branży inżynieryjnej.

Pytanie 27

W układzie przedstawionym na ilustracji wykonano pomiary rezystancji pomiędzy punktem zasilania +24 V a kolejnymi punktami wejściowymi sterownika PLC. Otrzymane wyniki zapisano w tabeli. Które elementy (łączniki sterownicze, kontaktrony) powinny zostać wymienione?

Mierzony
odcinek
Wartość zmierzonej
rezystancji
+24 V / WE11,02 Ω
+24 V / WE2
+24 V / WE3
+24 V / WE42,04 Ω
+24 V / WE5
+24 V / WE62,12 Ω
Ilustracja do pytania
A. S0 i S1
B. B3 i B5
C. B2 i B4
D. S0 i B2
Wybór odpowiedzi B3 i B5 jest poprawny ze względu na analizę wartości rezystancji zmierzonych pomiędzy punktem zasilania a wejściami sterownika PLC. Normą dla sprawnych połączeń jest niska rezystancja, co wskazuje na prawidłowe funkcjonowanie obwodu. Wartości rezystancji dla WE2 oraz WE5 wynoszą nieskończoność, co sugeruje, że występuje przerwa w obwodzie. W tym przypadku należy skupić się na łącznikach B3 i B5, które są odpowiedzialne za te połączenia. Wymiana tych elementów jest kluczowa dla zapewnienia ciągłości pracy systemu i unikania błędów w sterowaniu. W kontekście stosowania urządzeń automatyki, ważne jest, aby regularnie przeprowadzać pomiary rezystancji oraz analizować wyniki, co pozwala na wczesne wykrywanie usterek i planowanie konserwacji. Praktyczne przykład to regularne inspekcje instalacji, które mogą zapobiec awariom i wpłynąć na wydajność całego układu.

Pytanie 28

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. magnetooptyczne (Faradaya)
B. piezoelektryczne
C. magnotorezystancji (Gaussa)
D. zwane efektem Dopplera
Zjawiska piezoelektryczne, zwane efektem Dopplera oraz magnetooptyczne (Faradaya) z pewnością są interesującymi i ważnymi fenomenami, jednak nie odnoszą się one bezpośrednio do przekształcania przemieszczenia liniowego na sygnał elektryczny w takim samym stopniu jak magnotorezystancja. Zjawisko piezoelektryczne polega na generowaniu ładunku elektrycznego w materiale pod wpływem mechanicznego nacisku, co czyni je użytecznym w niektórych zastosowaniach, ale nie w kontekście szerokiego zakresu czujników przemieszczenia. Efekt Dopplera, z kolei, odnosi się do zmiany częstotliwości fali w przypadku ruchu źródła lub obserwatora, co ma zastosowanie głównie w akustyce i optyce, a nie w pomiarze przemieszczenia. Zjawisko magnetooptyczne (Faradaya) związuje się z oddziaływaniem pola magnetycznego na światło, oraz zmiany jego polaryzacji, co ma ograniczone zastosowanie w kontekście przemieszczenia liniowego. Błąd w wyborze odpowiedzi może wynikać z mylnego przekonania o uniwersalności tych zjawisk, mimo że każde z nich posiada swoje specyficzne zastosowanie. W kontekście czujników przemieszczenia, kluczowe jest rozumienie, które zjawiska oferują najlepsze właściwości dla danych aplikacji, a magnotorezystancja wyróżnia się tutaj jako najbardziej efektywne rozwiązanie. Analizując temat, warto zwrócić uwagę na standardy i praktyki branżowe, które wskazują na preferencje dotyczące wyboru odpowiednich technologii w zależności od wymagań aplikacji.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zgrzewania
B. Zaginania
C. Spawania
D. Klejenia
Zaginanie to proces, który polega na deformacji materiału w celu nadania mu odpowiedniego kształtu, ale nie łączy trwale dwóch lub więcej elementów. W kontekście tworzyw sztucznych, zaginanie może być wykorzystane do formowania jednego elementu, na przykład przy produkcji obudów czy detali dekoracyjnych. Nie wymaga to jednak żadnych dodatkowych technik łączenia, co czyni je nieodpowiednim wyborem do trwałego łączenia. Techniki takie jak zgrzewanie, spawanie czy klejenie są stosowane do tworzenia trwałych połączeń, natomiast zaginanie jest bardziej procesem wytwórczym. Zgodnie z normami branżowymi, takimi jak ISO 527 dotyczące właściwości mechanicznych tworzyw sztucznych, zginanie może być stosowane do testowania elastyczności materiałów, ale nie do ich łączenia. Przykładem zastosowania zaginania może być produkcja elementów meblowych, gdzie tworzywa sztuczne są formowane w odpowiednie kształty bez potrzeby ich łączenia z innymi elementami. Dlatego zaginanie jest techniką, która doskonale sprawdza się w kształtowaniu detali, ale nie w ich trwałym łączeniu.

Pytanie 32

Które z narzędzi należy zastosować do usuwania nadmiaru roztopionego lutu z miejsca lutowania?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Narzędzie oznaczone literą "C" to lutowarka z odsysaczem, znana również jako desoldering pump, która jest kluczowym elementem w procesie lutowania. Umożliwia ona skuteczne usunięcie nadmiaru roztopionego lutu z miejsca lutowania, co jest niezbędne dla uzyskania czystych i trwałych połączeń. W praktyce, lutowarka z odsysaczem działa poprzez wytworzenie podciśnienia w momencie kontaktu z lutem, co pozwala na jego natychmiastowe wciągnięcie. To narzędzie jest szczególnie przydatne w sytuacjach, gdy konieczne jest poprawienie lub usunięcie lutowanych komponentów bez uszkodzenia płytki drukowanej. Zgodnie z najlepszymi praktykami w branży elektroniki, stosowanie odsysaczy jest rekomendowane do zabezpieczenia jakości połączeń, ponieważ nadmiar lutu może prowadzić do zwarć oraz nieprawidłowego działania układów. Ponadto, użycie lutowarki z odsysaczem jest zalecane w standardach przemysłowych dotyczących lutowania, aby zapewnić wysoką jakość wykonania oraz niezawodność produktów.

Pytanie 33

Jaki rodzaj łożyska został przedstawiony na rysunku?

Ilustracja do pytania
A. Baryłkowe.
B. Walcowe.
C. Igiełkowe.
D. Stożkowe.
Wybór odpowiedzi dotyczącej łożysk walcowych, baryłkowych czy igiełkowych jest wynikiem nieporozumienia w kwestii ich konstrukcji oraz zastosowań. Łożyska walcowe, choć również efektywne w przenoszeniu obciążeń promieniowych, nie są w stanie efektywnie przenosić obciążeń osiowych, co ogranicza ich użyteczność w wielu aplikacjach, gdzie wymagana jest taka funkcjonalność. Z kolei łożyska baryłkowe, podobnie jak walcowe, są zaprojektowane do przenoszenia obciążeń radialnych, ale ich konstrukcja i zastosowanie są inne. Zwykle stosowane są w aplikacjach, gdzie przestrzeń jest ograniczona, lecz nie przenoszą obciążeń osiowych z taką wydajnością jak łożyska stożkowe. Łożyska igiełkowe, z drugiej strony, posiadają długie i cienkie elementy toczne, co również czyni je nieodpowiednimi do zastosowań wymagających przenoszenia dużych obciążeń osiowych i promieniowych. Wybierając niewłaściwy typ łożyska, można narazić maszynę na szybkie zużycie lub nawet awarię, co jest sprzeczne z najlepszymi praktykami inżynieryjnymi. Dlatego tak ważne jest zrozumienie różnic między typami łożysk oraz ich właściwych zastosowań, aby uniknąć nieefektywności i problemów w działaniu systemów mechanicznych.

Pytanie 34

Podzespół instalacji pneumatycznej, którego fragment dokumentacji technicznej przedstawiono poniżej, służy do usuwania

Dane techniczne:

  • całość można rozmontować i użyć jako osobne urządzenia (filtro-reduktor i olejarka)
  • filtr to podstawa do otrzymania czystego powietrza szczególnie w lakiernictwie
  • zalecany dla wszystkich pneumatycznych narzędzi takich jak: klucze, piły pneumatyczne, młotki itd.
  • ciśnienie jest dokładnie ustawialne dzięki zastosowanemu regulatorowi na filtrze
  • można też dokładnie ustawić wielkość mgły olejowej poprzez śrubę regulacyjną
  • filtr jest wyposażony w półautomatyczny spust kondensatu
  • przepływ powietrza na poziomie 750 l/min.
Ilustracja do pytania
A. wilgoci z powietrza oraz stabilizowania jego ciśnienia i temperatury.
B. zanieczyszczeń powietrza w postaci drobin stałych, redukowania ciśnienia i naolejania powietrza.
C. oleju, wilgoci i wytwarzania nadciśnienia powietrza.
D. zanieczyszczeń powietrza w postaci drobin stałych i cząstek oleju.
Wybór nieprawidłowej odpowiedzi wskazuje na pewne nieporozumienia dotyczące roli podzespołu instalacji pneumatycznej. Zanieczyszczenia powietrza to kluczowy element, który musi być skutecznie kontrolowany, aby zapewnić optymalną wydajność narzędzi pneumatycznych. Odpowiedzi sugerujące, że podzespół zajmuje się usuwaniem wilgoci lub stabilizowaniem ciśnienia i temperatury, mogą prowadzić do błędnych wniosków. Wilgoć w układzie pneumatycznym może prowadzić do korozji i uszkodzeń, a stabilizacja ciśnienia i temperatury to zadanie, które bardziej przypisane jest innym systemom. Niepoprawne odpowiedzi mogą także sugerować, że redukcja ciśnienia oraz naolejanie są niezwiązane z usuwaniem zanieczyszczeń, co jest nieprawdziwe. Te elementy są kluczowe w kontekście prawidłowego funkcjonowania systemów pneumatycznych, a ich niewłaściwe zrozumienie może prowadzić do nieefektywności w procesach przemysłowych. Właściwe zastosowanie filtrów, reduktorów i oliwiarek stanowi fundament dobrej praktyki w inżynierii pneumatycznej, a ich prawidłowe funkcjonowanie ma za zadanie nie tylko poprawić wydajność, ale również wydłużyć żywotność sprzętu. Niezrozumienie tych aspektów prowadzi do ryzyka awarii i zwiększenia kosztów związanych z konserwacją i naprawami.

Pytanie 35

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 10 V
B. 15 V
C. 25 V
D. 5 V
Scalone układy cyfrowe wykonane w technologii TTL (Transistor-Transistor Logic) są zaprojektowane do pracy z napięciem zasilania wynoszącym 5 V. To napięcie jest standardem w branży, zapewniającym stabilną i niezawodną pracę tych układów. Dzięki temu, że TTL operuje na niskim napięciu, układy te charakteryzują się mniejszym zużyciem energii, co jest korzystne w zastosowaniach mobilnych oraz w systemach zasilanych z baterii. W praktyce, układy TTL są powszechnie wykorzystywane w różnych aplikacjach, takich jak obliczenia cyfrowe, sterowanie procesami oraz w systemach automatyki. Dobre praktyki w projektowaniu obwodów cyfrowych zalecają używanie stabilnych źródeł zasilania, aby zminimalizować ryzyko zakłóceń oraz błędów w działaniu układów. Dodatkowo, w niektórych zastosowaniach, takich jak komunikacja szeregowa, dokładne napięcie zasilania jest kluczowe do zapewnienia odpowiedniej wydajności i zgodności z innymi komponentami systemu. Warto również pamiętać, że nieprzestrzeganie tych specyfikacji może prowadzić do uszkodzenia układów oraz obniżenia ich żywotności.

Pytanie 36

Wskaż rodzaj zaworu przedstawiony za pomocą symbolu graficznego.

Ilustracja do pytania
A. Szybkiego spustu.
B. Dławiąco-zwrotny.
C. Przełącznik obiegu.
D. Podwójnego sygnału.
Wybór odpowiedzi związanych z innymi rodzajami zaworów, takimi jak dławiąco-zwrotny, podwójnego sygnału czy szybkiego spustu, może wynikać z pewnych nieporozumień dotyczących ich funkcji i zastosowania. Zawór dławiąco-zwrotny jest zaprojektowany do regulacji przepływu medium poprzez zmianę jego oporu, co nie jest charakterystyczne dla przełącznika obiegu. W przypadku zaworu podwójnego sygnału, jego funkcja polega na umożliwieniu równoczesnego sterowania dwoma różnymi obiegami, co nie odpowiada definicji przełącznika obiegu, który obsługuje tylko jeden sygnał w danym momencie. Zawór szybkiego spustu z kolei, jak nazwa sugeruje, służy do błyskawicznego odprowadzenia medium z układu, co również różni się od funkcji przełącznika, który nie ma na celu nagłego spustu, lecz logiczne sterowanie obiegiem. Dobrą praktyką w inżynierii hydraulicznej i pneumatycznej jest znajomość symboliki zaworów oraz ich zastosowania, co przyczynia się do precyzyjnego projektowania systemów i unikania pomyłek podczas ich eksploatacji. Wybór niewłaściwego zaworu może prowadzić do nieefektywnego działania systemu oraz zwiększenia kosztów operacyjnych.

Pytanie 37

Jakiego rodzaju łożysko zostało przedstawione na rysunku?

Ilustracja do pytania
A. Baryłkowe.
B. Wałeczkowe.
C. Kulkowe.
D. Walcowe.
Odpowiedź "Kulkowe." jest poprawna, ponieważ na przedstawionym rysunku widoczne są kulki jako elementy toczne, co jest charakterystyczne dla łożysk kulkowych. Łożyska kulkowe są powszechnie stosowane w wielu urządzeniach mechanicznych, takich jak silniki, przenośniki czy maszyny przemysłowe, gdzie istotna jest niska odporność na tarcie i wysoka precyzja ruchu. Dzięki zastosowaniu kulek, które toczą się między wewnętrzną a zewnętrzną pierścieniową powierzchnią, możliwe jest uzyskanie wyjątkowo płynnego obrotu, co przekłada się na dłuższą żywotność maszyn i mniejsze zużycie energii. Standardy branżowe, takie jak ISO 281, definiują parametry i metody testowania łożysk kulkowych, co potwierdza ich znaczenie w inżynierii mechanicznej. Dodatkowo, łożyska kulkowe są dostępne w różnych rozmiarach oraz wykonaniach, co pozwala na ich szeroką adaptację do różnych zastosowań, zwiększając ich wszechstronność.

Pytanie 38

Na rysunku zamieszczono element, który zabezpiecza przed

Ilustracja do pytania
A. zwarciem doziemnym.
B. zwarciem i przeciążeniem.
C. chwilowym zanikiem napięcia.
D. gwałtownym wzrostem napięcia.
W przypadku wyboru odpowiedzi dotyczącej zwarcia i przeciążenia, należy zauważyć, że wyłączniki różnicowoprądowe nie są zaprojektowane do ochrony przed przeciążeniem. Ich funkcja koncentruje się na detekcji prądu różnicowego, co oznacza, że nie wykryją one sytuacji, w których prąd przekracza wartości nominalne, co jest typowe dla przeciążeń. Zamiast tego, do ochrony przed przeciążeniem stosuje się wyłączniki nadprądowe, które działają na innej zasadzie. Z kolei odpowiedź dotycząca chwilowego zaniku napięcia jest również błędna, ponieważ wyłączniki różnicowoprądowe nie reagują na zmiany w napięciu, lecz na różnice w prądzie. Gwałtowny wzrost napięcia, z kolei, może zagrażać urządzeniom elektrycznym, lecz wyłączniki różnicowoprądowe nie są w stanie zabezpieczyć przed takimi zdarzeniami; do tego celu stosuje się ograniczniki przepięć. Warto również podkreślić, że mylenie tych elementów ochronnych prowadzi do poważnych błędów w projektowaniu i eksploatacji instalacji elektrycznych, co może stwarzać zagrożenie zarówno dla ludzi, jak i dla mienia. Dlatego ważne jest, aby rozumieć różnice między tymi urządzeniami oraz ich specyficzne zastosowania w kontekście ochrony przed różnymi rodzajami zagrożeń elektrycznych.

Pytanie 39

Jakie urządzenie można zastosować do pomiaru siły nacisku generowanej przez prasę pneumatyczną?

A. hallotron
B. pirometr
C. szczelinomierz
D. tensometr
Tensometr to urządzenie służące do pomiaru deformacji materiałów, co czyni go idealnym narzędziem do pomiaru siły nacisku wytwarzanej przez prasę pneumatyczną. Działa na zasadzie pomiaru zmiany oporu elektrycznego, który jest proporcjonalny do deformacji ciała stałego. W praktyce, tensometry są często stosowane w przemyśle do monitorowania obciążeń w różnych maszynach, w tym prasach hydraulicznych i pneumatycznych. Dzięki zastosowaniu tensometrów można na bieżąco kontrolować siłę nacisku, co jest niezwykle ważne dla zapewnienia bezpieczeństwa oraz efektywności procesów produkcyjnych. W standardach branżowych, takich jak ISO, zaleca się regularne stosowanie tensometrów w aplikacjach związanych z kontrolą jakości i monitorowaniem wydajności maszyn. Dodatkowo, zrozumienie działania tensometrów pozwala inżynierom na efektywniejsze projektowanie i optymalizację systemów mechanicznych.

Pytanie 40

Przekładnia przedstawiona na rysunku składa się

Ilustracja do pytania
A. ze ślimaka i zębatki.
B. z koła koronowego i ślimaka.
C. z wieńca zębatego i ślimaka.
D. ze ślimaka i ślimacznicy.
Zrozumienie konstrukcji przekładni mechanicznych jest kluczowe dla rozwiązywania problemów inżynieryjnych, jednak wiele popularnych nieporozumień może prowadzić do błędnych wniosków. Często odpowiedzi, które wskazują na elementy takie jak koło koronowe, zębatka lub wieńcowe zębatki, wykazują braki w zrozumieniu ich funkcji i zastosowań. Koło koronowe oraz zębatka to elementy typowe dla przekładni zębatych, a ich rola w przenoszeniu momentu obrotowego jest diametralnie różna od funkcji, jakie pełni ślimak i ślimacznica. Zębatki działają na zasadzie zębatek, gdzie zęby bezpośrednio wchodzą w kontakt, podczas gdy ślimak i ślimacznica współpracują na zasadzie współdziałania spiralnego kształtu, co pozwala na uzyskanie redukcji prędkości obrotowej i zwiększenia momentu obrotowego. Niezrozumienie różnicy między tymi typami przekładni może prowadzić do osłabienia całego systemu napędowego czy jego awarii. W praktyce inżynieryjnej, wybór odpowiedniego typu przekładni ma kluczowe znaczenie dla efektywności, gdyż każda z nich ma swoje specyficzne zastosowania oraz ograniczenia, które należy uwzględnić w projekcie. Zbyt często jednak, projektanci nie dostrzegają, że elementy mechaniczne muszą być odpowiednio dobrane do funkcji, jakie mają spełniać w danym systemie. Właściwe rozumienie tego, jak poszczególne części wpływają na całokształt działania maszyny, jest fundamentalne dla sukcesu każdego projektu inżynieryjnego.