Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 listopada 2025 15:31
  • Data zakończenia: 19 listopada 2025 15:44

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie informacje powinien zawierać raport z realizowanych prac konserwacyjnych frezarki numerycznej?

A. Kosztorys oraz opis przeprowadzonych działań, a także podpis osoby odpowiedzialnej za konserwację
B. Miejsce i datę oraz kosztorys przeprowadzonej konserwacji
C. Miejsce i datę, a także czas realizacji prac konserwacyjnych
D. Datę i opis wykonanych prac oraz podpis osoby odpowiedzialnej za konserwację
Protokół z prac konserwacyjnych frezarki numerycznej to coś, co musi mieć kilka ważnych rzeczy. Po pierwsze, musi być w nim data i opis tego, co dokładnie zrobiono. To jest mega ważne, żeby wiedzieć, co się działo z maszyną w czasie jej użytkowania. Dzięki temu łatwiej ogarnąć, kiedy powinny być następne przeglądy. A opis prac pozwala zobaczyć, co się zmieniło, co jest kluczowe, gdy planujemy przyszłe naprawy. I jeszcze podpis wykonawcy – to też istotne, bo jeśli coś się stanie, to wiemy, że to robił ktoś kompetentny. I wiesz, w kontekście norm ISO, taki protokół jest podstawą do audytów i kontroli jakości, co w produkcji ma ogromne znaczenie. Kiedy urządzenie się psuje, dobrze napisana dokumentacja ułatwia szybką diagnozę problemu, co jest bardzo pomocne.

Pytanie 2

Na podstawie fragmentu instrukcji określ, co należy zrobić przed zamontowaniem reduktora podczas podłączania butli z gazem ochronnym do półautomatu spawalniczego.

Podłączenie gazu ochronnego
1. Butlę z odpowiednim gazem ochronnym należy ustawić obok półautomatu i zabezpieczyć ją przed przewróceniem się.
2. Zdjąć zabezpieczający ją kołpak i na moment odkręcić zawór butli w celu usunięcia ewentualnych zanieczyszczeń.
3. Zamontować reduktor tak, aby manometry były w pozycji pionowej.
4. Połączyć półautomat z butlą wężem.
5. Odkręcić zawór reduktora tylko przed przystąpieniem do spawania. Po zakończeniu spawania, zawór butli należy zakręcić.
A. Podłączyć wąż do półautomatu i do butli.
B. Ustawić poziomo butlę z gazem ochronnym.
C. Zdjąć kołpak z butli i na krótką chwilę odkręcić zawór butli.
D. Odkręcić zawór reduktora na czas montażu, a następnie go zakręcić.
Zdejmowanie kołpaka z butli oraz chwilowe odkręcenie zaworu butli jest kluczowym krokiem przed montażem reduktora. Kołpak działa jako zabezpieczenie, chroniące zawór przed uszkodzeniem oraz zanieczyszczeniami, które mogą wpłynąć na jakość gazu podczas użytkowania. Krótkie odkręcenie zaworu pozwala na wydostanie się niewielkiej ilości gazu, co pomaga w usunięciu zanieczyszczeń, takich jak kurz czy resztki, które mogą znajdować się w zaworze. Zgodnie z dobrymi praktykami w branży spawalniczej, takie działania zapobiegają późniejszym problemom, które mogą wystąpić w trakcie pracy, jak np. nieprawidłowe ciśnienie gazu, które wpłynie na jakość spawania. Dbanie o detale w procedurach przygotowawczych zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Obowiązujące normy dotyczące bezpieczeństwa, takie jak PN-EN ISO 2503, podkreślają znaczenie czystości i bezpieczeństwa przy podłączaniu urządzeń gazowych, co czyni ten krok nieodzownym elementem procesu.

Pytanie 3

Która z podanych kategorii regulatorów powinna być brana pod uwagę w projekcie systemu mechatronicznego o nieciągłej regulacji temperatury?

A. Proporcjonalny
B. Różniczkujący
C. Dwustawny
D. Całkujący
Odpowiedź "dwustawny" jest prawidłowa, ponieważ regulator dwustawny jest idealnym rozwiązaniem w systemach mechatronicznych, które wymagają nieciągłej regulacji temperatury. Tego typu regulator działa na zasadzie włączania i wyłączania elementu wykonawczego, takiego jak grzałka, w zależności od aktualnej temperatury w stosunku do zadanej wartości. Przykładowo, w systemach ogrzewania, gdy temperatura spada poniżej progu, regulator włącza grzałkę, a gdy temperatura osiąga wartość docelową, grzałka jest wyłączana. Taka strategia regulacji jest nie tylko energooszczędna, ale także prosta w implementacji. Zastosowanie regulatora dwustawnego jest zgodne z dobrymi praktykami w projektowaniu systemów automatyki, gdzie kluczowe jest zapewnienie stabilności i efektywności energetycznej. Standardy takie jak IEC 61131 w kontekście programowania sterowników PLC również podkreślają użycie regulatorów, które najlepiej pasują do charakterystyki danego procesu, co potwierdza wybór regulatora dwustawnego w tym przypadku.

Pytanie 4

Według zasad rysowania schematów układów pneumatycznych, symbolem składającym się z litery A oraz cyfr oznacza się

A. elementy sygnalizacyjne
B. pompy
C. zawory pneumatyczne
D. siłowniki
Odpowiedź "siłowniki" jest poprawna, ponieważ zgodnie z międzynarodowymi standardami rysowania schematów układów pneumatycznych, litera A w symbolach literowo-cyfrowych odnosi się do elementów wykonawczych, jakimi są siłowniki. Siłowniki pneumatyczne przekształcają energię sprężonego powietrza w ruch mechaniczny, co jest kluczowe w automatyzacji procesów przemysłowych. Mogą występować w różnych formach, takich jak siłowniki liniowe, które poruszają się w linii prostej, oraz siłowniki obrotowe, które wykonują ruch obrotowy. W praktyce siłowniki są wykorzystywane w takich zastosowaniach jak podnoszenie, przesuwanie lub obracanie elementów w maszynach przemysłowych. Zrozumienie i umiejętność prawidłowego oznaczania tych komponentów jest niezbędna dla inżynierów i techników pracujących w dziedzinie pneumatyki, aby zapewnić efektywne projektowanie i eksploatację systemów pneumatycznych, zgodnie z normami ISO 1219 oraz PN-EN 982, które określają zasady rysowania schematów oraz oznaczeń dla takich układów.

Pytanie 5

Podczas przeglądu silnika trójfazowego frezarki numerycznej wykonano pomiary rezystancji uzwojeń i rezystancji izolacji, zamieszczone w tabeli. Wyniki te wskazują na

Pomiar między zaciskamiU1-U2V1-V2W1-W2U1-V1V1-W1U1-W1U1-PEV1-PEW1-PE
Wynik22 Ω21,5 Ω22,2 Ω52 MΩ49 MΩ30 Ω
A. przerwę w uzwojeniu V1-V2.
B. zwarcie między uzwojeniem W1-W2, a obudową silnika.
C. zwarcie między uzwojeniami U1-U2 oraz W1-W2.
D. przerwę w uzwojeniu U1-U2.
W przypadku analizowania niepoprawnych odpowiedzi, warto zwrócić uwagę na szereg kluczowych aspektów, które mogą prowadzić do nieporozumień. Po pierwsze, twierdzenie o przerwie w uzwojeniu U1-U2 jest w tym kontekście błędne, ponieważ właściwe pomiary rezystancji nie wskazują na takie uszkodzenie. Przerwa w uzwojeniu zazwyczaj charakteryzuje się znacznie wyższymi wartościami rezystancji, co nie miało miejsca w analizowanych wynikach. Kolejną mylną koncepcją jest zwarcie między uzwojeniami U1-U2 oraz W1-W2; wyniki testów jasno pokazują, że rezystancje tych uzwojeń mieszczą się w normalnych zakresach, co eliminuje tę możliwość. Można również zauważyć, iż nazywanie niskiej rezystancji izolacji między uzwojeniem W1-W2 a obudową silnika jako zwarcia to typowy błąd myślowy wynikający z niepełnego zrozumienia zasad działania silników elektrycznych i ich izolacji. Często mylnie interpretowane są wyniki pomiarów, co prowadzi do nieprawidłowego diagnozowania usterki. Aby uniknąć takich błędów, zaleca się stosowanie sprawdzonych metod diagnostycznych oraz weryfikacji wyników pomiarów zgodnie z przyjętymi standardami, np. IEC 60034, które dokładnie określają, jakie wartości izolacji są akceptowalne dla różnych typów silników. Wiedza na temat norm i praktycznych aspektów diagnostyki silników elektrycznych jest kluczowa dla utrzymania bezpieczeństwa i efektywności pracy urządzeń.

Pytanie 6

Jakie zalecenie dotyczące weryfikacji ciągłości obwodu ochronnego urządzeń zaprojektowanych w I klasie ochronności powinno być zawarte w dokumentacji eksploatacyjnej urządzeń elektrycznych?

A. Pomiar wykonuje się pomiędzy stykiem fazowym wtyczki, a metalowymi elementami obudowy urządzenia
B. Pomiar wykonuje się pomiędzy stykiem ochronnym wtyczki, a metalowymi elementami obudowy urządzenia
C. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem neutralnym wtyczki
D. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem fazowym wtyczki
Pomiar ciągłości obwodu ochronnego dla urządzeń wykonanych w I klasie ochronności jest kluczowy dla zapewnienia bezpieczeństwa ich użytkowania. Właściwe wykonanie tego pomiaru polega na sprawdzeniu ciągłości połączenia między stykiem ochronnym wtyczki a metalowymi elementami obudowy urządzenia, ponieważ obwód ochronny ma za zadanie odprowadzenie ewentualnych prądów upływowych do ziemi, co skutecznie zapobiega porażeniu prądem. Zgodnie z normami, takimi jak PN-IEC 60364, każdy element metalowy, mogący stać się naładowany w przypadku uszkodzenia izolacji, musi być odpowiednio uziemiony. W praktyce, wykonując ten pomiar, możemy użyć urządzenia pomiarowego, które umożliwia sprawdzenie oporności między tymi punktami. Niska wartość oporności wskazuje na dobrą ciągłość obwodu ochronnego. Dobrą praktyką jest również regularne przeprowadzanie takich pomiarów w ramach konserwacji urządzeń, aby zapewnić ich bezpieczeństwo i sprawność.

Pytanie 7

Aby zmienić kierunek obrotu wirnika silnika bocznikowego prądu stałego bez przesterowania maszyny, co należy zrobić?

A. zmienić kierunek prądu w uzwojeniu wzbudzenia
B. zmienić kierunek prądu w uzwojeniu komutacyjnym
C. zamienić miejscami dwa przewody podłączone do źródła zasilania
D. zmienić kierunek prądu w uzwojeniu twornika
Zmiana zwrotu prądu w uzwojeniu twornika jest kluczowa dla kierunku obrotów wirnika silnika bocznikowego prądu stałego. W tym typie silnika, wirnik umieszczony w polu magnetycznym wytwarzanym przez uzwojenie wzbudzenia, obraca się w wyniku oddziaływania na niego siły elektromotorycznej. Zmiana kierunku prądu w uzwojeniu twornika nie tylko modyfikuje kierunek pola magnetycznego, ale także wpływa na wytwarzaną siłę napędową, co jest niezbędne dla odwrócenia kierunku obrotów. W praktyce, zmiana kierunku obrotów może być używana w aplikacjach takich jak wózki widłowe czy napędy elektryczne, gdzie sterowanie kierunkiem obrotów jest niezbędne dla efektywności i bezpieczeństwa operacyjnego. Wiedza ta jest zgodna z najlepszymi praktykami w dziedzinie elektrotechniki, gdzie precyzyjne zarządzanie prądem i polem magnetycznym zapewnia optymalną wydajność urządzeń elektrycznych.

Pytanie 8

Radiator, który ma zanieczyszczenia z pasty termoprzewodzącej, powinien być oczyszczony przy użyciu

A. alkoholu izopropylowego
B. wody destylowanej
C. gazu technicznego
D. sprężonego powietrza
Alkohol izopropylowy jest idealnym środkiem do czyszczenia radiatorów z pasty termoprzewodzącej. Jego właściwości rozpuszczające pozwalają skutecznie usunąć zanieczyszczenia, nie uszkadzając przy tym delikatnych powierzchni radiatora. W praktyce, stosowanie alkoholu izopropylowego jest powszechną metodą w branży elektroniki, gdzie czystość komponentów jest kluczowa dla ich prawidłowego działania. Przygotowując radiator do ponownego montażu, należy upewnić się, że wszelkie resztki pasty termoprzewodzącej zostały całkowicie usunięte, aby zapewnić efektywne przewodnictwo cieplne. Alkohol izopropylowy, ze względu na swoją szybkość odparowywania, minimalizuje ryzyko pozostawienia wilgoci na czyszczonej powierzchni. Warto również zaznaczyć, że stosowanie alkoholu izopropylowego jest zgodne z najlepszymi praktykami w zakresie konserwacji sprzętu elektronicznego, co potwierdzają liczne standardy branżowe, takie jak IPC-7711/7721 dotyczące naprawy i konserwacji elektronicznych obwodów drukowanych.

Pytanie 9

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego wskaż wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres
głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4
A. 2,0 mm
B. 5,0 mm
C. 0,8 mm
D. 0,5 mm
Wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej, wynosi 5,0 mm. Zgodnie z danymi katalogowymi, podczas obróbki zgrubnej zaleca się głębokości skrawania wynoszące co najmniej 4 mm, co czyni tę odpowiedź poprawną. Ustalenie optymalnej głębokości skrawania jest kluczowe dla efektywności procesu obróbczy. Zbyt mała głębokość może prowadzić do wydłużenia czasu obróbki oraz niższej efektywności materiałowej, podczas gdy zbyt duża głębokość może powodować nadmierne obciążenie narzędzia, co w skrajnych przypadkach prowadzi do jego uszkodzenia. W praktyce, głębokość skrawania powinna być dostosowywana do rodzaju materiału oraz rodzaju narzędzia. Przykładowo, w obróbce stali narzędziowej często stosuje się głębokości skrawania w zakresie 5-10 mm, co zwiększa wydajność procesu i zmniejsza ryzyko przegrzania narzędzi. Dla zachowania wysokiej jakości obróbki, warto również monitorować stan narzędzia podczas pracy oraz stosować odpowiednie chłodziwa, co wpływa na jego trwałość i efektywność skrawania.

Pytanie 10

Jakie oprogramowanie komputerowe, które między innymi zajmuje się zbieraniem, wizualizacją, archiwizowaniem danych oraz alarmowaniem i kontrolą procesów, monitoruje przebieg procesów w systemach?

A. SCADA
B. CAD
C. CNC
D. CAM
SCADA, czyli Supervisory Control and Data Acquisition, to naprawdę fajne oprogramowanie, które ma kluczowe znaczenie w automatyzacji różnych procesów w przemyśle. Głównie zajmuje się zbieraniem danych z różnych czujników i urządzeń, a potem pokazuje je w zrozumiały sposób na ładnych interfejsach graficznych. W dodatku, SCADA archiwizuje te informacje, żeby można było je później analizować. Co ciekawe, jeżeli coś idzie nie tak, to potrafi alarmować operatorów, a także kontrolować urządzenia na bieżąco. Jest to mega ważne dla zachowania ciągłości i bezpieczeństwa. Na przykład, w energetyce SCADA monitoruje różne parametry, jak ciśnienie czy temperatura, co jest kluczowe dla prawidłowego działania. Jeśli chodzi o standardy, to ISA-95 mówi o tym, jak skutecznie integrować SCADA z innymi systemami, co naprawdę może poprawić efektywność i zminimalizować błędy.

Pytanie 11

W systemie hydraulicznym maksymalne ciśnienie robocze płynu wynosi 20 MPa. Jaki powinien być minimalny zakres pomiarowy manometru zamontowanego w tym systemie?

A. 0÷160 barów
B. 0÷250 barów
C. 0÷25 barów
D. 0÷10 barów
Wybór zakresu pomiarowego 0÷250 barów dla manometru zainstalowanego w układzie hydraulicznym, w którym maksymalne ciśnienie robocze wynosi 20 MPa, jest poprawny z kilku powodów. Po pierwsze, manometr powinien mieć zakres pomiarowy wyższy niż maksymalne ciśnienie, aby zapewnić dokładność i bezpieczeństwo pomiaru. Wybierając manometr o zakresie 0÷250 barów, uzyskujemy rezerwę bezpieczeństwa wynoszącą 5 MPa, co jest zgodne z praktykami branżowymi, gdzie standardem jest posiadanie co najmniej 25% zapasu nad maksymalne ciśnienie robocze. Takie podejście minimalizuje ryzyko przekroczenia zakresu pomiarowego i potencjalnych uszkodzeń urządzenia. Przykładowo, w przemyśle budowlanym i motoryzacyjnym, gdzie ciśnienia robocze mogą się szybko zmieniać, dobór odpowiedniego manometru jest kluczowy dla bezpieczeństwa i efektywności procesów. Ponadto, manometry z wyższymi zakresami pomiarowymi są bardziej odporne na uszkodzenia mechaniczne oraz lepiej radzą sobie z wysokimi impulsami ciśnienia, co jest istotne w dynamicznych układach hydraulicznych.

Pytanie 12

Jakie minimalne parametry bitowe powinien mieć przetwornik A/C, aby w zakresie pomiarowym
0 mA ÷ 20 mA osiągnąć rozdzielczość w zaokrągleniu równą 0,01 mA?

A. 11 bitowy
B. 10 bitowy
C. 12 bitowy
D. 16 bitowy
Aby zapewnić rozdzielczość równą 0,01 mA w zakresie pomiarowym od 0 mA do 20 mA, niezbędne jest zastosowanie przetwornika A/C, który potrafi obsłużyć co najmniej 2000 poziomów kwantyzacji. Przetwornik 11-bitowy, oferujący 2048 poziomów kwantyzacji, spełnia to wymaganie, ponieważ umożliwia osiągnięcie pożądanej dokładności. W praktyce oznacza to, że dla każdego odczytu prądu możemy precyzyjnie określić wartości w odstępach 0,01 mA, co jest kluczowe w wielu zastosowaniach, np. w automatyce przemysłowej, gdzie precyzyjne pomiary są niezbędne do zapewnienia wydajności i bezpieczeństwa systemów. Warto pamiętać, że stosowanie przetworników o wyższej rozdzielczości przyczynia się do lepszego monitorowania procesów oraz minimalizowania ryzyka wystąpienia błędów pomiarowych. W branży zaleca się wybór urządzeń z nadmiarem rozdzielczości, co pozwala na większą elastyczność w przyszłych aplikacjach oraz lepsze dopasowanie do zmieniających się wymagań.

Pytanie 13

Podaj operatora, który jest stosowany w języku IL i musi być uwzględniony w programie sterującym, aby zrealizować wywołanie bloku funkcyjnego FUN_1?

A. JMP FUN_1
B. LD FUN_1
C. CAL FUN_1
D. RET FUN_1
Operator CAL jest kluczowym elementem w języku IL (Instruction List) służącym do wywoływania bloków funkcyjnych w programach sterowników PLC. Użycie operatora CAL dla bloku funkcyjnego FUN_1 oznacza, że program sterujący aktywuje kod zapisany w tym bloku, co jest niezbędne do realizacji określonych zadań w systemie automatyki. W praktyce operator CAL umożliwia modularne podejście do programowania, co jest zgodne z najlepszymi praktykami w inżynierii oprogramowania. Dzięki takiej modularności, programy stają się bardziej czytelne i łatwiejsze do utrzymania. Warto zauważyć, że odpowiednie użycie bloków funkcyjnych i ich wywoływanie za pomocą operatorów jest zgodne z normami IEC 61131-3, które regulują programowanie sterowników PLC. Stosując operator CAL, inżynierowie mogą efektywnie dzielić swoje programy na mniejsze, łatwiejsze do zarządzania komponenty, co z kolei sprzyja lepszej organizacji i wydajności systemu.

Pytanie 14

Przyczyny szarpania oraz niestabilności w działaniu hydraulicznych systemów napędowych mogą obejmować

A. zbyt niską lepkość oleju
B. zapowietrzenie czynnika roboczego
C. wyciek w systemie hydraulicznym
D. zbyt wysoką lepkość oleju
Zapowietrzenie czynnika roboczego jest kluczowym problemem, który wpływa na prawidłowe działanie układów hydraulicznych. Powstawanie pęcherzyków powietrza w oleju hydraulicznym prowadzi do zmniejszenia efektywności przepływu, co w konsekwencji może skutkować szarpaniem i destabilizacją ruchu napędów. W praktyce, aby zapobiec zapowietrzeniu, należy regularnie kontrolować ciśnienie w układzie oraz stosować odpowiednie uszczelnienia, aby uniknąć wnikania powietrza. Dobrym rozwiązaniem jest także stosowanie filtrów, które eliminują zanieczyszczenia i pęcherzyki powietrza. Zgodnie z normami branżowymi, takim jak ISO 4406, zaleca się regularne badania jakości oleju hydraulicznego, co pozwala na wczesne wykrywanie problemów i ich eliminację. Przykładem zastosowania tej wiedzy jest przeprowadzanie rutynowych przeglądów maszyn przemysłowych, gdzie dbałość o jakość oleju wpływa na wydajność całego systemu hydraulicznego.

Pytanie 15

Jaką z poniższych instrukcji należy zastosować przy programowaniu sterownika PLC w języku LD, aby móc uzależnić proces sterowania od daty i czasu?

A. Zegar TOF
B. Zegar TONR
C. Zegar RTC
D. Zegar TP
Jak nie zaznaczyłeś zegara RTC, to musisz wiedzieć, że inne zegary jak TP, TOF i TONR to raczej timery do mierzenia różnych interwałów, a nie do śledzenia aktualnej daty. Zegar TP, czyli Timer Pulse, robi impuls na określony czas, co może być ok w niektórych aplikacjach, ale nie da ci informacji o aktualnym czasie. Zegar TOF (Timer Off-Delay) opóźnia wyłączenie sygnału, ale to też nie ma związku z monitorowaniem daty. Zegar TONR (Timer On-Delay with Reset) działa na zasadzie opóźnień w aktywacji sygnału i też nie służy do czasowego uzależnienia procesów. Warto zrozumieć, jak te zegary funkcjonują, żeby nie popełnić błędu przy programowaniu. Często ludzie mylą ich funkcje z zegarem RTC, a to może prowadzić do problemów w automatyzacji, bo użycie złego zegara w sytuacji, gdzie musisz śledzić czas, może spowodować poważne błędy w działaniu systemów przemysłowych.

Pytanie 16

Jak można zmienić kierunek obrotów wirnika silnika bocznikowego prądu stałego bez konieczności przemagnesowania maszyny?

A. Odwrócić kierunek prądu w uzwojeniu wzbudzenia
B. Zamienić miejscami dwa przewody podłączone do źródła zasilania
C. Odwrócić kierunek prądu w uzwojeniu twornika
D. Odwrócić kierunek prądu w uzwojeniu komutacyjnym
Zamiana kierunku obrotów wirnika silnika bocznikowego prądu stałego poprzez inne metody, takie jak zmiana kierunku prądu w uzwojeniu wzbudzenia, nie prowadzi do zamierzonego efektu. Uzwojenie wzbudzenia generuje pole magnetyczne, które ma stały kierunek, a zmiana jego kierunku nie wpływa na kierunek obrotów wirnika bezpośrednio. Zrozumienie tej koncepcji wymaga analizy działania silników prądu stałego, w których to uzwojenie twornika odgrywa kluczową rolę w generacji momentu obrotowego. Wskazanie na uzwojenie komutacyjne jako metody zmiany kierunku obrotów również jest błędne, ponieważ jego główną funkcją jest zmiana kierunku prądu w poszczególnych zwojach w celu utrzymania ciągłości pracy silnika, a nie zmiany kierunku obrotów. Dodatkowo, zamiana miejscami dwóch przewodów podłączonych do sieci nie jest adekwatnym podejściem, ponieważ może prowadzić do niebezpiecznych warunków pracy oraz uszkodzenia urządzenia. W praktyce, takie działania mogą wprowadzić niepożądane skutki uboczne, takie jak zjawisko odwrócenia fazy lub przeciążenie systemu. Dlatego ważne jest, aby zawsze korzystać z dobrze udokumentowanych i sprawdzonych metod zmiany kierunku obrotów, aby zapewnić bezpieczeństwo oraz efektywność operacyjną silnika.

Pytanie 17

Który z parametrów nie odnosi się do frezarki CNC?

A. Powtarzalność pozycjonowania
B. Liczba wrzecion
C. Gramatura wtrysku
D. Maksymalna prędkość ruchu dla poszczególnych osi
Gramatura wtrysku jest pojęciem związanym z procesem wtryskiwania tworzyw sztucznych, który nie ma żadnego związku z frezarkami numerycznymi. Frezarka numeryczna jest narzędziem wykorzystywanym w obróbce metalu i innych materiałów, gdzie kluczowe parametry obejmują liczbę wrzecion, maksymalną prędkość ruchu dla poszczególnych osi oraz powtarzalność pozycjonowania. Zrozumienie tych parametrów jest istotne dla optymalizacji procesu obróbczo-produkcyjnego. Na przykład, wyższa liczba wrzecion umożliwia jednoczesne przetwarzanie wielu elementów, co zwiększa efektywność. Wysoka maksymalna prędkość ruchu pozwala na szybsze przemieszczenie narzędzi w obrabianym materiale, co przyspiesza cały proces produkcji. Powtarzalność pozycjonowania jest kluczowym czynnikiem w zapewnieniu wysokiej jakości produkcji, gdyż pozwala na dokładność i eliminację błędów w każdej iteracji procesu. W związku z tym, gramatura wtrysku nie jest parametrem, który miałby zastosowanie w kontekście frezarek numerycznych, co czyni tę odpowiedź prawidłową.

Pytanie 18

Selsyn trygonometryczny (resolver) wykorzystywany w serwomechanizmach ma na celu pomiar

A. przemieszczeń kątowych
B. przemieszczeń liniowych
C. szybkości liniowej
D. szybkości kątowej
Pomiar prędkości liniowej jest związany z określaniem szybkości, z jaką obiekt przemieszcza się w przestrzeni, co nie jest funkcją selsynów trygonometrycznych. Te urządzenia są zaprojektowane do pomiaru kątów obrotu, a nie bezpośrednio prędkości. Z kolei przemieszczenia liniowe odnoszą się do ruchu wzdłuż prostej linii, co również wykracza poza zakres zastosowania selsynów. W przypadku prędkości kątowej, która odnosi się do szybkości zmiany kąta, także nie jest to właściwe zrozumienie ich roli. Selsyny pełnią funkcję przetworników, które dostarczają informacji o kącie obrotu, co jest esencjonalne dla wielu systemów automatyzacji. Typowe błędy w myśleniu, które mogą prowadzić do takich nieprawidłowych wniosków, często wynikają z mylenia pojęć związanych z ruchem obrotowym i liniowym. Zrozumienie, że selsyny nie są przeznaczone do pomiaru prędkości liniowej ani przemieszczeń liniowych, a ich głównym zastosowaniem jest monitorowanie kątów obrotu, jest kluczowe dla efektywnego projektowania systemów automatyki. W praktyce, pomiar kąta i związanych z nim przemieszczeń kątowych jest fundamentalny dla precyzyjnego sterowania w nowoczesnych aplikacjach, takich jak robotyka czy automatyka przemysłowa.

Pytanie 19

W systemach hydraulicznych, jaki jest główny powód stosowania zaworów bezpieczeństwa?

A. Zwiększenie przepływu cieczy roboczej
B. Poprawa jakości filtracji
C. Zmniejszenie kosztów eksploatacji
D. Ochrona układu przed nadmiernym ciśnieniem
Zawory bezpieczeństwa w systemach hydraulicznych pełnią kluczową rolę w ochronie układów przed nadmiernym ciśnieniem. Ich podstawowym zadaniem jest zapobieganie uszkodzeniom elementów układu, które mogą prowadzić do awarii czy niebezpiecznych sytuacji. Zawory te działają na zasadzie odprowadzania nadmiaru ciśnienia, gdy przekroczy ono określoną wartość, co w praktyce zapobiega eksplozji przewodów czy uszkodzeniu pomp. Wyobraź sobie, że ciśnienie w układzie zaczyna gwałtownie rosnąć - w tym momencie zawór bezpieczeństwa otwiera się i pozwala na ucieczkę nadmiaru płynu, przywracając bezpieczne warunki pracy. Jest to standardowe rozwiązanie zgodne z normami bezpieczeństwa, które znacznie przedłuża żywotność systemu i chroni pracowników oraz urządzenia. W branży mechatronicznej jest to szczególnie ważne, ponieważ układy hydrauliczne są często używane w maszynach i urządzeniach, które muszą działać niezawodnie w trudnych warunkach. Zastosowanie zaworów bezpieczeństwa jest powszechną praktyką i stanowi podstawę projektowania bezpiecznych systemów hydraulicznych, co jest kluczowym elementem wiedzy w kwalifikacji ELM.06.

Pytanie 20

Obniżenie błędu statycznego, skrócenie czasu odpowiedzi, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów z przetwornika pomiarowego charakteryzuje działanie regulatora

A. PID
B. I
C. PD
D. P
Wybór nieodpowiednich typów regulatorów, takich jak P, I czy PID, wskazuje na pewne nieporozumienia dotyczące ich zastosowania i charakterystyki. Regulator P (proporcjonalny) nie jest w stanie eliminować błędu statycznego, co oznacza, że może prowadzić do stałego odchylenia od wartości docelowej. Taki regulator reaguje jedynie proporcjonalnie do błędu, nie biorąc pod uwagę jego zmiany w czasie, co czyni go niewystarczającym w zastosowaniach wymagających szybkiej regulacji. Regulator I (integralny) z kolei skupia się na eliminacji błędu statycznego, ale może prowadzić do opóźnień w reakcji systemu, co jest szczególnie problematyczne w systemach, gdzie czas reakcji jest kluczowy. Regulator PID (proporcjonalno-całkująco-derywacyjny) łączy w sobie cechy regulatorów P, I oraz D, jednak w niektórych przypadkach może wprowadzać dodatkowe złożoności i opóźnienia, co nie jest pożądane w systemach o dynamice zmiany. Wybór regulatora powinien być dostosowany do specyfiki danego systemu oraz jego wymagań, co oznacza, że warto znać nie tylko ich teoretyczne podstawy, ale także praktyczne implikacje ich stosowania.

Pytanie 21

Właściwości takie jak moc silnika, liczba cylindrów, stopień sprężania, pojemność zbiornika, efektywność oraz ciśnienie są typowe dla

A. pompy hydraulicznej
B. sprężarki tłokowej
C. silnika hydraulicznego
D. siłownika pneumatycznego
Błędne odpowiedzi wskazują na pewne nieporozumienia dotyczące tego, jak różne urządzenia działają w kontekście sprężania i hydrauliki. Na przykład, pompy hydrauliczne są inne niż sprężarki tłokowe, bo one głównie przesyłają cieczy pod ciśnieniem. Nie korzystają z takich parametrów jak liczba cylindrów czy stopnie sprężania, które są istotne dla sprężarek. Silniki hydrauliczne zamieniają energię hydrauliczną na mechaniczną, więc też nie obejmują parametrów sprężających. Siłowniki pneumatyczne z kolei używają ciśnienia powietrza do ruchu, co sprawia, że też nie wpisują się w ten temat. Często popełniamy błąd, myląc funkcje tych urządzeń oraz nie dostrzegamy ich specyficznych wymagań technicznych. Zrozumienie tych różnic jest naprawdę ważne, żeby dobrze dobierać sprzęt w przemyśle oraz skutecznie pracować w bardziej skomplikowanych systemach hydraulicznych i pneumatycznych.

Pytanie 22

Jak należy przeprowadzić pomiar ciągłości przewodów w instalacji elektrycznej?

A. przy podłączonych odbiornikach oraz włączonym napięciu zasilania
B. przy podłączonych odbiornikach oraz wyłączonym napięciu zasilania
C. przy odłączonych odbiornikach oraz wyłączonym napięciu zasilania
D. przy odłączonych odbiornikach oraz włączonym napięciu zasilania
Pomiar ciągłości przewodów w instalacji elektrycznej powinien być wykonywany przy odłączonych odbiornikach i wyłączonym napięciu zasilania, co jest zgodne z zasadami bezpieczeństwa i dobrymi praktykami w branży elektrycznej. W takiej sytuacji można zminimalizować ryzyko porażenia prądem elektrycznym oraz zapobiec ewentualnym uszkodzeniom urządzeń. Zastosowanie multimetru do sprawdzenia ciągłości przewodów w tych warunkach umożliwia rzetelną diagnozę ich stanu bez wpływu napięcia, co jest kluczowe w przypadku serwisowania lub modernizacji instalacji. Warto pamiętać, że podczas takich pomiarów, szczególnie w instalacjach pod napięciem, może dochodzić do fałszywych odczytów, co prowadzi do błędnych decyzji serwisowych. Dobre praktyki wymagają także stosowania odpowiednich środków ochrony osobistej oraz dokładnego zapoznania się z dokumentacją techniczną instalacji przed przystąpieniem do pomiarów.

Pytanie 23

Jaką czynność należy zrealizować w pierwszej kolejności przy wymianie filtru ssawnego w instalacji hydraulicznej?

A. Usunąć zanieczyszczenia z wnętrza zbiornika zasilacza hydraulicznego
B. Spuścić olej do właściwego naczynia przez korek spustowy
C. Napełnić zbiornik czystym olejem oraz odpowietrzyć system
D. Wyciągnąć wkład filtra oleju i powietrza
Spuszczenie oleju do odpowiedniego naczynia przez korek spustowy to naprawdę ważny krok, gdy wymieniasz filtr ssawny w urządzeniu hydraulicznym. Dzięki temu unikniesz zanieczyszczenia nowego filtra oleju, co jest kluczowe dla prawidłowego działania. W praktyce, warto pamiętać, żeby spuścić olej w kontrolowany sposób, bo rozlanie go może narobić sporo problemów. Poza tym, olej, który już był używany, może zawierać niebezpieczne substancje, więc trzeba być ostrożnym. Zanim zrobisz coś więcej, jak czyszczenie zbiornika czy montaż nowego filtra, upewnij się, że zbiornik nie jest brudny. Takie podejście do wymiany filtra to nie tylko dobra praktyka, ale także dbałość o dłuższą żywotność sprzętu i lepszą wydajność hydrauliki.

Pytanie 24

Aby ocenić jakość obecnych połączeń elektrycznych w urządzeniu mechatronicznym, należy przede wszystkim przeprowadzić pomiar

A. spadku napięcia na komponentach
B. rezystancji izolacji pomiędzy obudową urządzenia a przewodem zasilającym
C. mocy pobieranej przez urządzenie
D. ciągłości połączenia
Pomiar ciągłości połączenia jest kluczowym krokiem w ocenie jakości połączeń elektrycznych w urządzeniach mechatronicznych. Przeprowadzenie tego pomiaru pozwala na weryfikację, czy obwód elektryczny jest kompletny i czy prąd elektryczny ma możliwość swobodnego przepływu przez wszystkie komponenty systemu. Brak ciągłości w połączeniach może prowadzić do poważnych awarii, co w kontekście urządzeń mechatronicznych, które często działają w wymagających warunkach, może być katastrofalne. W praktyce, pomiar ten wykonuje się za pomocą multimetru w trybie omomierza, co dostarcza informacji o rezystancji połączeń. W standardach branżowych, takich jak IEC 60364 dotyczących instalacji elektrycznych, podkreśla się znaczenie regularnych pomiarów ciągłości dla zapewnienia bezpieczeństwa i niezawodności. Regularne testy ciągłości połączeń powinny być integralną częścią rutynowego utrzymania sprzętu, co pozwala na wczesne wykrywanie problemów i ich eliminację przed wystąpieniem poważnych usterek.

Pytanie 25

Jaki typ zaworu powinno się użyć w układzie pneumatycznym, aby zachować ciśnienie na określonym poziomie?

A. Zawór redukcyjny
B. Zawór przełączający
C. Zawór nastawny dławiąco-zwrotny
D. Zawór nastawny podwójnego sygnału
Zawór redukcyjny jest kluczowym elementem w układach pneumatycznych, który pozwala na utrzymanie stałego ciśnienia roboczego na zadanym poziomie. Jego główną funkcją jest ograniczenie ciśnienia gazu z zewnętrznego źródła, co jest niezbędne w wielu aplikacjach przemysłowych, gdzie precyzyjne zarządzanie ciśnieniem jest istotne dla wydajności procesu. Przykładowo, w systemach automatyzacji, gdzie zasilanie urządzeń pneumatycznych wymaga stałego ciśnienia, zastosowanie zaworu redukcyjnego zapewnia stabilność i bezpieczeństwo pracy. W praktyce, zawory te są często wykorzystywane w połączeniu z innymi elementami, takimi jak manometry i zawory sterujące, co pozwala na dokładne monitorowanie i regulację ciśnienia w układzie. Zgodnie z normami branżowymi, instalacja zaworów redukcyjnych powinna być przeprowadzona z uwzględnieniem specyfikacji producenta oraz lokalnych przepisów dotyczących bezpieczeństwa, aby zapewnić ich prawidłowe funkcjonowanie i długą żywotność.

Pytanie 26

W schemacie układu hydraulicznego przyłącze rury zasilającej rozdzielacza oznaczane jest literą

A. A
B. P
C. B
D. T
Niepoprawne odpowiedzi, jak B, T czy A, wskazują na jakieś nieporozumienia w symbolice hydraulicznej. Symbol B zazwyczaj oznacza odpływ, więc można pomyśleć, że dotyczy przyłącza zasilającego, ale to nie to. Odpływ odprowadza medium robocze, a nie je dostarcza. Symbol T natomiast to powrót oleju do zbiornika, co też nie jest związane z przyłączem zasilającym. Używanie tych symboli w niewłaściwy sposób może powodować błędy w projektowaniu i używaniu układów hydraulicznych, co w praktyce może prowadzić do problemów z maszynami. Co do symboli A i B, to one oznaczają wyjścia robocze, więc też nie mają nic wspólnego z zasilaniem. Rozumienie tych różnic jest naprawdę kluczowe, żeby unikać typowych błędów w analizie schematów hydraulicznych. Jeśli nie ogarniasz tej symboliki, to może być nieefektywna instalacja i wyższe koszty. Dlatego ważne, by każdy, kto z tym pracuje, miał dobry przegląd oznaczeń i ich zastosowania.

Pytanie 27

Na etykiecie znamionowej zasilacza, który jest podłączony do układu, widnieją informacje: INPUT 100-240 VAC; OUTPUT 12 VDC. Co to oznacza w kontekście zasilania układu?

A. 12 VDC
B. w zakresie od 100 do 240 VAC
C. w zakresie od 100 do 240 VDC
D. 12 VAC
Odpowiedzi, które wskazują na napięcie zmienne, takie jak '100-240 VAC' lub '12 VAC', są niewłaściwe, ponieważ nie odzwierciedlają one charakterystyki wyjścia zasilacza. Zapis 'INPUT 100-240 VAC' informuje o zakresie napięcia, które można podać na wejście zasilacza, natomiast 'OUTPUT 12 VDC' oznacza, że na wyjściu otrzymujemy napięcie stałe. Wybór napięcia zmiennego na wyjściu prowadzi do nieporozumień, ponieważ wiele urządzeń elektronicznych, takich jak komputery czy sprzęt audio, wymaga napięcia stałego do prawidłowego działania. W przypadku, gdyby urządzenie było zasilane napięciem zmiennym, mogłoby to spowodować uszkodzenia lub nieprawidłowe działanie, co jest sprzeczne z dobrymi praktykami w zakresie projektowania układów elektronicznych. Często te błędne odpowiedzi wynikają z mylenia pojęć napięcia stałego i zmiennego, co jest kluczowe dla inżynierów i techników zajmujących się elektroniką. Zrozumienie różnicy między tymi dwoma typami napięcia oraz ich zastosowaniem jest fundamentem skutecznego projektowania i eksploatacji systemów elektronicznych.

Pytanie 28

Jakie kroki należy podjąć w celu stworzenia układu kombinacyjnego asynchronicznego?

A. Zbudować tabelę Karnaugha, zredukować funkcję, sformułować równanie i w oparciu o nie wykonać schemat logiczny układu
B. Opracować algorytm przy pomocy metody Grafcet, a następnie na jego podstawie stworzyć program dla sterownika PLC
C. Przygotować diagram czasowy, na jego podstawie sformułować równanie stanu oraz narysować schemat z użyciem przerzutników JK
D. Przygotować graf sekwencji, stworzyć program lub wykonać schemat układu z użyciem przerzutników
Poprawna odpowiedź dotyczy procesu projektowania układu kombinacyjnego asynchronicznego, który jest kluczowy w elektronice cyfrowej. Opracowanie tabeli Karnaugha jest istotnym krokiem, ponieważ umożliwia zminimalizowanie funkcji logicznej, co w konsekwencji prowadzi do uproszczenia układu i redukcji liczby używanych bramek logicznych. Minimalizacja funkcji logicznej za pomocą tabeli Karnaugha jest powszechnie stosowaną metodą, która pozwala na wizualizację i eliminację zbędnych zmiennych, co przekłada się na mniejsze zużycie energii oraz miejsce na płytce drukowanej. Po uzyskaniu zminimalizowanej funkcji logicznej, kolejnym krokiem jest zapisanie równania, które służy jako podstawa do stworzenia schematu logicznego. Schemat logiczny przedstawia sposób połączeń między bramkami logicznymi, co jest niezbędne do zbudowania funkcjonalnego układu. Tego rodzaju podejście jest zgodne z dobrymi praktykami inżynierii cyfrowej, gdzie kluczowe jest nie tylko zrozumienie teorii, ale także umiejętność praktycznej aplikacji w projektach inżynieryjnych.

Pytanie 29

Co obejmuje zakres pomiarowy czujnika?

A. najniższa wartość czynników wejściowych, która jest możliwa do pomiaru
B. maksymalna różnica pomiędzy wartością zmierzoną a rzeczywistą
C. wykres ilustrujący zależność między wartościami: wejściową i wyjściową czujnika
D. zakres wartości czynników wejściowych, które dany czujnik jest w stanie zmierzyć
Definiowanie zakresu pomiarowego czujnika w sposób inny niż poprzez wskazanie przedziału wartości, jakie czujnik jest w stanie zmierzyć, prowadzi do nieporozumień i błędnych interpretacji roli, jaką pełnią czujniki w systemie pomiarowym. Odpowiedzi takie jak "minimalna wartość wielkości wejściowej, jaka może być zmierzona" oraz "maksymalna różnica między wartością zmierzoną a rzeczywistą" nie oddają pełnego spektrum działania czujników. Zakres pomiarowy nie ogranicza się do jednej wartości, ale obejmuje dwa skrajne punkty, które stanowią granice dla pomiarów. To właśnie ta różnica pomiędzy wartością minimalną a maksymalną definiuje, co czujnik jest w stanie zarejestrować. Odpowiedź sugerująca graficzną zależność pomiędzy wielkościami wejściowymi a wyjściowymi jest myląca, ponieważ odnosi się do charakterystyki działania czujnika, a nie do samego zakresu pomiarowego. Właściwe rozumienie zakresu pomiarowego jest kluczowe w kontekście norm, takich jak IEC 61010, które określają wymagania dotyczące bezpieczeństwa i poprawności pomiarów. Kluczowe dla inżynierów jest zrozumienie, że wybór czujnika z niewłaściwym zakresem pomiarowym może prowadzić do poważnych błędów w analizie danych, co może mieć daleko idące konsekwencje w praktyce. Warto także zwrócić uwagę na kalibrację czujników, która powinna odbywać się w obrębie ich zakresu pomiarowego, aby zapewnić wiarygodność pomiarów.

Pytanie 30

Wskaż wynik minimalizacji funkcji logicznej dla układu sterowania zapisanej w tablicy Karnaugha dokonanej dla wartości logicznych "1".

x \ yz00011110
01001
11001
A. f = y̅z
B. f = z̅
C. f = xy̅z̅
D. f = x
Wybór innej opcji może wynikać z nieporozumienia pojęć związanych z minimalizacją funkcji logicznych. Odpowiedzi takie jak f = x, f = xy̅z̅ i f = y̅z nie uwzględniają kluczowej zasady, jaką jest identyfikacja, które zmienne mają wpływ na wynik funkcji. Na przykład, w przypadku f = x, sugerujesz, że wartość wyjściowa zależy jedynie od zmiennej x, co nie jest zgodne z analizą tablicy Karnaugh, ponieważ obie pozostałe zmienne - y i z - również mają wpływ na wynik. W kontekście f = xy̅z̅, pomijasz fakt, że w grupowaniu jedynek w tablicy Karnaugh, z̅ jest jedynym warunkiem występowania jedynek. Z kolei f = y̅z zasugeruje, że zmienne y i z są kluczowe dla wartości wyjściowej, podczas gdy analiza wykazuje, że zmienna z ma stałą wartość 0 w kontekście grupowania. Warto zrozumieć, że w minimalizacji funkcji logicznych, każdy krok musi być uzasadniony z punktu widzenia wpływu wartości zmiennych na wynik. Niezrozumienie tego może prowadzić do błędnych wniosków i skomplikowanych implementacji, które są nieefektywne w działaniu oraz wymagają większej liczby bramek logicznych, co z kolei zwiększa koszty i czas realizacji projektu.

Pytanie 31

Aby na rysunku oznaczyć promień łuku, należy zastosować literę

A. D
B. Φ
C. X
D. R
Wybór odpowiedzi innych niż "R" wskazuje na pewne nieporozumienia związane z konwencjami stosowanymi w rysunku technicznym. Odpowiedź "D" może sugerować skojarzenie z innymi rodzajami wymiarów, jednak w kontekście promieni łuków nie jest stosowana. Z kolei litera "X" w rysunku technicznym z reguły odnosi się do nieokreślonych wartości lub miejsc, co czyni ją nieodpowiednią do oznaczenia promienia. Na koniec, symbol "Φ" jest zazwyczaj używany do oznaczania średnicy, co jest zupełnie inną miarą niż promień. Błąd w doborze symbolu wynika z nieznajomości podstawowych pojęć związanych z geometrią i rysunkiem technicznym. Ogólnie rzecz biorąc, wiedza o standardowych oznaczeniach w rysunku technicznym jest fundamentem dla każdej osoby zajmującej się projektowaniem. Zrozumienie tej problematyki jest kluczowe, aby uniknąć błędów, które mogą prowadzić do kosztownych pomyłek w procesie produkcji. Przykładem może być sytuacja, gdzie niepoprawne oznaczenie promienia skutkuje problemami przy montażu elementów, co w efekcie prowadzi do awarii lub konieczności wprowadzenia poprawek, co zwiększa koszty projektu oraz czas realizacji.

Pytanie 32

Do czego służy magistrala danych w systemach mechatronicznych?

A. Mocowania elementów mechanicznych
B. Przesyłania sygnałów między komponentami
C. Zasilania urządzeń
D. Chłodzenia komponentów
Magistrala danych to kluczowy element w systemach mechatronicznych, służący przede wszystkim do przesyłania sygnałów i danych pomiędzy różnymi komponentami systemu. W praktyce oznacza to, że magistrala umożliwia komunikację między sterownikami, czujnikami, siłownikami i innymi elementami systemu, co jest niezbędne do ich prawidłowego funkcjonowania. Dzięki temu możliwe jest realizowanie złożonych procesów automatyzacji, gdzie dane zbierane przez czujniki mogą być przetwarzane przez sterowniki i następnie używane do sterowania siłownikami. To podejście jest zgodne z międzynarodowymi standardami komunikacji w automatyce, takimi jak CAN (Controller Area Network) czy Modbus. Zastosowanie magistrali danych pozwala na redukcję okablowania i zwiększenie efektywności komunikacyjnej, co jest kluczowe dla nowoczesnych systemów produkcyjnych i robotyki. Warto zauważyć, że w systemach przemysłowych często wykorzystuje się protokoły magistrali danych, które zapewniają niezawodność i szybkość przesyłu informacji, co ma bezpośredni wpływ na jakość i precyzję procesów produkcyjnych.

Pytanie 33

Jakie musi być ciśnienie powietrza, aby siłownik o przekroju cylindra 312,5 mm2 i efektywności 80% wytworzył siłę nacisku równą 100 N?

A. 4 bar
B. 5 bar
C. 6 bar
D. 3 bar
Poprawna odpowiedź to 4 bar, co można obliczyć przy użyciu wzoru na siłę nacisku w siłownikach pneumatycznych. Siła nacisku F może być określona jako F = p * A * η, gdzie p to ciśnienie, A to pole przekroju cylindra, a η to sprawność. W tym przypadku mamy F = 100 N, A = 312,5 mm² (co odpowiada 312,5 * 10^-6 m²) oraz η = 0,8. Przekształcając wzór, otrzymujemy p = F / (A * η). Podstawiając wartości, obliczamy ciśnienie: p = 100 N / (312,5 * 10^-6 m² * 0,8) = 4 bar. W praktyce, właściwe obliczenie ciśnienia jest kluczowe w zastosowaniach przemysłowych, gdzie siłowniki pneumatyczne są wykorzystywane do podnoszenia lub przesuwania ciężkich przedmiotów. Utrzymanie odpowiedniego ciśnienia zapewnia efektywność działania urządzeń, co jest zgodne z najlepszymi praktykami branżowymi w zakresie automatyki i pneumatyki.

Pytanie 34

Aby otrzymać poprawny wynik pomiaru temperatury przy użyciu czujnika termoelektrycznego, należy zagwarantować

A. kompensację zmian temperatury, która jest mierzona
B. odpowiednią polaryzację napięcia zasilającego czujnik
C. kompensację zmian temperatury odniesienia
D. odpowiednią wartość napięcia zasilającego czujnik
Wybór odpowiedzi dotyczących zapewnienia odpowiedniej wartości napięcia zasilania czujnika, kompensacji zmian temperatury mierzonej czy polaryzacji napięcia zasilania czujnika może wynikać z niepełnego zrozumienia zasad działania czujników termoelektrycznych. Kluczowe jest bowiem zrozumienie, że czujniki te działają na zasadzie generacji napięcia w wyniku różnicy temperatury między dwoma punktami, z których jeden jest punktem pomiaru, a drugi punktem odniesienia. W przypadku odpowiedzi dotyczącej napięcia zasilania, można wprowadzić w błąd przekonanie, że sama wartość napięcia ma kluczowy wpływ na wynik pomiaru. Owszem, napięcie zasilania może być istotne dla poprawnego funkcjonowania czujnika, jednak to kompensacja temperatury odniesienia jest kluczowym czynnikiem wpływającym na dokładność pomiarów. Podobnie, kompensacja zmian temperatury mierzonej nie oddaje istoty problemu, ponieważ to nie zmiana temperatury mierzonej, lecz zmiana temperatury odniesienia, która ma miejsce, wpływa na wynik końcowy. Przyjęcie, że polaryzacja napięcia zasilania jest istotna w kontekście uzyskania dokładnych pomiarów, również jest błędne, gdyż nieodpowiednia polaryzacja może prowadzić do błędów w odczycie, ale nie jest to kluczowy czynnik w kontekście kompensacji zmian temperatury odniesienia. Dobrze jest mieć na uwadze, że zrozumienie tych zasad jest fundamentalne dla prawidłowego stosowania technologii pomiarowych w różnych dziedzinach przemysłu.

Pytanie 35

Jaka jest minimalna liczba bitów przetwornika A/C, która powinna być użyta w układzie, aby dla zakresu pomiarowego 0 mA ÷ 20 mA uzyskać rozdzielczość równą 0,01 mA?

A. 11 bitowy
B. 10 bitowy
C. 16 bitowy
D. 12 bitowy
Odpowiedź 11-bitowa jest poprawna, ponieważ aby osiągnąć wymaganą rozdzielczość 0,01 mA w zakresie 0-20 mA, musimy najpierw obliczyć liczbę poziomów kwantyzacji. Zakres pomiarowy wynoszący 20 mA podzielony przez rozdzielczość 0,01 mA daje nam 2000 poziomów. Następnie, aby określić wymaganą liczbę bitów w przetworniku A/C, stosujemy wzór 2^n ≥ 2000. Logarytm z podstawą 2 z 2000 wynosi około 10,97, co po zaokrągleniu w górę daje 11. Przetwornik 11-bitowy, oferując 2048 poziomów, spełnia wymogi co do rozdzielczości, ponieważ zapewnia wystarczającą ilość poziomów do uchwycenia zmian w sygnale. W praktyce przetworniki o takiej rozdzielczości są powszechnie stosowane w systemach automatyki przemysłowej, gdzie precyzyjny pomiar prądu jest kluczowy dla monitorowania i kontrolowania procesów. Dobrą praktyką jest również użycie przetworników A/C zgodnych z normami IEC 61000, które zapewniają wysoką jakość pomiarów w trudnych warunkach przemysłowych.

Pytanie 36

W systemie regulacji dwupołożeniowej

A. wartość regulowana w stanie ustalonym oscyluje wokół wartości zadanej
B. można osiągnąć zerowy błąd pomiarowy
C. zadowalające wyniki regulacji można osiągnąć jedynie dla obiektów o niewielkiej inercji
D. nie uzyskuje się zerowej średniej wartości błędu
W kontekście regulacji dwupołożeniowej, niepoprawne odpowiedzi wskazują na pewne nieporozumienia dotyczące podstawowych zasad działania takich systemów. Stwierdzenie, że istnieje możliwość uzyskania zerowego uchybu, jest mylne, ponieważ w regulacji dwupołożeniowej zawsze występują oscylacje wokół wartości zadanej. Gdy system jest załączany i wyłączany, wartość regulowana nie osiąga jedynie stanu ustalonego, ale oscyluje wokół niego z powodu opóźnień i inercji obiektu regulowanego. Kolejnym nieprawidłowym stwierdzeniem jest to, że w regulacji dwupołożeniowej nie uzyskuje się zerowania średniej wartości błędu. W rzeczywistości, choć średni błąd może być minimalizowany, to wprowadzenie oscylacji powoduje, że błąd nie jest zerowy. Dodatkowo, twierdzenie, że zadowalającą wartość regulacji uzyskuje się tylko dla obiektów o małej inercji, również jest nieprecyzyjne. Regulacja dwupołożeniowa można stosować także w obiektach o dużej inercji, lecz w takich przypadkach mogą być wymagane dodatkowe techniki stabilizacji, aby zredukować oscylacje. Typowe błędy myślowe w analizie regulacji dwupołożeniowej często wynikają z ignorowania dynamiki systemu oraz niepełnego zrozumienia wpływu inercji na odpowiedź systemu.

Pytanie 37

Jakiej czynności nie wykonuje się podczas odbioru maszyny po przeprowadzeniu przeglądu technicznego?

A. Określenia zakresu następnego przeglądu technicznego
B. Przeprowadzenia testowego uruchomienia maszyny pod obciążeniem znamionowym
C. Sprawdzenia kondycji oraz poprawności działania urządzeń zabezpieczających
D. Weryfikacji działania maszyny bez obciążenia
Ustalenie zakresu kolejnego przeglądu technicznego jest kluczowym elementem zarządzania utrzymaniem obrabiarek. Ta czynność ma na celu zapewnienie, że urządzenie będzie poddawane regularnym kontrolom, które są zgodne z zaleceniami producenta oraz obowiązującymi normami bezpieczeństwa. W praktyce, ustalenie to powinno uwzględniać aspekty takie jak intensywność eksploatacji maszyny, jej typ oraz specyfikę produkcji. Na przykład, w przypadku obrabiarek wykorzystywanych do precyzyjnej obróbki metalu, częstsze przeglądy mogą być konieczne ze względu na duże obciążenia i wymagania co do dokładności. Dobrze przeprowadzony przegląd techniczny pozwala na wczesne wykrycie potencjalnych usterek, co z kolei przyczynia się do zwiększenia bezpieczeństwa pracy oraz minimalizacji przestojów produkcyjnych. Warto również zaznaczyć, że zgodnie z normami ISO oraz regulacjami BHP, dokumentacja przeglądów powinna być rzetelnie prowadzona, co ułatwia późniejszą analizę stanu technicznego maszyny oraz podejmowanie decyzji o jej dalszej eksploatacji.

Pytanie 38

Wskaż element funkcyjny, którego zastosowanie w programie sterującym umożliwi bezpośrednie zliczanie impulsów na wejściu PLC?

A. Licznik
B. Multiplekser
C. Regulator PID
D. Timer TON
Licznik jako blok funkcyjny jest kluczowym elementem w programowaniu systemów PLC, wykorzystywanym do zliczania impulsów. Jego fundamentalna funkcja polega na inkrementacji wartości licznika w odpowiedzi na otrzymane sygnały impulsowe, co pozwala na dokładne monitorowanie zdarzeń w czasie rzeczywistym. Przykładowo, w aplikacjach takich jak zliczanie produktów na linii produkcyjnej, licznik może być użyty do rejestrowania liczby sztuk, które przeszły przez określony punkt. Dobre praktyki w programowaniu PLC sugerują, aby zawsze wybierać odpowiednie bloki funkcyjne do konkretnego zadania, a licznik jest najbardziej efektywnym wyborem do zliczania impulsów. W kontekście standardów branżowych, ważne jest także, aby projektując systemy automatyki, uwzględniać aspekty takie jak szybkość reakcji i dokładność pomiarów, co licznik w pełni spełnia. Dodatkowo, korzystając z liczników, można implementować funkcje takie jak zliczanie do określonej wartości lub resetowanie, co zwiększa elastyczność w zastosowaniach automatyki.

Pytanie 39

Który składnik gwarantuje stabilne unieruchomienie nurnika pionowo umiejscowionego siłownika w sytuacji awarii hydraulicznego przewodu zasilającego?

A. Hydrauliczny zawór różnicowy
B. Elektrohydrauliczny zawór proporcjonalny
C. Zamek hydrauliczny
D. Hydrauliczny regulator przepływu
Odpowiedzi takie jak elektrohydrauliczny zawór proporcjonalny, hydrauliczny zawór różnicowy oraz hydrauliczny regulator przepływu nie są odpowiednie w kontekście zapewnienia unieruchomienia nurnika siłownika w przypadku awarii. Elektrohydrauliczny zawór proporcjonalny zazwyczaj reguluje przepływ cieczy hydraulicznej w zależności od sygnałów sterujących, co nie zapewnia stabilności w sytuacji krytycznej. Tego typu zawory są zaprojektowane do precyzyjnej kontroli ruchu, a nie do blokowania go. Podobnie hydrauliczny zawór różnicowy, który służy do równoważenia ciśnień w układzie hydraulicznym, nie ma zastosowania w kontekście unieruchomienia nurnika. Jego działanie polega na kierowaniu przepływu cieczy w odpowiedzi na różnice ciśnienia, a nie na zabezpieczeniu nurnika przed ruchem. Z kolei hydrauliczny regulator przepływu kontroluje prędkość przepływu cieczy, co również nie daje gwarancji unieruchomienia siłownika w przypadku awarii zasilania. Zrozumienie różnicy między tymi komponentami jest kluczowe dla właściwego doboru elementów w systemach hydraulicznych. W praktyce błędne jest zakładanie, że jakikolwiek z wymienionych komponentów mógłby pełnić funkcję zamka hydraulicznego, co może prowadzić do poważnych błędów w projektowaniu systemów hydraulicznych.

Pytanie 40

Jakie działania regulacyjne w systemie mechatronicznym opartym na falowniku i silniku indukcyjnym należy podjąć, aby obniżyć prędkość obrotową silnika bez zmiany wartości poślizgu?

A. Zwiększyć proporcjonalnie częstotliwość i wartość napięcia zasilającego
B. Zmniejszyć częstotliwość napięcia zasilającego
C. Obniżyć proporcjonalnie częstotliwość oraz wartość napięcia zasilającego
D. Zwiększyć wartość napięcia zasilającego
Poprawna odpowiedź polega na zmniejszeniu proporcjonalnie częstotliwości oraz wartości napięcia zasilającego w silniku indukcyjnym napędzanym przez przemiennik częstotliwości. W praktyce, takie działanie prowadzi do obniżenia prędkości wirowania wirnika, przy jednoczesnym zachowaniu stałego poziomu poślizgu. Poślizg jest to różnica między prędkością synchronizacyjną a rzeczywistą prędkością obrotową wirnika, a jego wartość pozostaje stabilna, gdy zmienia się obie te parametry w równym stopniu. W aplikacjach przemysłowych, gdy chcemy kontrolować prędkość silników, często stosuje się systemy regulacji, które uwzględniają te zależności. Zmniejszenie zarówno częstotliwości, jak i napięcia jest zgodne z zasadami dobrych praktyk w inżynierii mechatronicznej i pozwala na efektywne zarządzanie energią oraz minimalizację zużycia energii. Dodatkowo, takie podejście zapobiega przeciążeniom silnika oraz wydłuża jego żywotność.