Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 16 lutego 2026 13:53
  • Data zakończenia: 16 lutego 2026 14:08

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
B. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
C. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
D. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
Zainstalowanie odpowiedniej wstawki izolacyjnej między miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do budynku jest kluczowym działaniem w celu zapewnienia bezpieczeństwa instalacji gazowej. Wstawka izolacyjna działa jako bariera, która zapobiega przewodzeniu prądu elektrycznego między metalowymi rurami gazowymi a uziemioną instalacją budynku. Prawidłowe zastosowanie takich wstawek jest zgodne z normami PN-IEC 60364, które podkreślają znaczenie izolacji w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładem zastosowania tej praktyki może być sytuacja, w której instalacja gazowa znajduje się w bliskim sąsiedztwie instalacji elektrycznych, co zwiększa ryzyko przepięć. Zastosowanie wstawki izolacyjnej minimalizuje ryzyko uszkodzenia rurociągów gazowych, a tym samym podnosi bezpieczeństwo użytkowania budynku. Dbanie o odpowiednie standardy w instalacjach gazowych jest niezbędne, aby uniknąć niebezpieczeństw, takich jak wycieki czy eksplozje, a wstawki izolacyjne stanowią ważny element tej ochrony.

Pytanie 2

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. wszystkie przewody czynne
B. tylko przewody fazowe
C. przewody fazowe oraz ochronny
D. wyłącznie przewód neutralny
Pomiar prądu upływu w trójfazowej instalacji elektrycznej zasilanej z sieci TN-S wymaga objęcia wszystkimi przewodami czynnymi, co oznacza, że należy zmierzyć prąd w przewodach fazowych oraz w przewodzie neutralnym. Praktycznym zastosowaniem tego pomiaru jest ocena skuteczności ochrony przeciwporażeniowej oraz monitorowanie stanu instalacji elektrycznej. Pomiar prądu upływu pozwala zidentyfikować ewentualne prądy upływowe, które mogą wskazywać na nieszczelności izolacji w przewodach. Zgodnie z normą IEC 60364, zaleca się, aby wartość prądu upływu nie przekraczała 30 mA w instalacjach budowlanych, co jest szczególnie istotne w kontekście ochrony zdrowia użytkowników. Regularne pomiary prądu upływu są fundamentalnym elementem utrzymania bezpieczeństwa instalacji i zapewnienia zgodności z przepisami. Ponadto, objęcie wszystkich przewodów czynnych podczas pomiaru pozwala na dokładne określenie sumarycznego prądu upływu, co jest kluczowe dla skutecznej diagnostyki i ewentualnych napraw.

Pytanie 3

Na której ilustracji przedstawiono rastrową oprawę oświetleniową?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 2.
C. Na ilustracji 4.
D. Na ilustracji 1.
Rastrowa oprawa oświetleniowa jest kluczowym elementem w projektowaniu oświetlenia wnętrz, szczególnie w przestrzeniach biurowych oraz przemysłowych. Oprawy te wyposażone są w rastrowe klosze, które mają za zadanie efektywne rozpraszanie światła, minimalizując olśnienie i poprawiając komfort pracy. Na ilustracji 2 widoczna jest właśnie taka oprawa, której klosz wykonany jest z materiałów takich jak metal lub plastik, z charakterystycznym wzorem przypominającym kratkę, co pozwala na lepsze rozproszenie światła. Dobre praktyki w projektowaniu oświetlenia sugerują stosowanie rastrowych opraw w miejscach, gdzie wymagane jest równomierne oświetlenie dużych powierzchni roboczych, co wpływa na wydajność pracy. Warto również zwrócić uwagę na standardy dotyczące natężenia oświetlenia, które wskazują, jakie wartości są optymalne dla różnych typów przestrzeni. Wybierając odpowiednią oprawę oświetleniową, należy również uwzględnić efektywność energetyczną, co jest kluczowe w kontekście zrównoważonego rozwoju. Takie podejście przyczynia się do zmniejszenia kosztów eksploatacji oraz oszczędności energii.

Pytanie 4

O czym świadczy słabsze świecenie diody L2 w stosunku do świecących się diod L1 i L3 na wskazanym strzałką urządzeniu w rozdzielni elektrycznej przedstawionej na rysunku?

Ilustracja do pytania
A. W jednej z faz wystąpił zanik napięcia.
B. W układzie zasilania wystąpiła nieprawidłowa kolejność faz.
C. Instalacja działa poprawnie.
D. Wystąpiła asymetria napięciowa między fazami.
Istnieje wiele powodów, dla których błędne odpowiedzi mogą wydawać się przekonujące, jednak każda z nich ma swoje wady merytoryczne. Zgłaszanie nieprawidłowej kolejności faz jako przyczyny słabszego świecenia diody L2 jest mylące, ponieważ w przypadku takiej sytuacji diody świeciłyby w sposób nieregularny albo mogłyby nie świecić wcale. Widziana asymetria napięciowa jest efektem obciążenia, a nie błędnej konfiguracji faz. Zanik napięcia w jednej z faz może rzeczywiście wpłynąć na świecenie diody, ale jest to sytuacja skrajna, podczas gdy w omawianym przypadku mamy do czynienia z różnym natężeniem prądu w fazach, co prowadzi do obserwowanej asymetrii. Twierdzenie, że instalacja działa poprawnie, jest również zwodnicze, ponieważ sam fakt, że jedna z diod świeci słabiej, sugeruje problemy z równowagą obciążenia. Instalacje elektryczne powinny utrzymywać równomierny rozkład obciążeń, a wszelkie odchylenia powinny być natychmiast analizowane oraz korygowane w celu zapewnienia bezpieczeństwa i efektywności energetycznej. W praktyce monitorowanie obciążeń fazowych oraz ich optymalizacja zgodnie z normami, takimi jak PN-EN 50160, jest kluczowe dla zapewnienia stabilności sieci elektrycznej.

Pytanie 5

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Ściągacz izolacji, nóż monterski, wkrętak
B. Nóż monterski, praskę, ściągacz izolacji
C. Lutownicę, zestaw wkrętaków, ściągacz izolacji
D. Nóż monterski, praskę, zestaw kluczy
Kiedy wybierasz narzędzia do podłączenia kabla YnKY5x120 do rozdzielnicy, warto chwilę się zastanowić, co jest najpotrzebniejsze. Jeśli myślałeś o ściągaczu izolacji czy lutownicy, to pamiętaj, że ściągacz, choć przydatny, nie jest najważniejszy w tej sytuacji. Jasne, że ściągacz się przydaje, gdy trzeba zedrzeć izolację z końców przewodów, ale przy kablach o dużym przekroju, jak YnKY5x120, praska jest o wiele bardziej istotna. Lutownica? Hmm, w nowoczesnych instalacjach elektrycznych, to niezbyt dobry pomysł, bo lutowanie może osłabić połączenia i sprawić, że będą mniej trwałe oraz mniej bezpieczne. Prościej mówiąc, teraz standardem są złącza mechaniczne, które zapewniają lepszą jakość połączeń na dłuższą metę. Nóż monterski, praska i komplet kluczy to są te narzędzia, które według norm branżowych naprawdę powinny znaleźć się w twoim wyposażeniu, bo solidne połączenia to podstawa. Często ludziom zdarza się polegać na narzędziach, które nie pasują do konkretnej instalacji, a to może skutkować różnymi awariami. Żeby zapewnić bezpieczeństwo i niezawodność podłączeń, monterzy muszą znać swoje materiały i narzędzia, kierując się najlepszymi praktykami oraz zaleceniami technicznymi.

Pytanie 6

W jaki sposób należy połączyć zaciski sieci zasilającej L, N, PE do zacisków puszki zasilającej instalację elektryczną, której schemat przedstawiono na rysunku, aby połączenia były zgodne z przedstawionym schematem ideowym?

Ilustracja do pytania
A. L - 1, N - 3, PE - 4
B. L - 2, N - 3, PE - 4
C. L - 3, N - 4, PE - 1
D. L - 1, N - 4, PE - 3
Poprawna odpowiedź to L - 1, N - 3, PE - 4, co jest zgodne z obowiązującymi normami instalacji elektrycznych w Polsce. Zacisk L, odpowiadający za przesył energii elektrycznej, powinien być połączony z punktem 1. Jest to istotne, ponieważ zapewnia to prawidłowe zasilanie obwodu. Zacisk N, który jest neutralny, łączy się z punktem 3, co umożliwia bezpieczne odprowadzenie prądu wstecz do źródła. Wreszcie, zacisk PE, pełniący funkcję ochrony przed porażeniem elektrycznym, powinien być połączony z punktem 4. Takie połączenie minimalizuje ryzyko awarii oraz zapewnia bezpieczeństwo użytkowników. W praktyce, przy wykonywaniu instalacji elektrycznych, zgodność z tym schematem jest kluczowa. Ponadto, należy pamiętać o regularnych przeglądach instalacji oraz stosowaniu się do norm PN-IEC 60364, aby zapewnić trwałość oraz niezawodność sieci zasilającej.

Pytanie 7

Która z wymienionych lamp należy do żarowych źródeł światła?

A. Indukcyjna.
B. Rtęciowa.
C. Halogenowa.
D. Sodowa.
Źródła światła, które często pojawiają się w praktyce instalatorskiej – sodowe, rtęciowe, indukcyjne – łatwo wrzucić do jednego worka „tradycyjne lampy”, ale z punktu widzenia fizyki świecenia i klasyfikacji technicznej one nie są żarowe. I tu właśnie pojawia się typowe nieporozumienie: wiele osób kojarzy wszystkie starsze technologie jako żarówki, a to niestety prowadzi do złych wniosków przy doborze osprzętu, stateczników czy układów zasilania. Lampa sodowa jest klasycznym przykładem wysokoprężnej lampy wyładowczej. Światło powstaje w niej w wyniku wyładowania elektrycznego w parach sodu, a nie na rozgrzanym żarniku. Wymaga układu zapłonowego, dławika, ma zupełnie inną charakterystykę prądowo-napięciową, a jej praca jest ściśle uzależniona od parametrów układu zasilającego. Podobnie lampa rtęciowa – to także źródło wyładowcze. W środku mamy wyładowanie w parach rtęci, często z luminoforem na bańce, który przetwarza promieniowanie UV na widzialne. To źródło o zupełnie innym zachowaniu niż prosta żarówka: potrzebuje czasu rozruchu, stabilizacji, ma nieliniową charakterystykę i wymaga stosowania dławików zgodnie z zaleceniami producenta i normami dotyczącymi oświetlenia ulicznego czy przemysłowego. Lampa indukcyjna to jeszcze inna bajka. Choć bywa reklamowana jako „bezżarnikowa”, to wciąż jest to lampa wyładowcza, gdzie energia jest dostarczana do wyładowania za pomocą pola elektromagnetycznego, a nie przez klasyczny żarnik. Dla elektryka bardzo ważne jest odróżnianie źródeł żarowych od wyładowczych, bo inaczej dobierze się niewłaściwe układy zasilania, osprzęt, a nawet błędnie oceni charakter obciążenia instalacji. Moim zdaniem to jedno z takich zagadnień, które wydaje się banalne, ale potem w praktyce wychodzą kwiatki: ktoś podłącza lampę wyładowczą jak zwykłą żarówkę i dziwi się, że albo nie świeci, albo zabezpieczenia wariują. Dlatego warto zapamiętać: sodowa, rtęciowa i indukcyjna to źródła wyładowcze, a do żarowych zaliczamy żarówki klasyczne i halogenowe.

Pytanie 8

Którym symbolem graficznym oznacza się w dokumentacji sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych?

Ilustracja do pytania
A. Symbolem 3.
B. Symbolem 1.
C. Symbolem 2.
D. Symbolem 4.
Wybór błędnych symboli graficznych w dokumentacji instalacji elektrycznych może prowadzić do poważnych nieporozumień i problemów w realizacji projektów. Symbole 1, 2 oraz 4 nie są zgodne z normą PN-IEC 60617 odnoszącą się do oznaczeń w dokumentacji elektrycznej. Wybór symbolu 1 może sugerować zupełnie inną metodę prowadzenia przewodów, co nie odpowiada rzeczywistości w kontekście instalacji w listwach przypodłogowych. Z kolei symbole 2 i 4 mogą być używane w innych kontekstach, jednak nie mają zastosowania w sytuacji, gdy przewody muszą być zabezpieczone oraz estetycznie zamaskowane wzdłuż ścian. Takie błędne wybory mogą wynikać z pomyłek w zapamiętywaniu symboli, co podkreśla znaczenie znajomości standardów oraz umiejętności ich prawidłowej interpretacji. Ważne jest, aby projektanci instalacji elektrycznych oraz ich wykonawcy przestrzegali ustalonych norm i wytycznych w celu zapewnienia nie tylko funkcjonalności, ale również bezpieczeństwa instalacji. Prawidłowe oznaczenie przewodów jest niezbędne dla późniejszej konserwacji oraz diagnozowania ewentualnych usterek. Właściwe symbole graficzne powinny być integralną częścią każdej dokumentacji technicznej, aby zapewnić prawidłowe zrozumienie i wykonanie instalacji zgodnie z najlepszymi praktykami branżowymi.

Pytanie 9

Schemat jakiego łącznika instalacyjnego przedstawiono na rysunku?

Ilustracja do pytania
A. Schodowego.
B. Hotelowego.
C. Krzyżowego.
D. Świecznikowego.
Niezrozumienie charakterystyki poszczególnych typów łączników instalacyjnych może prowadzić do nieprawidłowych wniosków. Łącznik schodowy, który byłby jednym z możliwych wyborów, jest zaprojektowany do sterowania jednym obwodem świetlnym z dwóch miejsc, co różni go od łącznika krzyżowego. Użytkownik, który wybiera łącznik schodowy, może myśleć, że wystarczy go zastosować w każdej sytuacji, co jest błędne, zwłaszcza w przypadku dużych pomieszczeń. Z kolei łącznik hotelowy jest używany w systemach zdalnego sterowania, gdzie np. w pokoju hotelowym można zarządzać oświetleniem z jednego panelu. To z kolei nie odnosi się do funkcji łącznika krzyżowego. Ponadto, łącznik świecznikowy, którego zastosowanie ogranicza się do prostych obwodów, również nie spełni wymagań skomplikowanych instalacji, w których potrzebne jest sterowanie z trzech lub więcej miejsc. Warto zauważyć, że błędne wybory mogą wynikać z niepełnego zrozumienia schematów oraz funkcji poszczególnych łączników, co jest powszechnym problemem wśród osób nieposiadających odpowiedniego przeszkolenia w zakresie instalacji elektrycznych. Właściwe dobieranie komponentów do instalacji elektrycznych jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa.

Pytanie 10

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,95
B. 0,71
C. 0,75
D. 0,79
Zrozumienie wyniku sprawności silnika wymaga znajomości pojęcia mocy, napięcia oraz prądu, a także współczynnika mocy. Odpowiedzi, które wskazują na wartości takie jak 0,95, 0,75 czy 0,71, opierają się na niepełnym zrozumieniu tych pojęć. Przykładowo, wybór 0,95 może sugerować, że użytkownik pomylił sprawność z współczynnikiem mocy, co jest powszechnym błędem. Współczynnik mocy jest miarą efektywności wykorzystania energii, ale nie mierzy strat samego silnika, dlatego nie może być bezpośrednio uznawany za sprawność. Z kolei wartości takie jak 0,75 czy 0,71 mogą wynikać z błędnego obliczenia lub nieprawidłowego zrozumienia danych wejściowych. Aby poprawnie ocenić sprawność silnika, kluczowe jest zrozumienie, że sprawność to stosunek mocy mechanicznej do mocy elektrycznej dostarczanej do silnika. Niskie wartości sprawności wskazują na wysokie straty energii, co jest niekorzystne w kontekście eksploatacji silników. W branży energetycznej, zgodnie z normami IEC, dąży się do maksymalizacji efektywności energetycznej, co oznacza, że silniki o sprawności poniżej 0,80 są uważane za nieefektywne. W praktyce, wybierając silnik, warto zwrócić uwagę na jego parametry, aby uniknąć wyższych kosztów eksploatacji i zapewnić lepszą wydajność systemu.

Pytanie 11

Jakie uszkodzenie nastąpiło w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1 – L2L2 – L3L1 – L3L1 – PENL2 – PENL3 – PEN
2,101,051,101,401,300,991,00
A. Zwarcie międzyfazowe.
B. Jednofazowe bezimpedancyjne zwarcie doziemne.
C. Przeciążenie jednej z faz.
D. Pogorszenie izolacji jednej z faz.
Odpowiedzi nieprawidłowe odzwierciedlają szereg nieporozumień dotyczących analizy wyników pomiarów rezystancji izolacji. Jednofazowe bezimpedancyjne zwarcie doziemne nie może być rozpatrywane w kontekście przedstawionej sytuacji, ponieważ wyniki pomiarów nie wskazują na bezpośrednie połączenie z ziemią, lecz na specyfikę wartości rezystancji w układzie fazowym. Przeciążenie jednej z faz również nie jest adekwatne, gdyż przeciążenie dotyczy sytuacji, w której prąd przekracza dopuszczalne wartości dla danego przewodu, co nie ma związku z rezystancją izolacji. Natomiast zwarcie międzyfazowe to zjawisko, które występuje w przypadku, gdy dwa przewody fazowe stykają się ze sobą, co prowadzi do znacznego spadku rezystancji, co również nie znajduje odzwierciedlenia w podanych wynikach. Prawidłowa interpretacja danych pomiarowych wymaga zrozumienia, że rezystancja izolacji jest kluczowym wskaźnikiem stanu technicznego instalacji. W sytuacji, gdy izolacja jest pogorszona, istnieje ryzyko wystąpienia awarii lub zagrożenia dla użytkowników. Dlatego też, kluczowe jest stosowanie odpowiednich metod pomiarowych i interpretacja wyników zgodnie z normami, co pozwala na uniknięcie błędnych wniosków i działań w przypadku rozwiązywania problemów związanych z instalacjami elektrycznymi.

Pytanie 12

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 3.
C. Na ilustracji 1.
D. Na ilustracji 2.
Kabel typu YAKY jest szczególnym rodzajem kabla elektroenergetycznego, który charakteryzuje się żyłami aluminiowymi oraz izolacją wykonaną z polichlorku winylu (PVC). Na ilustracji 4 widać kabel z żyłami aluminiowymi, co jest kluczową cechą tego typu kabla. Kabel YAKY jest powszechnie stosowany w instalacjach elektrycznych, gdzie wymagane są wysokie parametry przewodzenia prądu oraz odporność na warunki atmosferyczne. Dzięki zastosowaniu żył aluminiowych, kabel ten jest lżejszy i tańszy niż jego miedziane odpowiedniki, co czyni go popularnym wyborem w gospodarce energetycznej. W praktyce, kable YAKY są często używane w rozdzielniach, do zasilania budynków, a także w instalacjach przesyłowych. Warto również podkreślić, że standardy branżowe, takie jak PN-EN 50525, regulują parametry techniczne dla kabli tego typu, zapewniając ich bezpieczeństwo i efektywność w eksploatacji.

Pytanie 13

Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?

Ilustracja do pytania
A. Rezystancję uziemienia.
B. Czas wyłączenia wyłącznika nadprądowego.
C. Rezystancję izolacji.
D. Impedancję pętli zwarcia.
Zrozumienie różnicy między różnymi pomiarami elektrycznymi jest kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych. Wybór rezystancji uziemienia jako odpowiedzi jest błędny, ponieważ chociaż niektóre mierniki wielofunkcyjne mogą mieć możliwość pomiaru tego parametru, nie jest to funkcja, która jest standardowo dostępna w każdym modelu. Rezystancja uziemienia jest pomiarem, który ocenia skuteczność systemu uziemiającego, a jego niewłaściwe pomiary mogą prowadzić do wadliwego funkcjonowania ochrony przeciwporażeniowej. Kolejnym błędnym wyborem jest rezystancja izolacji, która mierzy integralność izolacji elektrycznej, a jej pomiar wymaga innych technik oraz odpowiednich testerów izolacji, które są zaprojektowane specjalnie do tego celu. Użytkownicy często mylą te dwa pojęcia, co może wynikać z braku wiedzy na temat specyfiki funkcji różnych przyrządów. Czas wyłączenia wyłącznika nadprądowego również nie jest mierzony przez standardowy miernik wielofunkcyjny. Jest to proces, który zwykle wymaga bardziej zaawansowanego sprzętu testowego, w tym analizatorów jakości energii elektrycznej. Właściwe rozumienie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa i skuteczności instalacji elektrycznych, a także do przestrzegania norm i standardów branżowych. W przypadku błędnych odpowiedzi istotne jest, aby przyjąć podejście analityczne i przyjrzeć się, dlaczego takie wybory mogą być mylne, co pomoże uniknąć podobnych pomyłek w przyszłości.

Pytanie 14

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. izolacji pomiędzy zaciskami uzwojeń silnika.
B. uzwojenia fazowego.
C. pętli zwarciowej.
D. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
Pomiar rezystancji izolacji jest kluczowym zagadnieniem w diagnostyce silników elektrycznych, dlatego błędne podejścia do tego tematu mogą prowadzić do poważnych konsekwencji. Udzielenie odpowiedzi dotyczącej uzwojeń fazowego lub izolacji pomiędzy zaciskami uzwojeń a korpusem silnika wskazuje na niezrozumienie podstawowych zasad stosowanych w pomiarach elektrycznych. Uzwojenia fazowe są elementem, który nie powinien być bezpośrednio analizowany w kontekście izolacji, ponieważ ich pomiar odnosi się bardziej do stanu pracy silnika, a nie do izolacji. Izolacja pomiędzy zaciskami uzwojeń a korpusem silnika, chociaż istotna, nie jest punktem odniesienia przy tak skonstruowanym pomiarze, ponieważ skupia się na wykryciu problemów wewnętrznych, które mogą nie manifestować się w takim pomiarze. Inną niewłaściwą koncepcją jest pomiar pętli zwarciowej, który jest zupełnie innym procesem, wymagającym innej konfiguracji oraz celów, zazwyczaj związanych z bezpieczeństwem systemów elektrycznych. W praktyce, pomiar rezystancji izolacji powinien być wykonywany z użyciem odpowiednich przyrządów, które są zaprojektowane do tego celu, aby uniknąć błędów pomiarowych i zapewnić rzetelność wyników. Ignorowanie tych zasad prowadzi do nieprawidłowych wniosków i potencjalnych zagrożeń związanych z bezpieczeństwem urządzenia.

Pytanie 15

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
B. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
C. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
D. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
Każda z alternatywnych odpowiedzi zawiera narzędzia, które w pewnym zakresie mogą być pomocne w pracach budowlanych, jednak nie są one odpowiednimi wyborami do trasowania instalacji elektrycznej podtynkowej. Poziomnica i przymiar taśmowy to narzędzia, które umożliwiają precyzyjne pomiary i kontrolę poziomu, jednak w zestawie, który nie zawiera ołówka i sznurka traserskiego, brakuje kluczowych narzędzi do efektywnego trasowania. Użycie kleszczy monterskich oraz młotka, choć istotnych w innych aspektach montażu, nie jest przydatne w procesie trasowania, gdzie wymagana jest precyzja i dokładność. Wybierając zestaw narzędzi, ważne jest, aby unikać narzędzi, które nie wpisują się w specyfikę danego zadania, na przykład młotek, który w kontekście trasowania może prowadzić do uszkodzeń ścian i nieprecyzyjnych oznaczeń. Często pojawia się mylne przekonanie, że bardziej złożony zestaw narzędzi z większą ilością funkcji będzie lepszy, podczas gdy kluczem do sukcesu w trasowaniu jest prostota i precyzja. Wybierając odpowiednie narzędzia, należy kierować się ich funkcją i zastosowaniem w konkretnych zadaniach, aby zapewnić efektywność i bezpieczeństwo wykonywanych prac.

Pytanie 16

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S191B25
B. S191C25
C. S193B25
D. S193C25
Wybór wyłącznika S193C25 jako zamiennika dla bezpieczników topikowych 25 A, zabezpieczających obwody silnika trójfazowego, jest właściwy ze względu na jego parametry techniczne oraz zgodność z obowiązującymi normami. Wyłącznik S193C25 charakteryzuje się prądem nominalnym 25 A oraz odpowiednią charakterystyką zabezpieczającą, co sprawia, że jest idealnym rozwiązaniem dla obwodów silnikowych. Zastosowanie wyłączników instalacyjnych zamiast bezpieczników topikowych przyczynia się do większej wygody użytkowania, gdyż wyłączniki są wielokrotnego użytku, a ich resetowanie jest prostsze. Ponadto, wyłączniki te oferują lepszą ochronę przed przeciążeniem i zwarciem, co jest kluczowe dla bezpieczeństwa instalacji. Przykładem praktycznego zastosowania wyłącznika S193C25 jest jego montaż w systemach automatyki przemysłowej, gdzie ochrona silników przed różnymi rodzajami awarii ma kluczowe znaczenie dla ciągłości produkcji. Warto również zwrócić uwagę, że wyłącznik S193C25 spełnia normy IEC, co potwierdza jego wysoką jakość oraz bezpieczeństwo użytkowania.

Pytanie 17

Na rysunku przedstawiono sposób podłączenia

Ilustracja do pytania
A. dławików w trójfazowej oprawie świetlówkowej.
B. trójfazowego licznika energii elektrycznej.
C. trójfazowego transformatora separacyjnego.
D. przekładników prądowych w trzech fazach.
Trójfazowy licznik energii elektrycznej to urządzenie służące do pomiaru zużycia energii elektrycznej w systemach trójfazowych, które są powszechnie stosowane w przemyśle oraz w dużych obiektach komercyjnych. Na rysunku przedstawiono schemat, gdzie widoczne są trzy linie fazowe L1, L2, L3 oraz przewód neutralny N, co jest zgodne z typową konfiguracją podłączenia do takiego licznika. Liczniki energii elektrycznej muszą spełniać normy takie jak PN-EN 62053, które określają dokładność pomiarów oraz wymagania dotyczące instalacji. Przykładowo, w przypadku monitorowania zużycia energii w zakładzie przemysłowym, zastosowanie trójfazowego licznika pozwala na precyzyjne określenie, ile energii jest konsumowane przez różne maszyny, co z kolei umożliwia optymalizację kosztów operacyjnych oraz efektywności energetycznej. Odpowiednia symbolika graficzna na schemacie, jaką zastosowano w tym przypadku, jednoznacznie wskazuje na licznik, co jest zgodne z normami PN-EN 60617, które dotyczą symboliki w dokumentacji elektrycznej.

Pytanie 18

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. B10
B. B16
C. C10
D. C16
Wybór wyłączników nadprądowych powinien być oparty na dokładnych obliczeniach prądu roboczego danego obwodu oraz na charakterystyce urządzeń, które są zasilane. Wyłącznik C10, mimo iż ma mniejszy prąd znamionowy niż B16 i C16, nie jest odpowiedni dla obszarów, gdzie występują urządzenia o dużych prądach rozruchowych, jak silniki elektryczne czy grzejniki oporowe, ponieważ może zareagować zbyt szybko na chwilowe skoki prądu. Z kolei wyłącznik B16 jest przeznaczony dla obwodów, które mogą mieć większe obciążenia i prądy do 16 A, co sprowadza się do przekroczenia maksymalnych wartości obciążenia na obwodzie z grzejnikiem 1600 W. Chociaż wyłącznik B16 mógłby teoretycznie zadziałać, w praktyce nie zapewniałby odpowiedniego poziomu zabezpieczenia, co może prowadzić do niebezpiecznych sytuacji. Podobnie, wyłącznik C16 ma zbyt wysoką wartość prądową dla tego konkretnego zastosowania, co czyni go niewłaściwym wyborem, gdyż nie zadziałałby w przypadku przeciążenia, a tym samym nie chroniłby instalacji. Właściwy wybór wyłącznika nadprądowego powinien opierać się na danych technicznych urządzeń oraz na normach bezpieczeństwa, aby zapewnić optymalną ochronę przed skutkami awarii elektrycznych.

Pytanie 19

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Wymiana uszkodzonych źródeł światła
C. Instalacja dodatkowego gniazda elektrycznego
D. Zmiana rodzaju zastosowanych przewodów
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 20

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Odgromnik
B. Stycznik elektromagnetyczny
C. Czujnik zaniku fazy
D. Przekaźnik priorytetowy
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 21

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na ilustracji?

Ilustracja do pytania
A. BN, BK, GY
B. BK, BU, GY
C. BN, BK, GNYE
D. BU, GY, GNYE
Wybór innych oznaczeń kolorystycznych, takich jak "BK, BU, GY" czy "BU, GY, GNYE", oparty jest na błędnym zrozumieniu zasad kolorystyki przewodów elektrycznych. Czarny (BK) jest często mylony z kolorem niebieskim (BU), który jednak w polskich standardach oznacza przewód neutralny tylko w niektórych kontekstach, a nie w połączeniu z innymi kolorami. Ponadto, brak brązowego przewodu fazowego w tych zestawieniach prowadzi do niebezpiecznych sytuacji, ponieważ identyfikacja przewodu fazowego jest kluczowa w każdej instalacji elektrycznej. W kontekście bezpieczeństwa, niewłaściwe oznaczenie przewodów może prowadzić do poważnych wypadków, takich jak porażenie prądem czy zwarcia. Użytkownicy często popełniają błąd, wybierając zestawienie kolorów, które nie jest zgodne z normami, ponieważ nie są świadomi, jak istotne jest przestrzeganie tych zasad dla bezpieczeństwa całej instalacji. Ostatecznie, błędne podejście do oznaczeń żył może prowadzić do trudności w diagnostyce i naprawie systemów elektrycznych, co zwiększa koszty eksploatacji i ryzyko uszkodzeń. Dlatego też istotne jest, aby znać i stosować się do przyjętych standardów w zakresie kolorystyki przewodów.

Pytanie 22

Która z opraw oświetleniowych najlepiej nadaje się do oświetlenia bezpośredniego?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Odpowiedź B jest prawidłowa, ponieważ oprawa ta jest zaprojektowana do oświetlenia bezpośredniego, skupiając światło w dół, co jest kluczowe w kontekście miejsc pracy, takich jak biura czy przestrzenie do czytania. Downlighty, jak ten opisany w odpowiedzi B, charakteryzują się wysoką efektywnością i są często stosowane w nowoczesnych aranżacjach wnętrz. Oprócz ich funkcjonalności, istotne jest również, że zastosowanie oświetlenia bezpośredniego sprzyja koncentracji i minimalizuje zmęczenie wzroku. W praktyce, dla osiągnięcia optymalnego efektu, zaleca się umieszczanie takich opraw w odległości od 1,5 do 2 metrów od miejsca, które mają oświetlać. Normy, takie jak EN 12464-1, wskazują na odpowiednie poziomy oświetlenia w różnych typach pomieszczeń, co czyni wybór odpowiednich opraw niezwykle istotnym. Warto również pamiętać, że dobór odpowiednich żarówek, takich jak LED-y o wysokim wskaźniku oddawania barw (CRI), może znacznie poprawić jakość oświetlenia.

Pytanie 23

Z którego z wymienionych materiałów wykonuje się rezystory drutowe?

A. Z aluminium.
B. Z kanthalu.
C. Z cynku.
D. Z mosiądzu
W rezystorach drutowych kluczowy jest materiał drutu, a nie to, co akurat mamy „pod ręką” w warsztacie. Błąd często polega na myśleniu: skoro coś jest metalem i przewodzi prąd, to nada się na rezystor. Niestety to tak nie działa. Do rezystorów drutowych używa się specjalnych stopów oporowych, a nie zwykłych metali konstrukcyjnych czy przewodów instalacyjnych. Aluminium ma niską rezystywność i jest raczej materiałem do przewodów energetycznych, gdzie zależy nam na jak najmniejszych stratach, a nie na uzyskaniu konkretnej, stabilnej rezystancji. Gdyby ktoś spróbował zrobić rezystor drutowy z aluminium, to musiałby użyć bardzo długiego i cienkiego drutu, a i tak parametr byłby mało stabilny przy zmianie temperatury, a do tego aluminium utlenia się powierzchniowo i jest dość kłopotliwe mechanicznie w takim zastosowaniu. Podobnie z mosiądzem – to stop miedzi z cynkiem, używany głównie na elementy mechaniczne, złączki, śruby, króćce, obudowy. Owszem, ma większą rezystancję niż czysta miedź, ale nadal nie jest to typowy materiał oporowy o kontrolowanych właściwościach. W technice rezystorowej zależy nam na znanym współczynniku temperaturowym i stabilności w długim czasie, a mosiądz do tego się po prostu nie nadaje. Cynk natomiast w ogóle nie jest traktowany jako materiał na druty oporowe. Stosuje się go raczej ochronnie (np. jako powłokę antykorozyjną – ocynk), a nie jako element czynny w obwodzie. Ma niską temperaturę topnienia i słabą odporność na przegrzewanie. To wszystko prowadzi do wniosku, że do rezystorów drutowych w praktyce używa się specjalnych stopów oporowych, takich jak kanthal, nichrom czy konstantan, a nie zwykłych metali konstrukcyjnych. Typowym błędem myślowym jest tu mieszanie pojęć: „metal przewodzący” z „materiał oporowy o kontrolowanych parametrach”. W normach i katalogach producentów rezystorów zawsze pojawiają się nazwy stopów oporowych, właśnie dlatego, że tylko one zapewniają powtarzalność, stabilność i bezpieczeństwo pracy przy dużych mocach.

Pytanie 24

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych U = 500 V, I = 25 A?

Ilustracja do pytania
A. Wstawkę 1.
B. Wstawkę 2.
C. Wstawkę 3.
D. Wstawkę 4.
Wstawkę kalibrową należy dobierać z uwzględnieniem specyfikacji technicznych wkładki topikowej. W przypadku wkładki typu D, oznaczonej jako gL, kluczowe znaczenie ma dopasowanie takich parametrów jak napięcie znamionowe i prąd znamionowy. Odpowiednia wstawką kalibrową jest wstawką 3, która posiada oznaczenie 'DII 63A 500V', co wskazuje, że jej maksymalne napięcie wynosi 500 V, a prąd do 63 A, co przekracza wymagane 25 A. Taki wybór zapewnia nie tylko poprawne działanie w systemie, ale również bezpieczeństwo użytkowania. Zastosowanie wstawki, która nie spełnia wymagań, mogłoby prowadzić do nieprawidłowej pracy zabezpieczeń i w konsekwencji do uszkodzenia urządzeń. Standardy ochrony obwodów elektrycznych, takie jak IEC 60269, zalecają dobranie wkładek topikowych i wstawek kalibracyjnych zgodnie z parametrami układu oraz wymaganiami systemu. Prawidłowy wybór umożliwia także lepsze monitorowanie i zarządzanie przepływem prądu, co jest szczególnie istotne w instalacjach przemysłowych.

Pytanie 25

Zamiast starego bezpiecznika trójfazowego 25 A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. A.
B. C.
C. D.
D. B.
Wybór niepoprawnej opcji może wynikać z kilku nieporozumień dotyczących specyfikacji wyłączników różnicowoprądowych. Niezrozumienie norm dotyczących prądu znamionowego może prowadzić do nieodpowiedniego doboru urządzenia. Na przykład, niektóre opcje mogą oferować zbyt wysokie prądy znamionowe, co skutkowałoby brakiem odpowiedniego zabezpieczenia dla obciążenia 25 A. W takich przypadkach, wybór urządzenia o niższym prądzie znamionowym może prowadzić do zadziałania wyłącznika w sytuacjach, które nie są krytyczne, co obniża jego skuteczność w ochronie. Ponadto, niewłaściwe zrozumienie liczby biegunów może doprowadzić do zastosowania wyłączników jednofazowych w instalacjach trójfazowych, co jest absolutnie niezalecane, ponieważ nie zapewnia to pełnej ochrony przed porażeniem prądem. Czułość wyłącznika różnicowoprądowego jest kluczowym parametrem, który powinien być dostosowany do specyfiki instalacji. Wybór urządzenia o zbyt dużej czułości, na przykład 100 mA, może nie zapewnić odpowiedniego zabezpieczenia, podczas gdy zbyt mała czułość może prowadzić do niepotrzebnych zadziałań. Takie błędy w doborze wyłączników mogą prowadzić do poważnych konsekwencji, w tym ryzyka wystąpienia pożaru czy porażenia prądem, co jest wysoce niepożądane w każdej instalacji elektrycznej. Dlatego kluczowe jest dobrać wyłącznik, który nie tylko spełnia normy, ale również jest odpowiednio dostosowany do charakterystyki używanych urządzeń i wymagań instalacji.

Pytanie 26

Przedstawiona na rysunku puszka rozgałęźna przeznaczona jestdo instalacji elektrycznej natynkowejprowadzonej przewodami

Ilustracja do pytania
A. w rurach winidurowych karbowanych.
B. w listwach elektroinstalacyjnych.
C. na izolatorach.
D. na uchwytach.
Prawidłowa odpowiedź to "na uchwytach", co jest zgodne z praktykami instalacji elektrycznych natynkowych. Puszki rozgałęźne przeznaczone do instalacji natynkowej muszą być montowane w sposób, który zapewnia łatwy dostęp do połączeń elektrycznych oraz ich właściwą ochronę. Montaż na uchwytach pozwala na stabilne osadzenie puszki, co jest kluczowe dla bezpieczeństwa instalacji. W przypadku instalacji natynkowych, elementy takie jak uchwyty są projektowane z myślą o prostym i szybkim montażu, co jest zgodne z normami budowlanymi i elektrycznymi. Dodatkowo, stosowanie uchwytów zmniejsza ryzyko uszkodzenia przewodów oraz ułatwia dalsze prace konserwacyjne. Przykładem praktycznego zastosowania puszek rozgałęźnych na uchwytach może być instalacja oświetlenia w pomieszczeniach, gdzie wymagana jest szybka interwencja w przypadku awarii. Warto również zaznaczyć, że według norm PN-IEC 60364, instalacje elektryczne powinny być projektowane z uwzględnieniem łatwego dostępu i bezpieczeństwa użytkowników.

Pytanie 27

Na którym rysunku przedstawiono źródło światła z trzonkiem typu B?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór odpowiedzi, która nie wskazuje na źródło światła z trzonkiem typu B, może wynikać z nieznajomości podstawowych różnic między różnymi typami trzonków. Trzonek igiełkowy, jak w przypadku odpowiedzi B, ma zupełnie inny mechanizm mocowania, który polega na osadzeniu żarówki w oprawie poprzez włożenie jej w odpowiednie gniazdo, a nie na blokowaniu poprzez wystające elementy. Tego typu trzonki są popularne w halogenach, które charakteryzują się większą efektywnością energetyczną, ale nie są kompatybilne z oprawami zaprojektowanymi dla trzonków baionetowych. Świetlówki, przedstawione w odpowiedzi C, wykorzystują całkowicie odmienną technologię, opartą na zasadzie wyładowania elektrycznego, co czyni je nieodpowiednimi dla zastosowań wymagających trzonka typu B. Na zakończenie, trzonek gwintowy, jak w przypadku odpowiedzi D, jest powszechnie używany w tradycyjnych żarówkach i różni się konstrukcyjnie oraz funkcjonalnie od trzonka baionetowego, co może prowadzić do błędnych założeń o kompatybilności. Kluczowym błędem w ocenie tej kwestii jest nieprawidłowe rozumienie różnorodności typów trzonków w kontekście ich zastosowań, co może prowadzić do niewłaściwych wyborów przy zakupie źródeł światła.

Pytanie 28

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym końcu kabla. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły c i a są przerwane.
B. Żyły c i a są zwarte ze sobą.
C. Żyły a i b są przerwane.
D. Żyły a i b są zwarte ze sobą.
Pomiary rezystancji mogą prowadzić do różnych błędów w wnioskowaniu, zwłaszcza jak się ich nie przeanalizuje odpowiednio. Na przykład, mówienie o przerwach w żyłach c i a czy a i b, to nie jest dobra sprawa. Pomiary mówią, że brak połączenia mamy tylko między a i c oraz b i c. Warto to zrozumieć jako brak elektrycznego połączenia, a nie jakiekolwiek inne założenie. Typowy błąd to myślenie, że jeśli rezystancja jest nieskończona, to żyły są przerwane. A to wprowadza w błąd. Nieskończona rezystancja tylko pokazuje, że nie ma połączenia między a i c oraz b. Natomiast a i b, mając skończoną rezystancję, są ze sobą zwarte. W praktyce każdy technik powinien wiedzieć, że interpretacja rezystancji to nie tylko teoria, ale też praktyka pomiarów. Dobre praktyki w diagnozowaniu usterek to konieczność dokładnych sprawdzeń i powtarzania pomiarów, żeby uniknąć fałszywych informacji, które mogą kosztować sporo w naprawach i konserwacji systemów elektrycznych.

Pytanie 29

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Zdalne sterowanie obwodami elektrycznymi
B. Ochrona przed przeciążeniami
C. Kontrola temperatury przewodów
D. Zmniejszenie zużycia energii
Przekaźnik to bardzo wszechstronne urządzenie stosowane w instalacjach elektrycznych głównie do zdalnego sterowania obwodami elektrycznymi. Działa na zasadzie elektromagnetycznego przełącznika, który pozwala na kontrolowanie dużych prądów za pomocą małego sygnału elektrycznego. To właśnie ta funkcja umożliwia automatyzację wielu procesów w instalacjach. Przekaźniki są kluczowe w systemach sterowania, gdzie pozwalają na włączanie i wyłączanie obwodów bez konieczności fizycznego kontaktu, co zwiększa bezpieczeństwo i efektywność operacyjną. W praktyce, przekaźniki są używane w wielu aplikacjach, takich jak automatyka domowa, układy sterowania maszynami czy systemy zabezpieczeń. Ponadto, ich zastosowanie jest standardem w systemach, gdzie konieczna jest szybka reakcja na zmianę stanu, np. w przypadku awarii lub nadmiernego obciążenia. Ich niezawodność i łatwość w integracji sprawiają, że są nieodzownym elementem współczesnych systemów elektrycznych.

Pytanie 30

Którą lampę przedstawiono na rysunku?

Ilustracja do pytania
A. Rtęciową.
B. Ledową.
C. Żarową.
D. Sodową.
Odpowiedź "Ledową" jest poprawna, ponieważ na zdjęciu widoczna jest lampa LED, która charakteryzuje się wieloma małymi diodami emitującymi światło. W przeciwieństwie do lamp żarowych, które mają jedno większe źródło światła, lampy LED oferują szereg zalet. Przykładowo, ich wydajność energetyczna jest znacznie wyższa, co prowadzi do oszczędności energii i dłuższej żywotności. W praktycznym zastosowaniu oznacza to, że lampy LED mogą być wykorzystywane w różnych kontekstach, jak oświetlenie wnętrz, iluminacje zewnętrzne, a także w instalacjach przemysłowych. Zgodnie z normami branżowymi, lampy LED nie emitują promieniowania UV, co czyni je bezpiecznymi w zastosowaniach, gdzie istotna jest ochrona przed szkodliwym wpływem światła. Warto również dodać, że technologia LED jest zgodna z trendami zrównoważonego rozwoju, co czyni je preferowanym wyborem w nowoczesnych budynkach.

Pytanie 31

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 6,0 kV
B. 4,0 kV
C. 1,5 kV
D. 2,5 kV
Wybór wytrzymałości udarowej 2,5 kV, 4,0 kV czy 6,0 kV może wynikać z błędnych założeń co do tego, jakie normy powinny być stosowane w instalacjach elektrycznych. Może się wydawać, że wyższa wytrzymałość oznacza lepszą ochronę przed przepięciami, ale norma PN-IEC 664-1 jasno określa konkretne wartości dla różnych kategorii urządzeń. Jeśli wybierzesz zbyt wysoką wytrzymałość w I kategorii, to tak naprawdę może generować niepotrzebne koszty, które nie przekładają się na większe bezpieczeństwo. Dodatkowo, nadmierne wymagania mogą ograniczać dostępność i wybór sprzętu na rynku, co w efekcie wpływa na innowacyjność. Często też zdarza się, że nie odróżnia się kategorii urządzeń i ich rzeczywistych zastosowań, co jest naprawdę istotne. W praktyce wyższe wartości udarowe są używane w trudniejszych warunkach, jak II kategoria, gdzie ryzyko większych przepięć jest realne. Dlatego ważne, żeby spojrzeć na wymagania dotyczące wytrzymałości udarowej w kontekście konkretnych sytuacji i zagrożeń, żeby podejmować lepsze decyzje projektowe.

Pytanie 32

Kabel typu YAKY przedstawiono na rysunku

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Kabel typu YAKY jest kluczowym elementem instalacji elektroenergetycznych, charakteryzującym się izolacją z polwinitu oraz okrągłym przekrojem. Odpowiedź B jest właściwa, ponieważ przedstawiony kabel spełnia te kryteria. W praktyce kable YAKY są powszechnie wykorzystywane w różnych zastosowaniach, zarówno w budynkach mieszkalnych, jak i przemysłowych. Dzięki swojej konstrukcji, kable te zapewniają wysoką odporność na działanie niekorzystnych warunków atmosferycznych oraz mechanicznych uszkodzeń, co czyni je idealnym rozwiązaniem w instalacjach na zewnątrz budynków. Zgodnie z normami PN-EN 60332-1, kable YAKY muszą wykazywać określone właściwości dielektryczne i mechaniczne, co zapewnia ich niezawodność i bezpieczeństwo użytkowania. Wiedza na temat takich kabli jest niezbędna dla inżynierów i techników zajmujących się projektowaniem oraz montażem instalacji elektrycznych, co pozwala na dobór odpowiednich komponentów do konkretnych warunków pracy.

Pytanie 33

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. OMYp 3×1,5 mm2
B. YDY 3×1,5 mm2
C. LGu 3×1,5 mm2
D. YDYt 3×1,5 mm2
YDYt 3×1,5 mm2, YDY 3×1,5 mm2 oraz LGu 3×1,5 mm2 to inne typy przewodów, które mają różne zastosowania, lecz nie są odpowiednie do zasilania jednofazowego odbiornika ruchomego. Przewód YDYt, będący wersją przewodu YDY z dodatkowym ekranem, przeznaczony jest głównie do instalacji stałych i nie jest przystosowany do dużych ruchów oraz narażeń mechanicznych. Stosowanie go w aplikacjach ruchomych może prowadzić do uszkodzeń mechanicznych, co z czasem może skutkować awarią lub zagrożeniem bezpieczeństwa. Podobnie, przewód YDY, mimo że jest powszechnie używany w instalacjach elektrycznych, nie zapewnia elastyczności wymaganej w przypadku przewodów zasilających mobilne urządzenia. Z kolei przewód LGu, który jest przeznaczony do instalacji wewnętrznych oraz jako przewód sygnałowy, nie spełnia standardów dotyczących zasilania urządzeń, które są narażone na ruch i zmienne warunki pracy. Użycie tych typów przewodów w aplikacjach, które wymagają mobilności, może prowadzić do ich uszkodzenia, a w konsekwencji do problemów z bezpieczeństwem i niezawodnością zasilania. Wybór niewłaściwego typu przewodu w obszarze zasilania ruchomych odbiorników elektrycznych jest typowym błędem, który wynika z braku zrozumienia różnic pomiędzy przewodami przeznaczonymi do instalacji stałych i mobilnych.

Pytanie 34

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Rozłącznik bezpiecznikowy.
B. Wyłącznik przepięciowy.
C. Wyłącznik nadmiarowoprądowy.
D. Odłącznik bezpiecznikowy.
Wybór niewłaściwej odpowiedzi może wynikać z mylenia różnych typów urządzeń zabezpieczających. Na przykład, odłącznik bezpiecznikowy, często mylony z rozłącznikiem, ma na celu odłączenie zasilania, ale nie zabezpiecza obwodu przed przepięciami czy przeciążeniami w ten sam sposób. Natomiast wyłącznik przepięciowy, który również może wydawać się atrakcyjną opcją, służy głównie do ochrony przed szkodliwymi skokami napięcia, które mogą uszkodzić podłączone urządzenia, a nie jest to jego funkcja w rozłączniku bezpiecznikowym. Wyłącznik nadmiarowoprądowy, z drugiej strony, może chronić przed przeciążeniem, jednak nie ma zdolności do odłączania obwodu w kontekście zapewnienia bezpieczeństwa operatora w sytuacji awaryjnej. Takie nieporozumienia mogą prowadzić do nieprawidłowego doboru urządzeń zabezpieczających, co w konsekwencji zwiększa ryzyko uszkodzeń instalacji oraz naraża użytkowników na niebezpieczeństwo. Kluczowym błędem jest zatem brak znajomości różnic w działaniach i zastosowaniach tych urządzeń, co powinno być uwzględnione podczas projektowania lub modernizacji instalacji elektrycznych. Właściwy dobór zabezpieczeń jest istotny dla zapewnienia bezpieczeństwa i efektywności działania całego systemu elektrycznego.

Pytanie 35

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzony przewód pomiędzy W3 a E1
B. Uszkodzone przewody pomiędzy W1 a W2
C. Uszkodzony przewód pomiędzy W1 a S191B10
D. Uszkodzone przewody pomiędzy W2 a W3
Nieprawidłowe odpowiedzi wskazują na różne nieporozumienia dotyczące działania obwodów elektrycznych. Wybór uszkodzonego przewodu pomiędzy W1 a S191B10 sugeruje, że uczestnik testu nie zrozumiał, jak obwody szeregowe działają w kontekście świecenia żarówek. W przypadku uszkodzenia przewodu w tej lokalizacji, obie żarówki E1 i E2 nie mogłyby świecić, ponieważ brakowałoby pełnego obwodu. Kolejny błąd dotyczy wskazania uszkodzonych przewodów pomiędzy W1 a W2. Gdyby ten przewód był uszkodzony, żarówka E2 również nie mogłaby świecić, co jest sprzeczne z danymi. Również wybór uszkodzenia przewodów pomiędzy W2 a W3 jest mylny, ponieważ zgodnie z pomiarem napięcia U12 na poziomie 228 V, nie ma tam przerwy. To wskazuje na sprawność tej sekcji obwodu. Kluczowe jest zrozumienie, że w obwodach elektrycznych prąd płynie w zamkniętej pętli, a każde uszkodzenie w dowolnym miejscu wyłącza cały obwód. W praktyce, aby uniknąć takich błędów, zaleca się dokładne badanie schematów oraz logiczne rozumowanie związane z kierunkiem przepływu prądu i funkcjonowaniem poszczególnych komponentów. Warto pamiętać, że analiza problemów elektrycznych wymaga nie tylko wiedzy teoretycznej, ale także umiejętności praktycznych w diagnostyce i naprawie instalacji.

Pytanie 36

Miernik rezystancji włączony do układu jak na rysunku służy do

Ilustracja do pytania
A. pomiaru impedancji pętli zwarciowej.
B. pomiaru rezystancji uziemienia.
C. sprawdzenia ciągłości przewodu głównego połączenia wyrównawczego.
D. sprawdzenia ciągłości przewodu miejscowego połączenia wyrównawczego.
Wybór odpowiedzi niezgodnej z rzeczywistym przeznaczeniem miernika rezystancji może prowadzić do poważnych konsekwencji w pracy z instalacjami elektrycznymi. Pomiar impedancji pętli zwarciowej, choć istotny, dotyczy innego aspektu analizy instalacji elektrycznej. Impedancja pętli zwarciowej jest parametrem, który pozwala zrozumieć, jak instalacja zareaguje w przypadku zwarcia. Pomiar ten wykonuje się zwykle w celu oceny skuteczności zabezpieczeń, a nie do sprawdzenia ciągłości przewodów ochronnych. Także, pomiar rezystancji uziemienia, mimo że istotny dla zapewnienia ochrony przed porażeniem, odnosi się do innego elementu instalacji, a nie do samej ciągłości przewodu. Dodatkowo, sprawdzenie ciągłości przewodu miejscowego połączenia wyrównawczego także nie jest właściwe w kontekście użycia miernika w opisywanym układzie. Mierzony przewód w tym przypadku jest przewodem głównym, który odgrywa kluczową rolę w bezpiecznym funkcjonowaniu całej instalacji. Zrozumienie różnicy pomiędzy tymi rodzajami pomiarów jest kluczowe dla każdego specjalisty zajmującego się elektryką, ponieważ pomyłka w identyfikacji celu pomiaru może prowadzić do poważnych problemów z bezpieczeństwem instalacji, a także do nieprawidłowej oceny stanu technicznego systemu elektrycznego.

Pytanie 37

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn ≤ UL
B. RA ∙ IΔn ≥ UL
C. RA ∙ IΔn < UL
D. RA ∙ IΔn > UL
Każda z pozostałych odpowiedzi opiera się na błędnych założeniach dotyczących działania urządzeń ochronnych oraz zasadności stosowania zależności związanych z bezpieczeństwem elektrycznym. Odpowiedzi sugerujące, że RA ∙ IΔn > UL, RA ∙ IΔn < UL czy RA ∙ IΔn ≥ UL są nieprawidłowe, ponieważ nie uwzględniają kluczowego aspektu, jakim jest ochrona przed porażeniem elektrycznym. W przypadku, gdyby stosunek RA ∙ IΔn był większy niż UL, oznaczałoby to, że nie możemy zagwarantować, iż prąd różnicowy wywołany przez uszkodzenie izolacji w sieci nie przekroczy wartości niebezpiecznej dla osoby dotykającej urządzenia elektrycznego. Taka sytuacja prowadzi do dużego ryzyka porażenia prądem, co jest sprzeczne z podstawowymi zasadami ochrony przeciwporażeniowej. Z kolei odpowiedź sugerująca, że RA ∙ IΔn powinno być większe lub równe UL, może prowadzić do sytuacji, w której ochrona nie zadziała w odpowiednim momencie, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych oraz poważnymi obrażeniami ludzi. W kontekście dobrych praktyk w instalacjach elektrycznych, zgodnych z normami, kluczowe jest zapewnienie, że wszystkie urządzenia ochronne są odpowiednio dobrane, a ich parametry muszą być zgodne z wymaganiami dotyczącymi uziemienia i bezpieczeństwa elektrycznego. Przykłady błędnych przekonań obejmują nadmierne zaufanie do technologii bez zrozumienia ich działania oraz ignorowanie istotnych norm, które regulują bezpieczeństwo instalacji elektrycznych.

Pytanie 38

Na podstawie zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania przedstawionych na rysunku wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,3 V
B. 12,0 V
C. 11,0 V
D. 12,4 V
No więc, odpowiedź 12,0 V jest jak najbardziej trafna. Można to zobaczyć, analizując wykres, który pokazuje, jak napięcie akumulatora zmienia się w zależności od prądu i czasu rozładowywania. Jak obciążamy akumulator prądem 60 A przez 30 minut, to napięcie wynosi właśnie 12,0 V, co jest zgodne z tym, co powinno być zgodnie z normami. Wartość ta pokazuje, że akumulator działa tak, jak się tego spodziewaliśmy. Moim zdaniem, zrozumienie tej zależności jest mega ważne, zwłaszcza przy projektowaniu systemów zasilania dla różnych urządzeń. No i w odnawialnej energii, gdzie pojemność akumulatora ma ogromny wpływ na wydajność. Fajnie też wiedzieć, że w praktyce, jak np. w systemach fotowoltaicznych czy zasilaniu awaryjnym, znajomość charakterystyki rozładowania akumulatorów pomaga w ich optymalnym wykorzystaniu oraz w wydłużeniu żywotności przez unikanie nadmiernego rozładowania.

Pytanie 39

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Włączenie odbiornika drugiej klasy ochronności.
B. Przerwa w przewodzie uziemiającym instalację.
C. Zwarcie przewodu ochronnego z przewodem neutralnym.
D. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.
Jednoczesne podłączenie odbiorników o zbyt dużej mocy jest kluczowym czynnikiem, który może spowodować samoczynne wyłączenie wyłącznika nadprądowego. Wyłącznik nadprądowy, taki jak B16, jest zaprojektowany w celu ochrony obwodu przed przeciążeniem i zwarciem. Kiedy do obwodu podłączone są urządzenia o dużym zapotrzebowaniu na moc, ich łączny prąd może przekroczyć wartość znamionową wyłącznika, co automatycznie prowadzi do jego zadziałania. Przykładem może być jednoczesne włączenie kuchenki elektrycznej, piekarnika oraz zmywarki, co w wielu przypadkach przekracza 16 A, a tym samym powoduje wyłączenie. Zgodnie z normami PN-IEC 60898, każda instalacja elektryczna powinna być projektowana z uwzględnieniem maksymalnych obciążeń oraz odpowiednich zabezpieczeń, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, aby uniknąć problemów z wyłącznikami, należy świadomie dobierać moc urządzeń oraz rozważać ich jednoczesne użycie.

Pytanie 40

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Wtynkowych
B. Napowietrznych
C. Podtynkowych
D. Nadtynkowych
Rozważając odpowiedzi, które nie są poprawne, można zauważyć, że układanie przewodów w rurkach karbowanych nie jest praktykowane w instalacjach natynkowych. W tego typu instalacjach przewody są często umieszczane na powierzchni ścian, co nie tylko obniża estetykę, ale również naraża je na uszkodzenia mechaniczne. Rurki karbowane pełnią funkcję ochronną, a ich stosowanie w instalacjach natynkowych jest zbędne, ponieważ przewody nie są ukryte w ścianach. Kolejny błąd myślowy dotyczy odpowiedzi odnośnie instalacji wtynkowych. Termin ten jest często mylony z podtynkowymi, jednak wtynkowe oznacza, że przewody są osadzone w elementach budowlanych, co nie wymaga dodatkowej ochrony, jaką zapewniają rurki karbowane. Wreszcie, instalacje napowietrzne również nie wymagają użycia rur karbowanych. Przewody w takich instalacjach są zwykle zawieszone na słupach i nie są narażone na te same warunki, co przewody w ścianach. Dlatego stosowanie rur karbowanych w tych przypadkach byłoby niepraktyczne i nieefektywne. W każdym przypadku, ignorowanie odpowiednich norm i praktyk dotyczących instalacji elektrycznych może prowadzić do problemów z bezpieczeństwem oraz niezawodnością, dlatego zrozumienie różnic pomiędzy typami instalacji jest kluczowe dla właściwego podejścia do tematu.