Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 grudnia 2025 13:15
  • Data zakończenia: 13 grudnia 2025 13:20

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Zakres działań eksploatacyjnych dla urządzenia mechatronicznego powinien być określony na podstawie

A. dowodu zakupu urządzenia
B. dokumentacji techniczno-ruchowej urządzenia
C. protokółu przekazania urządzenia do eksploatacji
D. karty gwarancyjnej
Dokumentacja techniczno-ruchowa urządzenia mechatronicznego jest kluczowym źródłem informacji dotyczących jego eksploatacji, konserwacji oraz napraw. Zawiera szczegółowe specyfikacje techniczne, instrukcje obsługi oraz harmonogramy przeglądów, co pozwala użytkownikom na odpowiednie przygotowanie się do pracy z urządzeniem. Przykładowo, regularne przeglądy oraz konserwacja zgodnie z wytycznymi zawartymi w dokumentacji są niezbędne dla zapewnienia długotrwałej i bezawaryjnej pracy urządzenia. Dobre praktyki branżowe wskazują, że niewłaściwa eksploatacja sprzętu, wynikająca z braku znajomości zasad zawartych w dokumentacji, może prowadzić do poważnych usterek oraz zwiększonych kosztów napraw. Ponadto, dokumentacja techniczno-ruchowa zapewnia również aktualizacje dotyczące zmian w procedurach eksploatacyjnych, co jest istotne w kontekście dostosowania się do nowych standardów i norm bezpieczeństwa. Rzetelne przestrzeganie zawartych tam wytycznych jest zatem fundamentem dla efektywnej i bezpiecznej eksploatacji urządzeń mechatronicznych.

Pytanie 3

Jakie informacje powinien zawierać raport z realizowanych prac konserwacyjnych frezarki numerycznej?

A. Miejsce i datę oraz kosztorys przeprowadzonej konserwacji
B. Datę i opis wykonanych prac oraz podpis osoby odpowiedzialnej za konserwację
C. Kosztorys oraz opis przeprowadzonych działań, a także podpis osoby odpowiedzialnej za konserwację
D. Miejsce i datę, a także czas realizacji prac konserwacyjnych
Protokół z prac konserwacyjnych frezarki numerycznej to coś, co musi mieć kilka ważnych rzeczy. Po pierwsze, musi być w nim data i opis tego, co dokładnie zrobiono. To jest mega ważne, żeby wiedzieć, co się działo z maszyną w czasie jej użytkowania. Dzięki temu łatwiej ogarnąć, kiedy powinny być następne przeglądy. A opis prac pozwala zobaczyć, co się zmieniło, co jest kluczowe, gdy planujemy przyszłe naprawy. I jeszcze podpis wykonawcy – to też istotne, bo jeśli coś się stanie, to wiemy, że to robił ktoś kompetentny. I wiesz, w kontekście norm ISO, taki protokół jest podstawą do audytów i kontroli jakości, co w produkcji ma ogromne znaczenie. Kiedy urządzenie się psuje, dobrze napisana dokumentacja ułatwia szybką diagnozę problemu, co jest bardzo pomocne.

Pytanie 4

Falowniki używane w przetwornicach częstotliwości mają na celu regulację

A. prędkości obrotowej silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
B. mocy silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
C. kierunku obrotów silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
D. prędkości obrotowej silnika, poprzez modyfikację wartości prądu zasilającego silnik
Falowniki w przetwornicach częstotliwości odgrywają kluczową rolę w regulacji prędkości obrotowej silników. Poprzez zmianę częstotliwości napięcia zasilającego, falownik umożliwia dostosowanie prędkości obrotowej silnika do wymagań obciążenia, co jest istotne w wielu zastosowaniach przemysłowych, takich jak pompy, wentylatory czy taśmociągi. Dzięki tej technologii możliwe jest osiągnięcie większej efektywności energetycznej oraz redukcji kosztów operacyjnych. W przypadku silników asynchronicznych, zmiana częstotliwości zasilania bezpośrednio wpływa na prędkość obrotową, co pozwala na precyzyjne sterowanie procesami. W praktyce, zastosowanie falowników pozwala na unikanie skoków w prędkości obrotowej, co z kolei przekłada się na dłuższy czas eksploatacji urządzeń oraz zmniejszenie zużycia energii. Jest to zgodne z najlepszymi praktykami branżowymi, które promują zrównoważony rozwój oraz efektywność energetyczną w przemyśle.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Z jakiego układu zasilania powinna być zasilana maszyna mechatroniczna, skoro na schemacie sieć zasilającą oznaczono symbolem 400 V ~ 3/N/PE?

A. TT
B. TN – S
C. TI
D. TN – C
Odpowiedź TN-S jest prawidłowa, ponieważ oznaczenie 400 V ~ 3/N/PE wskazuje na sieć trójfazową z przewodem neutralnym oraz przewodem ochronnym. W układzie TN-S przewód neutralny (N) oraz przewód ochronny (PE) są odseparowane, co zwiększa bezpieczeństwo użytkowania urządzeń mechatronicznych. Stosowanie sieci TN-S jest zgodne z normami IEC 60364, które zalecają, by w przypadku zasilania systemów wymagających wysokiego poziomu bezpieczeństwa elektrycznego, stosować właśnie ten typ układu. Przykładem zastosowania układu TN-S mogą być środowiska przemysłowe, gdzie urządzenia mechatroniczne zasilane są z sieci o wysokiej mocy, minimalizując ryzyko porażenia prądem. Dodatkowo, TN-S pozwala na lepszą ochronę przed zakłóceniami elektromagnetycznymi, co jest kluczowe w przypadku wrażliwych urządzeń elektronicznych. Z tego względu układ TN-S jest preferowany w nowoczesnych instalacjach elektrycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakie są cele stosowania systemów do monitorowania parametrów pracy urządzeń mechatronicznych?

A. Poprawy wizerunku firmy
B. Obniżenia kosztów zatrudnienia
C. Zwiększenia częstotliwości przeglądów urządzenia
D. Skrócenia czasu naprawy urządzenia
Wybór przyczyn zastosowania systemów monitorowania parametrów pracy urządzeń mechatronicznych jest istotnym zagadnieniem, które wymaga zrozumienia rzeczywistych korzyści płynących z tych systemów. Odpowiedzi sugerujące, że celem ich wdrożenia jest zmniejszenie kosztów zatrudnienia, są mylące. Efektywność systemów monitorowania nie polega na redukcji etatów, ale na zwiększeniu efektywności personelu poprzez dostarczanie im narzędzi do szybkiej diagnozy i reakcji na problemy. Z kolei poprawa wizerunku firmy, choć może być konsekwencją efektywnego zarządzania urządzeniami, nie jest bezpośrednim celem monitorowania. W rzeczywistości, wizerunek firmy kształtują przede wszystkim wyniki operacyjne oraz jakość produktów, które są efektem skutecznej kontroli i utrzymania sprawności urządzeń. Ponadto, zwiększenie częstotliwości przeglądów urządzeń nie jest efektem systemów monitorowania. Te systemy mają na celu optymalizację przeglądów poprzez precyzyjne określenie momentu, w którym urządzenie wymaga interwencji, co w rezultacie może prowadzić do zmniejszenia ich liczby, a nie zwiększenia. Typowe błędy myślowe związane z tymi odpowiedziami polegają na uproszczeniu roli systemów monitorowania do jednego aspektu, podczas gdy rzeczywiste korzyści są wieloaspektowe i złożone, obejmujące zarówno oszczędności kosztów, jak i poprawę efektywności operacyjnej.

Pytanie 11

Która z liter adresowych zastosowanych w poniższej instrukcji programowania obrabiarki oznacza szybkość posuwu?

CNC N120 G31 X50 Z-30 D-2 F3 Q3
A. G
B. Q
C. N
D. F
Wybór litery 'F' jako oznaczenia szybkości posuwu w programowaniu obrabiarek CNC jest poprawny, ponieważ jest to standardowo stosowane oznaczenie w wielu językach programowania tych urządzeń. Szybkość posuwu, czyli prędkość, z jaką narzędzie porusza się w obrabianym materiale, ma kluczowe znaczenie dla jakości oraz efektywności obróbki. Zbyt niska prędkość posuwu może prowadzić do nieefektywnej obróbki, a zbyt wysoka może powodować przegrzewanie materiału oraz zużycie narzędzi. Przykładowo, w kodzie G, zapis 'F3' wskazuje, że narzędzie porusza się z prędkością 3 mm/min, co pozwala na precyzyjne stworzenie detalu zgodnie z wymogami technologicznymi. Warto zaznaczyć, że dobór właściwej szybkości posuwu zależy od rodzaju materiału, geometrii narzędzia oraz parametrów obrabiarki, co podkreśla znaczenie znajomości tych aspektów dla operatora CNC. Używanie litery 'F' do oznaczania tej wartości jest powszechne w branży i należy do najlepszych praktyk. Właściwe ustawienie szybkości posuwu ma również wpływ na żywotność narzędzi oraz jakość powierzchni obrabianego detalu, dlatego tak istotne jest, aby operatorzy CNC byli dobrze zaznajomieni z tymi parametrami.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie ciśnienie powietrza powinno panować w komorze siłownika jednostronnego działania o powierzchni tłoka A = 0,005 m2 oraz sprawności η = 0,7, aby siła przenoszona przez tłoczysko wynosiła F = 2100 N? (F = η· p · A)

A. 8 bar
B. 6 bar
C. 7 bar
D. 5 bar
Wybór ciśnienia powietrza innego niż 6 bar może prowadzić do niewłaściwego funkcjonowania siłownika. Odpowiedzi takie jak 5 bar, 7 bar czy 8 bar wynikają z błędnych założeń dotyczących równania F = η·p·A. W przypadku 5 bar, ciśnienie to jest zbyt niskie, co prowadzi do niedostatecznej siły przenoszonej przez tłoczysko. Efektem tego może być niemożność wykonania zadania, do którego siłownik został zaprojektowany, co w praktyce może skutkować awarią lub uszkodzeniem sprzętu. Z kolei 7 bar i 8 bar to nadmiar ciśnienia, które nie tylko nie jest wymagane, ale również może prowadzić do nadmiernego zużycia energii oraz zwiększonego ryzyka uszkodzenia uszczelnień i innych elementów siłownika, co w konsekwencji przyczynia się do obniżenia efektywności całego systemu. W branży hydrauliki istotne jest, aby dobierać ciśnienia zgodnie z przyjętymi normami i praktykami inżynieryjnymi, aby zapewnić optymalne działanie oraz długowieczność systemów. Dlatego ważne jest, aby dokładnie przeliczać wymagane parametry, aby uniknąć błędnych decyzji inżynieryjnych.

Pytanie 14

W podręczniku obsługi silnika zasilanego napięciem 400 V i kontrolowanego przez PLC powinna być zawarta informacja: Przed rozpoczęciem prac konserwacyjnych należy odłączyć wszystkie obwody zasilające.

A. zabezpieczyć je przed uruchomieniem i sprawdzić, czy nie ma napięcia
B. uziemić silnik oraz uziemić sterownik przy użyciu urządzenia do uziemiania
C. zabezpieczyć je przed uruchomieniem oraz zewrzeć obudowę silnika z uziemieniem
D. sprawdzić, czy nie ma napięcia i zewrzeć złącza silnika
Wybór odpowiedzi "zabezpieczyć je przed włączeniem i sprawdzić brak napięcia" jest kluczowy dla zapewnienia bezpieczeństwa podczas konserwacji silników elektrycznych. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 60204-1, przed przystąpieniem do jakichkolwiek prac konserwacyjnych należy zawsze odłączyć zasilanie. Zabezpieczenie obwodów przed włączeniem jest podstawowym krokiem, który minimalizuje ryzyko przypadkowego uruchomienia maszyny. Proces sprawdzania braku napięcia, na przykład za pomocą wskaźnika napięcia, jest niezbędny, aby upewnić się, że obwód jest całkowicie bezpieczny do pracy. Tego rodzaju procedury są standardowymi praktykami w przemyśle, które zapewniają nie tylko bezpieczeństwo technika, ale także zapobiegają uszkodzeniu sprzętu. Oprócz tego, stosowanie odpowiednich osłon i oznakowań ostrzegawczych jest również ważne, aby informować innych pracowników o prowadzonych pracach konserwacyjnych, co dodatkowo zwiększa poziom bezpieczeństwa w miejscu pracy.

Pytanie 15

Jakie symptomy pracy jednofazowego silnika klatkowego mogą wskazywać na uszkodzenie kondensatora?

A. Trudności z uruchomieniem silnika
B. Brak jakiejkolwiek reakcji po włączeniu zasilania
C. Skłonności do samoczynnego rozbiegnięcia się wirnika
D. Zmiana kierunku obrotu wirnika
Kierunek wirowania wirnika w silniku klatkowym jednofazowym jest zdeterminowany przez sposób podłączenia uzwojeń oraz kierunek prądu wytwarzanego przez kondensator. Zmiana kierunku wirowania nie jest typowym objawem uszkodzenia kondensatora, a zatem nie można jej łączyć z tym rodzajem awarii. Tendencje do rozbiegania się wirnika mogą być związane z innymi problemami, takimi jak nierównomierne obciążenie lub uszkodzenie mechaniczne, a niekoniecznie z kondensatorem. Z kolei brak jakiejkolwiek reakcji na załączenie zasilania wskazuje na poważniejsze problemy, takie jak zasilanie, uszkodzenia w uzwojeniach, czy całkowite uszkodzenie silnika. Te objawy często prowadzą do błędnych wniosków, które mogą skutkować niewłaściwą diagnozą i naprawą. W praktyce, aby prawidłowo zidentyfikować problem w silniku klatkowym jednofazowym, konieczne jest przeprowadzenie szczegółowej analizy, w tym sprawdzeniu kondensatora, ale także innych elementów układu elektrycznego. Zrozumienie złożoności działania silników elektrycznych i umiejętność oceny objawów awarii to kluczowe kompetencje dla techników i inżynierów zajmujących się elektroniką i elektrotechniką.

Pytanie 16

Jak określa się punkt zerowy elementu poddawanego obróbce na maszynie CNC?

A. Jego lokalizacja może być ustawiona w dowolny sposób, zaleca się, aby ustalić ten punkt na osi elementu
B. Jego lokalizacja jest ustalana w zależności od typu oraz celu wykorzystywanego narzędzia do obróbki
C. Jest ustalana z uwzględnieniem sposobu mocowania elementu, z tego miejsca narzędzie rozpocznie proces obróbczy
D. Jest określany przez producenta maszyny w trakcie jej projektowania
Prawidłowa odpowiedź wskazuje, że punkt zerowy przedmiotu toczenia w obrabiarce CNC może być ustalony w dowolnym miejscu, chociaż zaleca się lokalizację na osi przedmiotu. Ustalenie punktu zerowego jest kluczowym krokiem w procesie obróbczy, ponieważ od tego punktu rozpoczyna się cała operacja toczenia. W praktyce, umiejscowienie punktu zerowego na osi przedmiotu pozwala na uzyskanie większej precyzji i powtarzalności obróbki. Zgodnie z dobrą praktyką, operatorzy powinni upewnić się, że punkt ten jest dobrze zdefiniowany, aby uniknąć błędów, które mogą prowadzić do odrzucenia części. Wiele nowoczesnych obrabiarek CNC oferuje funkcje automatycznej detekcji punktu zerowego, co może znacznie usprawnić proces przygotowania maszyny. Dobrze ustalony punkt zerowy ma również kluczowe znaczenie w kontekście dalszych operacji, takich jak frezowanie czy wiercenie, gdzie precyzyjna lokalizacja narzędzia względem przedmiotu jest niezbędna do osiągnięcia wysokiej jakości obróbki.

Pytanie 17

Obserwując zarejestrowany przebieg wartości regulowanej w systemie regulacji dwustanowej, dostrzeżono zbyt silne oscylacje wokół wartości docelowej. W celu zredukowania amplitudy tych oscylacji, należy w regulatorze cyfrowym

A. powiększyć szerokość histerezy
B. zmniejszyć szerokość histerezy
C. zmniejszyć wartość sygnału ustawiającego
D. zwiększyć amplitudę sygnału kontrolującego
Zmniejszenie szerokości histerezy w regulatorze cyfrowym to kluczowy krok w procesie redukcji oscylacji wokół wartości zadanej. Histereza jest zjawiskiem, które polega na tym, że wartość, przy której następuje przełączenie stanu, różni się w zależności od kierunku odchylenia od wartości zadanej. Zmniejszenie szerokości histerezy powoduje szybszą reakcję regulatora na niewielkie odchylenia, co w praktyce oznacza, że system będzie przełączał się pomiędzy stanami w krótszym czasie i z mniejszymi opóźnieniami. W zastosowaniach przemysłowych, gdzie precyzja i stabilność są kluczowe, takie podejście jest zgodne z najlepszymi praktykami w inżynierii automatyki, co przekłada się na większą efektywność i mniejsze ryzyko awarii. W systemach HVAC czy w regulacji temperatury, precyzyjne dostosowanie histerezy pozwala na optymalne zarządzanie zużyciem energii oraz komfortem użytkowników. Dobrze dobrana histereza pozwala nie tylko na stabilizację, ale również na poprawę responsywności systemu, co jest niezwykle istotne w złożonych układach regulacji.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W systemie mechatronicznym konieczne jest zastosowanie regulacji temperatury w dwóch stanach. Który z regulatorów odpowiada tym wymaganiom?

A. Proporcjonalny
B. PID
C. PI
D. Dwustawny
Regulatory PID, proporcjonalne i PI to zaawansowane rozwiązania, które wprowadza są bardziej skomplikowane niż regulator dwustawny. Regulator PID, na przykład, łączy działanie trzech elementów: proporcjonalnego, całkującego i różniczkującego, co pozwala na bardziej precyzyjną kontrolę temperatury, ale nie jest on w stanie spełnić wymagań dwupołożeniowej regulacji, gdyż jego zadaniem jest moderowanie sygnału sterującego w oparciu o różnice między wartością zadaną a rzeczywistą. Regulator proporcjonalny działa na zasadzie proporcjonalności pomiędzy błędem a sygnałem wyjściowym, co również nie zapewnia pełnej binarności wymaganej dla systemu dwupołożeniowego. Regulator PI łączy elementy proporcjonalne i całkujące, co może prowadzić do zjawiska oscylacji oraz nadmiernej reakcji na zmiany temperatury. W praktyce, zastosowanie tych bardziej skomplikowanych regulatorów w systemach, które nie wymagają precyzyjnej regulacji, może prowadzić do nieefektywności energetycznej oraz trudności w osiągnięciu stabilności. Użytkownicy często mylą te rodzaje regulatorów z potrzebą prostoty i efektywności w prostych aplikacjach, co prowadzi do błędnych wniosków dotyczących ich zastosowania w kontekście dwupołożeniowej regulacji. Z tego powodu, znajomość i zrozumienie specyfiki każdego z typów regulatorów jest kluczowe dla efektywnego projektowania systemów automatyki.

Pytanie 22

Jaką linią powinno się przedstawiać niewidoczne kontury oraz krawędzie obiektów?

A. Grubą ciągłą
B. Cienką ciągłą
C. Grubą przerywaną
D. Cienką przerywaną
Wybór grubych linii, zarówno przerywanych, jak i ciągłych, raczej nie spełnia zasad rysunku technicznego. Gruba linia ciągła jest do oznaczania widocznych krawędzi i konturów obiektów, więc nie powinna być używana do niewidocznych elementów. Jak ktoś pomiesza te dwa typy, to może naprawdę narobić bałaganu w swoich rysunkach. A gruba linia przerywana, choć może wyglądać na coś innego, wcale nie nadaje się do oznaczania niewidocznych zarysów. To wprowadza zamieszanie, bo grubość może sugerować, że te elementy są ważniejsze, a to jest mylące. Cienka linia ciągła, tak jak gruba, też pokazuje widoczne krawędzie, więc to nie jest dobry wybór. W rysunku technicznym kluczowe jest, żeby trzymać się ustalonych zasad, które pomagają w zrozumieniu dokumentacji. Ignorowanie tego prowadzi do błędów, na przykład dezinformacji czy mylenia wizji projektowanej konstrukcji. Dlatego tak istotne jest, żeby korzystać z uznanych standardów rysunkowych, bo to fundament inżynierii i architektury. Dzięki temu komunikacja między wszystkimi jest jasna i precyzyjna.

Pytanie 23

Na wyświetlaczu panelu operatorskiego falownika wyświetla się kod błędu F005. Określ na podstawie tabeli z instrukcji serwisowej co może być przyczyną sygnalizowania wystąpienia błędu.

Kod błęduOpis uszkodzeniaCzynności naprawcze
F001PrzepięcieSprawdź czy wielkość napięcia zasilania jest właściwe dla znamion falownika i sterowanego silnika.
Zwiększyć czas opadania częstotliwości (nastawa P003).
Sprawdź czy moc hamowania mieści się w dopuszczalnych granicach.
F002PrzetężenieSprawdź czy moc falownika jest odpowiednia do zastosowanego silnika.
Sprawdź czy długość kabli zasilających silnika nie jest zbyt duża.
Sprawdź czy nie nastąpiło przebicie izolacji uzwojeń silnika lub przewodów kabli zasilających.
Sprawdź czy wartości nastaw P081 - P086 są zgodne z wartościami danych znamionowych silnika.
Sprawdź czy wartość nastawy P089 jest zgodna z wielkością rzeczywistej rezystancji uzwojeń stojana silnika.
Zwiększ czas narastania częstotliwości wyjściowej P002.
Zmniejsz wielkości forsowania częstotliwości (wartość nastaw P078 i P079).
Sprawdź czy wał silnika nie jest zablokowany lub przeciążony.
F003PrzeciążenieSprawdź czy silnik nie jest przeciążony.
Zwiększ częstotliwość maksymalną (wartość nastawy P013) w przypadku gdy używany jest silnik o dużym poślizgu znamionowym.
F005Przegrzanie falownika
(zadziałanie wewnętrznego termistora PTC)
Sprawdź czy temperatura otoczenia przekształtnika nie jest zbyt wysoka.
Sprawdź czy wloty i wyloty powietrza chłodzącego obudowy falownika nie są przysłonięte przez elementy sąsiadujące.
Sprawdź czy wentylator chłodzący funkcjonuje prawidłowo.
F008Przekroczenie okresu oczekiwania na sygnał z łącza szeregowegoSprawdź poprawność łącza szeregowego.
Sprawdź prawidłowość ustawienia parametrów komunikacji łącza szeregowego (wartości nastaw P091 - P093).
A. Za duża moc silnika.
B. Za duża temperatura otoczenia.
C. Za mała częstotliwość.
D. Za małe obciążenie na wale silnika.
Odpowiedź "Za duża temperatura otoczenia." jest prawidłowa, ponieważ kod błędu F005, wskazujący na przegrzanie falownika, jednoznacznie sugeruje, że warunki otoczenia są niewłaściwe. Przegrzanie falownika może prowadzić do poważnych uszkodzeń urządzenia, co w dłuższym czasie może skutkować jego awarią. W praktyce, aby zapobiec takim sytuacjom, ważne jest zapewnienie odpowiedniego chłodzenia i wentylacji falownika w jego miejscu instalacji. Zastosowanie wentylatorów lub systemów klimatyzacyjnych jest kluczowe w zapewnieniu optymalnych warunków pracy. Warto również regularnie monitorować temperaturę otoczenia oraz stan termistora PTC, co pozwoli na wczesne wykrywanie problemów z przegrzewaniem. W przypadku wykrycia wysokiej temperatury otoczenia, należy rozważyć zmianę lokalizacji falownika lub poprawę jego chłodzenia, zgodnie z wytycznymi producenta, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Tłoczysko siłownika pneumatycznego porusza się poziomo ruchem prostoliniowym, lecz z wolniejszą prędkością niż zazwyczaj. Co może być najprawdopodobniejszą przyczyną opóźnienia ruchu siłownika?

A. Nieszczelność, zużycie uszczelek lub pierścieni tłoka
B. Uszkodzone zewnętrzne amortyzatory siłownika
C. Zepsute mocowanie siłownika
D. Wyboczone lub uszkodzone tłoczysko
Nieszczelność, zużycie uszczelek lub pierścieni tłoka są głównymi przyczynami spowolnienia ruchu siłownika pneumatycznego. W momencie, gdy uszczelki lub pierścienie są uszkodzone, dochodzi do wycieku powietrza, co prowadzi do utraty ciśnienia w układzie. To z kolei powoduje, że siłownik nie może osiągnąć pełnej prędkości, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak automatyzacja procesów lub linie montażowe. W praktyce, regularne kontrole stanu uszczelek i pierścieni są niezmiernie ważne, aby zapewnić optymalną wydajność systemu pneumatycznego. W przypadku wykrycia nieszczelności, należy natychmiast zidentyfikować źródło problemu i wymienić uszkodzone elementy, co minimalizuje ryzyko awarii całego systemu. Dobre praktyki w tej dziedzinie obejmują także stosowanie wysokiej jakości materiałów uszczelniających oraz przestrzeganie instrukcji producenta dotyczących montażu i konserwacji siłowników pneumatycznych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Ręczne sterowanie prasą hydrauliczną postanowiono zastąpić automatycznym zarządzaniem przy pomocy sterownika PLC. Parametry technologiczne prasy pozostają bez zmian. Jakie elementy powinien uwzględniać projekt modernizacji prasy?

A. Obliczenie parametrów mediów zasilających prasę oraz zaprojektowanie zabezpieczeń
B. Przygotowanie schematów układu sterowania oraz opracowanie programu
C. Obliczenie parametrów elementów prasy oraz stworzenie programu
D. Określenie parametrów wytrzymałościowych mechanizmów i sprawdzenie zabezpieczeń
Sporządzenie schematów układu sterowania oraz opracowanie programu jest kluczowym krokiem w procesie modernizacji prasy hydraulicznej. Przeniesienie ręcznego sterowania na automatyczne za pomocą sterownika PLC wymaga precyzyjnego zaplanowania architektury układu sterowania, co obejmuje zarówno schematy ideowe, jak i szczegółowe. Schematy te powinny zawierać wszystkie elementy systemu, takie jak czujniki, wykonawcze elementy hydrauliczne oraz interfejsy komunikacyjne. Opracowanie programu sterującego jest równie istotne, gdyż to właśnie on definiuje logikę działania urządzenia, umożliwiając precyzyjne kontrolowanie procesu w czasie rzeczywistym. W praktyce, zastosowanie standardów takich jak IEC 61131-3 pozwala na tworzenie programów w sposób modularny, co ułatwia ich późniejszą modyfikację i konserwację. Dodatkowo, przy projektowaniu układu sterowania warto uwzględnić protokoły komunikacyjne, co pozwoli na integrację prasy z innymi elementami linii produkcyjnej, zapewniając większą elastyczność i efektywność w procesie produkcji.

Pytanie 29

Jakiej z wymienionych funkcji nie realizuje system SCADA?

A. Zbieranie danych
B. Prezentacja danych
C. Zwalczanie i usuwanie wirusów komputerowych
D. Archiwizacja danych
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym elementem w zarządzaniu systemami przemysłowymi. Jego podstawowe funkcje obejmują zbieranie danych z różnych czujników i urządzeń, wizualizację tych danych w postaci graficznej, a także archiwizację informacji, co pozwala na późniejszą analizę wydajności i diagnostykę. SCADA umożliwia operatorom monitorowanie procesów w czasie rzeczywistym, co jest istotne dla utrzymania wydajności produkcji oraz bezpieczeństwa operacji. Na przykład, w zakładach chemicznych oprogramowanie SCADA zbiera dane dotyczące temperatury, ciśnienia czy poziomu substancji, które są następnie wizualizowane na panelach operatorskich. Dzięki archiwizacji danych, inżynierowie mogą analizować trendów i podejmować decyzje na podstawie historycznych danych. Standardy takie jak ISA-95 i IEC 61512 definiują ramy dla implementacji systemów SCADA, podkreślając ich rolę w automatyzacji procesów przemysłowych. W związku z tym, zrozumienie, że SCADA nie zajmuje się zwalczaniem wirusów komputerowych, jest kluczowe dla prawidłowego zastosowania tej technologii w praktyce.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaki adres, przyznawany przez producenta w sieci, pozostaje stały w trakcie działania urządzenia i jednoznacznie je identyfikuje?

A. TCP
B. MAC
C. IP
D. OSI
Wybór odpowiedzi IP, OSI czy TCP nie oddaje charakterystyki opisanego w pytaniu adresu, którego właściwości są kluczowe dla identyfikacji urządzenia w sieci. Adres IP jest dynamicznie przypisywany przez serwery DHCP i może się zmieniać w trakcie pracy urządzenia, co koliduje z definicją stałego identyfikatora. Z kolei OSI to model teoretyczny, który opisuje różne warstwy komunikacji sieciowej, ale nie jest bezpośrednio związany z typami adresów czy ich przypisywaniem. TCP natomiast to protokół warstwy transportowej, który zapewnia niezawodną komunikację między urządzeniami, lecz również nie pełni funkcji identyfikacji na poziomie sprzętowym. Wiele osób myli te pojęcia, co prowadzi do błędnych wniosków dotyczących adresacji sieciowej. Kluczowym błędem jest niezrozumienie, że adres MAC to fizyczny adres sprzętowy, który jest nadawany przez producenta urządzenia i nie zmienia się, podczas gdy inne adresy, takie jak IP, są zarządzane przez sieci i mogą ulegać zmianom. To sprawia, że nie są one odpowiednie do jednoznacznej identyfikacji urządzeń w takiej samej formie jak adres MAC.

Pytanie 34

Jaki typ systemu wizualizacji procesów przemysłowych powinien być użyty do ustawiania parametrów produkcji, gdy nie ma dostępnego miejsca na komputer?

A. Panel operatorski HMI.
B. Aplikacja oparta na architekturze NET Framework.
C. System SCADA.
D. Specjalistyczne środowisko wizualizacyjne ISO/OSI.
Panel operatorski HMI (Human-Machine Interface) jest kluczowym elementem w nowoczesnych systemach automatyki przemysłowej, umożliwiającym operatorom interakcję z maszynami i procesami produkcyjnymi. Jego podstawową funkcją jest wprowadzanie i monitorowanie parametrów pracy maszyn bezpośrednio na urządzeniu, co jest niezwykle istotne w sytuacjach, gdy przestrzeń robocza jest ograniczona. W odróżnieniu od rozbudowanych systemów SCADA, które wymagają stacji komputerowej do nadzoru i sterowania, panele HMI mają kompaktową budowę, co umożliwia ich łatwe umiejscowienie w obiektach produkcyjnych. Przykładami zastosowania paneli HMI mogą być linie montażowe, gdzie operatorzy mogą szybko reagować na zmiany w procesie, wprowadzać korekty oraz monitorować stany awaryjne. W kontekście standardów branżowych, panele HMI wspierają interoperacyjność z różnymi protokołami komunikacyjnymi, co jest zgodne z dobrymi praktykami inżynieryjnymi w automatyce przemysłowej. Dodatkowo, panele te często posiadają funkcje diagnostyczne, co zwiększa efektywność utrzymania ruchu.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Aby ocenić jakość aktualnych połączeń elektrycznych w systemie mechatronicznym, należy najpierw przeprowadzić pomiar

A. rezystancji izolacji pomiędzy obudową urządzenia a przewodem zasilającym
B. ciągłości połączeń
C. mocy pobieranej przez urządzenie
D. spadku napięcia na komponentach
Pomiar ciągłości połączeń jest kluczowym krokiem w ocenie jakości połączeń elektrycznych w urządzeniu mechatronicznym. Gwarantuje on, że prąd może swobodnie przepływać przez wszystkie połączenia, co jest niezbędne do prawidłowego działania urządzenia. W praktyce, pomiar ten wykonuje się za pomocą multimetru, który wskazuje, czy obwód jest zamknięty, co bezpośrednio przekłada się na niezawodność systemów elektrycznych. W przypadku wykrycia przerwy, można zidentyfikować i naprawić problem, co jest zgodne z dobrą praktyką inżynieryjną. W branży mechatronicznej, gdzie urządzenia są często narażone na wibracje i zmiany temperatury, regularne sprawdzanie ciągłości połączeń jest kluczowe dla utrzymania wysokiej jakości i bezpieczeństwa systemów. Warto także zauważyć, że zgodnie z normami IEC 60364, ocena ciągłości połączeń jest integralną częścią kontroli jakości instalacji elektrycznych, co potwierdza jej znaczenie w codziennej praktyce inżynieryjnej.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Który rodzaj oprogramowania komputerowego monitoruje przebieg procesu oraz dysponuje funkcjami w zakresie m.in. gromadzenia, wizualizacji i archiwizacji danych oraz kontrolowania i alarmowania?

A. CAD
B. CAE
C. SCADA
D. CAM
Odpowiedź 'SCADA' jest prawidłowa, ponieważ systemy SCADA (Supervisory Control And Data Acquisition) pełnią kluczową rolę w monitorowaniu i kontrolowaniu procesów przemysłowych oraz infrastruktury. SCADA pozwala na zbieranie danych w czasie rzeczywistym z różnych źródeł, takich jak czujniki, urządzenia pomiarowe czy automatyka przemysłowa. Dzięki zaawansowanym funkcjom wizualizacji, operatorzy mogą na bieżąco śledzić stan procesów za pomocą interfejsów graficznych, co znacząco zwiększa efektywność zarządzania. Systemy SCADA umożliwiają również archiwizację danych, co jest istotne dla analizy trendów i optymalizacji procesów. Przykładem praktycznego zastosowania SCADA jest monitorowanie sieci energetycznych, gdzie system ten pozwala na detekcję awarii oraz zarządzanie obciążeniem w czasie rzeczywistym, zgodnie z najlepszymi praktykami branżowymi, takimi jak standardy IEC 61850 dla komunikacji w systemach automatyki. W skrócie, SCADA to kluczowy element w strategiach zarządzania procesami, który przyczynia się do zwiększenia bezpieczeństwa i efektywności operacyjnej.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.