Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 19:14
  • Data zakończenia: 17 grudnia 2025 19:20

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jakiej postaci należy przedstawiać w schematach układów sterowania styki przekaźników i styczników?

A. Wzbudzonym
B. Niewzbudzonym
C. Nieprzewodzenia
D. Przewodzenia
Styki styczników i przekaźników należy przedstawiać w stanie niewzbudzonym, co jest zgodne z praktykami stosowanymi w projektowaniu schematów układów sterowania. Stan niewzbudzony odzwierciedla rzeczywistą sytuację, w której urządzenia te nie są aktywowane przez sygnał sterujący. Taki sposób reprezentacji ułatwia zrozumienie i analizę działania systemu, ponieważ jasno wskazuje na domyślne warunki pracy. W projektach zgodnych z normą IEC 61082, która dotyczy dokumentacji systemów automatyki, podkreśla się znaczenie reprezentacji stanów urządzeń w sposób, który odzwierciedla ich stan bez aktywacji. Niewzbudzone styki są także kluczowe w kontekście bezpieczeństwa, ponieważ nieprawidłowe przedstawienie ich w stanie przewodzenia mogłoby sugerować, że układ działa poprawnie, gdy w rzeczywistości może dochodzić do awarii. Przykładem zastosowania tej zasady może być układ sterujący silnikiem, gdzie styki muszą być przedstawione jako niewzbudzone, aby uniknąć ryzyka niekontrolowanego uruchomienia maszyny w wyniku błędnej interpretacji schematu.

Pytanie 2

Oprogramowanie komputerowe, które monitoruje procesy w systemach i posiada kluczowe funkcje takie jak gromadzenie, wizualizacja oraz archiwizacja danych, a także alarmowanie i kontrolowanie przebiegu procesu, to oprogramowanie

A. SCADA
B. CNC
C. CAM
D. CAD
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym narzędziem w nowoczesnych systemach automatyki przemysłowej. Jego główną funkcją jest nadzorowanie i zarządzanie procesami przemysłowymi poprzez zbieranie, wizualizację i archiwizację danych w czasie rzeczywistym. SCADA umożliwia operatorom monitorowanie różnych parametrów procesów, takich jak temperatura, ciśnienie czy poziom substancji, co pozwala na szybkie podejmowanie decyzji oraz reagowanie na potencjalne awarie. Przykłady zastosowania SCADA obejmują przemysł energetyczny, wodociągi, zakłady chemiczne oraz produkcję. Dzięki integracji z systemami alarmowymi, SCADA informuje o nieprawidłowościach i niebezpieczeństwach, umożliwiając automatyczne lub manualne korekty w czasie rzeczywistym. Warto również zwrócić uwagę, że zgodność z międzynarodowymi standardami, takimi jak ISA-95, zapewnia interoperacyjność i skuteczność systemów SCADA w złożonych środowiskach przemysłowych.

Pytanie 3

Jakie oznaczenie literowe dotyczy manipulatora wyposażonego w dwa obrotowe napędy oraz jeden liniowy?

A. RRT
B. TTT
C. RTT
D. RRR
Wybór innego oznaczenia jest wynikiem nieporozumienia dotyczącego klasyfikacji manipulatorów. Oznaczenie 'TTT' wskazuje na manipulator z trzema napędami liniowymi, co nie odpowiada specyfice opisanego w pytaniu układu, który wymaga dwóch napędów obrotowych i jednego liniowego. Takie podejście ogranicza elastyczność w zastosowaniach, gdzie wymagany jest ruch w różnych płaszczyznach. Natomiast 'RTT' sugeruje, że manipulator składa się z jednego napędu obrotowego i dwóch liniowych, co również nie spełnia kryteriów opisanych w pytaniu. W sytuacjach, gdzie manipulacja wymaga precyzyjnych ruchów w kątowych płaszczyznach, napędy obrotowe są niezastąpione, a zaniedbanie ich zastosowania może prowadzić do niewłaściwej konfiguracji robota. Wreszcie, wybór 'RRR' oznacza manipulator z trzema napędami obrotowymi, co również nie odpowiada podanym wymaganiom. W kontekście projektowania systemów robotycznych, ważne jest zrozumienie, jakie kombinacje napędów są potrzebne do osiągnięcia pożądanej funkcjonalności, co często wymaga zastosowania analizy kinematycznej i dynamiki ruchu. Kluczowe jest, aby stosować odpowiednie klasyfikacje manipulatorów, aby uniknąć błędów w projektowaniu, które mogą prowadzić do nieefektywnych rozwiązań w aplikacjach przemysłowych.

Pytanie 4

Z wykonywanego przez sterownik PLC programu wynika, że pojawienie się stanu wysokiego na wejściu I0.1 (S3) sterownika spowoduje uaktywnienie wyjścia Q0.1 (H2) z opóźnieniem czasowym równym

Ilustracja do pytania
A. 3 sekundy.
B. 5 sekund.
C. 1 sekunda.
D. 2 sekundy.
Poprawna odpowiedź to 2 sekundy. Z analizy programu sterownika PLC wynika, że opóźnienie czasowe, które występuje przed aktywacją wyjścia Q0.1 (H2), jest związane z blokiem T2, który ma ustawiony czas 2 sekundy. Tego rodzaju rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie precyzyjne zarządzanie czasem jest kluczowe do zapewnienia efektywności procesów. Blok T1, z czasem 3 sekundy, nie wpływa bezpośrednio na aktywację Q0.1, a jedynie służy do innych celów w programie. W praktyce, umiejętność czytania schematów i zrozumienia, jak poszczególne bloki interakcji wpływają na cały system, jest niezbędna dla inżynierów automatyków i techników. Zastosowanie bloków czasowych w programowaniu PLC pozwala na zrealizowanie bardziej skomplikowanych operacji oraz dostosowanie systemów do wymagań produkcji, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 5

Parametry takie jak powierzchnia membrany, temperatura operacyjna, typ napędu, maksymalne ciśnienie, skok oraz precyzja położenia są charakterystyczne dla

A. siłownika pneumatycznego
B. smarownicy pneumatycznej
C. silnika hydraulicznego
D. siłownika hydraulicznego
Siłowniki pneumatyczne charakteryzują się różnorodnymi parametrami, które wpływają na ich wydajność i zastosowanie w różnych systemach automatyki. Powierzchnia membrany, temperatura pracy i maksymalne ciśnienie to kluczowe aspekty, które determinują zdolność siłownika do generowania odpowiedniej siły. Na przykład, w aplikacjach wymagających precyzyjnej kontroli położenia, takich jak w automatyzacji w przemyśle spożywczym lub pakowaniu, wybór siłownika pneumatycznego z odpowiednimi parametrami staje się kluczowy. Dobre praktyki w branży zalecają dostosowanie tych parametrów do specyfiki aplikacji, co obejmuje m.in. dobór odpowiednich materiałów odpornych na temperatury oraz ciśnienia robocze, aby zapewnić długotrwałość i niezawodność. Dodatkowo, siłowniki pneumatyczne są często wykorzystywane w liniach produkcyjnych ze względu na swoją szybkość działania, co czyni je idealnymi do operacji wymagających dynamicznych ruchów. Zgodność z normami ISO oraz uwzględnienie aspektów bezpieczeństwa jest również istotnym elementem przy projektowaniu systemów z ich użyciem.

Pytanie 6

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Grubą kreską.
B. Grubą linią punktową.
C. Cienką z długą kreską oraz kropką.
D. Cienką ciągłą linią zygzakową.
Cienka ciągła zygzakowa linia jest standardem stosowanym w rysunku technicznym do oznaczania urwań i przerwań przedmiotów. W praktyce inżynieryjnej, użycie tej linii pozwala na jasne i jednoznaczne przedstawienie elementów, które nie są w pełni widoczne, co jest kluczowe w dokumentacji technicznej. Zygzakowa linia wskazuje, że dany fragment obiektu nie jest przedstawiony w całości, co może mieć znaczenie podczas produkcji czy montażu. Warto pamiętać, że zgodnie z normami ISO, stosowanie odpowiednich linii ma kluczowe znaczenie w komunikacji wizualnej w inżynierii. Umożliwia to projektantom i inżynierom lepsze zrozumienie zamysłu konstrukcyjnego oraz uniknięcie błędów w realizacji projektu. To zastosowanie podkreśla rolę standardów w procesie projektowania, gdzie nawet drobne szczegóły, jak typ linii, mogą mieć duże znaczenie dla finalnej jakości i funkcjonalności produktu.

Pytanie 7

Wskaż właściwy sposób adresacji zmiennej 32-bitowej w obszarze pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 102

A. MB102
B. MW102.
C. MD102.
D. ML102.
MD102 jest prawidłową odpowiedzią, ponieważ adresuje zmienną 32-bitową (marker dwubajtowy) w systemach PLC, takich jak Siemens. W nomenklaturze PLC oznaczenie MD wskazuje na standardowy sposób adresowania zmiennych, które zajmują 4 bajty pamięci, więc adres 102 odnosi się do pierwszego bajtu tej zmiennej. Zmienne 32-bitowe są często stosowane w aplikacjach wymagających precyzyjnego przechowywania danych, takich jak zliczanie, akumulacja i inne operacje arytmetyczne w procesach przemysłowych. Używanie odpowiednich oznaczeń jest istotne dla zapewnienia, że programy działają zgodnie z zamierzeniami, a także dla przyszłej konserwacji i rozwoju systemów. Przykładowo, w programowaniu PLC, gdzie istotne jest efektywne zarządzanie zasobami pamięci, prawidłowe adresowanie zmiennych 32-bitowych minimalizuje ryzyko błędów związanych z odczytem lub zapisem danych, co jest szczególnie ważne w zautomatyzowanych liniach produkcyjnych, gdzie błędy mogą prowadzić do poważnych strat. Znajomość takich konwencji jest zatem kluczowa dla każdego inżyniera automatyki.

Pytanie 8

Za pomocą którego symbolu powinno przedstawić się na schemacie magnetyczny czujnik zbliżeniowy?

Ilustracja do pytania
A. Symbolu 1.
B. Symbolu 3.
C. Symbolu 4.
D. Symbolu 2.
Wybór symbolu 2. jako oznaczenia czujnika zbliżeniowego na schemacie magnetycznym jest prawidłowy z kilku powodów. Symbol ten jest zgodny z normami branżowymi, które definiują reprezentację różnych elementów w schematach elektrycznych i pneumatycznych. W przypadku czujników zbliżeniowych, standardowe oznaczenie polega na użyciu prostokątnej obudowy, która symbolizuje fizyczną formę czujnika, oraz wewnętrznego oznaczenia, które wskazuje na specyfikę jego działania, czyli w tym przypadku detekcję magnetyczną. Takie oznaczenie jest istotne nie tylko dla identyfikacji komponentów, ale również dla ich prawidłowego podłączenia w obwodach. W praktyce czujniki zbliżeniowe mają szerokie zastosowanie w automatyzacji procesów, gdzie ich zdolność do detekcji obecności obiektów bez kontaktu jest kluczowa. Na przykład, w liniach produkcyjnych czujniki te mogą być używane do monitorowania pozycji elementów, co zwiększa efektywność i bezpieczeństwo operacji. Zrozumienie i poprawne stosowanie symboli w schematach jest fundamentalne dla każdego inżyniera czy technika, co podkreśla znaczenie identyfikacji komponentów w instalacjach elektrycznych i automatyce.

Pytanie 9

Obniżenie błędu statycznego, skrócenie czasu reakcji, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów przetwornika pomiarowego są cechami działania jakiego rodzaju regulatora?

A. P
B. PID
C. PD
D. I
Regulator PD (proporcjonalno-derywacyjny) jest efektywnym narzędziem w wielu zastosowaniach automatyki, szczególnie tam, gdzie istotne jest zminimalizowanie błędu statycznego i skrócenie czasu reakcji. Działa on na zasadzie przeprowadzenia regulacji, która uwzględnia zarówno aktualny błąd, jak i jego tempo zmian, co pozwala na szybszą odpowiedź systemu na zakłócenia. W praktyce, regulator PD sprawdza się w systemach, gdzie wymagana jest szybkość reakcji, takich jak kontrola silników elektrycznych czy systemy wyrównywania poziomu w zbiornikach. Warto jednak pamiętać, że jego stosowanie wiąże się z pewnymi ograniczeniami. Przy mniejszych częstotliwościach regulacji, jakość odpowiedzi systemu może się pogarszać, a szumy przetwornika pomiarowego mogą zostać wzmocnione, co może prowadzić do niepożądanych fluktuacji. Dlatego też, w projektowaniu systemów regulacji, ważne jest zrozumienie specyfiki działania regulatora PD i jego wpływu na jakość regulacji.

Pytanie 10

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. usuwania kurzu
B. oceny zużycia styków
C. sprawdzania dokręcenia śrub zacisków
D. dokonywania regulacji
Wybór regulacji zamiast konserwacji mógł być spowodowany tym, że łatwo pomylić te dwie kwestie. Konserwacja przecież ma na celu utrzymanie sprzętu w dobrym stanie, a to przez różne czynności, takie jak kontrola śrub czy czyszczenie. Regulacje to zupełnie inna sprawa, bo robi się je przeważnie podczas instalacji lub w razie potrzeby zmiany ustawień układu w zależności od warunków. Często ludzie nie rozróżniają, co jest konserwacją, a co regulacją, co prowadzi do pomyłek. W praktyce, skupienie na regulacjach może nas odciągnąć od naprawdę ważnych działań, jak kontrola stanu komponentów. Na przykład, jeśli nie będziemy dbać o czystość styków, to możemy narazić się na poważne problemy. Warto też zapamiętać, że regulacje wymagają specjalistycznej wiedzy, więc nie są to sprawy podstawowe w konserwacji. Dlatego znajomość właściwych procedur konserwacyjnych i ich znaczenia jest naprawdę ważna, żeby nasze układy stycznikowo-przekaźnikowe działały bez zarzutu przez długi czas.

Pytanie 11

Urządzenie przedstawione na rysunku, w projektowanym systemie mechatronicznym, będzie mogło pełnić funkcję

Ilustracja do pytania
A. dotykowego panelu operatorskiego.
B. analizatora stanów logicznych.
C. regulatora przepływu.
D. regulatora PID.
Urządzenie przedstawione na zdjęciu to dotykowy panel operatorski, co można rozpoznać po charakterystycznym interfejsie graficznym oraz oznaczeniu "TOUCH". Panele te pełnią kluczową rolę w systemach mechatronicznych, umożliwiając operatorom intuicyjną interakcję z maszynami i procesami. Dzięki technologii dotykowej operatorzy mogą szybko i skutecznie wprowadzać dane oraz monitorować stan pracy urządzeń. Tego typu rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie wymagane jest efektywne zarządzanie złożonymi systemami. Przykładem zastosowania paneli dotykowych może być ich wykorzystanie w liniach produkcyjnych, gdzie umożliwiają one zarządzanie parametrami maszyn, ustawienie cykli pracy oraz nadzorowanie procesów w czasie rzeczywistym. W branży mechatronicznej stosowanie paneli operatorskich zgodnych z normą IEC 61131-3, dotyczącą programowania systemów automatyki, zapewnia wysoką interoperacyjność i efektywność w zarządzaniu systemami. Warto również podkreślić, że nowoczesne panele operatorskie często integrują funkcjonalności analityczne, co pozwala na lepsze śledzenie wydajności oraz diagnostykę awarii, co dodatkowo podnosi jakość pracy całego systemu.

Pytanie 12

Zauważono, że silnik indukcyjny pracuje z nadmiernym hałasem, a źródło dźwięku znajduje się w łożysku tocznym. Jak można rozwiązać ten problem?

A. Wymieniając łożysko
B. Uzupełniając smar w łożysku
C. Zamieniając osłony łożyska
D. Smarując łożysko olejem
Głośna praca silnika indukcyjnego, wynikająca z nieprawidłowości w łożysku tocznym, wskazuje na jego zniszczenie lub zużycie mechaniczne. Wymiana łożyska to jedyne skuteczne rozwiązanie, które zapewni długotrwałe działanie silnika. W przypadku łożysk tocznych, ich efektywność zależy od odpowiedniego smarowania oraz stanu mechanicznego. Regularna konserwacja i wymiana łożysk są zgodne z normami branżowymi, które zalecają okresowe przeglądy urządzeń elektrycznych. Wymiana uszkodzonego łożyska na nowe pozwala na przywrócenie optymalnej pracy silnika oraz minimalizuje ryzyko dodatkowych uszkodzeń. Warto również zwrócić uwagę na dobór właściwego typu łożyska, które powinno odpowiadać specyfikacji producenta silnika. Praktyka pokazuje, że zaniedbanie wymiany łożyska może prowadzić do poważnych awarii mechanicznych, co wiąże się z kosztami napraw oraz przestojami produkcyjnymi. Dlatego kluczowe jest podejście proaktywne w zakresie konserwacji łożysk.

Pytanie 13

Wskaż wynik minimalizacji funkcji logicznej dla układu sterowania zapisanej w tablicy Karnaugha dokonanej dla wartości logicznych "1".

x \ yz00011110
01001
11001
A. f = xy̅z̅
B. f = x
C. f = y̅z
D. f = z̅
Wybór innej opcji może wynikać z nieporozumienia pojęć związanych z minimalizacją funkcji logicznych. Odpowiedzi takie jak f = x, f = xy̅z̅ i f = y̅z nie uwzględniają kluczowej zasady, jaką jest identyfikacja, które zmienne mają wpływ na wynik funkcji. Na przykład, w przypadku f = x, sugerujesz, że wartość wyjściowa zależy jedynie od zmiennej x, co nie jest zgodne z analizą tablicy Karnaugh, ponieważ obie pozostałe zmienne - y i z - również mają wpływ na wynik. W kontekście f = xy̅z̅, pomijasz fakt, że w grupowaniu jedynek w tablicy Karnaugh, z̅ jest jedynym warunkiem występowania jedynek. Z kolei f = y̅z zasugeruje, że zmienne y i z są kluczowe dla wartości wyjściowej, podczas gdy analiza wykazuje, że zmienna z ma stałą wartość 0 w kontekście grupowania. Warto zrozumieć, że w minimalizacji funkcji logicznych, każdy krok musi być uzasadniony z punktu widzenia wpływu wartości zmiennych na wynik. Niezrozumienie tego może prowadzić do błędnych wniosków i skomplikowanych implementacji, które są nieefektywne w działaniu oraz wymagają większej liczby bramek logicznych, co z kolei zwiększa koszty i czas realizacji projektu.

Pytanie 14

Interfejs sieciowy, symbolicznie przedstawionego na rysunku komputera, z zainstalowanym oprogramowaniem do programowania sterowników PLC, posiada przypisany adres IP 192.168.100.2. Który z podanych adresów IP należy nadać sterownikowi aby mógł komunikować się z komputerem?

Ilustracja do pytania
A. 192.168.100.2
B. 192.168.101.3
C. 192.168.100.3
D. 192.168.99.2
Odpowiedź 192.168.100.3 jest poprawna, ponieważ dla efektywnej komunikacji w sieci lokalnej, urządzenia muszą znajdować się w tej samej podsieci. Adres IP komputera, 192.168.100.2, oznacza, że maska podsieci wynosi prawdopodobnie 255.255.255.0, co pozwala na przypisanie adresów IP od 192.168.100.1 do 192.168.100.254 w tej samej podsieci. Aby sterownik PLC mógł skutecznie wymieniać dane z komputerem, musi również używać adresu z tej samej klasy adresowej, czyli 192.168.100.x, gdzie x jest unikalnym numerem, który nie koliduje z innymi używanymi adresami w tej podsieci. Adres 192.168.100.2 jest już zajęty przez komputer, więc 192.168.100.3 jest odpowiedni, gdyż jest dostępny. W praktyce, podczas konfigurowania urządzeń w sieci, kluczowe jest przestrzeganie zasad zarządzania adresami IP, aby unikać konfliktów i zapewnić prawidłowe działanie sieci. Przykładowo, w systemach automatyki przemysłowej, każdy sterownik PLC i urządzenia komunikacyjne powinny mieć przypisane statyczne adresy IP, aby zapewnić niezawodną komunikację.

Pytanie 15

Czujnik rozpoznaje elementy z tworzywa sztucznego

A. indukcyjny
B. piezoelektryczny
C. pojemnościowy
D. magnetyczny
Czujnik pojemnościowy jest idealnym narzędziem do wykrywania elementów wykonanych z tworzyw sztucznych ze względu na sposób, w jaki działa. Zasada działania czujnika pojemnościowego opiera się na pomiarze zmian pojemności kondensatora, który składa się z dwóch elektrod oddzielonych dielektrykiem. Kiedy tworzywo sztuczne znajduje się między elektrodami, jego obecność wpływa na wartość pojemności, co jest wykrywane przez czujnik. Przykładem zastosowania czujników pojemnościowych są systemy automatyzacji przemysłowej, gdzie monitorują one obecność i poziom różnych materiałów w procesach produkcyjnych. W praktyce, czujniki te są wykorzystywane na przykład w liniach produkcyjnych do detekcji plastikowych pojemników lub elementów, co pozwala na automatyczne sortowanie i kontrolę jakości. Standardy takie jak IEC 60947-5-2 definiują wymagania dotyczące czujników wykrywających różne materiały, co potwierdza ich znaczenie w branży. Warto również zauważyć, że czujniki pojemnościowe są bardziej uniwersalne w porównaniu do innych typów czujników, co czyni je niezastąpionym narzędziem w nowoczesnej automatyce.

Pytanie 16

Jaki jest główny cel stosowania symulatorów w edukacji mechatronicznej?

A. Zwiększenie doświadczenia praktycznego bez ryzyka uszkodzenia sprzętu
B. Ograniczenie liczby studentów w laboratorium
C. Zwiększenie złożoności nauczania
D. Zwiększenie kosztów nauki
Symulatory w edukacji mechatronicznej odgrywają kluczową rolę, pozwalając uczniom zdobywać praktyczne doświadczenie bez ryzyka uszkodzenia kosztownego sprzętu. W praktyce mechatroniki często operujemy złożonymi systemami, gdzie błąd może prowadzić do znacznych strat materialnych. Dzięki symulatorom studenci mogą eksperymentować i popełniać błędy w kontrolowanym środowisku, co sprzyja procesowi uczenia się. Przykładowo, symulacje mogą obejmować programowanie sterowników PLC, gdzie każda pomyłka może zostać natychmiast poprawiona bez wpływu na rzeczywisty proces produkcyjny. Jest to również zgodne z najlepszymi praktykami branżowymi, gdzie symulacje wykorzystywane są na szeroką skalę do testowania nowych rozwiązań przed ich implementacją w rzeczywistych warunkach. Z mojego doświadczenia wynika, że symulacje pozwalają na lepsze zrozumienie teorii poprzez praktykę, co jest nieocenione w złożonych dziedzinach, takich jak mechatronika. Dzięki nim studenci mogą również ćwiczyć reakcje na nietypowe sytuacje, co jest trudne do zrealizowania w rzeczywistych warunkach laboratoryjnych.

Pytanie 17

Jakiej z wymienionych funkcji nie realizuje system SCADA?

A. Archiwizacja danych
B. Zwalczanie i usuwanie wirusów komputerowych
C. Prezentacja danych
D. Zbieranie danych
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym elementem w zarządzaniu systemami przemysłowymi. Jego podstawowe funkcje obejmują zbieranie danych z różnych czujników i urządzeń, wizualizację tych danych w postaci graficznej, a także archiwizację informacji, co pozwala na późniejszą analizę wydajności i diagnostykę. SCADA umożliwia operatorom monitorowanie procesów w czasie rzeczywistym, co jest istotne dla utrzymania wydajności produkcji oraz bezpieczeństwa operacji. Na przykład, w zakładach chemicznych oprogramowanie SCADA zbiera dane dotyczące temperatury, ciśnienia czy poziomu substancji, które są następnie wizualizowane na panelach operatorskich. Dzięki archiwizacji danych, inżynierowie mogą analizować trendów i podejmować decyzje na podstawie historycznych danych. Standardy takie jak ISA-95 i IEC 61512 definiują ramy dla implementacji systemów SCADA, podkreślając ich rolę w automatyzacji procesów przemysłowych. W związku z tym, zrozumienie, że SCADA nie zajmuje się zwalczaniem wirusów komputerowych, jest kluczowe dla prawidłowego zastosowania tej technologii w praktyce.

Pytanie 18

Którego z przetworników temperatury należy użyć w układzie mechatronicznym, jeżeli:
- elementem sensorycznym w układzie jest czujnik Pt 100,
- przetwornik będzie zasilany z zasilacza wewnętrznego sterownika PLC (24 V DC),
- wyjście przetwornika podłączone będzie do wejścia analogowego 4 do 20 mA sterownika,
- układ pomiarowy będzie zamontowany na zewnątrz hali produkcyjnej?

Typ czujnika
parametr
7NG3211-PNC007NG3211-PT1007NG3211-PKL007NG3211-PN100
WejścieCzujniki
rezystancyjne
półprzewodnikowe
Czujniki
rezystancyjne
TermoparyCzujniki
rezystancyjne
Wyjście0 ÷ 20 mA0 ÷ 20 mA4 ÷ 20 mA4 ÷ 20 mA
Zasilanie8,5 ÷ 36 V DC8,5 ÷ 30 V DC8,5 ÷ 30 V DC8,5 ÷ 36 V DC
Stopień
ochrony
IP 40IP 40IP 40IP 40
Temperatura
otoczenia
0 ÷ 40°C0 ÷ 40°C-40 ÷ 80°C-40 ÷ 80°C
A. 7NG3211-PKL00
B. 7NG3211-PNC00
C. 7NG3211-PT100
D. 7NG3211-PN100
Wybranie złego przetwornika z dostępnych opcji może wynikać z tego, że nie do końca rozumiesz specyfikacje techniczne. Na przykład, przetwornik 7NG3211-PKL00 nie nadaje się, bo nie współpracuje z czujnikami Pt 100. To oznacza, że nie odczyta dobrze wartości rezystancyjnych tych czujników. Z kolei 7NG3211-PT100 oczywiście może współpracować z Pt 100, ale może nie mieć napięcia 24 V DC, co jest kluczowe, zwłaszcza w systemach PLC. Dodatkowo, są pewne wątpliwości co do jego montażu w trudnych warunkach zewnętrznych, co jest istotne, bo takie elementy mogą być narażone na zmiany w pogodzie, co wpływa na pomiary. W automatyce przemysłowej ważne jest, żeby znać zgodność sprzętu i wybierać odpowiednie komponenty, bo to ma wielki wpływ na to jak system działa. Ignorowanie tego może prowadzić do problemów z integracją i błędnych odczytów, co na pewno nie pomaga w procesach technologicznych. Dlatego warto dokładnie analizować specyfikacje przed podjęciem decyzji.

Pytanie 19

Przedstawiony na rysunku zawór wymaga zasilania

Ilustracja do pytania
A. cieczą hydrauliczną pod ciśnieniem i napięciem 230 V DC
B. sprężonym powietrzem i napięciem 230 V DC
C. sprężonym powietrzem i napięciem 230 V AC
D. cieczą hydrauliczną pod ciśnieniem i napięciem 230 V AC
Odpowiedź sprężonym powietrzem i napięciem 230 V AC jest poprawna, ponieważ zawór pneumatyczny marki Rexroth, przedstawiony na rysunku, rzeczywiście wymaga takiego zasilania. Zawory pneumatyczne są powszechnie stosowane w automatyce przemysłowej do sterowania różnymi procesami, ponieważ umożliwiają szybkie i precyzyjne działanie. Zasilanie sprężonym powietrzem pozwala na osiągnięcie dużych sił przy relatywnie niewielkich rozmiarach zaworów. W praktyce, zastosowanie takiego zaworu pozwala na kontrolowanie przepływu medium w systemach produkcyjnych, montażowych oraz w robotyce. Przy zasilaniu napięciem 230 V AC, zawór może być zintegrowany z typowymi układami zasilania stosowanymi w zakładach przemysłowych, co ułatwia jego implementację i eksploatację. Dobrą praktyką jest regularne serwisowanie i kontrola stanu technicznego urządzeń pneumatycznych, aby zapewnić ich niezawodność i bezpieczeństwo operacyjne.

Pytanie 20

Aby ustalić, czy system sprężonego powietrza jest dostatecznie szczelny, należy przeprowadzić kontrolę

A. stanu zewnętrznej powłoki rur pneumatycznych
B. szczelności zaworów odwadniających zbiorniki pneumatyczne
C. spadku ciśnienia w układzie pneumatycznym
D. stanu izolacji termicznej rur pneumatycznych wychodzących poza budynki
Spadek ciśnienia w instalacji pneumatycznej jest kluczowym wskaźnikiem, który pozwala ocenić szczelność systemu sprężonego powietrza. W praktyce, gdy ciśnienie w instalacji spada, oznacza to, że powietrze może uchodzić przez nieszczelności. Takie nieszczelności mogą występować w różnych miejscach, na przykład w połączeniach przewodów, zaworach czy złączkach. Regularne monitorowanie ciśnienia jest nie tylko zgodne z najlepszymi praktykami inżynieryjnymi, ale również przyczynia się do efektywności energetycznej systemu. Zmniejszenie ciśnienia powoduje, że sprężarki muszą pracować intensywniej, co zwiększa koszty operacyjne. Dlatego, aby zapewnić optymalną wydajność, zaleca się stosowanie manometrów oraz systemów monitorujących, które automatycznie informują o spadkach ciśnienia. Istotne jest również przeprowadzanie regularnych przeglądów, które mogą wykrywać wczesne oznaki nieszczelności oraz stosowanie materiałów wysokiej jakości w instalacji, co ogranicza ryzyko problemów z ciśnieniem.

Pytanie 21

Jakie polecenie w środowisku programowania sterowników PLC pozwala na przesłanie programu z urządzenia do komputera?

A. Download
B. Chart Status
C. Upload
D. Single Read
Wybór odpowiedzi Download, Single Read lub Chart Status wskazuje na pewne nieporozumienia dotyczące funkcji w środowisku programowania PLC. Polecenie Download jest odwrotnością Upload i służy do przesyłania programu z komputera do sterownika, co może prowadzić do błędnych wniosków, że jest to proces, który pozwala na przekazanie danych z urządzenia. Analogicznie, Single Read to komenda, która pozwala na odczytanie pojedynczych danych z pamięci sterownika, ale nie ma związku z przesyłaniem programów. W efekcie, wybierając tę opcję, można pomylić się, sądząc, że polecenie to ma na celu przesyłanie danych, co jest niezgodne z jego rzeczywistą funkcjonalnością. Z kolei Chart Status to polecenie odnoszące się do monitorowania stanu wykresów lub procesów, ale nie ma związku z operacjami transferu danych między sterownikiem a komputerem. Wiele osób przy podejmowaniu decyzji w tej kwestii może kierować się intuicją lub wcześniejszym doświadczeniem z różnymi systemami, co może prowadzić do błędnych wyborów. Kluczowe jest zrozumienie, że każde z tych poleceń ma swoją specyfikę i zastosowanie, a nieprawidłowe ich rozumienie może prowadzić do poważnych błędów w praktyce inżynieryjnej.

Pytanie 22

Na rysunkach technicznych cienką linią dwupunktową oznacza się

A. powierzchnie elementów, które są poddawane obróbce powierzchniowej
B. linie gięcia przedmiotów ukazanych w rozwinięciu
C. widoczne krawędzie oraz wyraźne kontury obiektów w widokach i przekrojach
D. przejścia pomiędzy jedną powierzchnią a drugą w miejscach delikatnie zaokrąglonych
Wybór odpowiedzi, która wskazuje, że linie dwupunktowe cienkie oznaczają widoczne krawędzie i wyraźne zarysy przedmiotów w widokach i przekrojach, jest błędny, ponieważ te elementy są zazwyczaj reprezentowane przez linie ciągłe grube. Zrozumienie konwencji rysunków technicznych jest kluczowe, ponieważ każda linia pełni określoną funkcję, a ich niewłaściwe stosowanie może prowadzić do poważnych błędów w interpretacji dokumentacji. Co więcej, powierzchnie elementów podlegających obróbce powierzchniowej, które w rysunkach technicznych oznaczane są najczęściej liniami przerywanymi, również nie są reprezentowane przez linie dwupunktowe cienkie. W ten sposób można zauważyć, że błędne rozpoznanie tych elementów może prowadzić do nieporozumień w procesie produkcyjnym. Ponadto, przejścia jednej powierzchni w drugą w miejscach łagodnie zaokrąglonych są zazwyczaj oznaczane innymi rodzajami linii, co również można pomylić, jeśli nie zna się podstawowych zasad rysunku technicznego. W ten sposób, niewłaściwa interpretacja linii i ich znaczenia na rysunkach może prowadzić do poważnych konsekwencji, jak błędne wykonanie elementów, co naraża na straty finansowe oraz czasowe. Dlatego niezwykle istotne jest przyswojenie wiedzy na temat oznaczeń stosowanych w rysunkach technicznych oraz ich znaczenia w praktyce inżynierskiej.

Pytanie 23

Według zasad rysowania schematów układów pneumatycznych, symbolem składającym się z litery A oraz cyfr oznacza się

A. elementy sygnalizacyjne
B. siłowniki
C. pompy
D. zawory pneumatyczne
Odpowiedź "siłowniki" jest poprawna, ponieważ zgodnie z międzynarodowymi standardami rysowania schematów układów pneumatycznych, litera A w symbolach literowo-cyfrowych odnosi się do elementów wykonawczych, jakimi są siłowniki. Siłowniki pneumatyczne przekształcają energię sprężonego powietrza w ruch mechaniczny, co jest kluczowe w automatyzacji procesów przemysłowych. Mogą występować w różnych formach, takich jak siłowniki liniowe, które poruszają się w linii prostej, oraz siłowniki obrotowe, które wykonują ruch obrotowy. W praktyce siłowniki są wykorzystywane w takich zastosowaniach jak podnoszenie, przesuwanie lub obracanie elementów w maszynach przemysłowych. Zrozumienie i umiejętność prawidłowego oznaczania tych komponentów jest niezbędna dla inżynierów i techników pracujących w dziedzinie pneumatyki, aby zapewnić efektywne projektowanie i eksploatację systemów pneumatycznych, zgodnie z normami ISO 1219 oraz PN-EN 982, które określają zasady rysowania schematów oraz oznaczeń dla takich układów.

Pytanie 24

Jaki program jest używany do gromadzenia wyników pomiarów, ich wizualizacji, zarządzania procesem, alarmowania oraz archiwizacji danych?

A. AutoCAD
B. WinCC
C. InteliCAD
D. KiCAD
WinCC, czyli Windows Control Center, jest zaawansowanym systemem SCADA (Supervisory Control and Data Acquisition) zaprojektowanym do monitorowania i kontrolowania procesów przemysłowych. Jego główną funkcjonalnością jest zbieranie danych z różnych źródeł, takich jak czujniki czy urządzenia pomiarowe, które następnie są wizualizowane w przystępny sposób na ekranach komputerowych. Dzięki WinCC można nie tylko śledzić wyniki pomiarów w czasie rzeczywistym, ale także zarządzać alarmami, co jest kluczowe w kontekście zapewnienia bezpieczeństwa procesów przemysłowych. System ten pozwala na archiwizowanie danych, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz zgodności z normami, takimi jak ISO 9001. Przykładowo, w zakładach produkcyjnych WinCC może być używany do monitorowania parametrów procesów, takich jak temperatura, ciśnienie czy poziom cieczy, co pozwala na szybkie podejmowanie decyzji w przypadku wykrycia nieprawidłowości.

Pytanie 25

Która z liter adresowych zastosowanych w poniższej instrukcji programowania obrabiarki oznacza szybkość posuwu?

CNC N120 G31 X50 Z-30 D-2 F3 Q3
A. G
B. F
C. Q
D. N
Wybór litery 'F' jako oznaczenia szybkości posuwu w programowaniu obrabiarek CNC jest poprawny, ponieważ jest to standardowo stosowane oznaczenie w wielu językach programowania tych urządzeń. Szybkość posuwu, czyli prędkość, z jaką narzędzie porusza się w obrabianym materiale, ma kluczowe znaczenie dla jakości oraz efektywności obróbki. Zbyt niska prędkość posuwu może prowadzić do nieefektywnej obróbki, a zbyt wysoka może powodować przegrzewanie materiału oraz zużycie narzędzi. Przykładowo, w kodzie G, zapis 'F3' wskazuje, że narzędzie porusza się z prędkością 3 mm/min, co pozwala na precyzyjne stworzenie detalu zgodnie z wymogami technologicznymi. Warto zaznaczyć, że dobór właściwej szybkości posuwu zależy od rodzaju materiału, geometrii narzędzia oraz parametrów obrabiarki, co podkreśla znaczenie znajomości tych aspektów dla operatora CNC. Używanie litery 'F' do oznaczania tej wartości jest powszechne w branży i należy do najlepszych praktyk. Właściwe ustawienie szybkości posuwu ma również wpływ na żywotność narzędzi oraz jakość powierzchni obrabianego detalu, dlatego tak istotne jest, aby operatorzy CNC byli dobrze zaznajomieni z tymi parametrami.

Pytanie 26

Jakiej z wymienionych aktywności nie powinien wykonywać operator pras hydraulicznych sterowanych przez sterownik PLC?

A. Konfigurować parametrów urządzenia
B. Weryfikować stan osłon urządzenia
C. Modernizować urządzenia
D. Uruchamiać programu sterującego
Poprawna odpowiedź to "modernizować urządzenia". Pracownik obsługujący prasę hydrauliczną sterowaną za pośrednictwem sterownika PLC nie powinien podejmować się modernizacji tych urządzeń, ponieważ działania te wymagają specjalistycznej wiedzy i umiejętności, które posiadają jedynie wykwalifikowani inżynierowie lub technicy zajmujący się modernizacją maszyn. Zmiany w konstrukcji lub oprogramowaniu mogą mieć istotny wpływ na bezpieczeństwo i funkcjonowanie całego systemu. Dlatego zgodnie z normami branżowymi, takimi jak ISO 12100, które dotyczą bezpieczeństwa maszyn, wszelkie modyfikacje powinny być przeprowadzane przez osoby posiadające odpowiednie kwalifikacje. Tego rodzaju zmiany mogą obejmować aktualizacje oprogramowania sterującego, co jest kluczowe dla poprawy wydajności oraz funkcjonalności maszyny. Odpowiedzialne podejście do takich działań pomaga w minimalizacji ryzyka awarii oraz zapewnienia ciągłości produkcji.

Pytanie 27

Która z podanych zasad musi być przestrzegana przed przystąpieniem do konserwacji lub naprawy urządzenia mechatronicznego posiadającego oznaczenie przedstawione na rysunku?

Ilustracja do pytania
A. Zapisz czynności wykonane podczas eksploatacji.
B. Przeczytaj instrukcję dla większego bezpieczeństwa.
C. Odczytaj informacje o producencie i skontaktuj się z nim przed realizacją działań.
D. Zanotuj wyniki pomiarów podczas diagnostyki.
Poprawna odpowiedź "Przeczytaj instrukcję dla większego bezpieczeństwa" odzwierciedla istotę bezpieczeństwa w pracy z urządzeniami mechatronicznymi. Oznaczenie na rysunku to piktogram, który zwraca uwagę na obowiązek zapoznania się z instrukcją obsługi przed przystąpieniem do jakichkolwiek działań konserwacyjnych lub naprawczych. Instrukcja obsługi dostarcza istotnych informacji na temat poprawnej obsługi urządzenia, procedur bezpieczeństwa oraz wskazówek dotyczących konserwacji. Ignorowanie tych informacji może prowadzić do poważnych uszkodzeń sprzętu lub nawet zagrożeń dla zdrowia użytkownika. Przykładowo, w branży motoryzacyjnej, zaleca się zawsze czytać instrukcje dotyczące wymiany oleju lub filtrów, aby uniknąć błędów, które mogą zagrażać bezpieczeństwu pojazdu. Standardy ISO oraz normy branżowe, takie jak ISO 12100, podkreślają znaczenie oceny ryzyka oraz przestrzegania instrukcji obsługi jako kluczowych elementów bezpiecznej eksploatacji maszyn. W związku z tym, zapoznanie się z instrukcją jest kluczowym krokiem przed każdą interwencją serwisową.

Pytanie 28

Zakłada się, że projektowane urządzenie mechatroniczne będzie umieszczone w obudowie IP 65. Oznacza to, że

Stopnie ochrony IP zgodnie z normą PN-EN 60529
OznaczenieOchrona przed wnikaniem do urządzeniaOznaczenieOchrona przed wodą
IP 0Xbrak ochronyIP X0brak ochrony
IP 1Xobcych ciał stałych
o średnicy > 50 mm
IP X1kapiąca
IP 2Xobcych ciał stałych
o średnicy > 12,5 mm
IP X2kapiąca – odchylenie obudowy
urządzenia do 15°
IP 3Xobcych ciał stałych
o średnicy > 2,5 mm
IP X3opryskiwaną pod kątem
odchylonym max. 60° od
pionowego
IP 4Xobcych ciał stałych
o średnicy > 1 mm
IP X4rozpryskiwaną ze wszystkich
kierunków
IP 5Xpyłu w zakresie
nieszkodliwym dla
urządzenia
IP X5laną strumieniem
IP 6Xpyłu w pełnym zakresieIP X6laną mocnym strumieniem
----------------IP X7przy zanurzeniu krótkotrwałym
IP X8przy zanurzeniu ciągłym
A. posiadać będzie najwyższy stopień ochrony przed wodą.
B. posiadać będzie najwyższy stopień ochrony przed pyłem.
C. nie będzie chronione przed wodą.
D. nie będzie chronione przed pyłem.
Odpowiedź, że projektowane urządzenie mechatroniczne posiada najwyższy stopień ochrony przed pyłem, jest poprawna. Oznaczenie IP 65 wskazuje, że urządzenie jest w pełni chronione przed pyłem (stopień 6) oraz odporniejsze na strumień wody z dowolnego kierunku (stopień 5). Taki poziom ochrony jest szczególnie istotny w aplikacjach, gdzie urządzenia muszą funkcjonować w trudnych warunkach, na przykład w zakładach przemysłowych, gdzie kurz i zanieczyszczenia są powszechne. W przypadku urządzeń montowanych na zewnątrz, standard IP 65 zapewnia również ich dłuższą żywotność oraz niezawodność. Warto zaznaczyć, że zgodnie z normą PN-EN 60529, oznaczenia IP są kluczowe dla wyboru odpowiedniego sprzętu do zastosowań wymaganego poziomu ochrony. Na przykład, w automatyce przemysłowej, zastosowanie urządzeń z wysokim stopniem ochrony jest niezbędne w celu zapewnienia osób i sprzętu przed potencjalnymi zagrożeniami. Użytkownicy powinni zawsze zwracać uwagę na parametry IP przed zakupem, aby dostosować je do specyficznych warunków operacyjnych.

Pytanie 29

Który z parametrów wskazuje na efektywność sprężarki pneumatycznej?

A. Sprawność [%]
B. Strumień objętości [m3/min]
C. Ciśnienie [bar]
D. Prędkość obrotowa wału [obr./min]
Wybór innych parametrów jako wskaźnika wydajności sprężarki pneumatycznej nie oddaje rzeczywistej charakterystyki jej działania. Prędkość obrotowa wału [obr./min] może wydawać się istotnym czynnikiem, jednak nie dostarcza informacji o rzeczywistej ilości powietrza, którą sprężarka jest w stanie dostarczyć. W rzeczywistości, różne modele sprężarek mogą mieć różne wartości prędkości obrotowej, ale to, co naprawdę się liczy, to ich zdolność do przetwarzania powietrza w jednostce czasu. Podobnie, ciśnienie [bar] jest ważnym parametrem, ale odnosi się głównie do siły, z jaką powietrze jest wytwarzane, a nie do jego objętości. Wysokie ciśnienie niekoniecznie oznacza wysoką wydajność, jeżeli sprężarka nie jest w stanie efektywnie przetwarzać większych ilości powietrza. Sprawność [%] też nie jest bezpośrednim wskaźnikiem wydajności, ponieważ odnosi się do efektywności energetycznej urządzenia, a nie do jego zdolności do generowania strumienia objętości. W praktyce, wiele osób może mylnie zakładać, że te parametry są równoważne, co prowadzi do nieprawidłowych wniosków przy doborze sprężarki do konkretnego zastosowania. Właściwe zrozumienie, że strumień objętości jest kluczowym parametrem w kontekście wydajności sprężarek pneumatycznych, jest niezmiernie istotne dla efektywności procesów przemysłowych i optymalizacji kosztów operacyjnych.

Pytanie 30

Aby zmierzyć wartość napięcia zmiennego, pokrętło multimetru powinno być ustawione na pozycję oznaczoną

A. DCA
B. ACV
C. DCV
D. ACA
Ustawienie multimetru na pozycji "ACV" jest kluczowe dla pomiaru napięcia zmiennego, które zmienia swoją wartość w czasie. W tej pozycji multimetr mierzy skuteczną wartość napięcia sinusoidalnego, co jest istotne w praktycznych zastosowaniach, takich jak pomiary w sieciach elektrycznych. Napięcie zmienne jest powszechnie używane w domowych instalacjach elektrycznych, a także w wielu urządzeniach elektronicznych. Użycie odpowiedniego ustawienia na multimetrze zapewnia dokładność pomiaru oraz umożliwia analizę parametrów napięcia, co jest zgodne z najlepszymi praktykami w zakresie elektroniki i elektryki. Warto również pamiętać, że niewłaściwe ustawienie multimetru, na przykład na "DCV" (napięcie stałe), może prowadzić do błędnych odczytów, co w dalszej perspektywie może skutkować uszkodzeniem urządzenia lub niewłaściwym działaniem instalacji. Dlatego tak ważne jest, aby przed wykonaniem pomiaru zawsze upewnić się, że multimetr jest ustawiony na odpowiedni zakres i typ pomiaru.

Pytanie 31

Jak zwiększenie częstotliwości napięcia zasilającego podawanego z falownika wpłynie na działanie silnika trójfazowego?

A. Moment obciążenia silnika się zwiększy
B. Obroty silnika wzrosną
C. Obroty silnika się zmniejszą
D. Maksymalny moment napędowy silnika ulegnie zmniejszeniu
Zwiększenie częstotliwości podawanego z falownika napięcia zasilającego bezpośrednio wpływa na obroty silnika trójfazowego. Zasada ta wynika z podstawowych praw elektrotechniki, które mówią o tym, że częstotliwość zasilania ma kluczowe znaczenie dla prędkości obrotowej silników asynchronicznych. W przypadku silnika trójfazowego, jego obroty można obliczyć ze wzoru: n = (120 * f) / p, gdzie n to obroty na minutę, f to częstotliwość zasilania w hercach, a p to liczba par biegunów. W praktyce oznacza to, że zwiększając częstotliwość zasilania, przy zachowaniu stałej liczby par biegunów, silnik będzie pracował z wyższymi obrotami. W zastosowaniach przemysłowych, takich jak napędy w wentylatorach, pompach czy taśmach transportowych, regulacja obrotów silnika poprzez falownik pozwala na optymalizację wydajności energetycznej oraz dostosowanie prędkości do aktualnych potrzeb procesu. Dzięki temu można osiągnąć nie tylko wyższą efektywność, ale również wydłużenie żywotności urządzeń, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 32

Ile poziomów kwantyzacji oraz jaka jest rozdzielczość napięciowa przetwornika A/C użytego w urządzeniu mechatronicznym o zakresie pomiarowym 0÷10 V i dokładności 10 bitów?

A. 512 poziomów kwantyzacji i rozdzielczość napięciowa 19,53 mV
B. 1024 poziomów kwantyzacji i rozdzielczość napięciowa 9,76 mV
C. 2048 poziomów kwantyzacji i rozdzielczość napięciowa 4,88 mV
D. 256 poziomów kwantyzacji i rozdzielczość napięciowa 39,06 mV
Przetwornik A/C o rozdzielczości 10 bitów umożliwia przetwarzanie sygnału wejściowego na 1024 poziomy kwantyzacji, co jest wynikiem obliczenia 2^10. Każdy poziom odpowiada konkretnej wartości napięcia, a w przypadku skali pomiarowej 0÷10 V, rozdzielczość napięciowa wynosi około 9,76 mV. Oznacza to, że najmniejsza różnica napięcia, którą można rozróżnić, wynosi właśnie 9,76 mV. Taki przetwornik znajduje zastosowanie w wielu urządzeniach mechatronicznych, gdzie precyzyjny pomiar napięcia jest kluczowy, na przykład w systemach automatyki przemysłowej, czujnikach temperatury czy systemach monitorowania parametrów w czasie rzeczywistym. Zrozumienie działania przetworników A/C oraz ich parametrów, takich jak rozdzielczość i poziomy kwantyzacji, jest niezbędne dla inżynierów projektujących nowoczesne systemy, które muszą współpracować z różnorodnymi sygnałami analogowymi. W praktyce stosuje się te przetworniki w aplikacjach, gdzie wymagane jest dokładne odwzorowanie zmiennych sygnałów analogowych na wartości cyfrowe, co pozwala na dalsze przetwarzanie i analizy danych.

Pytanie 33

Jaki typ zaworu powinno się użyć w układzie pneumatycznym, aby zachować ciśnienie na określonym poziomie?

A. Zawór przełączający
B. Zawór nastawny dławiąco-zwrotny
C. Zawór nastawny podwójnego sygnału
D. Zawór redukcyjny
Zawór redukcyjny jest kluczowym elementem w układach pneumatycznych, który pozwala na utrzymanie stałego ciśnienia roboczego na zadanym poziomie. Jego główną funkcją jest ograniczenie ciśnienia gazu z zewnętrznego źródła, co jest niezbędne w wielu aplikacjach przemysłowych, gdzie precyzyjne zarządzanie ciśnieniem jest istotne dla wydajności procesu. Przykładowo, w systemach automatyzacji, gdzie zasilanie urządzeń pneumatycznych wymaga stałego ciśnienia, zastosowanie zaworu redukcyjnego zapewnia stabilność i bezpieczeństwo pracy. W praktyce, zawory te są często wykorzystywane w połączeniu z innymi elementami, takimi jak manometry i zawory sterujące, co pozwala na dokładne monitorowanie i regulację ciśnienia w układzie. Zgodnie z normami branżowymi, instalacja zaworów redukcyjnych powinna być przeprowadzona z uwzględnieniem specyfikacji producenta oraz lokalnych przepisów dotyczących bezpieczeństwa, aby zapewnić ich prawidłowe funkcjonowanie i długą żywotność.

Pytanie 34

Podczas wymiany uszkodzonego kondensatora, można użyć zamiennika o

A. niższej wartości napięcia nominalnego
B. niższej wartości pojemności
C. wyższej wartości napięcia nominalnego
D. wyższej wartości pojemności
Wybór zamiennika kondensatora o mniejszej wartości napięcia nominalnego jest poważnym błędem, który może prowadzić do katastrofalnych skutków w działaniu układu elektronicznego. Wyższe napięcia mogą szybko zniszczyć kondensator o niższej wartości, co skutkuje nie tylko awarią samego kondensatora, ale także uszkodzeniem innych komponentów w układzie. Użytkownicy często mylą pojęcia związane z napięciem i pojemnością; mogą myśleć, że kondensator o niższej wartości napięcia będzie działał poprawnie, jeśli nie osiągnie on teoretycznie maksymalnego napięcia roboczego, co jest błędne. Oprócz tego, wybór kondensatora o mniejszej wartości pojemności, w odpowiedzi na pytanie, może prowadzić do nieprawidłowego działania obwodu, ponieważ zmienia to jego charakterystykę czasową i pojemnościową. W praktyce, błędne podejście do doboru kondensatorów często wynika z braku zrozumienia podstawowych zasad działania tych elementów. Konsekwencje mogą być poważne, od zwiększonej awaryjności układów aż po całkowitą utratę funkcjonalności. Standardy branżowe, takie jak IEC 61076, jasno określają, jakie wartości powinny być stosowane w różnych aplikacjach, a ich ignorowanie prowadzi do nieprzewidywalnych rezultatów i potencjalnych zagrożeń.

Pytanie 35

Jakie ciśnienie powietrza powinno panować w komorze siłownika jednostronnego działania o powierzchni tłoka A = 0,005 m2 oraz sprawności η = 0,7, aby siła przenoszona przez tłoczysko wynosiła F = 2100 N? (F = η· p · A)

A. 5 bar
B. 6 bar
C. 7 bar
D. 8 bar
Odpowiedź 6 bar jest poprawna, ponieważ zgodnie z równaniem F = η·p·A możemy obliczyć ciśnienie powietrza w komorze siłownika. W naszym przypadku mamy siłę F równą 2100 N, sprawność η równą 0,7 oraz powierzchnię tłoka A równą 0,005 m². Podstawiając te wartości do wzoru, otrzymujemy p = F / (η·A) = 2100 N / (0,7·0,005 m²) = 6 bar. Dzięki tym obliczeniom możemy stwierdzić, że ciśnienie 6 bar jest wystarczające do przeniesienia zadanego obciążenia. Takie obliczenia są kluczowe w projektowaniu układów hydraulicznych, gdzie precyzyjne oszacowanie ciśnienia roboczego pozwala na zapewnienie efektywności oraz bezpieczeństwa działania siłowników. W praktyce, odpowiednie ciśnienie ma wpływ na dynamikę ruchu oraz na żywotność komponentów systemu, a także na oszczędność energii.

Pytanie 36

Jak należy przeprowadzić pomiar ciągłości przewodów w instalacji elektrycznej?

A. przy odłączonych odbiornikach oraz wyłączonym napięciu zasilania
B. przy podłączonych odbiornikach oraz wyłączonym napięciu zasilania
C. przy odłączonych odbiornikach oraz włączonym napięciu zasilania
D. przy podłączonych odbiornikach oraz włączonym napięciu zasilania
Pomiar ciągłości przewodów w instalacji elektrycznej powinien być wykonywany przy odłączonych odbiornikach i wyłączonym napięciu zasilania, co jest zgodne z zasadami bezpieczeństwa i dobrymi praktykami w branży elektrycznej. W takiej sytuacji można zminimalizować ryzyko porażenia prądem elektrycznym oraz zapobiec ewentualnym uszkodzeniom urządzeń. Zastosowanie multimetru do sprawdzenia ciągłości przewodów w tych warunkach umożliwia rzetelną diagnozę ich stanu bez wpływu napięcia, co jest kluczowe w przypadku serwisowania lub modernizacji instalacji. Warto pamiętać, że podczas takich pomiarów, szczególnie w instalacjach pod napięciem, może dochodzić do fałszywych odczytów, co prowadzi do błędnych decyzji serwisowych. Dobre praktyki wymagają także stosowania odpowiednich środków ochrony osobistej oraz dokładnego zapoznania się z dokumentacją techniczną instalacji przed przystąpieniem do pomiarów.

Pytanie 37

Który z poniższych kwalifikatorów działań w metodzie SFC odnosi się do uzależnień czasowych?

A. S
B. N
C. R
D. L
Wybór odpowiedzi, które nie odnoszą się do uzależnień czasowych, może wynikać z nieporozumienia dotyczącego terminologii używanej w metodzie SFC. Kwalifikator 'R' jest używany do oznaczania warunków, które mogą włączyć lub wyłączyć dany krok, ale nie wskazuje na opóźnienia czasowe, co jest kluczowe w kontekście zadań wymagających precyzyjnej synchronizacji. Z kolei kwalifikator 'N' reprezentuje przejście między stanami bez opóźnienia, co również nie ma zastosowania w sytuacjach wymagających czasowego uzależnienia działań. Kwalifikator 'S' wskazuje na stan, który nie jest związany z czasem wykonania, a więc również nie spełnia wymagań dotyczących opóźnień. Zrozumienie tego, że uzależnienia czasowe są kluczowym elementem w programowaniu SFC, jest fundamentalne dla efektywnego projektowania systemów automatyki. Użycie niewłaściwych kwalifikatorów może prowadzić do błędnego działania systemu, co ma wpływ na bezpieczeństwo i wydajność. W kontekście standardów branżowych, takie podejście może być niezgodne z normami IEC 61131, które definiują wymagania na programy sterujące i ich elementy, w tym zarządzanie czasem i sekwencjami operacyjnymi.

Pytanie 38

Jakie kluczowe cechy funkcjonalne powinien mieć system sterowania układem nawrotnym dla silnika elektrycznego?

A. Sygnalizację kierunków obrotu silnika
B. Podtrzymanie kierunku obrotów silnika z napędem
C. Blokadę uniemożliwiającą jednoczesne włączenie w obu kierunkach
D. Ograniczenie czasowe dla pracy silnika z napędem
Wybór odpowiedzi "Blokadę przed jednoczesnym załączeniem w obu kierunkach." jest poprawny, ponieważ stanowi kluczowy element systemów sterowania silnikami elektrycznymi, który ma na celu zapewnienie bezpieczeństwa oraz ochrony zarówno urządzenia, jak i użytkownika. W praktyce, w przypadku jednoczesnego załączenia silnika w dwóch przeciwnych kierunkach, mogłoby dojść do poważnych uszkodzeń mechanicznych, a także do zagrożenia dla ludzi znajdujących się w pobliżu. Blokada ta jest standardowym rozwiązaniem w branży automatyki, stosowanym w wielu aplikacjach, od prostych silników jednofazowych po złożone systemy napędowe w przemyśle. Przykładowo, w systemach z wykorzystaniem falowników, implementacja takiej blokady jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa. Dobre praktyki inżynieryjne sugerują wprowadzenie dodatkowych czujników, które monitorują aktywność silnika, co pozwala na automatyczne zatrzymanie pracy w przypadku wykrycia nieprawidłowości. Oprócz tego, zapewnia to również większą niezawodność i dłuższą żywotność komponentów systemu, co jest kluczowe w kontekście kosztów eksploatacji.

Pytanie 39

Jaka prędkość wyjścia tłoka siłownika hydraulicznego o powierzchni czynnej A = 3·10-3 m2 będzie, jeśli natężenie przepływu wynosi Q = 1,5·10-3 m3/s?

A. 3 m/s
B. 0,5 m/s
C. 0,3 m/s
D. 5 m/s
W przypadku odpowiedzi, które nie są poprawne, kluczowe jest zrozumienie merytorycznych podstaw hydrauliki, które leżą u podstaw obliczeń prędkości w siłownikach. Odpowiedzi takie jak 0,3 m/s, 5 m/s czy 3 m/s mogą wydawać się logiczne na pierwszy rzut oka, ale wynikają z fundamentalnych błędów w interpretacji danych. Na przykład, odpowiedź 0,3 m/s nie uwzględnia prawidłowego stosunku natężenia przepływu do powierzchni tłoka, co prowadzi do niedoszacowania prędkości. Z kolei odpowiedzi 5 m/s i 3 m/s sugerują, że natężenie przepływu byłoby znacznie wyższe niż podane, co jest sprzeczne z definicją i właściwościami natężenia przepływu w układach hydraulicznych. Kluczowym błędem myślowym jest pominięcie faktu, że zmiana powierzchni przekroju poprzecznego wpływa bezpośrednio na prędkość przepływu. Aby obliczenie było poprawne, należy zawsze odnosić się do wzoru v = Q/A. W praktyce, błędne obliczenia mogą prowadzić do niewłaściwego doboru komponentów w układzie hydraulicznym, co w skrajnych przypadkach może skutkować awarią urządzenia lub nieefektywną pracą, a także zwiększonym zużyciem energii. Z tego powodu zrozumienie podstawowych zasad obliczeń hydraulicznych jest kluczowe dla inżynierów i techników pracujących w branży.

Pytanie 40

Na diagramach systemów hydraulicznych przyłącze rury odpływowej rozdzielacza oznacza się symbolem literowym

A. T
B. B
C. A
D. P
Wybierając odpowiedzi B, A lub P, pojawia się szereg nieporozumień związanych z podstawową terminologią i symboliką używaną w hydraulice. Odpowiedź B, która mogłaby sugerować inne ważne przyłącze, w rzeczywistości odnosi się do linii roboczej, co może prowadzić do błędnej interpretacji schematów. Odpowiedź A, wskazująca na inny element w układzie, nie jest zgodna z konwencjami wykorzystywanymi w hydraulice, co może skutkować problemami w diagnostyce i serwisowaniu systemu. Z kolei odpowiedź P, choć często mylnie utożsamiana z przewodem odpływowym, w rzeczywistości odnosi się do przewodu dopływowego. Wybór tych symboli może skutkować dezorientacją i błędami w instalacji, ponieważ każde z oznaczeń ma swoje specyficzne zastosowanie. W praktyce, aby uniknąć tych pułapek, kluczowe jest przyswojenie sobie podstawowych zasad oznaczania w hydraulice oraz znajomość standardów takich jak ISO 1219. Brak zrozumienia tych różnic może prowadzić do poważnych problemów w działaniu systemów, a co za tym idzie, do zwiększenia kosztów napraw i przestojów w pracy maszyn. Zrozumienie roli każdego z oznaczeń oraz ich zastosowania jest kluczowe dla efektywnej pracy w branży hydraulicznej.