Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 lutego 2026 01:42
  • Data zakończenia: 22 lutego 2026 01:43

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 2,001 bar
B. 3,001 bar
C. 5,001 bar
D. 4,001 bar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przeliczanie ciśnienia z mmHg na bary to dość prosta sprawa, ale trzeba pamiętać o kilku rzeczach. Wiesz, 1 mmHg to 133,4 Pa, a 1 bar to 100 000 Pa. Jak chcesz to obliczyć dla 1500 mmHg, to najpierw mnożysz: 1500 mmHg razy 133,4 Pa/mmHg, co daje 200100 Pa. Potem dzielisz tą wartość przez 100 000 Pa/bar, żeby dostać bary, czyli 200100 Pa podzielone przez 100 000 Pa/bar równa się 2,001 bar. To jest mega ważne, bo w inżynierii chemicznej czy meteorologii takie przeliczenia są w zasadzie na porządku dziennym. Jeśli projektujesz coś, co wymaga konkretnego ciśnienia, jak na przykład system hydrauliczny, to musisz wiedzieć, jak to przeliczać, żeby wszystko działało jak należy.

Pytanie 2

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 15 bar
B. 1 500 bar
C. 15 000 bar
D. 150 bar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 150 bar jest prawidłowa z uwagi na zastosowanie wzoru na obliczenie ciśnienia w siłowniku hydraulicznym. Ciśnienie (p) oblicza się według wzoru p = F / A, gdzie F to siła wywierana przez siłownik, a A to powierzchnia czynna tłoka. W tym przypadku F wynosi 30 kN, co jest równoznaczne z 30 000 N, a A wynosi 20 cm², co należy przeliczyć na m² (20 cm² = 0,002 m²). Podstawiając wartości do wzoru: p = 30 000 N / 0,002 m² = 15 000 000 Pa, co daje 150 bar (1 bar = 100 000 Pa). W praktyce, w hydraulice przemysłowej, utrzymywanie właściwego ciśnienia ma kluczowe znaczenie dla efektywności działania układów, co wpływa na bezpieczeństwo oraz niezawodność maszyn. Technologie hydrauliczne są powszechnie stosowane w budownictwie, przemyśle motoryzacyjnym i lotniczym, gdzie precyzyjne sterowanie siłą i ruchem jest niezbędne.

Pytanie 3

Co koniecznie trzeba skonfigurować w urządzeniu, aby mogło funkcjonować w sieci Ethernet?

A. Z szybkość przesyłania danych
B. Niepowtarzalny adres IP
C. Adres serwera DNS
D. Bity stopu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby urządzenie mogło pracować w sieci Ethernet, konieczne jest przypisanie mu niepowtarzalnego adresu IP. Adres IP jest unikalnym identyfikatorem, który umożliwia komunikację pomiędzy urządzeniami w sieci. W kontekście protokołu TCP/IP, który jest fundamentem komunikacji w sieciach Ethernet, każdy host musi posiadać swój własny adres IP, aby móc wysyłać i odbierać dane. Przykładowo, w małej sieci lokalnej (LAN) adresy IP mogą być przydzielane dynamicznie przez serwer DHCP, ale każde urządzenie musi być w stanie zostać zidentyfikowane przez unikalny adres. W praktyce, ustawiając adres IP, administratorzy sieci muszą również upewnić się, że nie koliduje on z innymi adresami w sieci, co jest kluczowe dla prawidłowego funkcjonowania i unikania konfliktów. Warto również pamiętać, że adres IP może być w wersji IPv4 lub IPv6, a ich odpowiedni wybór jest istotny w kontekście rozwoju i przyszłości sieci. Dobre praktyki obejmują przydzielanie adresów z odpowiednich pul adresowych oraz dokumentowanie przydzielonych adresów, aby zminimalizować ryzyko błędów.

Pytanie 4

Do czego służy stabilizator napięcia?

A. do wygładzania napięcia po prostowaniu przez prostownik
B. do utrzymywania stałego napięcia niezależnie od zmian natężenia prądu obciążenia oraz zmian napięcia wejściowego
C. do konwersji napięcia przemiennego na napięcie przemienne o innej częstotliwości oraz innej wartości skutecznej
D. do przekształcania napięcia przemiennego w napięcie stałe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stabilizator napięcia jest urządzeniem, które ma za zadanie utrzymywanie stałego napięcia na wyjściu, niezależnie od zmian natężenia prądu obciążenia oraz fluktuacji napięcia wejściowego. W praktyce oznacza to, że gdy obciążenie zmienia się, a także gdy napięcie zasilające ulega zmianie (na przykład w wyniku wahań w sieci energetycznej), stabilizator zapewnia, że napięcie na wyjściu pozostaje na pożądanym poziomie. Przykładem zastosowania stabilizatorów napięcia są zasilacze do urządzeń elektronicznych, takich jak komputery czy telewizory, które wymagają stałego napięcia do prawidłowego działania. W branży elektronicznej oraz elektrycznej, stosowanie stabilizatorów napięcia jest zgodne z dobrymi praktykami, które mają na celu zapewnienie niezawodności i bezpieczeństwa urządzeń. Stabilizatory mogą również chronić sprzęt przed uszkodzeniami spowodowanymi nadmiernym wzrostem napięcia lub jego spadkiem. Warto zaznaczyć, że stabilizatory mogą działać w różnych trybach, w tym jako liniowe lub impulsowe, w zależności od zastosowania i wymagań dotyczących efektywności energetycznej.

Pytanie 5

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Światłowód
B. Kabel UTP
C. Sygnał radiowy
D. Kabel telefoniczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Światłowód to najskuteczniejsze medium wykorzystywane do komunikacji w środowiskach, gdzie występują silne zakłócenia elektromagnetyczne. Jego konstrukcja oparta na szkle lub tworzywie sztucznym pozwala na przesyłanie sygnałów świetlnych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi, które mogą wpływać na inne media transmisyjne, takie jak kable miedziane. W praktyce, zastosowanie światłowodów w halach przemysłowych, w pobliżu dużych maszyn czy urządzeń generujących pole elektromagnetyczne, zapewnia stabilną i niezawodną komunikację. Przykładem może być wdrożenie infrastruktury światłowodowej w fabrykach produkcyjnych, gdzie precyzyjna i szybka wymiana danych pomiędzy różnymi sekcjami jest kluczowa dla efektywności procesów produkcyjnych. Światłowody są także zgodne z wieloma normami, takimi jak ISO/IEC 11801, które definiują standardy kablowe i zapewniają wysoką jakość sygnału oraz bezpieczeństwo w instalacjach telekomunikacyjnych. Dodatkowo, światłowody są odporne na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych.

Pytanie 6

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. siłownikiem
C. nieprawidłowo zamocowanym przewodem pneumatycznym
D. przerwanym przewodem pneumatycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 7

Stal niskostopowa zawierająca składniki takie jak krzem, mangan, chrom oraz wanad, cechująca się podwyższoną ilością krzemu, znajduje zastosowanie w produkcji

A. narzędzi do obróbki skrawaniem
B. łożysk tocznych
C. śrub, nakrętek, podkładek
D. resorów, sprężyn i drążków skrętnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stal niskostopowa z dodatkami krzemu, manganu, chromu i wanadu charakteryzuje się korzystnymi właściwościami mechanicznymi, które sprawiają, że jest idealnym materiałem do produkcji resorów, sprężyn i drążków skrętnych. Dodatki te poprawiają wytrzymałość oraz odporność na zmęczenie materiału, co jest kluczowe w zastosowaniach, gdzie elementy te muszą wytrzymywać wielokrotne obciążenia dynamiczne. Na przykład, w przemyśle motoryzacyjnym resory i sprężyny używane w systemach zawieszenia pojazdów muszą nie tylko absorbować drgania, ale także bezpiecznie przenosić duże obciążenia. Stal niskostopowa, dzięki swoim właściwościom, może być poddawana różnym procesom obróbczo-wytwórczym, takim jak hartowanie czy odpuszczanie, co dodatkowo zwiększa jej trwałość. Zgodnie z normami ISO i DIN, komponenty wykonane z tej stali powinny spełniać określone wymagania dotyczące wytrzymałości i twardości, co czyni je niezawodnymi w krytycznych zastosowaniach. Przykłady zastosowań obejmują nie tylko przemysł motoryzacyjny, ale także maszyny budowlane i przemysł ciężki, gdzie elementy te są niezbędne do zapewnienia odpowiedniej wydajności i bezpieczeństwa.

Pytanie 8

Tłok siłownika pneumatycznego zasilanego sprężonym powietrzem o ciśnieniu P = 600 000 Pa powinien oddziaływać z siłą F = 1 200 N. Jaka powinna być powierzchnia czynna tłoka, jeżeli w siłowniku nie występują straty powietrza?

P = F/S
A. 0,050 m2
B. 0,020 m2
C. 0,500 m2
D. 0,002 m2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,002 m2 jest prawidłowa, ponieważ w celu obliczenia powierzchni czynnej tłoka w siłowniku pneumatycznym, należy zastosować wzór: A = F / P, gdzie A to powierzchnia, F to siła, a P to ciśnienie. W tym przypadku, dzieląc siłę 1200 N przez ciśnienie 600 000 Pa, otrzymujemy 0,002 m2. W praktyce, wiedza na temat doboru odpowiedniej powierzchni tłoka jest kluczowa w inżynierii pneumatycznej, ponieważ wpływa na efektywność i wydajność systemu. W wielu zastosowaniach, takich jak automatyka przemysłowa czy maszyny pakujące, wybór właściwej powierzchni tłoka pozwala na precyzyjne sterowanie ruchem oraz zminimalizowanie zużycia energii. Warto dodać, że zgodnie z normami branżowymi, odpowiednia powierzchnia czynna tłoka wpływa także na żywotność urządzenia oraz jego bezpieczeństwo, dlatego inżynierowie powinni zawsze brać pod uwagę zarówno parametry techniczne, jak i warunki pracy siłowników pneumatycznych.

Pytanie 9

Który symbol graficzny oznacza sterowanie ręczne dźwignią?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny oznaczający sterowanie ręczne dźwignią, przedstawiony przy odpowiedzi A, jest powszechnie stosowany w różnych dziedzinach inżynierii, w tym w automatyce i hydraulice. Dźwignie ręczne są kluczowym elementem w wielu urządzeniach, takich jak podnośniki, maszyny budowlane oraz systemy transportowe. Ich zrozumienie jest niezbędne dla inżynierów i techników, aby skutecznie projektować i obsługiwać urządzenia. W praktyce, dźwignia umożliwia użytkownikowi manualne sterowanie procesem, co jest istotne w sytuacjach, gdzie automatyzacja jest niewystarczająca. Symbol ten jest również zgodny z normami ISO, które regulują oznakowanie urządzeń i ich funkcji. Przy odpowiedniej interpretacji tego symbolu, operatorzy są w stanie skutecznie i bezpiecznie korzystać z urządzeń, co przekłada się na zwiększenie wydajności pracy oraz minimalizację ryzyka błędów. Zrozumienie tych symboli jest kluczowe w kontekście szkoleń BHP oraz przy wprowadzaniu nowych pracowników do procedur obsługi maszyn.

Pytanie 10

Wartość napięcia wskazywana przez woltomierz wynosi

Ilustracja do pytania
A. 16 V
B. 4 V
C. 40 V
D. 8 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 8 V. Odczytywanie wartości napięcia z woltomierza analogowego wymaga zrozumienia, jak działa zasada wskazania. W tym przypadku wskazówka znajduje się blisko oznaczenia 8 V, co jasno wskazuje, że wartość napięcia jest właśnie równa 8 V. W praktyce, aby zapewnić dokładność pomiaru, należy także uwzględnić tolerancję przyrządu oraz ich kalibrację, co jest kluczowe dla uzyskania wiarygodnych wyników. Przykładowo, w zastosowaniach przemysłowych, gdzie pomiary napięcia są niezbędne do monitorowania systemów elektrycznych, konieczne jest stosowanie woltomierzy o wysokiej dokładności, aby uniknąć błędnych decyzji inżynieryjnych. Ponadto, zgodnie z międzynarodowymi standardami, woltomierze powinny być regularnie kalibrowane w celu zapewnienia ich dokładności i spójności wyników. W każdym przypadku, umiejętność prawidłowego odczytywania wyników z woltomierza jest niezbędna dla techników i inżynierów w wielu dziedzinach, w tym w energetyce i automatyce.

Pytanie 11

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. położyć go na plecach z uniesionymi nogami
B. przystąpić do pośredniego masażu serca
C. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
D. ustawić go w pozycji bocznej ustalonej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ułożenie osoby w pozycji bocznej ustalonej (PBU) jest kluczowym działaniem w przypadku osób po porażeniu prądem, które odzyskały oddech. Ta pozycja ma na celu zapewnienie swobodnego przepływu powietrza oraz zapobiegnięcie zadławieniu się, co jest szczególnie ważne, gdy pacjent jest nieprzytomny lub osłabiony. W PBU pacjent leży na boku, co pozwala na swobodne wydostawanie się wydzielin z jamy ustnej i zapobiega aspiracji. Wytyczne dotyczące pierwszej pomocy, takie jak te zawarte w standardach Europejskiego Ruchu na Rzecz Bezpieczeństwa (ERS), podkreślają znaczenie stosowania PBU w przypadkach utraty przytomności. Przykładem zastosowania jest sytuacja, gdy osoba po porażeniu prądem odzyskuje świadomość, ale nie jest w stanie samodzielnie kontrolować swoich dróg oddechowych. W takich przypadkach, szybka reakcja i odpowiednie ułożenie mogą uratować życie, dlatego znajomość tego działania jest niezbędna dla każdego, kto może być świadkiem takiego zdarzenia.

Pytanie 12

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. proszkową oznaczoną ABC/E
B. śniegową oznaczoną BC
C. proszkową oznaczoną ABC
D. pianową oznaczoną AF

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź z gaśnicą proszkową ABC/E jest jak najbardziej trafna. Ta klasa gaśnicza jest stworzona do gaszenia pożarów, które mogą się zdarzyć w urządzeniach elektrycznych, gdy napięcie przekracza 1000 V. Gaśnice proszkowe ABC/E zawierają specjalny proszek, który świetnie radzi sobie z pożarami różnych typów – od ciał stałych, przez płyny, aż po gazy. To oznaczenie 'E' mówi nam, że można ich używać przy urządzeniach elektrycznych. Gdy wybuchnie pożar w elektryce, to ważne, żeby nie używać wody ani gaśnic pianowych, bo to może prowadzić do porażenia prądem. Przykładem może być sytuacja, kiedy w biurze zaczyna się palić komputer – wtedy użycie gaśnicy ABC/E pozwala na szybkie i bezpieczne ugaszenie pożaru, bez ryzyka dla ludzi. Przepisy przeciwpożarowe oraz normy, jak PN-EN 2, pokazują, jak ważny jest dobór odpowiedniego sprzętu gaśniczego w miejscach z elektroniką.

Pytanie 13

Jaką rolę pełni multiplekser?

A. Przesyłanie danych z wybranego wejścia na jedno wyjście
B. Kodowanie sygnałów na wejściach
C. Przesyłanie danych z jednego wejścia do wybranego wyjścia
D. Porównywanie sygnałów podawanych na wejścia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Multiplekser to kluczowy element w systemach cyfrowych, który umożliwia przesyłanie danych z jednego z kilku wejść do jednego wyjścia na podstawie sygnału kontrolnego. Dzięki tej funkcji, multipleksery są szeroko stosowane w telekomunikacji, gdzie pozwalają na efektywne zarządzanie pasmem i organizowanie ruchu danych. Na przykład, w systemach telewizyjnych, multipleksery pozwalają na wybór sygnału z różnych źródeł (np. anteny, kablówki, satelity) i kierowanie go do jednego wyjścia, aby zminimalizować potrzebne okablowanie i uprościć architekturę systemu. Ponadto, w kontekście inżynierii komputerowej, multipleksery są niezbędne do realizacji operacji arytmetycznych w jednostkach ALU (Arithmetic Logic Unit), gdzie wybierają odpowiednie dane do dalszej obróbki. Wykorzystanie standardów takich jak ITU-T G.703 w telekomunikacji pokazuje, jak ważne jest zastosowanie multiplekserów do synchronizacji i multiplexowania sygnałów w sieciach cyfrowych. Dobrze zaprojektowany multiplekser zwiększa wydajność systemów oraz pozwala na oszczędność miejsca i zasobów.

Pytanie 14

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Cięcia przewodów pneumatycznych.
B. Łączenia przewodów hydraulicznych.
C. Gięcia przewodów elektrycznych.
D. Usuwania izolacji z przewodów elektrycznych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzędzie przedstawione na rysunku to nożyk do przewodów z tworzyw sztucznych, które są powszechnie wykorzystywane w instalacjach pneumatycznych. Jego konstrukcja umożliwia precyzyjne cięcie różnych typów przewodów pneumatycznych, co jest niezwykle istotne w branży automatyki i pneumatyki. Przewody te często stosowane są w systemach transportu sprężonego powietrza, gdzie ich integralność i odpowiednie dopasowanie mają kluczowe znaczenie dla sprawności całego układu. Dzięki zastosowaniu tego narzędzia, możliwe jest uzyskanie gładkich krawędzi bez uszkodzenia struktury materiału, co minimalizuje ryzyko przecieków i awarii. Warto zwrócić uwagę, że zgodnie z najlepszymi praktykami w branży, cięcie przewodów powinno być przeprowadzane w sposób zabezpieczający przed odkształceniem ich końców, co zapewnia prawidłowe działanie systemów pneumatycznych. Dobrej jakości nożyk do przewodów jest niezbędnym wyposażeniem każdego technika zajmującego się instalacjami pneumatycznymi.

Pytanie 15

Na którym rysunku przedstawiono zęby i ślady zazębień poprawnie zamontowanych i współpracujących ze sobą kół zębatych?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na rysunku A przedstawiono poprawnie zamontowane i współpracujące ze sobą koła zębate. Zęby tych kół są idealnie zazębione, co jest kluczowe dla prawidłowego funkcjonowania mechanizmów zębatych. Oznacza to, że linie styku zębów są równoległe, co zapobiega niepożądanym ruchom osiowym oraz zapewnia efektywne przenoszenie momentu obrotowego. Dobre praktyki inżynieryjne wskazują, że prawidłowe zazębienie zębów zębatych wpływa nie tylko na sprawność pracy, ale również na trwałość całego mechanizmu. W zastosowaniach przemysłowych, takich jak przekładnie w maszynach, konieczne jest przestrzeganie standardów, takich jak ISO 6336, dotyczących obliczania nośności i trwałości kół zębatych. Dzięki temu można uniknąć nadmiernego zużycia, awarii i wysokich kosztów napraw. Właściwe zazębienie zębów jest także istotne z punktu widzenia akustyki, minimalizując hałas podczas pracy mechanizmu. Dodatkowo, takie podejście pozwala na optymalizację pracy układów mechanicznych, potencjalnie zwiększając ich wydajność energetyczną.

Pytanie 16

Którego typu końcówki klucza należy użyć do wkręcenia śruby przedstawionej na rysunku?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź A jest poprawna, ponieważ śruba przedstawiona na rysunku posiada głowicę typu Phillips, co można zauważyć dzięki charakterystycznemu krzyżowemu nacięciu. Końcówka klucza oznaczona jako A jest dostosowana do tego typu śrub, co jest zgodne z międzynarodowymi standardami narzędziowymi. W praktyce, stosując odpowiednią końcówkę podczas wkręcania śrub Phillips, zapewniamy lepsze dopasowanie i zmniejszamy ryzyko uszkodzenia zarówno śruby, jak i narzędzia. Ponadto, zastosowanie odpowiednich narzędzi wspiera efektywność pracy oraz bezpieczeństwo, minimalizując ryzyko wyślizgnięcia się końcówki podczas użycia. Warto pamiętać, że nieodpowiedni dobór końcówki, jak w przypadku innych opcji, może prowadzić do uszkodzenia nacięcia śruby lub narzędzia. Użycie końcówki A w praktyce jest kluczowe do osiągnięcia właściwego momentu obrotowego oraz pewności połączenia, co jest zgodne z najlepszymi praktykami w zakresie montażu przemysłowego.

Pytanie 17

Na rysunku przedstawiono symbol

Ilustracja do pytania
A. przetwornika analogowo-cyfrowego.
B. prostownika dwupołówkowego.
C. wzmacniacza operacyjnego.
D. stabilizatora napięcia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol przedstawiony na rysunku to klasyczny schemat wzmacniacza operacyjnego, który jest kluczowym elementem w wielu aplikacjach elektronicznych. Wzmacniacze operacyjne są używane do wzmacniania sygnałów elektrycznych, co czyni je niezbędnymi w obwodach analogowych. Charakterystyczny kształt trójkąta z dwoma wejściami, zazwyczaj oznaczonymi jako Uwe1 i Uwe2, oraz jednym wyjściem Uwy, jest szeroko stosowany w dokumentacji technicznej i w projektach inżynieryjnych. Wzmacniacze operacyjne znajdują zastosowanie w filtrach, układach integracyjnych, różnicowych oraz w wielu innych systemach, gdzie potrzebne jest precyzyjne wzmocnienie sygnału. Dzięki wysokim parametrom, takim jak niskie szumy i dużą impedancję wejściową, wzmacniacze operacyjne są również wykorzystywane w systemach pomiarowych i konwersji sygnałów. Warto zwrócić uwagę na normy i dobre praktyki w projektowaniu układów, takie jak zapewnienie stabilności wzmacniaczy operacyjnych poprzez odpowiednie dobranie wartości elementów pasywnych. Zrozumienie tych koncepcji jest kluczowe dla prawidłowego projektowania i analizy obwodów elektronicznych.

Pytanie 18

Jaką metodę należy wykorzystać do pomiaru prędkości obrotowej wirnika silnika napędzającego system mechatroniczny?

A. Termoluminescencyjną
B. Ultradźwiękową
C. Stroboskopową
D. Radiometryczną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź stroboskopowa jest prawidłowa, ponieważ technika ta jest powszechnie stosowana do pomiaru prędkości obrotowej wirujących elementów, takich jak wały silników. Stroboskopowe pomiary opierają się na zjawisku stroboskopowym, które wykorzystuje krótkie impulsy światła emitowane przez stroboskop do oświetlania wirującego obiektu. W momencie, gdy częstotliwość błysków stroboskopu jest zsynchronizowana z prędkością obrotową wału, obiekt wydaje się zatrzymany, co pozwala dokładnie określić jego prędkość obrotową. Przykładem zastosowania tej metody mogą być sytuacje w przemyśle, gdzie konieczne jest monitorowanie prędkości wałów w maszynach produkcyjnych. Metoda stroboskopowa jest również preferowana w badaniach laboratoryjnych, ponieważ nie wpływa na działanie mierzonych elementów, co jest zgodne z najlepszymi praktykami w inżynierii. Dodatkowo, ta metoda jest szeroko opisana w normach takich jak ISO 24410, które określają wymagania dotyczące pomiarów prędkości obrotowej.

Pytanie 19

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Klejenia
B. Zaginania
C. Spawania
D. Zgrzewania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaginanie to proces, który polega na deformacji materiału w celu nadania mu odpowiedniego kształtu, ale nie łączy trwale dwóch lub więcej elementów. W kontekście tworzyw sztucznych, zaginanie może być wykorzystane do formowania jednego elementu, na przykład przy produkcji obudów czy detali dekoracyjnych. Nie wymaga to jednak żadnych dodatkowych technik łączenia, co czyni je nieodpowiednim wyborem do trwałego łączenia. Techniki takie jak zgrzewanie, spawanie czy klejenie są stosowane do tworzenia trwałych połączeń, natomiast zaginanie jest bardziej procesem wytwórczym. Zgodnie z normami branżowymi, takimi jak ISO 527 dotyczące właściwości mechanicznych tworzyw sztucznych, zginanie może być stosowane do testowania elastyczności materiałów, ale nie do ich łączenia. Przykładem zastosowania zaginania może być produkcja elementów meblowych, gdzie tworzywa sztuczne są formowane w odpowiednie kształty bez potrzeby ich łączenia z innymi elementami. Dlatego zaginanie jest techniką, która doskonale sprawdza się w kształtowaniu detali, ale nie w ich trwałym łączeniu.

Pytanie 20

Które źródło służy do bezpośredniego zasilania urządzenia wskazanego na rysunku strzałką?

Ilustracja do pytania
A. Silnik spalinowy.
B. Zasilacz hydrauliczny.
C. Zasilacz pneumatyczny.
D. Prądnica elektryczna.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zasilacz hydrauliczny jest odpowiednim źródłem zasilania dla urządzenia, które widoczne jest na zdjęciu, ponieważ prasa hydrauliczna wymaga specyficznego medium roboczego, jakim jest płyn hydrauliczny. Zasilacz hydrauliczny dostarcza nie tylko odpowiednie ciśnienie, ale także umożliwia precyzyjne sterowanie ruchem i siłą nacisku, co jest kluczowe w aplikacjach przemysłowych. Standardy branżowe, takie jak ISO 4413, określają wymagania dotyczące systemów hydraulicznych, zapewniając ich bezpieczeństwo, skuteczność oraz minimalizację ryzyka awarii. Przykładem praktycznym jest wykorzystywanie pras hydraulicznych w obróbce metali, gdzie siła generowana przez zasilacz hydrauliczny umożliwia formowanie i gięcie materiałów. Zastosowanie zasilania hydraulicznego w tych urządzeniach podkreśla jego znaczenie dla efektywności i precyzji w procesach produkcyjnych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 21

Czy panewka stanowi część składową?

A. sprzęgła sztywnego tulejowego
B. łożyska ślizgowego
C. łożyska kulkowego
D. zaworu pneumatycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Panewka jest kluczowym elementem łożysk ślizgowych, które są szeroko stosowane w różnych zastosowaniach inżynieryjnych, takich jak silniki, maszyny przemysłowe czy urządzenia hydrauliczne. Panewka działa jako element osłony, która umożliwia swobodny ruch wału w obrębie obudowy, minimalizując tarcie i zużycie. W przypadku łożysk ślizgowych, panewka może być wykonana z różnych materiałów, takich jak tworzywa sztuczne, metale czy kompozyty, a jej wybór zależy od specyficznych warunków pracy, takich jak obciążenie, prędkość i temperatura. Standardy branżowe, takie jak ISO 11358, dostarczają wytycznych dotyczących projektowania i doboru materiałów dla panewki, co pozwala na osiągnięcie wysokiej wydajności oraz długiej żywotności łożyska. Przykładem zastosowania panewki w łożyskach ślizgowych są silniki spalinowe, gdzie panewka wału korbowego pozwala na przenoszenie dużych sił bez nadmiernego zużycia.

Pytanie 22

Narzędzia przedstawione na rysunku są stosowane do

Ilustracja do pytania
A. honowania.
B. gwintowania.
C. wiercenia.
D. frezowania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzędzia przedstawione na rysunku, czyli gwintownik oraz narzynka, są kluczowymi elementami w procesie gwintowania. Gwintowanie to technika obróbcza, która umożliwia tworzenie gwintów wewnętrznych i zewnętrznych, co jest niezbędne do łączenia elementów mechanicznych, takich jak śruby i nakrętki. Gwintownik to narzędzie skrawające, które umożliwia precyzyjne wykonanie gwintów wewnętrznych w otworach, natomiast narzynka służy do gwintowania zewnętrznego na prętach lub cylindrach. Standardy przemysłowe, takie jak ISO 68, definiują parametry gwintów, co pozwala na zachowanie odpowiednich tolerancji i wymagań jakościowych. Przykładowo, w branży motoryzacyjnej, gwintowanie jest używane do produkcji elementów montażowych, które muszą wytrzymać wysokie obciążenia. Zrozumienie i umiejętność stosowania gwintowników oraz narzynek jest fundamentalne dla inżynierów mechaników oraz techników obróbczych.

Pytanie 23

Przedstawione narzędzie służy do

Ilustracja do pytania
A. ściągania izolacji z przewodów.
B. zaciskania końcówek kablowych elektrycznych.
C. zaciskania opasek kablowych.
D. zarabiania łączówek telekomunikacyjnych.
Odpowiedź "ściągania izolacji z przewodów" jest poprawna, ponieważ narzędzie przedstawione na zdjęciu to ściągacz izolacji, które służy do precyzyjnego usuwania izolacji z przewodów elektrycznych. Narzędzia te są standardowym wyposażeniem w pracach elektrycznych, stosowanym w instalacjach domowych oraz przemysłowych. ściągacze izolacji posiadają regulowane szczęki, co umożliwia dostosowanie ich do różnych średnic przewodów, co jest kluczowe w zapewnieniu efektywności i bezpieczeństwa pracy. Używanie tego narzędzia pozwala na uniknięcie uszkodzeń przewodów, co jest szczególnie istotne w kontekście zachowania wysokich standardów bezpieczeństwa zgodnych z normami IEC 60364. Warto również nadmienić, że prawidłowe ściąganie izolacji ma na celu nie tylko ułatwienie dalszych prac, ale również zapewnienie optymalnego przewodzenia prądu, co jest kluczowe dla funkcjonowania instalacji elektrycznych.

Pytanie 24

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
B. wezwać pomoc i przeprowadzić sztuczne oddychanie
C. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
D. przeprowadzić reanimację poszkodowanego i wezwać pomoc

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobrze, że wybrałeś odpowiedź, która mówi o wezwaniu pomocy i udrożnieniu dróg oddechowych. Wiesz, że w sytuacji, gdy ktoś jest nieprzytomny i nie oddycha, to właśnie drożność dróg oddechowych jest kluczowa? Zgodnie z wytycznymi ERC, najpierw powinniśmy upewnić się, że drogi oddechowe są drożne, co można zrobić na przykład metodą 'tilt-chin' albo 'jaw-thrust'. Jak już upewnimy się, że wszystko jest ok, wtedy dzwonimy po pomoc i kontynuujemy resuscytację. Przykład? Wyobraź sobie wypadek samochodowy – pierwsze co, to musimy zadbać, by poszkodowany mógł oddychać, inaczej może dojść do niedotlenienia mózgu. I pamiętaj, według aktualnych wytycznych, nie należy robić sztucznego oddychania, zanim nie udrożnimy dróg, bo inaczej powietrze nie dotrze do płuc i tylko pogorszy sytuację.

Pytanie 25

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Dodaje napięcia
B. Izoluje galwanicznie sygnały
C. Zwiększa prąd
D. Wytwarza sygnały sinusoidalne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transoptor, czyli optoizolator, jest naprawdę ważnym elementem w elektronice. Jego główną rolą jest zapewnienie izolacji galwanicznej pomiędzy różnymi częściami układu. Działa to w ten sposób, że dzięki zjawisku fotonowemu możemy przesyłać sygnały elektryczne bez potrzeby bezpośredniego połączenia. To znaczy, że wrażliwe części obwodu są chronione przed wysokimi napięciami i zakłóceniami, co jest mega przydatne. Widzę, że transoptory są powszechnie stosowane w automatyce – świetnie izolują sygnały sterujące od obwodów zasilających. Dodatkowo w interfejsach komunikacyjnych zapewniają bezpieczeństwo przesyłanym danym. Korzystanie z transoptorów to naprawdę dobra praktyka w inżynierii, bo zmniejsza ryzyko uszkodzeń przez różnice potencjałów, zwiększając tym samym niezawodność systemu. Warto także dodać, że potrafią pracować w różnych częstotliwościach, co sprawia, że są dosyć uniwersalne w nowoczesnych układach elektronicznych.

Pytanie 26

Który zawór należy zamontować w układzie prasy hydraulicznej, wymieniając element oznaczony na schemacie strzałką?

Ilustracja do pytania
A. Dławiący.
B. Podwójnego sygnału.
C. Szybkiego spustu.
D. Odcinający.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór szybkiego spustu jest kluczowym elementem w układach prasy hydraulicznej, gdyż umożliwia sprawne i szybkie odprowadzenie medium roboczego, co jest istotne podczas pracy z dużymi siłami. Jego zastosowanie pozwala na natychmiastowe zmniejszenie ciśnienia w cylindrze, co jest niezbędne, aby uniknąć uszkodzeń elementów konstrukcyjnych prasy oraz zapewnić bezpieczeństwo operacji. Przykładowo, w procesie podnoszenia i opuszczania ciężkich elementów, zawór szybkiego spustu umożliwia nie tylko efektywne wykonywanie cykli pracy, ale także zwiększa wydajność całego systemu. Zastosowanie tego typu zaworu jest zgodne ze standardami branżowymi, które zalecają zapewnienie szybkiego dostępu do ciśnienia w układach hydraulicznych, co jest kluczowe dla bezpieczeństwa i efektywności pracy. Dzięki jego zastosowaniu prace hydrauliczne stają się bardziej precyzyjne i nie wymagają długiego czasu na dostosowanie ciśnienia, co wpływa na ogólną wydajność produkcji. Zawory szybkiego spustu są powszechnie stosowane w różnych aplikacjach hydraulicznych, w tym w maszynach budowlanych i przemysłowych. Ich właściwe dobranie i montaż są niezbędne dla prawidłowego funkcjonowania całego układu.

Pytanie 27

Po przeprowadzeniu napraw w szafie sterowniczej numerycznej obrabiarki, pracownik doznał porażenia prądem. Jest nieprzytomny, lecz oddycha. W pierwszej kolejności, po odłączeniu go od źródła prądu, powinno się wykonać następujące kroki:

A. wezwać pomoc medyczną, położyć poszkodowanego na plecach i rozpocząć sztuczne oddychanie
B. ustawić poszkodowanego w stabilnej pozycji bocznej i wezwać pomoc medyczną
C. ułożyć poszkodowanego na noszach w wygodnej pozycji i przetransportować go do lekarza w celu oceny stanu zdrowia
D. ustawić poszkodowanego na boku, zapewnić mu świeże powietrze i rozpocząć sztuczne oddychanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, w której porażony zostaje ułożony w pozycji bocznej ustalonej, jest prawidłowa, ponieważ zapewnia to drożność dróg oddechowych i minimalizuje ryzyko aspiracji. Pozycja ta jest kluczowa w przypadku osób nieprzytomnych, które oddychają, ponieważ pozwala na swobodne wydostawanie się ewentualnych wydzielin, a jednocześnie chroni przed zadławieniem. Wzywając pomoc lekarską, dbamy o to, aby profesjonalna interwencja mogła zostać podjęta jak najszybciej, co jest szczególnie ważne w przypadku porażenia prądem, które może prowadzić do poważnych uszkodzeń wewnętrznych. W praktyce, osoby pracujące w środowisku przemysłowym powinny być przeszkolone w zakresie udzielania pierwszej pomocy, co jest zgodne z normą ISO 45001 dotyczącą zarządzania bezpieczeństwem i zdrowiem w pracy. Przykładowo, jeśli pracownik ulegnie porażeniu, niezwłocznie należy ocenić jego stan, a po umieszczeniu go w odpowiedniej pozycji, regularnie kontrolować jego oddech i reakcje, co jest kluczowe do oceny jego stanu przed przybyciem służb medycznych.

Pytanie 28

Który adres IP ma urządzenie służące do wizualizacji procesu sterowania systemem mechatronicznym, obsługiwanym przez sterowniki PLC, pracujące w sieci Ethernet, której strukturę przedstawiono na rysunku.

Ilustracja do pytania
A. 192.168.0.50
B. 192.168.0.55
C. 192.168.0.1
D. 192.168.0.45

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 192.168.0.50, ponieważ według rysunku przedstawiającego strukturę sieci Ethernet, adres ten jest przypisany do urządzenia HMI (Human-Machine Interface), które służy do wizualizacji i sterowania procesem w systemie mechatronicznym. W kontekście systemów automatyki, HMI odgrywa kluczową rolę w interakcji użytkownika z maszynami i procesami, umożliwiając monitorowanie, kontrolowanie oraz zarządzanie danymi w czasie rzeczywistym. Zastosowanie właściwego adresu IP w sieci Ethernet jest fundamentalne dla zapewnienia komunikacji pomiędzy różnymi komponentami systemu, w tym kontrolerami PLC i serwerami. Zasadniczo, przyporządkowanie adresów IP do urządzeń powinno być zgodne z zasadami planowania adresacji w sieciach komputerowych, co obejmuje eliminowanie konfliktów adresowych oraz zapewnienie odpowiedniej struktury logicznej. W praktyce, znajomość odpowiednich adresów IP jest niezbędna dla inżynierów automatyki i techników, aby efektywnie diagnozować problemy i konfigurować systemy. Wiedza ta jest szczególnie ważna w kontekście integracji systemów, gdzie błędne przypisanie adresów może prowadzić do poważnych zakłóceń w pracy całego systemu.

Pytanie 29

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. wzrostem reaktancji uzwojeń
B. zmniejszeniem prędkości obrotowej
C. zwiększeniem prędkości obrotowej
D. spadkiem reaktancji uzwojeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.

Pytanie 30

Na rysunku przedstawiono symbol czujnika

Ilustracja do pytania
A. magnetycznego.
B. ultradźwiękowego.
C. mechanicznego.
D. indukcyjnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol przedstawiony na rysunku jest charakterystyczny dla czujników magnetycznych, które są szeroko stosowane w różnych dziedzinach technologii. Czujniki te działają na zasadzie wykrywania obecności pola magnetycznego, co pozwala na monitorowanie i kontrolowanie wielu procesów. Przykładem aplikacji czujników magnetycznych jest automatyka przemysłowa, gdzie są używane do detekcji pozycji elementów maszyn, takich jak drzwi czy klapki. Dodatkowo, w branży motoryzacyjnej czujniki te mogą być wykorzystywane do pomiaru prędkości obrotowej silników oraz w systemach ABS, gdzie monitorują prędkość kół. Warto również zauważyć, że czujniki magnetyczne wykorzystują zasady elektromagnetyzmu, co jest zgodne z normami branżowymi, takimi jak IEC 60947 dla urządzeń elektrycznych. Ich niezawodność i prostota w implementacji sprawiają, że są one preferowanym rozwiązaniem w wielu zastosowaniach inżynieryjnych.

Pytanie 31

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Pirometr
B. Mostek tensometryczny
C. Enkoder
D. Przepływomierz powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Enkoder jest elementem pomiarowym, który odgrywa kluczową rolę w systemach serwomechanizmów, szczególnie w aplikacjach związanych z robotyką. Jego główną funkcją jest precyzyjne określanie pozycji oraz prędkości obrotowej silnika, co jest niezbędne do dokładnego sterowania ruchem ramion robota. Enkodery mogą być optyczne, magnetyczne lub mechaniczne, każdy rodzaj ma swoje zastosowania w zależności od wymagań projektu. W praktyce, enkoder zastosowany w ramieniu robota pozwala na precyzyjne pozycjonowanie, co jest szczególnie istotne w zadaniach wymagających wysokiej dokładności, takich jak montaż komponentów elektronicznych czy operacje chirurgiczne. W kontekście standardów branżowych, stosowanie enkoderów w robotach przemysłowych jest zgodne z normami ISO 10218, które określają wymagania dotyczące bezpieczeństwa robotów. To sprawia, że enkodery są nie tylko niezawodne, ale także kluczowe dla zapewnienia jakości i bezpieczeństwa w automatyzacji procesów przemysłowych.

Pytanie 32

Wskaż opis ruchu tłoczyska siłownika 1A zgodny z zamieszczonym rysunkiem.

Ilustracja do pytania
A. Wysuw po określonym czasie od naciśnięcia przycisku 1S3 i natychmiastowy powrót po zwarciu łącznika krańcowego 1S2.
B. Wysuw po naciśnięciu przycisku 1S3, gdy tłok jest całkowicie wsunięty i natychmiastowy powrót po zwarciu łącznika krańcowego 1S2.
C. Wysuw po określonym czasie od naciśnięcia przycisku 1S3 i powrót po określonym czasie od zwarcia łącznika krańcowego 1S2.
D. Wysuw po naciśnięciu przycisku 1S3, gdy tłok całkowicie wsunięty i powrót po określonym czasie od zwarcia łącznika krańcowego 1S2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota, wybrałeś poprawną odpowiedź! Działa to tak, że siłownik 1A zaczyna pracować dopiero, gdy tłok jest całkowicie wsunięty. To ważne, bo jeśli tłok byłby wysunięty, siłownik nie mógłby się ruszyć, co ma znaczenie dla bezpieczeństwa. Po naciśnięciu przycisku 1S3 siłownik nie działa od razu. Zamiast tego, trzeba poczekać, aż minie chwila. To oznacza, że istnieje element czasowy w układzie, co często się stosuje, żeby uniknąć problemów, które mogą się zdarzyć przy natychmiastowej reakcji. Dzięki temu możesz kontrolować ruchy precyzyjnie. Przykłady tego typu zastosowań znajdziesz chociażby w robotyce, gdzie każdy ruch musi być zaplanowany, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 33

Która z wymienionych nieprawidłowości może powodować zbyt częste uruchamianie się silnika sprężarki tłokowej?

A. Zabrudzony filtr powietrza
B. Defekt silnika sprężarki
C. Brak smarowania powietrza
D. Nieszczelność w przewodach pneumatycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nieszczelność przewodów pneumatycznych jest jedną z kluczowych przyczyn zbyt częstego załączania się silnika sprężarki tłokowej. Tego rodzaju nieszczelności prowadzą do nieefektywnego przesyłu powietrza, co zmusza sprężarkę do częstszego działania w celu utrzymania wymaganego ciśnienia. W praktyce, jeśli przewody pneumatyczne są uszkodzone lub źle połączone, powietrze może uciekać na zewnątrz, co skutkuje ciągłym włączaniem się silnika sprężarki, aby zrekompensować utratę ciśnienia. Ważne jest, aby regularnie kontrolować stan przewodów i połączeń, co powinno być częścią rutynowego serwisowania urządzenia. Dobrą praktyką jest również stosowanie detektorów nieszczelności, które mogą pomóc w szybkiej identyfikacji problemów. W kontekście norm branżowych, należy przestrzegać zaleceń dotyczących konserwacji systemów pneumatycznych, co zazwyczaj obejmuje kontrolę szczelności oraz wymianę uszkodzonych przewodów.

Pytanie 34

Jaki rodzaj wyłącznika przedstawiono na rysunku?

Ilustracja do pytania
A. Nadprądowy.
B. Silnikowy.
C. Różnicowoprądowy.
D. Krańcowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy, przedstawiony na rysunku, jest kluczowym elementem zabezpieczającym instalacje elektryczne przed porażeniem prądem. Oznaczenie 'FI-Schutzschalter' wskazuje na jego funkcję, a parametry takie jak 'IΔn 0,03A' oznaczają, że urządzenie jest zaprojektowane do wykrywania prądów upływowych o wartości 30 mA, co jest standardem dla ochrony ludzi w instalacjach domowych. Stosowanie wyłączników różnicowoprądowych jest szczególnie istotne w pomieszczeniach narażonych na wilgoć, takich jak łazienki czy kuchnie, gdzie ryzyko porażenia jest wyższe. W przypadku wykrycia różnicy między prądem wpływającym a wypływającym, wyłącznik automatycznie odłącza zasilanie, co skutecznie zapobiega niebezpiecznym sytuacjom. Dodatkowo, zgodnie z normami PN-IEC 61008, stosowanie wyłączników różnicowoprądowych w instalacjach elektrycznych jest wymogiem, co podkreśla ich znaczenie dla bezpieczeństwa użytkowników.

Pytanie 35

W przedstawionym na schemacie układzie sterowania siłownikiem jednostronnego działania tłoczysko siłownika powinno się wysuwać przy jednoczesnym naciśnięciu obu przycisków. Który zawór należy zamontować w układzie w miejscu oznaczonym symbolem X?

Ilustracja do pytania
A. Dławiąco-zwrotny.
B. Przełącznik obiegu.
C. Szybkiego spustu.
D. Podwójnego sygnału.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór podwójnego sygnału jest kluczowym elementem w układzie sterowania siłowników jednostronnego działania, gdzie wymagana jest współpraca dwóch sygnałów sterujących. Główną funkcją tego zaworu jest umożliwienie przepływu medium tylko wówczas, gdy oba przyciski są naciśnięte, co jest niezbędne do prawidłowego wysunięcia tłoczyska siłownika. Takie rozwiązanie zapobiega przypadkowemu uruchomieniu siłownika, co mogłoby prowadzić do niebezpiecznych sytuacji. W praktyce zawory podwójnego sygnału są często wykorzystywane w aplikacjach automatyki przemysłowej, takich jak linie montażowe, gdzie zachowanie ścisłej kontroli nad procesem jest kluczowe. Standardy takie jak ISO 4414 dotyczące bezpieczeństwa w układach pneumatycznych podkreślają znaczenie prawidłowego doboru elementów sterujących, co w tym przypadku potwierdza zasadność wyboru zaworu podwójnego sygnału. Dzięki niemu osiągnięcie precyzyjnego i bezpiecznego działania systemu jest możliwe, co jest fundamentem nowoczesnych rozwiązań automatyzacyjnych.

Pytanie 36

Jakie znaczenie mają parametry zaworu pneumatycznego rozdzielającego: Gl/8; 550 Nl/min; 12 V AC; 3 VA w podanej kolejności?

A. przyłącze stożkowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc pozorna cewki
B. przyłącze stożkowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc czynna cewki
C. przyłącze walcowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc pozorna cewki
D. przyłącze walcowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc czynna cewki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ parametry zaworu pneumatycznego rozdzielającego rzeczywiście odnoszą się do jego konstrukcji i specyfikacji. 'Gl/8' wskazuje na przyłącze walcowe, co jest standardowym typem przyłącza w wielu zastosowaniach przemysłowych, pozwalającym na łatwe podłączenie do systemu pneumatycznego. '550 Nl/min' określa nominalny przepływ powietrza, co jest kluczowym parametrem przy doborze zaworu do systemu; oznacza to, że zawór jest w stanie przepuścić 550 litrów powietrza na minutę przy nominalnych warunkach. '12 V AC' oznacza napięcie cewki zaworu, wskazując, że jest to napięcie zmienne, co jest typowe dla wielu aplikacji w automatyce, gdzie zasilanie zmienne jest powszechnie stosowane. '3 VA' to moc pozorna cewki, co jest istotnym parametrem przy doborze odpowiednich elementów do zasilania zaworu. Znajomość tych parametrów pozwala na prawidłowy dobór i eksploatację zaworów pneumatycznych, co jest niezbędne dla efektywności systemów automatyki przemysłowej. Przykładem zastosowania może być automatyzacja procesów produkcyjnych, gdzie precyzyjnie dobrane zawory zapewniają optymalną pracę siłowników pneumatycznych oraz efektywność energetyczną całego systemu.

Pytanie 37

Jaką sprężarkę klasyfikuje się jako sprężarkę wyporową?

A. Sprężarkę osiową
B. Turbosprężarkę
C. Sprężarkę śrubową
D. Sprężarkę promieniową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprężarka śrubowa to jeden z typów sprężarek wyporowych, które działają na zasadzie mechanicznego zwiększania ciśnienia gazu poprzez jego zmniejszanie objętości w zamkniętej przestrzeni. W sprężarkach śrubowych dwa wirniki, w kształcie śrub, obracają się w przeciwnych kierunkach, co powoduje zasysanie gazu i jego sprężanie. Taki typ sprężarki jest szeroko stosowany w przemyśle, w tym w systemach pneumatycznych, systemach chłodzenia oraz w aplikacjach wymagających ciągłego przepływu sprężonego powietrza. Dzięki swojej konstrukcji, sprężarki śrubowe charakteryzują się wysoką wydajnością, niskim poziomem hałasu oraz długą żywotnością. Standardy branżowe, takie jak ISO 8573-1, określają wymagania dotyczące jakości sprężonego powietrza, co sprawia, że sprężarki śrubowe są często wybierane ze względu na ich zdolność do dostarczania powietrza o wysokiej czystości i niskiej wilgotności, co jest kluczowe w wielu zastosowaniach przemysłowych.

Pytanie 38

Symbol graficzny którego elementu przedstawiono na rysunku?

Ilustracja do pytania
A. Tranzystora.
B. Transoptora.
C. Tyrystora.
D. Transila.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol przedstawiony na rysunku to graficzne oznaczenie transila, elementu elektronicznego, który jest kluczowy w ochronie układów przed przepięciami. Transile są stosowane w różnych aplikacjach, w tym w zasilaczach, układach komunikacyjnych oraz w systemach automatyki przemysłowej. Ich zdolność do przewodzenia prądu w obie strony po przekroczeniu określonego napięcia przebicia czyni je niezwykle efektywnymi w ochronie delikatnych komponentów przed szkodliwymi skokami napięcia. W praktyce, transile zabezpieczają układy przed wysokimi impulsami, na przykład z wyładowań atmosferycznych lub włączania wysokoprądowych urządzeń. Warto również zauważyć, że ich stosowanie jest zgodne z normami IEC 61000-4-5, co podkreśla ich rolę w zapewnieniu odporności na przepięcia. Dobrą praktyką inżynieryjną jest dobieranie transili odpowiednich do specyfikacji napięcia pracy danego systemu, co zapewnia optymalną ochronę.

Pytanie 39

W przedstawionym na rysunku siłowniku dwustronnego działania ruch tłoka odbywa się w kierunku wskazanym strzałką. Jaka komora oznaczona została literą B?

Ilustracja do pytania
A. Tłoczna.
B. Spływowa.
C. Podtłokowa.
D. Nadtłokowa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi 'Tłoczna' jest trafny, ponieważ w siłownikach dwustronnego działania komora tłoczna to ta, do której dostarczane jest ciśnienie, aby poruszyć tłok w uzgodnionym kierunku. Na przedstawionym rysunku zauważamy, że strzałka wskazuje ruch tłoka w lewo, co sugeruje, że ciśnienie musi być wprowadzone do komory B, aby umożliwić ten ruch. W praktyce, systemy hydrauliczne i pneumatyczne często wykorzystują siłowniki do realizacji różnych czynności mechanicznych, takich jak podnoszenie, przesuwanie lub zaciskanie. Wiedza na temat działania komór w siłownikach jest niezbędna do projektowania i serwisowania urządzeń, które opierają swoje funkcjonowanie na takich mechanizmach. W branży automatyki i robotyki, standardy takie jak ISO 4413 dotyczące systemów hydraulicznych, podkreślają znaczenie zrozumienia poszczególnych komponentów systemu, w tym komór siłowników, co pozwala na ich efektywne i bezpieczne użytkowanie.

Pytanie 40

Jaki element odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. Element dławiący.
B. Element realizujący iloczyn logiczny.
C. Przełącznik obiegu.
D. Zawór ograniczający ciśnienie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny przedstawiony na rysunku reprezentuje przełącznik obiegu, który jest kluczowym elementem w układach hydraulicznych i pneumatycznych. Przełącznik ten umożliwia zarządzanie kierunkiem przepływu medium, co jest istotne w kontekście pracy wielu urządzeń. W układach, gdzie wymagane jest przełączanie między różnymi źródłami lub kierunkami przepływu, taki element pozwala na elastyczność i efektywność operacyjną. Przykładem zastosowania przełącznika obiegu może być system chłodzenia, w którym przełączanie między różnymi obiegami wody chłodzącej jest niezbędne dla utrzymania optymalnej temperatury. Dobre praktyki w projektowaniu układów sugerują, aby używać przełączników obiegu o potwierdzonej niezawodności, zwracając uwagę na ich parametry pracy, takie jak maksymalne ciśnienie i temperatura, zgodnie z normami ISO 4414 oraz PN-EN 982. Wiedza na temat działania tych elementów jest fundamentalna dla inżynierów zajmujących się automatyką i hydrauliką.