Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 17:37
  • Data zakończenia: 7 grudnia 2025 18:24

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Właściciel budynku jednorodzinnego zauważył, że w pralce nastąpiło przebicie do obudowy. Instalacja została wykonana w układzie TN-S, a jako środek ochrony przed porażeniem elektrycznym przy awarii zastosowano samoczynne wyłączenie zasilania. W celu naprawienia usterki instalacji konieczne jest

A. wymienić wkładkę ochronnika przeciwprzepięciowego
B. wymienić wyłącznik nadprądowy
C. zapewnić ciągłość przewodów neutralnych
D. zapewnić ciągłość przewodów ochronnych
Zapewnienie ciągłości przewodów neutralnych nie jest odpowiednią metodą w przypadku stwierdzenia przebicia do obudowy pralki. W układzie TN-S przewód neutralny (N) ma zupełnie inną rolę niż przewód ochronny (PE). Przewód neutralny służy do zamykania obwodu elektrycznego, natomiast przewód ochronny odpowiada za ochronę przed porażeniem poprzez odprowadzanie prądu do ziemi w przypadku awarii. W związku z tym, stwierdzenie, że zapewnienie ciągłości przewodów neutralnych rozwiąże problem, jest błędne, ponieważ nie zapewnia to ochrony użytkownika przed potencjalnym porażeniem prądem. Wymiana wkładki ochronnika przeciwprzepięciowego również nie odnosi się do problemu przebicia do obudowy. Ochronniki przeciwprzepięciowe mają na celu ochronę urządzeń przed przepięciami w sieci, ale nie zajmują się kwestiami bezpieczeństwa związanymi z uszkodzeniem izolacji. Z kolei wymiana wyłącznika nadprądowego nie usunie problemu z przebiciem w urządzeniu, ponieważ wyłącznik ten działa w przypadku przeciążenia lub zwarcia, a nie w przypadku problemów dotyczących izolacji i przewodów ochronnych. Dlatego kluczowe jest zrozumienie, że w takich sytuacjach zabezpieczenia muszą być skupione na zapewnieniu prawidłowej ciągłości przewodów ochronnych oraz ich odpowiedniej instalacji, co jest zgodne z wymaganiami norm i dobrych praktyk branżowych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Podczas przeglądu silnika elektrycznego stwierdzono nieprawidłowe działanie łożysk. Jakie mogą być tego skutki?

A. Zmniejszenie napięcia zasilania
B. Zmniejszenie częstotliwości prądu
C. Zwiększenie poziomu hałasu
D. Zmniejszenie momentu obrotowego
Nieprawidłowe działanie łożysk w silniku elektrycznym często prowadzi do zwiększenia poziomu hałasu. W praktyce, kiedy łożyska są uszkodzone lub zużyte, mogą generować dźwięki takie jak szumy, stukoty czy metaliczne odgłosy. Hałas ten jest wynikiem zwiększonego tarcia oraz nieprawidłowego ruchu elementów łożyska, co jest bezpośrednim skutkiem mechanicznych nieprawidłowości. W branży technicznej powszechnie uznaje się, że regularne monitorowanie poziomu hałasu jest istotnym elementem diagnostyki stanu technicznego łożysk. Moim zdaniem, to zwiększenie hałasu jest jednym z najbardziej oczywistych sygnałów, że coś niedobrego dzieje się z łożyskami. Dlatego też, standardy utrzymania maszyn, takie jak TPM (Total Productive Maintenance), kładą duży nacisk na regularne przeglądy i konserwację łożysk, by zapobiec poważniejszym awariom. Uwzględniając te praktyki, można znacznie wydłużyć żywotność maszyn i uniknąć kosztownych napraw czy przestojów produkcyjnych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Korzystając z tabeli, w której zamieszczono dopuszczalne wartości obciążalności prądowej długotrwałej, dobierz przekrój przewodów jednożyłowych typu DY do wykonania trójfazowego obwodu instalacji mieszkaniowej ułożonej w rurach. Obwód ma zasilać odbiorniki energii elektrycznej o łącznej mocy znamionowej 16 kVA przy napięciu znamionowym 400 V.

Przekrój przewodu mm²Jeden lub kilka przewodów 1-żyłowych ułożonych w rurzePrzewody płaszczowe, rurowe, wtynkowePrzewody gołe
Żyła Cu, AŻyła Al., AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
A.1,011-15-19-
B.1,515-18-24-
C.2,5201526203226
D.4,0252034274233
A. B.
B. A.
C. D.
D. C.
Odpowiedź D jest poprawna, ponieważ została oparta na właściwych obliczeniach. Aby dobrać odpowiedni przekrój przewodów jednożyłowych typu DY, należy najpierw obliczyć prąd obciążenia obwodu trójfazowego. Moc znamionowa wynosząca 16 kVA przy napięciu 400 V prowadzi do obliczenia prądu obciążenia jako 16 kVA / (√3 * 400 V) co daje około 23.09 A. Z tabeli obciążalności prądowej wynika, że przewód o przekroju 4 mm² ma obciążalność 25 A, co przewyższa wymaganą wartość prądu. W praktyce, stosowanie odpowiednich przekrojów przewodów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Przewody o niewłaściwym przekroju mogą się przegrzewać, co może prowadzić do uszkodzeń, a nawet pożaru. W zainstalowanych systemach elektrycznych zaleca się także stosowanie kabelków o zapasie mocy, co pozwala na przyszłe rozbudowy instalacji oraz może pomóc w uniknięciu potencjalnych problemów.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie styczniki z podanych kategorii należy zainstalować przy modernizacji szafy sterowniczej, która zasila maszyny napędzane silnikami indukcyjnymi klatkowym?

A. DC-4
B. AC-3
C. AC-1
D. DC-2
Styczniki klasy AC-3 są odpowiednie do pracy z silnikami indukcyjnymi klatkowym, ponieważ są zaprojektowane do częstości załączania i rozłączania tych urządzeń. Klasa AC-3 pozwala na obsługę prądu rozruchowego silnika, który w momencie uruchomienia może być od 5 do 7 razy wyższy od nominalnego prądu roboczego. Styczniki te zapewniają również odpowiednie zabezpieczenie przed przeciążeniem oraz zwarciami, co jest niezwykle istotne w kontekście bezpieczeństwa i niezawodności pracy maszyn. W praktyce, w modernizowanych szafach sterowniczych stosuje się styczniki AC-3 do wyłączania i włączania silników, co pozwala na efektywne zarządzanie ich pracą oraz minimalizację ryzyka uszkodzeń. Dobrą praktyką jest również stosowanie dodatkowych zabezpieczeń, takich jak termiczne i elektromagnetyczne, które można zintegrować z systemem sterowania, aby zwiększyć poziom ochrony urządzeń. Zgodność ze standardami IEC 60947-4-1 potwierdza, że styczniki AC-3 są odpowiednie do aplikacji związanych z silnikami indukcyjnymi.

Pytanie 13

Silnik, o parametrach znamionowych zamieszczonych w ramce, wbudowany jest na stałe do nawijarki. Jak często należy przeprowadzać przegląd techniczny tego silnika?

PSBg 100L-6
Un = 400 VPn = 1,8 kWIn = 4,5 A
nn = 925 obr/minS1cosφ = 0,80
A. Nie rzadziej niż raz na trzy lata.
B. W terminach planowanych postojów technologicznych nawijalni.
C. Nie rzadziej niż raz na rok.
D. W terminach przewidzianych dla przeglądu nawijarki.
Odpowiedzi, które sugerują przeprowadzanie przeglądów co trzy lata lub co rok, a także w terminach planowanych postojów technologicznych, są nieadekwatne do rzeczywistych wymogów dotyczących konserwacji maszyn. Przede wszystkim, przegląd silnika wbudowanego w nawijarkę nie powinien być rozpatrywany w oderwaniu od przeglądów całej maszyny. Może to prowadzić do sytuacji, w której silnik jest zaniedbywany, a jego ewentualne uszkodzenia nie są wykrywane na czas, co zwiększa ryzyko awarii oraz potencjalne zagrożenie dla bezpieczeństwa operatorów. W przypadku przeglądów wykonywanych co trzy lata, ryzyko, że drobne usterki przekształcą się w poważne awarie, znacząco wzrasta. Ponadto, przeglądy planowane na okresy postojów technologicznych mogą nie być wystarczające, jeśli nie są zgodne z harmonogramem przeglądów nawijarki. Należy pamiętać, że każdy element maszyny, w tym silniki, wpływa na ogólną efektywność i niezawodność całego systemu. Z tego względu, ignorowanie standardowych procedur przeglądowych, które obejmują wszystkie składniki maszyny, może prowadzić do wzrostu kosztów operacyjnych oraz obniżenia jakości produkcji. Dlatego kluczowe jest, aby wszelkie prace konserwacyjne były dostosowane do harmonogramów przeglądów całej instalacji, co jest standardem w przemyśle.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Zgodnie z obowiązującymi przepisami, minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW w temperaturze 20˚C powinna wynosić

A. 3 MΩ
B. 5 MΩ
C. 1 MΩ
D. 10 MΩ
Minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW, zgodnie z normami obowiązującymi w branży, powinna wynosić co najmniej 5 MΩ. Wartość ta jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności urządzenia. Izolacja uzwojeń odgrywa fundamentalną rolę w ochronie przed zwarciami oraz w minimalizowaniu strat energii. W praktyce, pomiar rezystancji izolacji przeprowadza się regularnie, aby ocenić stan techniczny silnika, a także zidentyfikować potencjalne problemy, takie jak degradacja izolacji spowodowana wilgocią lub starzeniem się materiałów. Przykładowo, w przypadku silników pracujących w trudnych warunkach środowiskowych, takich jak przemysł chemiczny czy metalurgiczny, wartość ta powinna być monitorowana szczególnie pilnie, aby uniknąć niebezpiecznych sytuacji i kosztownych przestojów. Przestrzeganie tych norm to nie tylko kwestia zgodności z przepisami, ale również kluczowy element zarządzania ryzykiem w eksploatacji maszyn.

Pytanie 16

Układ pokazany na rysunku stosowany jest do pomiarów

Ilustracja do pytania
A. rezystancji izolacji.
B. impedancji pętli zwarcia.
C. rezystancji uziomu.
D. prądu upływu.
Rezystancja uziomu jest kluczowym parametrem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Układ zaprezentowany na rysunku to metoda Wennera, która jest powszechnie stosowana do pomiaru tej rezystancji. Metoda ta wykorzystuje cztery elektrody, które są umieszczone w równych odstępach w glebie. Dwie z nich, zwane elektrodami prądowymi, służą do wprowadzania prądu do ziemi, a dwie pozostałe, elektrodami pomiarowymi, do pomiaru spadku napięcia. Dzięki temu możliwe jest obliczenie rezystancji uziomu przy użyciu znanej zależności, według której: R = U/I, gdzie R to rezystancja, U to spadek napięcia, a I to prąd. Pomiar rezystancji uziomu jest kluczowy dla zabezpieczenia systemów elektrycznych przed zagrożeniami związanymi z porażeniem prądem, co jest szczególnie istotne w kontekście norm i standardów, takich jak PN-EN 60364, które regulują wymagania dotyczące instalacji elektrycznych. W praktyce, wyniki uzyskane z pomiarów rezystancji uziomu powinny być regularnie monitorowane i porównywane z wartościami referencyjnymi, co pozwala na wczesne wykrywanie potencjalnych problemów z instalacją.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jaką czynność należy wykonać podczas konserwacji instalacji elektrycznej w biurze?

A. Zweryfikować działanie wyłącznika różnicowoprądowego za pomocą przycisku testowego
B. Zamienić przewody w rurach winidurowych
C. Wymienić wszystkie gniazda elektryczne
D. Sprawdzić średnicę wszystkich przewodów w instalacji
Sprawdzanie wyłącznika różnicowoprądowego przyciskiem testowym jest kluczowym etapem okresowej konserwacji instalacji elektrycznej. Wyłączniki różnicowoprądowe (RCD) mają za zadanie zabezpieczenie przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym upływem prądu. Użycie przycisku testowego pozwala na symulację sytuacji, w której RCD powinien zareagować, co potwierdza jego sprawność. Regularne testowanie tych urządzeń jest zgodne z normą PN-EN 61008-1, która zaleca, aby RCD były testowane co najmniej raz na 3 miesiące. W praktyce, jeżeli wyłącznik nie wyłącza obwodu po naciśnięciu przycisku testowego, oznacza to, że wymaga on natychmiastowej wymiany lub naprawy, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. W przypadku biura, gdzie pracuje wiele osób, poziom bezpieczeństwa elektrycznego powinien być szczególnie priorytetowy. Dodatkowo, zaleca się prowadzenie dokumentacji wykonanych testów.

Pytanie 20

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających wzrośnie.
B. Moc wydobywana w piecu wzrośnie 1,5 raza.
C. Spadek napięcia na przewodach zasilających zmniejszy się.
D. Moc wydobywana w piecu zmaleje 1,5 raza.
Wymiana przewodu o przekroju 4 mm² na 6 mm² w instalacji trójfazowej przynosi ze sobą korzyści związane z obniżeniem spadku napięcia na przewodach zasilających. Spadek napięcia jest wynikiem oporu przewodów, a ten opór maleje wraz ze zwiększeniem przekroju przewodu. W przypadku instalacji elektrycznych, zgodnie z normami IEC 60228, mniejsze spadki napięcia są kluczowe dla efektywności operacyjnej urządzeń elektrycznych. Przy większym przekroju przewodu, przepływ prądu staje się bardziej efektywny, co oznacza mniejsze straty energii w postaci ciepła. Przykładem praktycznym może być zastosowanie takich przewodów w instalacjach przemysłowych, gdzie urządzenia o dużej mocy, jak piec elektryczny, muszą działać optymalnie, aby zminimalizować zużycie energii i zapewnić trwałość systemu. Mniejszy spadek napięcia pozwala na stabilniejsze zasilanie, co jest szczególnie ważne w kontekście ochrony urządzeń elektronicznych i ich długoterminowej wydajności.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,5 IΔN do 1,0 IΔN
B. Od 0,3 IΔN do 1,0 IΔN
C. Od 0,3 IΔN do 0,8 IΔN
D. Od 0,5 IΔN do 1,2 IΔN
Zakresy prądów różnicowych, które są w niepoprawnych odpowiedziach, mogą powodować złe wnioski o tym, jak działają wyłączniki różnicowoprądowe. Odpowiedzi, które mówią o zakresach poniżej 0,5 IΔN, nie są dobre, bo mogą wywoływać fałszywe wyłączenia i stanowią zagrożenie dla ludzi. Wyłączniki są projektowane do działania w określonych warunkach, więc ich czułość musi być dopasowana do tego, co się dzieje w rzeczywistości. Na przykład, ustawienie na 0,3 IΔN może sprawić, że wyłącznik wyłączy się z powodu normalnych wahań prądu, a nie rzeczywistego zagrożenia. Z drugiej strony, za wysoki zakres, jak 1,2 IΔN, może stwarzać niebezpieczeństwo, bo nie uwzględnia, że ​​ochrona różnicowoprądowa ma za zadanie wykrywać małe prądy upływowe. Ważne, żeby użytkownicy wiedzieli, że wybór odpowiedniego wyłącznika różnicowoprądowego oraz zrozumienie jego parametrów jest kluczowe dla bezpieczeństwa, czy to w domach, czy w przemyśle.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gR
B. gB
C. aL
D. aM
Wybór wkładek bezpiecznikowych z oznaczeniami gR, aL lub gB dla ochrony silników i urządzeń rozdzielczych jest błędny z kilku fundamentalnych powodów. Oznaczenie gR wskazuje na bezpieczniki używane w obwodach z dużą zdolnością do przerywania, przeznaczone głównie dla obciążenia rezystancyjnego, a nie dla silników. Takie bezpieczniki nie są przystosowane do obsługi przeciążeń, które mogą występować podczas rozruchu silników, dlatego ich zastosowanie w tym kontekście może prowadzić do uszkodzenia urządzeń. Oznaczenie aL odnosi się do bezpieczników, które są bardziej uniwersalne, ale również nie są odpowiednie dla silników, gdyż nie są w stanie poradzić sobie z charakterystyką prądową, jaką generują silniki przy uruchamianiu. Z kolei wkładki gB są zaprojektowane dla obwodów z ładunkami indukcyjnymi, ale także nie nadają się do zabezpieczania silników, ponieważ nie zapewniają odpowiedniego czasu reakcji w przypadku przeciążenia. Wybierając niewłaściwy typ wkładki bezpiecznikowej, można nie tylko narazić urządzenia na uszkodzenia, ale także stwarzać zagrożenie dla bezpieczeństwa całego systemu elektrycznego, co podkreśla znaczenie znajomości norm i właściwych zastosowań dla różnych typów zabezpieczeń. W praktyce, brak zrozumienia tych oznaczeń może prowadzić do poważnych awarii, co z kolei może generować znaczne koszty napraw oraz przestoje w pracy urządzeń.

Pytanie 25

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Spadek prędkości obrotowej wirnika silnika
B. Nawrót wirnika silnika
C. Wzrost prędkości obrotowej wirnika silnika
D. Całkowite zniszczenie wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 26

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Waromierza
B. Częstościomierza
C. Fazomierza
D. Watomierza
Waromierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy biernej w obwodach prądu zmiennego. Działa na zasadzie pomiaru wartości mocy w układzie, w którym występuje przesunięcie fazowe między napięciem a prądem. Odpowiednią wartość mocy biernej można określić, wykorzystując wzór P = V * I * cos(ϕ), gdzie P to moc pozorna, a ϕ to kąt przesunięcia fazowego. Waromierz jest szczególnie przydatny w zastosowaniach przemysłowych, gdzie występują silniki elektryczne i inne urządzenia indukcyjne, które generują moc bierną. W praktyce, pomiar mocy biernej jest kluczowy dla optymalizacji efektywności energetycznej oraz dla zapobiegania nadmiernym kosztom związanym z opłatami za moc bierną. Przykładem zastosowania waromierza może być analiza obciążeń w zakładzie produkcyjnym, gdzie identyfikacja mocy biernej pozwala na odpowiednie dostosowanie charakterystyk urządzeń do potrzeb sieci energetycznej.

Pytanie 27

Jakie rozwiązania powinny być wdrożone, aby zapewnić ochronę przed porażeniem elektrycznym w przypadku uszkodzenia pracowników obsługujących maszynę roboczą, która jest napędzana silnikiem trójfazowym o napięciu 230/400 V, podłączonym do sieci TN-S i zabezpieczonym wyłącznikiem różnicowoprądowym?

A. Wprowadzić zasilanie w systemie SELV
B. Wykorzystać zasilanie w systemie PELV
C. Podłączyć obudowę silnika do przewodu N
D. Podłączyć obudowę silnika do przewodu PE
Prawidłowe połączenie korpusu silnika z przewodem PE (ochronnym) jest kluczowe dla zapewnienia efektywnej ochrony przeciwporażeniowej w układach zasilania trójfazowego. W systemie TN-S, przewód PE jest oddzielony od przewodu neutralnego (N), co zwiększa bezpieczeństwo użytkowania. Połączenie to zabezpiecza przed niebezpiecznymi napięciami, które mogą wystąpić wskutek uszkodzenia izolacji lub innych awarii. Przykładowo, jeśli izolacja przewodu fazowego ulegnie uszkodzeniu, prąd może przepływać do korpusu maszyny. Dzięki połączeniu z przewodem PE, prąd zostanie skierowany do ziemi, co pozwoli na szybkie zadziałanie wyłącznika różnicowoprądowego, minimalizując ryzyko porażenia prądem. Takie podejście jest zgodne z normami IEC 60364 oraz PN-EN 61140, które podkreślają znaczenie zastosowania ochrony przed dotykiem bezpośrednim oraz pośrednim, a także wskazują na konieczność odpowiedniego uziemienia elementów metalowych. W praktyce, stosowanie przewodów o odpowiednim przekroju oraz regularne kontrole instalacji są kluczowe dla utrzymania bezpieczeństwa w środowisku pracy.

Pytanie 28

Zamieszczone w tabeli wyniki pomiarów rezystancji izolacji uzwojeń trójfazowego silnika asynchronicznego o napięciu Un = 400 V i prądzie In = 20 A świadczą o uszkodzeniu izolacji

UzwojenieRezystancja izolacji między uzwojeniem a obudową
U1-U24 000
V1-V26 000
W1-W28 000
A. uzwojeń U1-U2 i W1-W2.
B. uzwojenia V1-V2.
C. uzwojeń U1-U2 i V1-V2.
D. uzwojenia U1-U2.
Odpowiedzi, które wskazują na uzwojenia V1-V2, W1-W2 oraz kombinacje tych uzwojeń, nie uwzględniają kluczowego elementu analizy rezystancji izolacji. Uzwojenia V1-V2 i W1-W2 mają znacznie wyższe wartości rezystancji izolacji wynoszące odpowiednio 6000 kΩ i 8000 kΩ, co sugeruje, że ich izolacja jest w dobrym stanie. To błędne podejście może wynikać z niepełnego zrozumienia zasadności norm dotyczących rezystancji izolacji, które jasno wskazują, że niższa wartość rezystancji wskazuje na potencjalne uszkodzenie. Wybierając uzwojenia na podstawie wyższej wartości rezystancji, można dojść do mylnego wniosku, że są one bardziej narażone na uszkodzenia. Może to prowadzić do nieuzasadnionych działań naprawczych, które nie rozwiązują rzeczywistego problemu, a jednocześnie generują dodatkowe koszty. W praktyce, zrozumienie i umiejętność interpretacji wyników pomiarów rezystancji izolacji jest kluczowe dla oceny stanu technicznego silników, co ma bezpośrednie przełożenie na bezpieczeństwo i efektywność operacyjną instalacji. Ignorowanie tego aspektu może prowadzić do poważnych awarii i zagrożenia dla bezpieczeństwa użytkowników oraz sprzętu.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Aby przeprowadzić bezpieczne oraz efektywne działania mające na celu zlokalizowanie uszkodzenia w silniku jednofazowym z kondensatorem rozruchowym, należy wykonać kolejność następujących czynności:

A. rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej
B. odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie
C. przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator
D. odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne
Poprawna odpowiedź polega na odłączeniu napięcia zasilania, odkręceniu pokrywy tabliczki zaciskowej, rozładowaniu kondensatora i przeprowadzeniu oględzin oraz pomiarów sprawdzających. Każdy z tych kroków ma kluczowe znaczenie dla zapewnienia bezpieczeństwa i efektywności pracy. Pierwszym krokiem jest odłączenie napięcia zasilania, co minimalizuje ryzyko porażenia prądem oraz zapobiega uszkodzeniom sprzętu. Następnie, odkręcenie pokrywy tabliczki zaciskowej umożliwia dostęp do wewnętrznych komponentów silnika. Warto zauważyć, że kondensatory mogą przechowywać ładunek elektryczny nawet po odłączeniu zasilania, dlatego ważne jest, aby rozładować kondensator przed dalszymi pracami, co eliminuje ryzyko porażenia. Ostatnim krokiem są oględziny i pomiary, które pozwalają na diagnozowanie potencjalnych uszkodzeń oraz ocenę stanu technicznego silnika. Stosowanie tej kolejności działań jest zgodne z dobrymi praktykami w zakresie bezpieczeństwa oraz spotykanymi w normach branżowych, co zapewnia skuteczność działań serwisowych i naprawczych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Zespół elektryków ma wykonać na polecenie pisemne prace konserwacyjne przy urządzeniu elektrycznym.
Jak powinien postąpić kierujący zespołem w przypadku stwierdzenia niedostatecznego oświetlenia w miejscu pracy?

Wykonać zleconą pracęPowiadomić przełożonego
o niedostatecznym oświetleniu
A.TAKNIE
B.TAKTAK
C.NIETAK
D.NIENIE
A. A.
B. C.
C. B.
D. D.
Wybór odpowiedzi C jest zgodny z zasadami BHP, które nakładają na kierownika zespołu obowiązek zapewnienia bezpiecznych warunków pracy. Niedostateczne oświetlenie stwarza ryzyko wypadków, co może prowadzić do poważnych konsekwencji zarówno dla pracowników, jak i dla pracodawcy. W sytuacji, gdy oświetlenie nie spełnia norm, kierujący zespołem powinien niezwłocznie zaprzestać wszelkich prac i poinformować przełożonego. Zgodnie z normą PN-EN 12464-1, miejsca pracy powinny być odpowiednio oświetlone, aby zminimalizować ryzyko błędów i wypadków. Przykładowo, w przypadku prac konserwacyjnych na wysokości, odpowiednie oświetlenie jest kluczowe dla bezpiecznej nawigacji i wykonywania zadań. Oprócz tego, zgodnie z wytycznymi BHP, pracownicy powinni być szkoleni w zakresie identyfikacji zagrożeń związanych z oświetleniem i wiedzieć, jak reagować w takich sytuacjach. Dlatego odpowiedź C nie tylko wskazuje na właściwe postępowanie, ale także na dbałość o bezpieczeństwo i zdrowie zespołu.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Która z wymienionych operacji jest związana z obsługą przepływu energii elektrycznej w urządzeniu napędowym klasy IV?

A. Zamiana uszkodzonego elementu w urządzeniu
B. Weryfikacja ustawienia zabezpieczenia przed przeciążeniem
C. Mierzenie napięcia zasilającego to urządzenie
D. Zatrzymanie urządzenia w przypadku awarii
Zrozumienie różnych działań przy obsłudze urządzeń napędowych to ważny element, ale nie zawsze są one związane z pilną reakcją w sytuacjach awaryjnych. Na przykład, sprawdzenie zabezpieczeń przeciążeniowych czy pomiar napięcia zasilającego to ważne rzeczy, ale nie są one bezpośrednio związane z natychmiastowym zatrzymywaniem urządzenia w kryzysowych momentach. Zabezpieczenie przeciążeniowe chroni silnik przed nadmiernym obciążeniem, ale jego sprawdzenie to nie to samo co szybka reakcja w awarii. Pomiar napięcia zasilającego to bardziej sprawdzanie, czy wszystko działa jak trzeba, a nie coś, co załatwia sprawę w przypadku zagrożenia. Wymiana uszkodzonego elementu też jest istotna, ale na pewno nie pomoże, jeśli już jest awaria. Często myśli się, że działania prewencyjne wystarczą, żeby uniknąć problemów, a to może prowadzić do chaosu i większego ryzyka. Dlatego w takich sytuacjach najlepiej skupić się na zatrzymaniu urządzenia – to jest podstawowe i naprawdę nie można tego bagatelizować.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jaką czynność należy wykonać podczas inspekcji instalacji elektrycznej w budynku mieszkalnym przed jego oddaniem do użytku?

A. Zweryfikuj poprawność doboru przekroju przewodów
B. Zbadaj rezystancję izolacji instalacji elektrycznej
C. Zmierz czas samoczynnego wyłączenia zasilania
D. Przeprowadź próbę ciągłości połączeń wyrównawczych
Pomiar czasu samoczynnego wyłączenia zasilania, pomiar rezystancji izolacji oraz próba ciągłości połączeń wyrównawczych są ważnymi czynnościami w procesie kontroli instalacji elektrycznej, jednak nie odnoszą się bezpośrednio do kluczowego aspektu, jakim jest dobór przekroju przewodów. Samoczynne wyłączenie zasilania jest testem, który sprawdza, czy zabezpieczenia instalacji działają prawidłowo w sytuacji awaryjnej, ale nie zapewnia informacji o tym, czy przewody są odpowiednio dobrane do obciążeń, które będą na nie oddziaływać. Pomiar rezystancji izolacji jest istotny dla oceny stanu izolacji, ale również nie informuje o ewentualnych problemach związanych z przekrojem przewodów. Próba ciągłości połączeń wyrównawczych dotyczy głównie zapewnienia skuteczności ochrony przed porażeniem prądem elektrycznym, a nie właściwego doboru przekroju. W kontekście projektowania instalacji elektrycznych, istotne jest, aby przed oddaniem budynku do użytku upewnić się, że wszystkie przewody są odpowiednio dobrane pod względem przekrojów, aby uniknąć przegrzewania się oraz niebezpieczeństw wynikających z niewłaściwej eksploatacji. Brak uwagi na ten aspekt może prowadzić do poważnych zagrożeń, takich jak pożary lub awarie systemu elektrycznego, co podkreśla znaczenie planowania i analizy technicznej przed zakończeniem prac budowlanych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Przed rozpoczęciem pomiaru rezystancji izolacji uzwojeń wirnika silnika z pierścieniem w pierwszej kolejności należy

A. sprawdzić ciągłość obwodu wirnika
B. wymienić szczotki
C. odłączyć rezystory rozruchowe
D. zwierać uzwojenie stojana
Odłączenie rezystorów rozruchowych przed pomiarem rezystancji izolacji uzwojeń wirnika silnika pierścieniowego jest kluczowym krokiem, aby uniknąć uszkodzeń sprzętu oraz zapewnić dokładność pomiarów. Rezystory rozruchowe są stosowane w obwodach silników w celu kontroli prądu rozruchowego, co oznacza, że są one podłączone do układu w momencie uruchamiania silnika. Jeśli nie zostaną odłączone, mogą powstać niepożądane połączenia, które zakłócą wyniki pomiarów rezystancji izolacji oraz mogą spowodować uszkodzenie miernika. Zgodnie z normą IEC 61557-1 dotyczącą pomiarów ochronnych w instalacjach elektrycznych, należy zawsze dbać o bezpieczeństwo i dokładność pomiarów, co obliguje do odpowiedniego przygotowania układów przed ich wykonaniem. Działania takie są istotne w kontekście zapobiegania awariom, które mogą prowadzić do kosztownych napraw lub przestojów w pracy maszyn. W praktyce, przed każdym pomiarem izolacji, zaleca się także sprawdzenie stanu szczotek i wirnika, ale najpierw kluczowe jest odłączenie obwodów, które mogłyby wpłynąć na pomiar.

Pytanie 39

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. C6
B. B16
C. B10
D. C10
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.