Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 16 lutego 2026 19:38
  • Data zakończenia: 16 lutego 2026 19:46

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 4 listwy zaciskowej X1
B. Z zaciskiem 3 listwy zaciskowej X1
C. Z zaciskiem 22 stycznika K1
D. Z zaciskiem A2 stycznika K1
Wybór odpowiedzi związanej z zaciskiem 22 stycznika K1, zaciskiem A2 stycznika K1, czy też zaciskiem 3 listwy zaciskowej X1, oparty jest na niepoprawnej interpretacji schematu montażowego. Na przykład, połączenie zacisku A2 stycznika K1 z zaciskiem 14 stycznika K1 jest koncepcją, która nie znajduje odzwierciedlenia w analizowanym schemacie, ponieważ odpowiednie połączenia są wyraźnie pokazane, co wskazuje na kierunek przepływu prądu. W przypadku zacisku 22, który jest połączony z zaciskiem 13 stycznika K1, błędne zrozumienie położenia tych zacisków prowadzi do mylnych wniosków. Zacisk 3 listwy zaciskowej X1 również nie jest poprawnym odpowiedzią, ponieważ według schematu nie ma bezpośredniego połączenia z zaciskiem 42 K2, które jest kluczowe do zrozumienia obwodu. Typowym błędem myślowym jest założenie, że zaciski w pobliżu siebie muszą być ze sobą połączone, co nie zawsze jest prawdą. Zrozumienie zasadności danego połączenia oraz analizy schematów elektrycznych to umiejętności, które wymagają praktyki i doświadczenia. W branży elektrycznej, błędne połączenia mogą prowadzić do poważnych konsekwencji, takich jak uszkodzenia urządzeń czy nawet zagrożenie dla bezpieczeństwa. Dlatego tak istotne jest, aby pełne zrozumienie schematu oraz połączeń miało miejsce przed dokonaniem jakichkolwiek działań montażowych.

Pytanie 2

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Kontrola temperatury przewodów
B. Zdalne sterowanie obwodami elektrycznymi
C. Zmniejszenie zużycia energii
D. Ochrona przed przeciążeniami
Przekaźnik to bardzo wszechstronne urządzenie stosowane w instalacjach elektrycznych głównie do zdalnego sterowania obwodami elektrycznymi. Działa na zasadzie elektromagnetycznego przełącznika, który pozwala na kontrolowanie dużych prądów za pomocą małego sygnału elektrycznego. To właśnie ta funkcja umożliwia automatyzację wielu procesów w instalacjach. Przekaźniki są kluczowe w systemach sterowania, gdzie pozwalają na włączanie i wyłączanie obwodów bez konieczności fizycznego kontaktu, co zwiększa bezpieczeństwo i efektywność operacyjną. W praktyce, przekaźniki są używane w wielu aplikacjach, takich jak automatyka domowa, układy sterowania maszynami czy systemy zabezpieczeń. Ponadto, ich zastosowanie jest standardem w systemach, gdzie konieczna jest szybka reakcja na zmianę stanu, np. w przypadku awarii lub nadmiernego obciążenia. Ich niezawodność i łatwość w integracji sprawiają, że są nieodzownym elementem współczesnych systemów elektrycznych.

Pytanie 3

Ile par biegunów magnetycznych posiada stojan silnika pierścieniowego synchronizowanego, jeżeli jego prędkość obrotowa przy zasilaniu napięciem o częstotliwości 50 Hz wynosi 1 000 obr./min?

A. 1 parę.
B. 4 pary.
C. 2 pary.
D. 3 pary. 
Poprawnie – stojan tego silnika ma 3 pary biegunów magnetycznych. Wynika to bezpośrednio z zależności między prędkością synchroniczną a liczbą par biegunów. Dla silników synchronicznych i asynchronicznych obowiązuje wzór: n_s = 60·f / p, gdzie n_s to prędkość synchroniczna w obr./min, f – częstotliwość zasilania w Hz, a p – liczba par biegunów magnetycznych. Podstawiając dane z zadania: n_s = 1000 obr./min, f = 50 Hz, mamy 1000 = 60·50 / p, czyli 1000 = 3000 / p, stąd p = 3. To daje 3 pary biegunów, czyli łącznie 6 biegunów magnetycznych (3 północne i 3 południowe) rozmieszczone w stojanie. W praktyce ta zależność jest bardzo ważna przy doborze silników do napędów, np. w wentylatorach, pompach, przenośnikach czy mieszadłach. Jeżeli potrzebna jest niższa prędkość obrotowa bez użycia falownika, wybiera się silnik o większej liczbie par biegunów, np. 4P (2 pary), 6P (3 pary), 8P (4 pary) itd. Moim zdaniem każdy technik elektryk powinien ten wzór umieć przekształcić w obie strony, bo na budowie, w utrzymaniu ruchu czy przy modernizacji instalacji napędowych często trzeba „z marszu” ocenić, czy dany silnik przy 50 Hz będzie miał ok. 3000, 1500, 1000 czy 750 obr./min. W silniku pierścieniowym synchronizowanym, mimo specyficznej konstrukcji wirnika, prędkość synchroniczna nadal zależy tylko od częstotliwości i liczby par biegunów stojana. Uzwojenia wirnika i sposób rozruchu (np. przez rezystancję rozruchową) nie zmieniają tej podstawowej zależności wynikającej z pola wirującego. W praktyce przy przeglądach i diagnostyce dobrze jest porównać tabliczkę znamionową z obliczeniami z tego wzoru, bo od razu widać, czy ktoś np. nie podał błędnych danych lub czy silnik nie jest przystosowany np. do 60 Hz.

Pytanie 4

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
B. Instrukcja obsługi urządzenia
C. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
D. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
Rysunek ogólny urządzenia wraz ze schematami obwodów zasilania, szczegółowe rysunki techniczne poszczególnych elementów urządzenia oraz instrukcja obsługi są kluczowymi komponentami dokumentacji technicznej, ale nie wszystkie odpowiadają wymogom formalnym. Rysunek ogólny ma na celu przedstawienie całości urządzenia, uwzględniając jego główne komponenty. Schematy obwodów zasilania są niezbędne dla zrozumienia, jak energia elektryczna jest dostarczana i przetwarzana w urządzeniu, co jest istotne dla diagnostyki i napraw. Instrukcja obsługi z kolei dostarcza użytkownikom informacji nie tylko o obsludze, ale także o wymaganiach bezpieczeństwa oraz wskazówkach dotyczących eksploatacji. Opis metod zastosowanych do wyeliminowania zagrożeń stwarzanych przez urządzenie podkreśla znaczenie bezpieczeństwa w projektowaniu urządzeń elektrycznych, co jest zgodne z normami ISO 12100 i IEC 61508, które koncentrują się na ocenie ryzyka. Wiele osób mylnie uważa, że szczegółowe rysunki techniczne są konieczne do pełnej dokumentacji, jednak w kontekście ogólnej dokumentacji technicznej, najważniejsze jest, aby skupić się na aspektach ogólnych i bezpieczeństwie, które są bardziej istotne dla użytkowników i serwisantów. Dlatego istotne jest, aby zrozumieć, które elementy są kluczowe dla dokumentacji w kontekście przepisów i praktyk inżynieryjnych.

Pytanie 5

Jaką wartość ma prąd obciążenia przewodów fazowych, które zasilają odbiornik trójfazowy, jeśli pobiera on moc 2,2 kW przy napięciu 400 V oraz współczynniku mocy równym 0,82?

A. 3,2 A
B. 6,7 A
C. 3,9 A
D. 2,2 A
Wiele osób może błędnie obliczyć prąd, ignorując istotne aspekty związane z mocą czynną oraz współczynnikiem mocy. Przykładowo, odpowiedzi wskazujące na 2,2 A, 6,7 A czy 3,2 A mogą wynikać z nieprawidłowego zrozumienia wzoru na moc w obwodach trójfazowych. Niektórzy mogą mylnie przyjąć, że moc czynna equaluje się do wartości prądu bez uwzględnienia napięcia i współczynnika mocy, co prowadzi do błędnych wniosków. Przykład 2,2 A mógłby sugerować bezpośrednie odniesienie do wartości mocy, co jest niewłaściwe, ponieważ nie uwzględnia napięcia ani współczynnika mocy. Z kolei obliczenie 6,7 A mogłoby być wynikiem błędnego założenia, że prąd jest równy mocy podzielonej przez napięcie, co jest poprawne tylko w przypadku układów jednofazowych. Odpowiedź 3,2 A również mogłaby być wynikiem zastosowania nieodpowiednich danych lub uproszczonych obliczeń. W kontekście instalacji elektrycznych, kluczowe jest zrozumienie, jak moc, napięcie i współczynnik mocy współdziałają ze sobą, co jest niezbędne do prawidłowego doboru komponentów oraz zapewnienia bezpieczeństwa i efektywności energetycznej systemów elektrycznych. W praktyce, pominięcie czynnika √3 w obliczeniach jest powszechnym błędem, który może prowadzić do niedoszacowania prądu i niewłaściwego doboru przewodów czy zabezpieczeń.

Pytanie 6

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik zmierzchowy.
B. Ogranicznik przepięć.
C. Prostownik dwupołówkowy.
D. Przekaźnik bistabilny.
Wybór odpowiedzi innej niż ogranicznik przepięć może wynikać z kilku błędów w analizie charakterystyki przedstawionego urządzenia. Na przykład, wyłącznik zmierzchowy jest urządzeniem, które reaguje na zmiany natężenia światła, co nie ma zastosowania w kontekście przedstawionym na rysunku. Przekaźnik bistabilny, z kolei, służy do utrzymania stanu obwodu elektrycznego w jednym z dwóch stanów, co również nie odpowiada funkcji ogranicznika przepięć. Ograniczniki przepięć i prostowniki dwupołówkowe różnią się znacznie w budowie i zastosowaniu – prostowniki są używane do konwersji prądu zmiennego na stały, co jest zupełnie inną funkcjonalnością. Typowe myślenie prowadzące do błędnych wyborów opiera się na nieznajomości zastosowania poszczególnych urządzeń w praktyce. W kontekście ochrony przed przepięciami, jednym z kluczowych aspektów jest dobra znajomość oznaczeń i specyfikacji technicznych, które wskazują na przeznaczenie urządzenia. Niezrozumienie podstawowych różnic pomiędzy tymi urządzeniami oraz ich właściwego zastosowania w systemach elektrycznych może prowadzić do nieodpowiednich decyzji, co w konsekwencji zwiększa ryzyko uszkodzeń sprzętu oraz naruszenia norm bezpieczeństwa. Warto zainwestować czas w zapoznanie się z dokumentacją techniczną i normami branżowymi, aby uniknąć takich sytuacji w przyszłości.

Pytanie 7

Która z wymienionych maszyn elektrycznych jest wykorzystywana jako czujnik prędkości obrotowej?

A. Prądnica tachometryczna.
B. Kompensator.
C. Selsyn.
D. Silnik krokowy.
Poprawnie – prądnica tachometryczna to klasyczny, bardzo często stosowany czujnik prędkości obrotowej w układach automatyki i napędów. Działa jak mała prądnica, która wytwarza napięcie proporcjonalne do prędkości obrotowej wału. Im szybciej się kręci, tym wyższe napięcie na jej zaciskach. Dzięki temu układ sterowania może w prosty sposób „odczytać” prędkość, mierząc napięcie wyjściowe, zwykle w zakresie kilku–kilkunastu woltów. W praktyce spotyka się prądnice tachometryczne prądu stałego (napięcie DC) oraz prądu przemiennego (AC), dobierane w zależności od rodzaju napędu i elektroniki pomiarowej. W nowocześniejszych instalacjach coraz częściej używa się enkoderów impulsowych, ale w wielu układach modernizowanych, w starszych obrabiarkach, suwnicach czy liniach technologicznych, prądnica tachometryczna dalej robi robotę, bo jest prosta, odporna i łatwa w diagnozowaniu. Moim zdaniem to bardzo dobre rozwiązanie edukacyjne – na jej przykładzie świetnie widać związek między wielkością mechaniczną (obr/min) a wielkością elektryczną (V). W dobrych praktykach projektowych ważne jest, żeby prądnicę tachometryczną montować solidnie współosiowo z wałem, zadbać o ekranowany przewód sygnałowy oraz właściwe uziemienie, żeby nie łapała zakłóceń. W układach regulacji prędkości (np. napędy DC, falowniki starszego typu, regulatory analogowe) sygnał z prądnicy tachometrycznej jest elementem sprzężenia zwrotnego – dzięki niemu regulator może porównać prędkość zadaną z rzeczywistą i odpowiednio korygować moment silnika. W dokumentacjach producentów napędów i według ogólnych zasad automatyki przemysłowej prądnica tachometryczna jest więc pełnoprawnym czujnikiem prędkości, a nie „zwykłą prądnicą”.

Pytanie 8

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Halogenowej
B. Sodowej
C. Rtęciowej
D. Żarowej
Wybór żarowej, rtęciowej lub halogenowej lampy oświetleniowej jako zastosowania tyrystorowego układu zapłonowego opiera się na nieporozumieniach dotyczących charakterystyki tych źródeł światła. Lampy żarowe działają na zasadzie bezpośredniego przepływu prądu przez żarnik, co sprawia, że nie wymagają skomplikowanych układów zapłonowych. W przypadku lamp rtęciowych, ich zapłon oparty jest na innych zasadach, w tym na użyciu zapłonników gazowych, które nie są zgodne z zastosowaniem tyrystorów. Te lampy również potrzebują czasami większej mocy podczas zapłonu, co może prowadzić do niewłaściwego działania tyrystorów. Lampy halogenowe z kolei stosują nieco odmienną technologię, wykorzystując cykle odparowania, co również eliminuje potrzebę stosowania układów tyrystorowych. Typowym błędem myślowym w tym kontekście jest zakładanie, że wszystkie lampy wymagają podobnych układów zapłonowych, co prowadzi do mylnych wniosków. Ważne jest zrozumienie, że dobór odpowiednich komponentów do systemów oświetleniowych musi być oparty na ich specyficznych wymaganiach technicznych, co podkreśla konieczność dogłębnej analizy charakterystyk różnych typów lamp oraz ich zastosowań w praktyce.

Pytanie 9

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Synchroniczny
B. Szeregowy prądu stałego
C. Asynchroniczny klatkowy
D. Obcowzbudny prądu stałego
Silnik szeregowy prądu stałego, silnik asynchroniczny klatkowy oraz silnik obcowzbudny prądu stałego mają charakterystyki mechaniczne, które są mniej sztywne w porównaniu do silnika synchronicznego. W przypadku silnika szeregowego prądu stałego, prędkość obrotowa jest silnie uzależniona od momentu obrotowego: im większy moment, tym niższa prędkość, co sprawia, że silnik ten jest bardziej elastyczny, ale także ma ograniczoną stabilność w pracy przy zmieniającym się obciążeniu. Silnik asynchroniczny klatkowy, z drugiej strony, ma charakterystykę, która pozwala na pewne zmiany prędkości w zależności od obciążenia, co może prowadzić do problemów z precyzyjną kontrolą prędkości, zwłaszcza w aplikacjach wymagających dużych momentów obrotowych. Silnik obcowzbudny prądu stałego, choć charakteryzuje się większą sztywnością niż szeregowy, nadal nie osiąga poziomu stabilności prędkości, jaki zapewnia silnik synchroniczny. Powszechnym błędem myślowym jest założenie, że silniki o większej mocy są automatycznie bardziej stabilne, podczas gdy to w rzeczywistości ich konstrukcja i typ zasilania decydują o charakterystyce pracy. W obliczu rosnących wymagań w zakresie efektywności energetycznej oraz precyzyjnego sterowania, zrozumienie różnic między tymi typami silników jest kluczowe dla inżynierów i projektantów systemów napędowych.

Pytanie 10

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje magnetyzm szczątkowy.
B. Zmniejsza napięcie podtrzymania cewki.
C. Likwiduje drgania zwory.
D. Zmniejsza siłę docisku zwory.
Element wskazany na ilustracji czarną strzałką w styczniku rzeczywiście pełni rolę tłumika drgań. Jego głównym zadaniem jest eliminowanie drgań zwory, które mogą wystąpić podczas cykli załączania i wyłączania stycznika. Drgania zwory, jeśli nie są skutecznie kontrolowane, mogą prowadzić do problemów z kontaktami, takich jak drgające styki, co w konsekwencji może doprowadzić do uszkodzenia urządzenia lub zakłóceń w jego pracy. W praktyce, zastosowanie tłumika drgań ma kluczowe znaczenie w systemach automatyki, gdzie stabilność i niezawodność działania elementów wykonawczych są niezwykle istotne. Zgodnie z dobrymi praktykami branżowymi, stosowanie tłumików drgań jest standardem w projektowaniu nowoczesnych styczników. Tłumiki te mogą być również wykorzystywane w innych aplikacjach, takich jak siłowniki pneumatyczne czy hydrauliczne, gdzie drgania mogą negatywnie wpływać na wydajność sprzętu. Rekomenduje się regularne sprawdzanie stanu tłumików drgań w celu zapewnienia ich efektywności oraz poprawy ogólnej niezawodności systemu.

Pytanie 11

Zakres oględzin urządzeń napędowych w czasie postoju nie obejmuje sprawdzenia

A. poziomu drgań i skuteczności układu chłodzenia
B. stanu przewodów ochronnych oraz ich połączeń
C. stanu pierścieni ślizgowych oraz komutatorów
D. ustawienia zabezpieczeń i stanu osłon części wirujących
W kontekście oględzin urządzeń napędowych w czasie postoju, istotne jest zrozumienie zakresu przeglądów i ich celów. Sprawdzanie stanu przewodów ochronnych i ich podłączenia to kluczowy aspekt zapewnienia bezpieczeństwa. Przewody te pełnią istotną rolę w ochronie operatorów przed porażeniem prądem elektrycznym oraz awariami urządzeń. Oprócz tego, poziom drgań jest ważnym wskaźnikiem stanu mechanicznego urządzeń; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, zużycie łożysk lub inne problemy, które mogą prowadzić do krytycznych awarii. Układ chłodzenia także zasługuje na szczególną uwagę, ponieważ jego nieprawidłowe działanie może prowadzić do przegrzewania się maszyn i ich uszkodzeń, co wymagałoby kosztownych napraw. Z kolei kontrola ustawienia zabezpieczeń oraz stanu osłon części wirujących jest kluczowa dla ochrony personelu i zapobiegania wypadkom. Często pomija się te aspekty, co prowadzi do niebezpiecznych sytuacji. Prawidłowe podejście do oględzin urządzeń napędowych wymaga zatem kompleksowej analizy wszystkich wymienionych elementów, aby zapewnić nieprzerwaną operacyjność i bezpieczeństwo. Zatem zrozumienie, które elementy wymagają regularnych kontroli, a które są mniej krytyczne, jest niezbędne dla efektywnego zarządzania bezpieczeństwem i wydajnością urządzeń.

Pytanie 12

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 4 listwy zaciskowej X1
B. Z zaciskiem 3 listwy zaciskowej X1
C. Z zaciskiem 22 stycznika K1
D. Z zaciskiem A2 stycznika K1
Wybór zacisku 3 listwy zaciskowej X1 jako poprawnej odpowiedzi jest uzasadniony analizą schematu montażowego, który jasno pokazuje połączenie pomiędzy tym zaciskiem a zaciskiem 41 stycznika K2. W praktyce, prawidłowe połączenie zacisków jest kluczowe dla zapewnienia właściwego działania systemów elektrycznych. W przypadku styczników, ich poprawne podłączenie wpływa na stabilność i bezpieczeństwo całego obwodu. W standardach branżowych, takich jak normy IEC 60947, zwraca się uwagę na znaczenie właściwego oznaczenia i połączeń w systemach automatyki, co pozwala na uniknięcie błędów w instalacji oraz ułatwia diagnostykę i konserwację. Zastosowanie logicznego podejścia do analizy schematu oraz znajomość standardów elektrycznych pomagają w skutecznym projektowaniu i wdrażaniu systemów, co jest niezbędne w każdej pracy zawodowej związanej z elektryką.

Pytanie 13

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Uszkodzenie przewodu neutralnego.
B. Zwarcie pomiędzy dwoma przewodami fazowymi.
C. Przerwa na zaciskach odbiornika Z2 lub Z3.
D. Zwarcie na zaciskach odbiornika Z2 lub Z3.
Kiedy przewód neutralny w systemie trójfazowym ulega uszkodzeniu, napięcie na poszczególnych fazach rozkłada się nierównomiernie. To może mieć spore konsekwencje dla odbiorników, takich jak Z1. Na przykład, jeżeli przewód neutralny jest w złym stanie, napięcie na urządzeniach z mniejszą impedancją może znacznie wzrosnąć. To może prowadzić do ich uszkodzenia. W branży elektrycznej, jak mówi norma IEC 60364, prawidłowe uziemienie i sprawność przewodów neutralnych są mega istotne dla bezpieczeństwa instalacji. Wyobraź sobie sytuację, gdzie urządzenie podłączone do zepsutego obwodu neutralnego otrzymuje napięcie dużo wyższe niż 400V. To na pewno nie jest dobre dla sprzętu. Dlatego regularne sprawdzanie i konserwacja instalacji są kluczowe, żeby uniknąć takich problemów.

Pytanie 14

Które styczniki należy załączyć w układzie zasilania silnika trójfazowego pierścieniowego, przedstawionego na schemacie, aby uzyskać największą prędkość obrotową wirnika?

Ilustracja do pytania
A. K1, K4
B. K2, K3
C. K1, K2
D. K3, K4
W tym układzie kluczowe jest zrozumienie, jak działa silnik pierścieniowy i po co w ogóle stosuje się rezystancje R1, R2, R3 w obwodzie wirnika. Te oporniki nie są po to, żeby silnik pracował stale wolniej, tylko głównie do rozruchu i ewentualnie do krótkotrwałej regulacji momentu przy małych prędkościach. Kiedy w obwód wirnika włączona jest jakakolwiek dodatkowa rezystancja, rosną straty mocy, a prędkość obrotowa przy danym obciążeniu spada, bo zwiększa się poślizg. To jest podstawowa zależność: większa rezystancja wirnika – większy poślizg – niższa prędkość. Dlatego kombinacje, w których pracują styczniki K2 lub K3, powodują, że w obwodzie wirnika wciąż pozostaje część rezystancji R1, R2, R3. Silnik wtedy zachowuje się jakby był w jednym ze stopni rozruchu: ma korzystniejszy moment przy ruszaniu, ale nie osiągnie swojej maksymalnej prędkości roboczej. Typowy błąd myślowy polega na tym, że ktoś patrzy na schemat i zakłada, że „więcej elementów załączonych” równa się „większa prędkość” albo że pewna rezystancja w wirniku „podciągnie” charakterystykę i silnik zakręci szybciej. W praktyce dzieje się odwrotnie – oporniki spowalniają wirnik przy danym obciążeniu, bo część energii zamienia się na ciepło. Innym częstym nieporozumieniem jest mylenie funkcji K1 ze stycznikami K2–K4. K1 zasila stojan i bez jego załączenia silnik w ogóle nie pracuje. K2, K3 i K4 jedynie przełączają konfigurację obwodu wirnika: albo przez wszystkie stopnie rezystancji, albo przez część, albo całkowicie na krótko. Z punktu widzenia dobrych praktyk eksploatacji maszyn elektrycznych praca długotrwała z dołączonymi rezystorami jest nieekonomiczna, prowadzi do przegrzewania oporników i obniżenia sprawności napędu. Dlatego kombinacje inne niż pełne zwarcie wirnika po rozruchu traktuje się jako stany przejściowe, a nie docelową pracę przy największej prędkości.

Pytanie 15

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie pomiędzy dwoma przewodami fazowymi.
B. Zwarcie na zaciskach odbiornika Z2 lub Z3.
C. Przerwa na zaciskach odbiornika Z2 lub Z3.
D. Przerwa w przewodzie neutralnym.
Zwarcia pomiędzy przewodami fazowymi czy na zaciskach odbiorników Z2 lub Z3 są powszechnie mylone z przyczynami nadmiernego wzrostu napięcia na zaciskach Z1. Zwarcie w obwodzie fazowym prowadziłoby do znaczącego wzrostu prądu w danym obwodzie, co skutkowałoby zadziałaniem zabezpieczeń, a tym samym wyłączeniem zasilania, a nie do długotrwałego wzrostu napięcia. Podobnie, zwarcie na zaciskach odbiorników Z2 czy Z3 wpłynęłoby na ich własne parametry pracy, ale nie na napięcia na zaciskach Z1. Przerwa na zaciskach odbiornika Z2 lub Z3 wprowadzałaby natomiast zjawisko wyłączenia jednego z obwodów, co również nie prowadziłoby do wzrostu napięcia na Z1, a raczej do obniżenia jego wartości. Ostatecznie, nieprawidłowe założenie dotyczące braku wpływu przewodu neutralnego na rozkład napięcia jest typowym błędem myślowym. Kluczowym zrozumieniem jest, jak współdziałają ze sobą różne komponenty układu elektrycznego. Normy takie jak PN-IEC 60364 podkreślają znaczenie solidnych połączeń neutralnych dla zachowania stabilności napięcia w całym systemie. Użytkownicy powinni być świadomi potencjalnych konsekwencji niewłaściwego podejścia do analizy układów trójfazowych, co może prowadzić do poważnych awarii i zagrożeń dla bezpieczeństwa.

Pytanie 16

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. izolacji pomiędzy zaciskami uzwojeń silnika.
B. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
C. uzwojenia fazowego.
D. pętli zwarciowej.
Poprawna odpowiedź odnosi się do pomiaru rezystancji izolacji pomiędzy zaciskami uzwojeń silnika, co jest kluczowym elementem zapewnienia bezpieczeństwa i funkcjonalności urządzeń elektrycznych. Schemat przedstawia połączenie miernika, co wskazuje na jego użycie do oceny stanu izolacji. W praktyce, regularne pomiary izolacji są niezbędne w procesach konserwacyjnych oraz w diagnostyce awarii silników elektrycznych. Zgodnie z normą IEC 60364, należy dążyć do utrzymania odpowiednich wartości rezystancji izolacji, które powinny być znacznie wyższe niż 1 MΩ, aby zapewnić bezpieczeństwo użytkowania oraz minimalizować ryzyko porażenia prądem. W przypadku stwierdzenia niskiej rezystancji, co może wskazywać na uszkodzenie izolacji, konieczne jest natychmiastowe podjęcie działań naprawczych, aby zapobiec dalszym problemom. Dobre praktyki inżynieryjne zalecają również dokumentowanie wyników pomiarów, co może być pomocne w opracowywaniu programów konserwacyjnych oraz w audytach bezpieczeństwa.

Pytanie 17

Układ oznaczany na schematach blokowych przedstawionym symbolem graficznym zalicza się do

Ilustracja do pytania
A. sterowników.
B. prostowników.
C. filtrów.
D. falowników.
Poprawnie – symbol na rysunku jednoznacznie oznacza prostownik. Strzałka z lewej strony, napis „AC” po stronie wejścia i „DC” po stronie wyjścia pokazują, że układ zamienia prąd przemienny na prąd stały. W technice zasilania jest to klasyczna funkcja prostownika: konwersja AC→DC. W praktyce prostownik jest pierwszym etapem większości zasilaczy impulsowych i liniowych – np. w zasilaczu do laptopa, ładowarce telefonu, zasilaczu PLC, zasilaczach do sterowników bram, systemów alarmowych, CCTV, itp. Najczęściej stosuje się mostek Graetza zbudowany z czterech diod prostowniczych, a dalej kondensator filtrujący i ewentualnie układ stabilizacji. W schematach blokowych norma przyjęła właśnie takie proste oznaczenie: prostokąt z opisem AC po jednej stronie i DC po drugiej, czasem z ukośną linią, tak jak na rysunku. Moim zdaniem warto od razu kojarzyć, że jeżeli widzisz AC po wejściu i DC po wyjściu, to nie jest ani falownik, ani filtr, ani sterownik, tylko klasyczny prostownik. W układach automatyki i instalacjach niskonapięciowych dobór prostownika musi uwzględniać prąd znamionowy, dopuszczalne tętnienia napięcia stałego, klasę izolacji i zgodność z normami PN-EN dotyczących zasilaczy i urządzeń niskonapięciowych. W eksploatacji ważne jest też chłodzenie elementów prostowniczych (diody, mostki), poprawne zabezpieczenie po stronie AC i DC oraz właściwe prowadzenie przewodów masy i uziemienia, żeby uniknąć zakłóceń i przegrzewania się elementów.

Pytanie 18

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Ochronne obniżenie napięcia
B. Izolacja odbiornika
C. Izolowanie miejsca pracy
D. Podwójna lub wzmocniona izolacja
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.

Pytanie 19

Niszczenie części metalowych silnika wskutek zetknięcia się ich z roztworem, mogącym stanowić elektrolit przewodzący prąd między lokalnymi ogniwami znajdującymi się na powierzchni metalu, jest uszkodzeniem spowodowanym

A. korozją chemiczną.
B. przyczyną termiczną.
C. korozją elektrochemiczną.
D. przyczyną mechaniczną.
Poprawnie wskazana została korozja elektrochemiczna, bo w opisie pytania kluczowe są dwie rzeczy: obecność roztworu działającego jak elektrolit oraz lokalne ogniwa na powierzchni metalu. To jest dokładnie definicja korozji elektrochemicznej – metal w środowisku przewodzącym prąd (np. woda z solami, płyn chłodniczy, kondensat z dodatkami) tworzy mini-ogniwa galwaniczne, w których zachodzą reakcje anodowe i katodowe. W miejscach anodowych metal się rozpuszcza, czyli po prostu ubywa materiału. W silnikach elektrycznych i spalinowych zjawisko to dotyczy np. obudów, wałów, śrub, kadłubów, a nawet zacisków elektrycznych, jeśli mają kontakt z wilgocią i zanieczyszczeniami. W praktyce widać to jako wżery, naloty, zmatowienia, czasem zielonkawe osady na połączeniach miedzianych. Dobre praktyki branżowe mówią jasno: trzeba ograniczać dostęp elektrolitu (czyli wilgoci i agresywnych związków), stosować odpowiednie powłoki ochronne (farby, galwanizację, anodowanie), właściwe dobieranie par materiałowych (żeby nie robić sobie przypadkiem ogniwa galwanicznego np. stal–miedź w wilgotnym środowisku) oraz dbać o odprowadzanie kondensatu. W dokumentacjach producentów silników i normach dotyczących eksploatacji urządzeń elektrycznych często jest mowa o wymaganej klasie szczelności IP, dopuszczalnej wilgotności oraz konieczności okresowych przeglądów antykorozyjnych. Z mojego doświadczenia w warsztacie największym problemem jest ignorowanie drobnych śladów korozji – potem nagle okazuje się, że śruba się urwała albo zacisk grzeje się, bo kontakt jest zniszczony przez korozję elektrochemiczną. Tu naprawdę opłaca się profilaktyka: czyste środowisko pracy, właściwe uszczelnienia, dobre jakościowo płyny eksploatacyjne i regularne oględziny elementów metalowych narażonych na wilgoć.

Pytanie 20

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. elektrodynamicznym
B. ferrodynamicznym
C. magnetoelektrycznym
D. elektromagnetycznym
Pomiar wielkości elektrycznych o przebiegu stałym wymaga zastosowania odpowiednich technologii pomiarowych, a wybór niewłaściwego ustroju może prowadzić do błędnych wyników. Ustrój ferrodynamiczny, choć użyteczny w pomiarach prądu zmiennego, opiera się na zasadzie siły elektromotorycznej wywołanej przez zmienne pole magnetyczne. W przypadku prądu stałego brak zmienności pola sprawia, że wynik pomiaru byłby nieprecyzyjny. Ustrój elektromagnetyczny również nie jest właściwy, ponieważ jego działanie bazuje na indukcji elektromagnetycznej, a więc również najlepiej sprawdza się w pomiarach prądu zmiennego. Z kolei ustrój elektrodynamiczny, który wykorzystuje zasadę działania siły działającej na przewodnik w polu magnetycznym, także nie jest dostosowany do pomiarów prądu stałego, co może prowadzić do nieprawidłowych odczytów. Wybór niewłaściwego ustroju pomiarowego może być wynikiem błędnego zrozumienia zasad działania różnych technologii pomiarowych, co jest typowym błędem wśród osób, które nie mają wystarczającej wiedzy na temat specyfiki pomiarów elektrycznych. Dlatego kluczowe jest zrozumienie różnic w konstrukcji i zasadzie działania różnych ustrojów pomiarowych oraz ich właściwego zastosowania w praktyce inżynierskiej.

Pytanie 21

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. AC 500 V i DC 10 V
B. DC 500 V i AC 50 V
C. AC 500 V i DC 50 V
D. DC 500 V i AC 100 V
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 22

Na rysunku przedstawiono sposób podłączenia

Ilustracja do pytania
A. trójfazowego licznika energii elektrycznej.
B. trójfazowego transformatora separacyjnego.
C. dławików w trójfazowej oprawie świetlówkowej.
D. przekładników prądowych w trzech fazach.
Trójfazowy licznik energii elektrycznej to urządzenie służące do pomiaru zużycia energii elektrycznej w systemach trójfazowych, które są powszechnie stosowane w przemyśle oraz w dużych obiektach komercyjnych. Na rysunku przedstawiono schemat, gdzie widoczne są trzy linie fazowe L1, L2, L3 oraz przewód neutralny N, co jest zgodne z typową konfiguracją podłączenia do takiego licznika. Liczniki energii elektrycznej muszą spełniać normy takie jak PN-EN 62053, które określają dokładność pomiarów oraz wymagania dotyczące instalacji. Przykładowo, w przypadku monitorowania zużycia energii w zakładzie przemysłowym, zastosowanie trójfazowego licznika pozwala na precyzyjne określenie, ile energii jest konsumowane przez różne maszyny, co z kolei umożliwia optymalizację kosztów operacyjnych oraz efektywności energetycznej. Odpowiednia symbolika graficzna na schemacie, jaką zastosowano w tym przypadku, jednoznacznie wskazuje na licznik, co jest zgodne z normami PN-EN 60617, które dotyczą symboliki w dokumentacji elektrycznej.

Pytanie 23

Które z wymienionych czynności należy wykonać po próbnym uruchomieniu silnika indukcyjnego klatkowego (kierunek obrotów silnika jest prawidłowy), podczas jego pracy w warunkach znamionowego zasilania i obciążenia?

A. Sprawdzić stan izolacji uzwojeń silnika, sprawdzić zapewnienie swobodnego dopływu powietrza do przewietrznika.
B. Zmierzyć wartość pobieranego prądu, sprawdzić stan sprzężenia z maszyną napędzaną i poprawność pracy łożysk.
C. Ocenić stan urządzeń do przeprowadzenia rozruchu, aparatury sterującej i zabezpieczającej.
D. Zmierzyć wartość napięcia zasilania, ocenić poprawność doboru typu silnika do maszyny napędzanej.
W tym zadaniu chodzi o etap po próbnym uruchomieniu silnika, kiedy silnik już pracuje pod znamionowym napięciem i obciążeniem, a kierunek obrotów jest potwierdzony jako prawidłowy. To jest bardzo ważne, bo wiele osób myli ten moment z wcześniejszym etapem montażu, badań odbiorczych albo pierwszym krótkim załączeniem „na pusto”. Na tym późniejszym etapie nie wykonuje się już badań typowo montażowych czy laboratoryjnych, tylko kontrolę eksploatacyjną pod obciążeniem. Czynności typu ocena stanu urządzeń rozruchowych, aparatury sterującej i zabezpieczającej są oczywiście potrzebne, ale zwykle robi się je przed właściwym rozruchem, w ramach przeglądu instalacji i układu zasilania. Sprawdza się wtedy styczniki, wyłączniki, przekaźniki, przewody, zaciski, żeby w ogóle móc bezpiecznie uruchomić silnik. Po osiągnięciu warunków znamionowych te elementy nie są głównym punktem zainteresowania, bo albo działają, albo rozruch by się nie udał. Podobnie z pomiarem napięcia zasilania i oceną poprawności doboru typu silnika do maszyny. Dobór mocy, prędkości synchronicznej, klasy izolacji czy sposobu chłodzenia wykonuje się na etapie projektu i doboru urządzeń, a nie po próbnym uruchomieniu. Oczywiście napięcie zasilania warto znać, ale jego pomiar nie jest kluczową czynnością „po rozruchu” – jest raczej elementem wcześniejszej diagnostyki instalacji. Kolejny typowy błąd to mylenie pomiaru izolacji uzwojeń z kontrolą po uruchomieniu pod obciążeniem. Stan izolacji bada się miernikiem rezystancji izolacji (megometrem) przed przyłożeniem napięcia roboczego, ewentualnie po dłuższej przerwie w eksploatacji czy po remoncie. W czasie normalnej pracy przy napięciu znamionowym takiego pomiaru się nie wykonuje, bo jest to po prostu niebezpieczne i technicznie niewłaściwe. Sprawdzenie swobodnego dopływu powietrza do przewietrznika to też ważna rzecz, ale znowu – robi się to przy odbiorze i przeglądzie, zanim silnik zacznie pracować w docelowych warunkach. Kluczową kontrolą po próbnym uruchomieniu w warunkach znamionowych jest to, jak silnik zachowuje się elektrycznie i mechanicznie pod faktycznym obciążeniem. Stąd nacisk na pomiar prądu roboczego, obserwację sprzężenia mechanicznego z maszyną napędzaną oraz ocenę pracy łożysk. Typowy błąd myślowy polega tu na skupieniu się wyłącznie na „papierologii” i badaniach wstępnych, a pomijaniu tego, że ostatecznie liczy się stabilna, bezawaryjna praca całego układu napędowego w realnych warunkach, a nie tylko sama poprawność instalacji i izolacji.

Pytanie 24

Aby zabezpieczyć silnik indukcyjny trójfazowy w układzie zasilania ze stycznikiem przed przeciążeniem, należy użyć przekaźnika termobimetalowego. Jaki typ przekaźnika powinien być zastosowany?

A. trójtorowy bez styku kontrolnego
B. trójtorowy ze stykiem kontrolnym
C. jednotorowy bez styku kontrolnego
D. jednotorowy ze stykiem kontrolnym
Wybór przekaźnika jednostorowego, niezależnie od tego, czy ma on styk sterujący, czy nie, jest niewłaściwy w kontekście zabezpieczania silnika trójfazowego. Przekaźnik jednostorowy monitoruje tylko jedną fazę, co nie zapewnia pełnej ochrony w przypadku przeciążenia, które może wystąpić w którejkolwiek z pozostałych faz. Silniki trójfazowe są zaprojektowane do pracy równomiernie w trzech fazach, dlatego ich zabezpieczenie wymaga kompleksowego podejścia. Zastosowanie przekaźnika trójtorowego jest kluczowe, ponieważ pozwala na równoczesne monitorowanie prądów w każdej fazie, co umożliwia szybkie wykrycie anomalii. W przypadku przekaźnika trójtorowego bez styku sterującego, brak integracji z systemami automatyki może prowadzić do opóźnień w reakcji na przeciążenie, co zwiększa ryzyko uszkodzenia silnika. Z kolei jednostorowy przekaźnik ze stykami sterującymi, mimo że może wydawać się użyteczny, również nie spełnia wymagań w kontekście monitorowania całego układu zasilania. W praktyce, profesjonalne podejście do zabezpieczeń wymaga zastosowania przekaźnika trójfazowego, który zapewnia nie tylko ochronę, ale i możliwość integracji z nowoczesnymi systemami zarządzania energetycznego.

Pytanie 25

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Chwilową moc obciążenia.
B. Prąd upływu.
C. Impedancję pętli zwarcia.
D. Rezystancję izolacji.
Pomiar prądu upływu, impedancji pętli zwarcia oraz chwilowej mocy obciążenia opiera się na innych zasadach pomiarowych i wymaga odmiennych przyrządów. Prąd upływu dotyczy prądów, które uciekają z instalacji do ziemi lub do obudowy urządzeń, co jest istotne z punktu widzenia bezpieczeństwa, ale nie jest bezpośrednio związane z pomiarem rezystancji izolacji. Z kolei impedancja pętli zwarcia jest mierzona w celu oceny skuteczności ochrony przeciwporażeniowej i nie może być określona przy użyciu miernika izolacji. Mierniki do pomiaru impedancji pętli zwarcia wykorzystują inną metodologię pomiarową i zazwyczaj są dostosowane do pracy w obwodach z obciążeniem. Chwilowa moc obciążenia również nie jest zależna od wartości rezystancji izolacji, gdyż odnosi się do momentalnego zużycia energii przez urządzenie, co jest mierzono za pomocą liczników energii elektrycznej. Typowe nieporozumienie polega na myleniu różnych parametrów elektrycznych, co może prowadzić do niewłaściwych pomiarów i, w konsekwencji, do nieprawidłowych ocen stanu instalacji. Dlatego ważne jest, aby przed przystąpieniem do pomiarów dobrze zrozumieć zastosowanie konkretnego narzędzia pomiarowego oraz jego możliwości.

Pytanie 26

Który aparat obwodu głównego będzie włączony zgodnie z przedstawionym schematem między wyłącznik różnicowoprądowy a stycznik?

Ilustracja do pytania
A. Wyłącznik silnikowy.
B. Ochronnik przeciwprzepięciowy.
C. Przekaźnik przeciążeniowy.
D. Rozłącznik bezpiecznikowy.
Wybranie innego urządzenia zamiast wyłącznika silnikowego pokazuje, że chyba nie do końca rozumiesz, jak działają różne elementy obwodu elektrycznego. Na przykład przekaźnik przeciążeniowy jest odpowiedzialny za wykrywanie nadmiaru prądu, ale nie włącza silnika. On tylko chroni, a nie uruchamia. Rozłącznik bezpiecznikowy z kolei rozłącza obwód, żeby ochronić przed przeciążeniem, ale nie działa tak dynamicznie jak wyłącznik silnikowy. Ochronnik przeciwprzepięciowy ma inną rolę, bo tylko zabezpiecza przed nagłymi wzrostami napięcia, a nie zarządza zasilaniem silnika. Wybór niewłaściwych elementów może prowadzić do poważnych problemów w systemach elektrycznych, dlatego każdy element powinien być dobrany odpowiednio do jego funkcji i zastosowania. W praktyce, jeśli pomylisz rolę wyłącznika silnikowego, to mogą pojawić się błędne decyzje projektowe, co jest niezgodne z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 27

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Generuje moment magnetyczny o stałym kierunku
B. Redukuje hałas podczas eksploatacji
C. Tworzy nieruchome, stałe pole magnetyczne
D. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
W odpowiedziach, które nie są poprawne, pojawiają się koncepcje, które mylnie opisują funkcję uzwojenia biegunów komutacyjnych. Na przykład, generowanie jednokierunkowego momentu magnetycznego nie jest właściwym opisem roli tego uzwojenia. Moment magnetyczny w maszynach prądu stałego jest kształtowany głównie przez uzwojenia wirnika i pola magnetyczne wytwarzane przez magnesy lub uzwojenia stojana. Wytwarzanie nieruchomego, stałego pola magnetycznego to również mylne podejście, ponieważ uzwojenie biegunów komutacyjnych nie tworzy statycznego pola, lecz dynamicznie reaguje na zmiany prądu, co ma na celu ułatwienie komutacji. Ponadto, zredukowanie hałasu podczas pracy nie jest celem uzwojenia komutacyjnego, ale może być efektem ubocznym prawidłowego działania całego systemu, związanego z efektywnym komutowaniem prądu. W kontekście projektowania maszyn prądu stałego, nieprawidłowe rozumienie roli uzwojenia biegunów komutacyjnych może prowadzić do problemów z wydajnością energetyczną oraz trwałością komponentów, dlatego kluczowe jest zrozumienie jego rzeczywistej funkcji w konstrukcji maszyny.

Pytanie 28

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Kompensacyjnego
B. Wzbudzenia
C. Komutacyjnego
D. Twornika
W silnikach prądu stałego, niektóre uzwojenia pełnią różne funkcje, a ich zrozumienie jest kluczowe dla właściwego działania urządzenia. Uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które jest niezbędne do działania silnika. Przez to uzwojenie przepływa prąd, ale nie bezpośrednio przez szczotki, co może wprowadzać w błąd. Uzwojenie kompensacyjne ma na celu zredukowanie wpływu zmienności obciążenia na silnik, co jest istotne w kontekście stabilizacji pracy, ale również nie jest związane z dostarczaniem prądu przez szczotki. Uzwojenie komutacyjne, z kolei, jest odpowiedzialne za komutację prądu w tworniku, co oznacza, że zmienia kierunek przepływu prądu w odpowiednich momentach, ale nie jest to miejsce, w którym prąd jest dostarczany przez szczotki. Typowym błędem myślowym jest mylenie funkcji poszczególnych uzwojeń oraz nierozumienie ich wzajemnych interakcji. Wiedza ta jest kluczowa dla inżynierów zajmujących się projektowaniem oraz konserwacją silników elektrycznych, dlatego warto zgłębiać temat, by unikać nieporozumień i błędów w praktyce inżynieryjnej. Użycie terminologii technicznej oraz znajomość zasad działania poszczególnych elementów silnika prądu stałego są niezbędne w rozwiązywaniu problemów oraz optymalizacji ich pracy.

Pytanie 29

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. C.
B. D.
C. A.
D. B.
Poprawna odpowiedź to B. Kolejność demontażu elementów stojana silnika indukcyjnego jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności podczas przezwojenia. Proces zaczyna się od odcięcia połączeń czołowych, co pozwala na bezpieczne wyłączenie zasilania i ograniczenie ryzyka porażenia prądem. Następnie przystępuje się do usunięcia uzwojenia, co jest istotne, aby uzyskać dostęp do wnętrza stojana. W tym etapie należy zachować ostrożność, aby nie uszkodzić struktury żłobka. Ostatnim krokiem jest usunięcie izolacji żłobkowej, co umożliwia dokładne oczyszczenie elementów i przygotowanie ich do ponownego nawinięcia. Przestrzeganie tej sekwencji demontażu jest zgodne z dobrymi praktykami w branży elektrycznej i mechaniczej, a także z normami bezpieczeństwa, co zapewnia, że proces przezwojenia będzie przeprowadzony w sposób profesjonalny i skuteczny. Właściwe podejście do tych czynności wpływa na wydajność i żywotność silnika.

Pytanie 30

Przy wykonywaniu oględzin układu pracy silnika trójfazowego pracującego w obrabiarce należy sprawdzić

A. impedancję pętli zwarcia.
B. rezystancję izolacji uzwojeń silnika. 
C. czas zadziałania zabezpieczenia zwarciowego. 
D. stan osłon części wirujących.
W tym pytaniu haczyk polega na tym, że mowa jest o „oględzinach” układu pracy silnika trójfazowego w obrabiarce. W praktyce zawodowej oględziny oznaczają prostą, ale bardzo ważną czynność: ocenę wzrokową, czasem z lekkim dotykiem, bez używania mierników i bez ingerencji w obwód. Typowy błąd myślowy polega na tym, że skoro mamy silnik trójfazowy i układ jego pracy, to od razu kojarzymy to z pomiarami elektrycznymi: impedancją pętli zwarcia, rezystancją izolacji czy czasem zadziałania zabezpieczeń. To są oczywiście bardzo ważne parametry, ale one nie należą do zakresu samych oględzin, tylko do badań pomiarowych i prób eksploatacyjnych. Impedancja pętli zwarcia jest badana przyrządem pomiarowym w celu sprawdzenia skuteczności ochrony przeciwporażeniowej i doboru zabezpieczeń; nie da się jej ocenić „na oko”. Podobnie rezystancja izolacji uzwojeń silnika – mierzy się ją induktorem lub miernikiem typu megomierz, zwykle przy napięciu pomiarowym 500 V lub wyższym, zgodnie z odpowiednimi normami. To jest już pełnoprawny pomiar elektryczny, nie element zwykłej wizualnej kontroli. Czas zadziałania zabezpieczenia zwarciowego też wymaga specjalnych testerów i wykonywany jest w ramach pomiarów instalacji lub prób rozruchowych, a nie podczas szybkich oględzin przed uruchomieniem obrabiarki. W oględzinach skupiamy się na rzeczach, które widać: kompletność i stan osłon, czy nie ma uszkodzeń mechanicznych, obluzowanych przewodów, śladów przegrzania, zacieków oleju na zaciskach, czy tabliczki znamionowe są czytelne. Z mojego doświadczenia wynika, że wielu uczniów „przestrzeliwuje” poziom szczegółowości – wybierają odpowiedzi pomiarowe, bo brzmią bardziej profesjonalnie, a zapominają, że pierwszym i podstawowym etapem każdej diagnostyki są zwykłe, rzetelnie przeprowadzone oględziny. Pomiary typu impedancja pętli zwarcia, rezystancja izolacji czy czasy zadziałania zabezpieczeń są konieczne, ale wykonuje się je w innym etapie przeglądu, przy użyciu odpowiednich mierników i procedur, a nie w trakcie samej wizualnej oceny układu pracy silnika.

Pytanie 31

Który z opisów dotyczy funkcji B przekaźnika czasowego o przedstawionych diagramach jego pracy?

Ilustracja do pytania
A. Opóźnione załączenie.
B. Opóźnione cykliczne załączanie.
C. Opóźnione wyłączenie.
D. Opóźnione cykliczne wyłączanie.
Na przedstawionym diagramie kluczowe jest zrozumienie, jak zachowuje się wyjście przekaźnika w czasie w odniesieniu do pojawienia się napięcia zasilania U. W funkcji B widać, że po podaniu napięcia zasilającego wyjście przez pewien czas pozostaje w stanie nieaktywnym, a dopiero po upływie czasu t przechodzi w stan aktywny. To jest dokładnie odwrotność tego, co dzieje się przy funkcji „opóźnione wyłączenie”. W opóźnionym wyłączeniu przekaźnik natychmiast się załącza po podaniu sygnału, a dopiero po jego zaniku odmierza czas i po czasie t się wyłącza. Na wykresie dla funkcji B nie ma takiego zachowania: nie ma natychmiastowego załączenia, jest wyraźna zwłoka przed pierwszym przełączeniem styków. Typowy błąd myślowy polega na tym, że ktoś widząc symbol t przy dowolnym przejściu stanu automatycznie zakłada „opóźnione wyłączenie”, bo kojarzy to z funkcją podtrzymania po zaniku sygnału. Tymczasem trzeba patrzeć, w którym momencie jest liczony czas – czy od chwili podania sygnału, czy od chwili jego zaniku, i czy dotyczy to załączania, czy rozłączania. Kolejna pułapka to mylenie funkcji prostych z funkcjami cyklicznymi. Funkcje cykliczne, zarówno „opóźnione cykliczne załączanie”, jak i „opóźnione cykliczne wyłączanie”, na diagramach mają powtarzające się odcinki włącz/wyłącz o stałym okresie – przebieg wygląda jak seria impulsów prostokątnych. Na rysunku dla funkcji B nic się nie powtarza, jest tylko jedno przejście ze stanu nieaktywnego do aktywnego po upływie zadanego czasu. Funkcje cykliczne bardziej przypominają przebiegi C i D, gdzie wyjście co chwilę się załącza i wyłącza, z zadanym czasem trwania stanu włączonego i wyłączonego. W dobrej praktyce projektowania układów automatyki zawsze analizuje się dokładnie te wykresy czasowe z dokumentacji producenta, bo oznaczenia literowe (A, B, C, D) nie są do końca znormalizowane między firmami, natomiast logika czasowa zawsze jest pokazana graficznie. W tym zadaniu poprawną interpretacją jest więc funkcja prostego opóźnionego załączenia, a nie opóźnione wyłączenie ani żadna z funkcji cyklicznych, które mają zupełnie inny charakter pracy i służą raczej do migania, pulsowania lub okresowego sterowania odbiornikami.

Pytanie 32

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do indukcyjnych sprzęgieł dwukierunkowych
B. Do transformatorów
C. Do prądnic tachometrycznych
D. Do wzmacniaczy maszynowych
Wybór odpowiedzi spośród wzmacniaczy maszynowych, indukcyjnych sprzęgieł dwukierunkowych czy prądnic tachometrycznych wprowadza w błąd, gdyż te urządzenia pełnią zupełnie inne funkcje i mają odmienną budowę oraz zastosowanie. Wzmacniacze maszynowe są urządzeniami służącymi do wzmacniania sygnałów, co jest kluczowe w procesach automatyzacji i kontroli, ale nie mają bezpośredniego związku z pomiarami prądu. Indukcyjne sprzęgła dwukierunkowe z kolei są stosowane do transmisji momentu obrotowego między dwoma elementami, co również jest oddalone od funkcji przekładników prądowych. Prądnice tachometryczne natomiast są wykorzystywane do pomiaru prędkości obrotowej i koncentrują się na generowaniu sygnałów proporcjonalnych do prędkości obrotowej, co nie ma nic wspólnego z pomiarem prądu elektrycznego. Wybór nieodpowiednich odpowiedzi wynika często z mylnego skojarzenia funkcji tych urządzeń z ich zastosowaniami. Aby zrozumieć różnice, warto zwrócić uwagę na specyfikę działania każdego z tych urządzeń oraz ich zastosowanie w różnych dziedzinach, co jest istotne dla prawidłowego rozumienia i wykorzystania technologii elektrycznej.

Pytanie 33

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 0,003 A i 30 A
B. 3 A i 0,03 A
C. 0,03 A i 30 A
D. 30 A i 0,03 A
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumień dotyczących podstawowych pojęć związanych z wyłącznikami różnicowoprądowymi. Odpowiedzi, które sugerują wartości prądu różnicowego większe od 0,03 A, mogą prowadzić do fałszywego przekonania, że wyłączniki o wyższych prądach różnicowych zapewniają lepszą ochronę, co jest błędne. Prąd różnicowy 0,03 A jest standardem dla ochrony ludzi, a jego wyższe wartości, takie jak 3 A czy 30 A, są stosowane w innych kontekstach, na przykład w obwodach zabezpieczających przed pożarami, nie zaś w kontekście ochrony ludzi przed porażeniem. Wartości prądu znamionowego również mogą być mylące; na przykład sugerowanie, że 30 A to prąd różnicowy, może prowadzić do nieprawidłowego zrozumienia zasady działania wyłącznika. Wyłącznik różnicowoprądowy ma za zadanie przede wszystkim detekcję upływu prądu, a nie regulację jego wartości w obwodzie. Dodatkowo, mylenie prądów różnicowych i znamionowych może prowadzić do niewłaściwego doboru wyłącznika w instalacjach, co z kolei może stwarzać zagrożenie dla użytkowników. Kluczowe jest zrozumienie, że poprawny dobór parametrów wyłącznika różnicowoprądowego ma fundamentalne znaczenie dla bezpieczeństwa elektrycznego w budynkach.

Pytanie 34

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. D.
B. A.
C. B.
D. C.
Wybór odpowiedzi, która nie odnosi się do parametrów wyłącznika silnikowego, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tego urządzenia w systemach elektrycznych. Wyłączniki silnikowe mają na celu ochronę silników przed przeciążeniem oraz zwarciem, a ich kluczowymi parametrami są maksymalna moc, prąd znamionowy oraz czas reakcji. Niezrozumienie tych podstawowych zasad może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Nieopatrzne wybieranie wyłącznika bez znajomości jego maksymalnych parametrów może skutkować uszkodzeniem silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy. Ponadto, brak wiedzy na temat standardów, takich jak IEC 60947-4-1, może prowadzić do zastosowania niewłaściwych rozwiązań, które nie spełniają wymogów bezpieczeństwa. Zrozumienie koncepcji dotyczących wyłączników silnikowych i ich specyfikacji jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i utrzymywaniem infrastruktury elektrycznej. Dlatego ważne jest, aby zwracać uwagę na szczegółowe parametry techniczne przy doborze wyłącznika, aby uniknąć typowych błędów, które mogą wyniknąć z niedostatecznej wiedzy lub ignorancji branżowych standardów.

Pytanie 35

Który element oznacza się na schematach elektrycznych symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Łącznik krańcowy.
B. Gniazdo z transformatorem separacyjnym.
C. Dławik.
D. Autotransformator.
Gniazdo z transformatorem separacyjnym, oznaczone na schematach elektrycznych odpowiednim symbolem graficznym, pełni kluczową rolę w instalacjach elektrycznych, szczególnie w kontekście zapewnienia bezpieczeństwa użytkowników. Transformator separacyjny oddziela obwody niskonapięciowe od wysokiego napięcia, co minimalizuje ryzyko porażenia prądem. Zgodnie z normą PN-EN 60617, symbol graficzny dla gniazda z transformatorem separacyjnym jest jasno określony, co pozwala na łatwe rozpoznanie tego elementu na schematach. Przykładowo, w zastosowaniach medycznych, takie gniazda są często używane w aparaturze, gdzie kluczowe jest oddzielenie obwodów dla bezpieczeństwa pacjentów. Dzięki zastosowaniu transformatora separacyjnego, użytkownicy mogą być pewni, że ich sprzęt działa w bezpieczny sposób, a także spełnia wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, instalacja gniazd z transformatorem separacyjnym jest istotnym elementem ochrony w wielu branżach, co podkreśla znaczenie poprawnego rozpoznawania symboli graficznych na schematach.

Pytanie 36

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
B. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
C. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
D. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
Przekaźnik bistabilny to element automatyki, który po zadziałaniu przechodzi w stan, w którym pozostaje do momentu ponownego zadziałania. Parametry techniczne, takie jak napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania oraz sygnalizacja załączenia, są kluczowe dla jego prawidłowego funkcjonowania. Napięcie zasilania określa, jakie napięcie musi być dostarczone do przekaźnika, aby mógł on prawidłowo działać. Prąd obciążenia to maksymalny prąd, który może przechodzić przez styk przekaźnika, co jest istotne przy doborze urządzenia do konkretnych aplikacji. Wartość prądu impulsu sterującego wskazuje, jaki prąd jest potrzebny do zmiany stanu przekaźnika i jest kluczowa dla jego efektywności. Opóźnienie zadziałania pozwala na określenie czasu reakcji, co jest istotne w aplikacjach wymagających precyzyjnego sterowania. Sygnalizacja załączenia informuje użytkownika o stanie przekaźnika, co ma znaczenie w kontekście bezpieczeństwa i diagnostyki. Przykładowo, w systemach automatyki budynkowej, przekaźniki bistabilne mogą być używane do kontroli oświetlenia oraz zarządzania innymi urządzeniami, co czyni je niezbędnymi w inteligentnych instalacjach. Zrozumienie tych parametrów jest kluczowe dla projektowania i wdrażania systemów automatyki zgodnych z obowiązującymi standardami branżowymi.

Pytanie 37

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. izolacja jest uszkodzona.
B. występuje zwarcie między zwojami.
C. jest uszkodzone.
D. działa prawidłowo.
Stwierdzenia sugerujące, że uzwojenie silnika jest sprawne, posiada zwarcie międzyzwojowe lub ma uszkodzoną izolację, są błędne i mogą prowadzić do poważnych konsekwencji w diagnostyce i eksploatacji silników elektrycznych. Uzwojenie, które jest sprawne, charakteryzuje się rezystancją w normatywnym zakresie, co zazwyczaj oscyluje wokół wartości określonej przez producenta, a jego pomiar powinien wykazywać konkretne, mierzalne wartości. W przypadku zwarcia międzyzwojowego, pomiar rezystancji nie wykazywałby nieskończoności, lecz niższą wartość, co świadczyłoby o problemie w strukturze uzwojenia. Tego rodzaju uszkodzenia są często skutkiem przegrzania lub niewłaściwej eksploatacji, a ich objawami są zniekształcenia w pracy silnika, takie jak wzrost poboru prądu czy zmniejszenie momentu obrotowego. Uszkodzenie izolacji również nie prowadziłoby do nieskończonej rezystancji; zamiast tego mogłoby objawiać się jako spadek rezystancji, co skutkowałoby ryzykiem zwarcia do ziemi. Ponadto, ignoracja przerwanego uzwojenia może prowadzić do poważnych uszkodzeń silnika lub rozległych awarii systemu, co jest niezgodne z dobrymi praktykami w zakresie utrzymania ruchu, które zalecają bieżącą kontrolę i natychmiastowe reagowanie na wszelkie nieprawidłowości w działaniu urządzeń elektrycznych.

Pytanie 38

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. zamiana dwóch faz miejscami
B. zamiana jednej fazy z przewodem neutralnym
C. brak podłączenia jednej fazy
D. brak podłączenia dwóch faz
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 39

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie znamionowe i prąd zadziałania.
B. Napięcie probiercze i prąd zadziałania.
C. Napięcie probiercze i prąd znamionowy.
D. Napięcie znamionowe i prąd znamionowy.
Wybierając inne parametry, jak napięcie probiercze czy prąd zadziałania, to nie był najlepszy pomysł. Napięcie probiercze dotyczy testów izolacji, a nie tego, co pokazuje urządzenie na stałe. Prąd zadziałania to natomiast wartość, przy której zabezpieczenie jak wyłącznik różnicowoprądowy włącza się, gdy coś jest nie tak. Te pojęcia są ważne, ale nie pasują tu do parametrów znamionowych wypisanych na urządzeniu. Ważne jest, aby rozumieć te różnice, bo to pomaga w prawidłowym użytkowaniu sprzętu elektrycznego i jego bezpieczeństwie. Często ludzie mylą te terminy, co prowadzi do błędów przy doborze sprzętu i zabezpieczeń. Brak wiedzy na ten temat może skutkować poważnymi problemami, jak uszkodzenia urządzeń czy nawet pożar. Dlatego warto zawsze sprawdzać specyfikacje znamionowe, bo to podstawa do poprawnego użytkowania i projektowania instalacji elektrycznych.

Pytanie 40

Do którego rodzaju pracy przeznaczony jest silnik elektryczny, gdy na jego tabliczce znamionowej umieszczono oznaczenie S2?

A. Do pracy przerywanej z dużą liczbą łączeń i rozruchów.
B. Do pracy dorywczej. 
C. Do pracy przerywanej z hamowaniem elektrycznym. 
D. Do pracy ciągłej.
Oznaczenia S1, S2, S3 i kolejne na tabliczce znamionowej silnika to nie są jakieś przypadkowe symbole, tylko znormalizowane tryby pracy zdefiniowane w normie PN-EN 60034. Problem w tym, że wiele osób intuicyjnie dopasowuje je do własnych skojarzeń, zamiast do faktycznych definicji. Stąd biorą się pomyłki typu kojarzenie S2 z pracą przerywaną z wieloma rozruchami albo z hamowaniem elektrycznym. Tryb S2 to praca dorywcza, czyli silnik pracuje przez określony, ograniczony czas przy stałym obciążeniu, a potem musi mieć przerwę aż ostygnie prawie do temperatury otoczenia. Nie ma tam mowy o dużej liczbie łączeń ani o specjalnym sposobie hamowania, tylko o czasie nagrzewania i chłodzenia. Praca przerywana z dużą liczbą łączeń i rozruchów jest opisana innym symbolem – to zwykle tryb S3, S4 lub S5, gdzie uwzględnia się cykle załączeń, rozruchów, a czasem też hamowania. W takich trybach kluczowe jest, ile procent czasu silnik jest obciążony, ile trwa przerwa, jaka jest częstotliwość łączeń, a nie sam fakt, że pracuje "krócej". Dlatego utożsamianie S2 z „pracą przerywaną z wieloma rozruchami” jest mylące, bo w S2 rozruch występuje co prawda, ale z definicji tylko raz na cykl i nie jest on głównym kryterium doboru. Z kolei skojarzenie S2 z pracą przerywaną z hamowaniem elektrycznym też jest chybione. Hamowanie elektryczne (dynamiczne, przeciwprądowe, rekuperacyjne) dotyczy sposobu zatrzymywania silnika, a nie samego trybu pracy z punktu widzenia nagrzewania cieplnego. Takie warunki lepiej opisują wyższe klasy pracy, gdzie rozróżnia się cykle z hamowaniem i bez. Częsty błąd myślowy polega też na tym, że ktoś widzi "S1 = ciągła", więc automatycznie zakłada, że wszystko inne to też w jakiś sposób praca "prawie ciągła" i wrzuca S2 do jednego worka z S3. Tymczasem S1 to praca ciągła przy ustalonej temperaturze, S2 to praca dorywcza bez osiągnięcia stanu ustalonego termicznie, a S3 i dalej to bardziej złożone cykle z wieloma załączeniami. Dlatego odpowiedź o pracy ciągłej przy S2 też jest niezgodna z normą – do pracy ciągłej przeznaczone są silniki oznaczone S1. W praktyce, jeżeli dobierzemy silnik S2 i będziemy go eksploatować jak S1, to narażamy się na przegrzewanie, częstsze zadziałania zabezpieczeń termicznych i szybsze zużycie izolacji. Dobre podejście to zawsze sprawdzić w dokumentacji producenta, jak jest zdefiniowany czas pracy i przerwy dla danego trybu, zamiast polegać na skojarzeniach z nazwą.