Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 10:09
  • Data zakończenia: 8 grudnia 2025 10:25

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po połączeniu układu sterowania oświetlenia przekaźnikiem bistabilnym przeprowadzono kilkukrotnie próbę działania. Na podstawie diagramu działania przekaźnika i powtarzającej się tabeli działania układu można stwierdzić, że

Ilustracja do pytania
A. nieprawidłowo działa użyty przekaźnik.
B. uszkodzona jest jedna z żarówek.
C. układ działa prawidłowo.
D. występuje błąd w podłączeniu przekaźnika.
Wybór odpowiedzi dotyczącej błędów w podłączeniu przekaźnika, uszkodzenia żarówek lub prawidłowego działania układu, wskazuje na zrozumienie problematyki, jednak nie na właściwe rozpoznanie sytuacji. W pierwszym przypadku, błędne podłączenie przekaźnika mogłoby prowadzić do braku reakcji całego układu, co nie jest potwierdzone przez przedstawione dane. Jeśli diagram i tabela działania układu są zgodne, to nieprawidłowe podłączenie w tym scenariuszu wydaje się mało prawdopodobne. Kolejną możliwą mylną koncepcją jest przypisanie winy uszkodzonym żarówkom. W rzeczywistości, gdy przekaźnik działa nieprawidłowo, jego potencjalny wpływ na zasilanie żarówek może maskować problemy z ich funkcjonowaniem. Prawidłowe działanie żarówek można ocenić niezależnie, ale wiedząc, że przekaźnik jest kluczowym elementem w cyklu włączania i wyłączania, to on powinien być priorytetem w diagnostyce. Ostatnia myśl o tym, że układ działa prawidłowo, pomija fundamentalne informacje z diagramu i tabeli, które jasno wskazują na rozbieżności. Uznawanie układu za sprawny bez dokładnej analizy wszystkich komponentów, szczególnie przekaźnika, może prowadzić do fałszywych wniosków i pomijać istotną diagnostykę. Rozpoznawanie problemów w takich systemach wymaga zastosowania metodyki analizy przyczyn źródłowych, aby skutecznie zidentyfikować problem i uniknąć błędnych interpretacji wyników.

Pytanie 2

Którą funkcję w wyłączniku nadprądowym pełni element wskazany na ilustracji czerwoną strzałką?

Ilustracja do pytania
A. Reaguje na zwarcia.
B. Łączy styki.
C. Reaguje na przeciążenia.
D. Gasi łuk elektryczny.
Element wskazany na ilustracji czerwoną strzałką to bimetaliczny wyzwalacz termiczny, którego główną funkcją jest reagowanie na zwarcia w obwodzie. W momencie wystąpienia zwarcia, natężenie prądu gwałtownie wzrasta, co może prowadzić do poważnych uszkodzeń instalacji elektrycznej oraz zwiększa ryzyko pożaru. Bimetaliczny wyzwalacz termiczny działa na zasadzie odkształcania się dwóch różnych metali w odpowiedzi na wzrost temperatury, co powoduje zamknięcie obwodu i odłączenie zasilania. Zgodnie z normami IEC 60947-2 oraz EN 60898-1, wyłączniki nadprądowe są obowiązkowym elementem w nowoczesnych instalacjach elektrycznych, co podkreśla ich kluczowe znaczenie w zapewnieniu bezpieczeństwa. Przykładem zastosowania może być ochrona obwodów w budynkach mieszkalnych, gdzie wyłączniki te są projektowane tak, aby reagowały na wszelkie anomalie w działaniu urządzeń elektrycznych, co chroni zarówno użytkowników, jak i infrastrukturę. Dlatego znajomość funkcji bimetalicznych wyzwalaczy termicznych jest istotna dla każdego specjalisty z branży elektrycznej.

Pytanie 3

Jakim elementem powinno się zabezpieczyć nakrętkę przed jej odkręceniem?

A. Tuleją redukcyjną
B. Tuleją kołnierzową
C. Podkładką dystansową
D. Podkładką sprężystą
Wybór tulei redukcyjnej, tulei kołnierzowej, czy podkładki dystansowej do zabezpieczenia nakrętki przed odkręceniem nie jest właściwym podejściem, ponieważ każde z tych rozwiązań spełnia inne funkcje. Tuleja redukcyjna, na przykład, jest stosowana głównie do zmiany średnicy otworów, a nie do stabilizacji połączeń. Jej zastosowanie w kontekście zabezpieczania nakrętek mogłoby prowadzić do nieodpowiedniego montażu, co stwarza ryzyko luzów. Tuleja kołnierzowa z kolei, mimo że może wspierać elementy konstrukcyjne poprzez rozłożenie obciążenia na większą powierzchnię, nie ma zdolności do absorpcji drgań ani przeciwdziałania luzom w sposób, w jaki robi to podkładka sprężysta. Z tego powodu, użycie tulei kołnierzowej może prowadzić do nieprzewidzianych awarii. Podkładka dystansowa, choć pełni rolę regulacji odstępów, nie jest zaprojektowana do eliminacji luzów w połączeniach, co czyni ją nieodpowiednią do zabezpieczania nakrętek. Zrozumienie funkcji tych elementów oraz ich odpowiednie zastosowanie jest kluczowe dla zapewnienia trwałości i niezawodności konstrukcji. Błędne przekonanie, że inne elementy mogą z powodzeniem zastąpić podkładkę sprężystą, może prowadzić do poważnych niebezpieczeństw i uszkodzeń w inżynierii mechanicznej.

Pytanie 4

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. prądu obciążenia oraz czasu jego działania
B. napięcia sieciowego oraz prądu obciążenia
C. napięcia sieciowego oraz prądu różnicowego
D. prądu różnicowego oraz czasu jego działania
Sprawdzanie wyłącznika różnicowoprądowego to naprawdę ważna sprawa, bo chodzi tu o nasze bezpieczeństwo. Mierzymy prąd różnicowy i czas, w jakim wyłącznik zadziała, bo to zapewnia, że wszystko działa jak należy w instalacjach elektrycznych. Prąd różnicowy to różnica pomiędzy prądem, który idzie do urządzenia, a tym, który wraca. W normalnych warunkach ta różnica powinna być mała. RCD działa w ten sposób, że jeśli ta różnica przekroczy pewien próg, najczęściej 30 mA dla ochrony osób, to odcina zasilanie. Regularne testy wyłączników pozwalają upewnić się, że są w porządku i że nas chronią przed porażeniem prądem. Moim zdaniem, dobrze jest testować to przynajmniej raz w roku, aby mieć pewność, że ochrona działa jak należy. Do testów można użyć specjalnych urządzeń, które naśladują prąd różnicowy i pokazują, w jakim czasie wyłącznik się włączy. Jest to naprawdę istotne, żeby się tym zajmować.

Pytanie 5

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Wymienić wszystkie przewody na nowe o większym przekroju
B. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
C. Polakierować uszkodzoną izolację przewodu
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 6

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjnego pierścieniowego.
B. Jednofazowego z kondensatorem pracy.
C. Indukcyjnego klatkowego.
D. Komutatorowego prądu stałego.
Odpowiedź wskazująca na silnik indukcyjny klatkowy jest poprawna, ponieważ na przedstawionym rysunku można zauważyć charakterystyczne cechy tego typu silnika. Wirnik klatkowy, który jest kluczowym elementem konstrukcyjnym, składa się z aluminiowych lub miedzianych prętów, które są połączone na obu końcach pierścieniami. Silniki indukcyjne klatkowe są powszechnie stosowane w przemyśle ze względu na swoją prostotę, trwałość oraz efektywność. Na przykład, znajdują zastosowanie w napędach mechanicznych, takich jak pompy, wentylatory czy taśmociągi. Ich zalety to niskie koszty eksploatacji i minimalna potrzeba konserwacji, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej, gdzie preferuje się rozwiązania wymagające jak najmniej interwencji serwisowych. Warto również zaznaczyć, że silniki te działają na zasadzie indukcji elektromagnetycznej, co czyni je bezpiecznymi oraz zdolnymi do pracy w różnych warunkach środowiskowych.

Pytanie 7

Jaki rodzaj uziomu zastosowano w instalacji piorunochronnej przedstawionej na rysunku?

Ilustracja do pytania
A. Fundamentowy.
B. Otokowy.
C. Promieniowy.
D. Pionowy.
Uziom otokowy w instalacji piorunochronnej to naprawdę ważny element, który zapewnia ochronę budynków przed wyładowaniami. Widzisz, na rysunku dokładnie widać czerwoną linię, która pokazuje uziom wokół budynku, co jest zupełnie normalne w takiej ochronie. Tworzy się go z przewodów zakopanych wokół, które mają za zadanie odprowadzać energię elektryczną w razie uderzenia pioruna. Dzięki temu szansa na uszkodzenie budynku lub sprzętu elektronicznego jest znacznie mniejsza. Jak wiadomo, normy mówią, że uziomy otokowe są najlepszym rozwiązaniem, zwłaszcza w wysokich obiektach, bo lepiej rozkładają prąd piorunowy. Korzystanie z tego typu uziomu nie tylko jest zgodne z inżynieryjnymi standardami, ale także chroni życie i mienie, co jest przecież najważniejsze.

Pytanie 8

Który osprzęt przedstawiono na ilustracji?

Ilustracja do pytania
A. Kapturki termokurczliwe.
B. Mufy przelotowe.
C. Dławiki izolacyjne.
D. Złączki skrętne.
Dławiki izolacyjne to kluczowe elementy stosowane w instalacjach elektrycznych, które zapewniają nie tylko ochronę przed wilgocią, ale również zabezpieczają izolację przewodów elektrycznych przed uszkodzeniem. Na ilustracji widoczne są dławiki, które charakteryzują się gwintem zewnętrznym oraz nakrętką, co umożliwia ich montaż w obudowach urządzeń. Dławiki te są zaprojektowane tak, aby wprowadzone przewody były zabezpieczone przed mechanicznymi uszkodzeniami oraz wpływem czynników zewnętrznych, takich jak woda czy zanieczyszczenia. Zgodnie z normami IEC 60529, dławiki powinny zapewniać odpowiednią klasę szczelności, co jest kluczowe w zastosowaniach przemysłowych, gdzie warunki środowiskowe mogą być ekstremalne. Na rynku dostępne są różne typy dławików, w tym dławiki plastikowe oraz metalowe, które różnią się zastosowaniem w zależności od rodzaju przewodów oraz środowiska pracy. Użycie dławików izolacyjnych w instalacjach elektrycznych jest zgodne z najlepszymi praktykami branżowymi, co podkreśla ich fundamentalne znaczenie dla bezpieczeństwa oraz niezawodności systemów elektrycznych.

Pytanie 9

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. YADY
B. LgY
C. XzTKMXpw
D. DYt
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 10

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
B. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
C. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
D. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
Wybrana odpowiedź jest poprawna, ponieważ na ilustracji przedstawiona jest wstawka kalibrowa bezpiecznika z oznaczeniami "63 A" oraz "500 V". Te oznaczenia wskazują, że wstawka jest przeznaczona do instalacji, w których napięcie znamionowe nie może przekraczać 500 V oraz dla wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A. W praktyce, zastosowanie odpowiednich bezpieczników jest kluczowe dla zapewnienia bezpieczeństwa w systemach elektroenergetycznych oraz ochrony przed przeciążeniem i zwarciem. Standardy takie jak PN-EN 60269, które dotyczą bezpieczników, określają wymagania dotyczące ich instalacji oraz właściwości, co pozwala na ich prawidłowe zastosowanie w różnych warunkach. W przypadku stosowania wyższych napięć lub większych prądów, konieczne jest stosowanie innych typów wkładek, co zwiększa ryzyko uszkodzeń i zagrożeń. Dlatego tak ważne jest, aby podczas wyboru zabezpieczeń kierować się wskazaniami producentów oraz normami branżowymi.

Pytanie 11

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
B. Uszkodzenie izolacji przewodu zasilającego urządzenie
C. Zwarcie bezpiecznika wewnętrznego urządzenia
D. Zniszczenie przewodu ochronnego PE
Uszkodzenie izolacji przewodu zasilającego urządzenie stanowi poważne zagrożenie porażenia prądem elektrycznym, ponieważ w przypadku uszkodzenia izolacji, napięcie z sieci elektrycznej może dostać się na zewnętrzne elementy urządzenia, co stwarza ryzyko kontaktu z prądem przez użytkownika. Przykładem zastosowania tej wiedzy w praktyce jest konieczność regularnej inspekcji przewodów zasilających i ich izolacji, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60204-1, które nakładają obowiązek zapewnienia odpowiednich środków ochrony przed porażeniem prądem. W przypadku stwierdzenia jakichkolwiek uszkodzeń, należy niezwłocznie wymienić uszkodzony przewód. Dodatkowo, stosowanie odpowiednich systemów zabezpieczeń, takich jak wyłączniki różnicowoprądowe, może znacząco obniżyć ryzyko porażenia prądem w przypadku awarii izolacji. Wiedza na temat potencjalnych zagrożeń związanych z uszkodzoną izolacją jest kluczowa dla zapewnienia bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 12

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IN ≤ IB ≤ IZ
B. IB ≤ IZ ≤ IN
C. IZ ≤ IN ≤ IB
D. IB ≤ IN ≤ IZ
Odpowiedź IB ≤ IN ≤ IZ jest prawidłowa, ponieważ odzwierciedla fundamentalne zasady projektowania instalacji elektrycznych. Prąd znamionowy obciążenia (IB) powinien być zawsze mniejszy lub równy prądowi znamionowemu zabezpieczenia przeciążeniowego (IN), aby zabezpieczenie mogło poprawnie zadziałać w przypadku nadmiernego obciążenia. Z kolei IN musi być mniejsze lub równe prądowi obciążalności długotrwałej przewodu (IZ), co zapewnia, że przewód nie ulegnie przegrzaniu ani uszkodzeniu w trakcie normalnej pracy. Takie podejście zgodne jest z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie odpowiedniego doboru zabezpieczeń i przewodów. Przykładowo, w przypadku instalacji oświetleniowej, jeśli przewody mają maksymalną obciążalność 10 A (IZ), a przewidywane obciążenie to 8 A (IB), to zabezpieczenie powinno mieć wartość 10 A (IN). Taki dobór zabezpieczenia pozwala na ochronę zarówno przewodów, jak i urządzeń podłączonych do instalacji.

Pytanie 13

Na którym rysunku przedstawiono oprawkę do źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór oprawki oznaczonej innymi literami, oprócz D, może wynikać z niepełnego zrozumienia właściwości materiałowych używanych w konstrukcji opraw. Na przykład, wiele osób może sądzić, że materiały takie jak tworzywa sztuczne są wystarczające dla źródeł światła dużej mocy. Jednakże, tworzywa sztuczne mają ograniczoną odporność na wysokie temperatury i mogą się topnieć lub odkształcać w warunkach, gdzie temperatura przekracza 100°C. Ponadto, stosowanie metali do budowy opraw również nie jest zalecane, ponieważ ich właściwości przewodzenia ciepła mogą prowadzić do lokalnych przegrzań i uszkodzenia zarówno oprawki, jak i źródła światła. W praktyce, niewłaściwy dobór materiału może prowadzić do skrócenia żywotności żarówki, zwiększonego ryzyka awarii, a także potencjalnych zagrożeń dla użytkowników. Często spotykanym błędem jest również niedocenianie znaczenia odprowadzania ciepła, co w dłuższej perspektywie prowadzi do obniżenia efektywności energetycznej systemu oświetleniowego. Dlatego kluczowe jest, aby projektując oprawy do źródeł światła dużej mocy, kierować się sprawdzonymi standardami i praktykami, które zapewnią odpowiednią wydajność i bezpieczeństwo w użytkowaniu.

Pytanie 14

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. rozdzielnicę główną
B. przyłącze
C. złącze
D. instalacje odbiorcze
Przyłącze, choć często mylone z złączem, pełni inną funkcję w systemie elektroenergetycznym. Przyłącze odnosi się do punktu, w którym instalacja elektryczna łączy się z siecią energetyczną. Jest to miejsce, gdzie energia elektryczna dostarczana jest do budynku, a nie element, który zarządza rozdzieleniem energii na kilka obwodów. W konsekwencji, przyłącze nie spełnia roli rozdzielnika dla linii wewnętrznych. Rozdzielnica główna, z kolei, jest odpowiedzialna za dystrybucję energii elektrycznej do różnych obwodów w instalacji, ale nie jest bezpośrednio przeznaczona do łączenia wielu linii zasilających w jednym punkcie, jak ma to miejsce w przypadku złącza. Instalacje odbiorcze również nie są właściwą odpowiedzią, gdyż odnosi się to do urządzeń, które pobierają energię elektryczną z sieci, takich jak oświetlenie czy urządzenia domowe. Błędne zrozumienie funkcji tych elementów może prowadzić do nieefektywnych lub niebezpiecznych rozwiązań w instalacji, dlatego istotne jest zrozumienie różnicy między złączem a innymi komponentami systemu elektroenergetycznego. Właściwe rozpoznanie funkcji złącz i innych elementów jest kluczowe dla bezpieczeństwa oraz efektywności każdej instalacji elektrycznej.

Pytanie 15

Który przewód jest oznaczony literami PE?

A. Ochronny
B. Fazowy
C. Ochronno-neutralny
D. Neutralny
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 16

W jaki sposób steruje się oświetleniem w układzie, którego schemat przedstawiono na rysunku?

Łącznik 1 sterujeŁącznik 2 steruje
A.oddzielnie źródłami światła tylko w punkcie A.oddzielnie źródłami światła tylko w punkcie B.
B.oddzielnie po jednym ze źródeł światła w punktach A i B.oddzielnie po jednym ze źródeł światła w punktach A i B.
C.wszystkimi źródłami światła jednocześnie tylko w punkcie A.wszystkimi źródłami światła jednocześnie tylko w punkcie B.
D.wszystkimi źródłami światła w punktach A i B jednocześnie.wszystkimi źródłami światła w punktach A i B jednocześnie.
Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Poprawna odpowiedź D wskazuje, że w układzie przedstawionym na schemacie, oświetlenie jest sterowane za pomocą dwóch łączników, które są połączone z dwoma źródłami światła. Każde źródło posiada po dwie żarówki o mocy 60 W, co daje łączną moc 240 W dla całego układu. W praktyce oznacza to, że użytkownik ma możliwość włączania i wyłączania wszystkich żarówek jednocześnie poprzez oba łączniki. Takie rozwiązanie jest zgodne z zasadami prostoty i funkcjonalności, które są kluczowe w projektowaniu instalacji oświetleniowych. W branży elektrycznej standardem jest stosowanie łączników w taki sposób, aby ich działanie było intuicyjne dla użytkowników. Dodatkowo, takie sterowanie pozwala na oszczędność energii, gdyż użytkownik może łatwo wyłączyć całe oświetlenie, gdy nie jest potrzebne. Zastosowanie dwóch łączników w jednym obwodzie jest również praktyczne w kontekście bezpieczeństwa, gdyż pozwala na zdalne sterowanie oświetleniem z różnych miejsc w pomieszczeniu.

Pytanie 17

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,82
B. 0,69
C. 0,57
D. 0,99
Obliczenie znamionowego współczynnika mocy (cos φ) dla silnika trójfazowego to dość prosta sprawa, jeśli mamy wszystkie potrzebne dane. Mówiąc w skrócie, ten współczynnik to stosunek mocy czynnej (P) do mocy pozornej (S). Może być obliczony za pomocą wzoru: cos φ = P / (√3 * U * I), gdzie P to moc czynna, U to napięcie, a I to prąd znamionowy. Jak podstawimy wartości z pytania: P = 2,2 kW, U = 400 V, I = 4,6 A, to najpierw liczymy S = √3 * 400 V * 4,6 A, co daje nam 2,664 kVA. Potem obliczamy cos φ = 2,2 kW / 2,664 kVA, co wychodzi około 0,826. Jak zaokrąglimy, to dostaniemy 0,82. Wiesz, czemu to jest ważne? Bo dobrze obliczony współczynnik mocy pomaga w projektowaniu układów elektroenergetycznych, a to z kolei przekłada się na lepszą efektywność energetyczną i mniejsze straty energii. Silniki z wyższym współczynnikiem mocy są bardziej efektywne i można na nich zaoszczędzić, co jest korzystne zarówno dla nas, jak i dla sieci zasilającej.

Pytanie 18

Który z przedstawionych rdzeni stosowany jest do produkcji transformatora toroidalnego?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Rdzeń toroidalny, oznaczony literą C, jest kluczowy w produkcji transformatorów toroidalnych, które charakteryzują się wysoką efektywnością oraz niskimi stratami energii. Jego kształt pierścienia pozwala na skoncentrowanie strumienia magnetycznego wewnątrz rdzenia, co minimalizuje straty związane z rozproszeniem. Przykładami zastosowania rdzeni toroidalnych są transformatory w urządzeniach audiofilskich, gdzie kluczowa jest jakość dźwięku oraz minimalizacja zniekształceń. W branży elektrycznej i elektronicznej, rdzenie toroidalnych transformatorów znajdują zastosowanie w zasilaczach oraz w systemach zasilania awaryjnego (UPS), gdzie wymagane są niewielkie wymiary oraz wysoka efektywność energetyczna. Warto również podkreślić, że stosowanie rdzeni toroidalnych jest zgodne z najlepszymi praktykami w zakresie projektowania układów elektronicznych, co potwierdzają normy takie jak IEC 60076, dotyczące transformatorów energetycznych.

Pytanie 19

Na rysunku przedstawiono graficzne oznaczenie przewodu

Ilustracja do pytania
A. czynnego pod napięciem.
B. ochronnego.
C. uziemiającego.
D. ochronno-neutralnego.
Poprawna odpowiedź to przewód ochronno-neutralny (PEN), który pełni kluczową rolę w systemach elektrycznych, szczególnie w układach TN-C. Przewód ten łączy funkcje przewodu neutralnego (N) oraz ochronnego (PE), co umożliwia zarówno bezpieczne odprowadzanie prądu w przypadku awarii, jak i zapewnienie powrotu prądu do źródła zasilania. W praktyce oznacza to, że w przypadku uszkodzenia przewodu, prąd może zostać odprowadzony do ziemi, co zapobiega porażeniom elektrycznym. Stosowanie przewodu PEN jest zgodne z normami PN-IEC 60364 oraz PN-EN 50174, które określają zasady budowy instalacji elektrycznych, zapewniając bezpieczeństwo użytkowników. Właściwe zrozumienie funkcji przewodu PEN jest niezbędne dla projektantów i wykonawców instalacji elektrycznych, aby zapewnić ich zgodność z obowiązującymi przepisami oraz skuteczną ochronę przed zagrożeniami elektrycznymi.

Pytanie 20

Jaki element przewodu oznaczony jest cyfrą 1?

Ilustracja do pytania
A. Izolacja żyły.
B. Uzbrojenie.
C. Oplot włóknisty.
D. Powłoka.
Element oznaczony cyfrą 1 na załączonym obrazku jest powłoką przewodu, co jest kluczowe dla zapewnienia jego właściwego funkcjonowania i długowieczności. Powłoka zewnętrzna pełni istotną funkcję ochronną, osłaniając przewód przed niekorzystnymi warunkami środowiskowymi, takimi jak wilgoć czy zmiany temperatury, które mogą prowadzić do degradacji materiałów. Dobre praktyki branżowe zalecają stosowanie powłok wykonanych z materiałów odpornych na działanie chemikaliów oraz uszkodzenia mechaniczne. Na przykład, w instalacjach przemysłowych często stosuje się przewody z powłoką PVC lub PUR, które zapewniają wysoką odporność na ścieranie i działanie substancji chemicznych. Przykładem zastosowania powłok jest ich użycie w kablach zasilających, które muszą być odpowiednio zabezpieczone przed uszkodzeniami, aby zapewnić bezpieczeństwo użytkowników oraz ciągłość dostaw energii. Właściwie dobrana powłoka to kluczowy element w projektowaniu przewodów, co potwierdzają standardy takie jak IEC 60227 dla kabli instalacyjnych.

Pytanie 21

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Jeden klawisz i cztery zaciski
B. Jeden klawisz i trzy zaciski
C. Dwa klawisze i trzy zaciski
D. Dwa klawisze i cztery zaciski
Wybór odpowiedzi z dwiema klawiszami jest błędny, ponieważ klasyczny pojedynczy łącznik schodowy z definicji nie może posiadać więcej niż jednego klawisza. Dwa klawisze są charakterystyczne dla łączników podwójnych, które umożliwiają kontrolę dwóch niezależnych obwodów oświetleniowych z jednego miejsca. Takie zamieszanie często wynika z niezrozumienia różnic między różnymi typami łączników. W przypadku łączników schodowych, ich podstawowa rola polega na umożliwieniu włączania i wyłączania światła z dwóch różnych miejsc, co jest realizowane przez połączenie dwóch łączników schodowych w układzie krzyżowym. Jeśli chodzi o zaciski, odpowiedzi sugerujące cztery zaciski lub niepoprawną liczbę trzech zacisków są mylące. Często błędne zrozumienie liczby zacisków wynika z pomylenia łączników schodowych z innymi typami łączników, takimi jak łączniki krzyżowe, które rzeczywiście mogą mieć więcej zacisków. Kluczem do zrozumienia funkcji łączników jest znajomość ich budowy oraz zasad działania w kontekście całego obwodu elektrycznego, co pozwala na ich właściwe wykorzystanie w praktyce.

Pytanie 22

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Nożem monterskim
B. Kluczem płaskim
C. Wkrętakiem
D. Neonowym wskaźnikiem napięcia
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 23

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Przekaźnik priorytetowy.
C. Regulator oświetlenia.
D. Regulator temperatury.
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.

Pytanie 24

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Wkładkę kalibrową.
B. Gniazdo zapłonnika.
C. Oprawkę źródła światła.
D. Wkładkę topikową bezpiecznika.
Oprawka źródła światła jest kluczowym elementem w instalacjach elektrycznych, umożliwiającym prawidłowe podłączenie i utrzymanie źródła światła, takiego jak żarówka. Jej główną funkcją jest nie tylko mechaniczne wsparcie, ale także zapewnienie odpowiedniej izolacji elektrycznej. Oprawki są projektowane zgodnie z normami, takimi jak PN-EN 60238, które określają wymagania techniczne dla oprawek żarówek. Przykłady zastosowania obejmują różnorodne instalacje oświetleniowe w domach, biurach i zakładach przemysłowych. Warto również zauważyć, że odpowiedni dobór oprawki ma znaczenie dla efektywności energetycznej systemu oświetleniowego, co jest kluczowe w kontekście nowoczesnych standardów zrównoważonego rozwoju. Właściwa instalacja i użytkowanie oprawki przyczyniają się do dłuższej żywotności źródła światła oraz minimalizują ryzyko awarii, co jest istotne w kontekście bezpieczeństwa użytkowników oraz ochrony mienia.

Pytanie 25

Do pomiaru napięć stałych należy użyć miernika elektrycznego o ustroju, którego symbol graficzny przedstawiono na rysunku

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
W przypadku wyboru jakiejkolwiek innej odpowiedzi, można zauważyć szereg nieporozumień dotyczących symboli oraz ich zastosowania w elektrotechnice. Symbol przedstawiony przy opcji A, który sugeruje gniazdo zasilania stałego, nie ma zastosowania w kontekście pomiaru napięcia, jako że jego funkcja polega na dostarczaniu energii elektrycznej, a nie na jej pomiarze. Wybór B, symbolizujący rezystor, również jest błędny, ponieważ rezystory są komponentami pasywnymi stosowanymi do ograniczania prądu w obwodach, a nie do pomiaru napięcia. Ponadto, wybór C, który przedstawia symbol cewki indukcyjnej, może prowadzić do mylnych wniosków o pomiarze napięcia w obwodach, w których cewki są używane. Cewki indukcyjne są elementami aktywnymi, ale ich rola w pomiarach napięcia jest ograniczona, a w niektórych przypadkach mogą powodować zniekształcenia w wynikach pomiarów. Te wybory świadczą o braku zrozumienia różnicy między symbolami komponentów pasywnych a przyrządami pomiarowymi. Wybór niewłaściwego symbolu odzwierciedla typowe błędy myślowe w zakresie rozpoznawania zastosowań komponentów elektrycznych oraz ich rzeczywistej funkcji w obwodach, co jest kluczowe dla prawidłowego stosowania wiedzy w praktyce inżynieryjnej.

Pytanie 26

Którą z funkcji umożliwia układ zasilania silnika elektrycznego przedstawiony na schemacie?

Ilustracja do pytania
A. Rozruch za pomocą rozrusznika rezystorowego.
B. Pracę ze zmiennym kierunkiem obrotów.
C. Przełączanie uzwojeń z gwiazdy na trójkąt.
D. Hamowanie dynamiczne.
Rozruch silnika elektrycznego z użyciem rozrusznika rezystorowego to jedna z popularnych metod w przemyśle. Jak to wygląda w praktyce? No, na schemacie widzimy styczniki K1M, K2M, K3M oraz rezystory R1 i R2, które współpracują, żeby stopniowo podnosić napięcie do silnika M1. Na początku rozruchu te rezystory ograniczają prąd, co zmniejsza ryzyko przeciążenia i udaru. Dzięki temu silnik osiąga pełną prędkość w kontrolowany sposób. Z mojego doświadczenia wiem, że to ważne dla trwałości maszyn. Rozruszniki rezystorowe są zgodne z normami IEC i są dobrym rozwiązaniem, bo ograniczają zakłócenia w sieci energetycznej i zwiększają bezpieczeństwo. Przy dużych mocach, taki układ to wręcz konieczność, by utrzymać integralność elektryczną i mechaniczną urządzenia.

Pytanie 27

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje magnetyzm szczątkowy.
B. Zmniejsza napięcie podtrzymania cewki.
C. Likwiduje drgania zwory.
D. Zmniejsza siłę docisku zwory.
Element wskazany na ilustracji czarną strzałką w styczniku rzeczywiście pełni rolę tłumika drgań. Jego głównym zadaniem jest eliminowanie drgań zwory, które mogą wystąpić podczas cykli załączania i wyłączania stycznika. Drgania zwory, jeśli nie są skutecznie kontrolowane, mogą prowadzić do problemów z kontaktami, takich jak drgające styki, co w konsekwencji może doprowadzić do uszkodzenia urządzenia lub zakłóceń w jego pracy. W praktyce, zastosowanie tłumika drgań ma kluczowe znaczenie w systemach automatyki, gdzie stabilność i niezawodność działania elementów wykonawczych są niezwykle istotne. Zgodnie z dobrymi praktykami branżowymi, stosowanie tłumików drgań jest standardem w projektowaniu nowoczesnych styczników. Tłumiki te mogą być również wykorzystywane w innych aplikacjach, takich jak siłowniki pneumatyczne czy hydrauliczne, gdzie drgania mogą negatywnie wpływać na wydajność sprzętu. Rekomenduje się regularne sprawdzanie stanu tłumików drgań w celu zapewnienia ich efektywności oraz poprawy ogólnej niezawodności systemu.

Pytanie 28

Aparat pokazany na zdjęciu jest wykorzystywany do

Ilustracja do pytania
A. wyłączania prądów roboczych.
B. wykrywania prądów upływu.
C. ograniczania przepięć.
D. ograniczania napięć.
Aparat przedstawiony na zdjęciu to ogranicznik przepięć, który odgrywa kluczową rolę w zabezpieczaniu instalacji elektrycznych przed skutkami przepięć. Przepięcia mogą występować na skutek naturalnych zjawisk, takich jak wyładowania atmosferyczne, ale również z powodu operacji w sieci energetycznej, co może prowadzić do niebezpiecznych wzrostów napięcia. Ograniczniki przepięć są zaprojektowane tak, aby natychmiast reagować na te niekorzystne zjawiska, kierując nadmiar energii do ziemi i tym samym chroniąc urządzenia podłączone do instalacji. W praktyce, stosowanie ograniczników przepięć jest standardem w projektowaniu obiektów budowlanych, zgodnie z normami PN-EN 62305, które definiują wymagania dotyczące ochrony przed skutkami wyładowań atmosferycznych. Dzięki zastosowaniu tych urządzeń, można znacznie zredukować ryzyko uszkodzenia sprzętu oraz strat materialnych wynikających z niekontrolowanych przepięć.

Pytanie 29

W jaki sposób powinno się podłączyć obwód prądowy oraz obwód napięciowy jednofazowego elektronicznego licznika energii elektrycznej do systemu pomiarowego?

A. Prądowy i napięciowy równolegle
B. Prądowy równolegle, napięciowy szeregowo
C. Prądowy i napięciowy szeregowo
D. Prądowy szeregowo, napięciowy równolegle
Prawidłowe włączenie obwodu prądowego szeregowo oraz obwodu napięciowego równolegle jest kluczowe dla właściwego działania jednofazowego licznika energii elektrycznej. Zastosowanie tego schematu wynika z potrzeby pomiaru prądu płynącego przez odbiornik oraz zjawiska pomiaru napięcia. Obwód prądowy podłączony szeregowo zapewnia, że cały prąd przepływający przez obwód również przepływa przez licznik, co umożliwia dokładny pomiar zużycia energii. Z kolei obwód napięciowy podłączony równolegle do odbiornika gwarantuje, że napięcie na liczniku jest zgodne z napięciem zasilania, co jest niezbędne do prawidłowego wyliczenia wartości energii. Taki sposób podłączenia jest zgodny z normami EN 62053-21 oraz PN-EN 60044-1, które definiują wymagania techniczne dla liczników energii elektrycznej. Przykładem zastosowania tej wiedzy jest instalacja liczników w obiektach komercyjnych, gdzie dokładność pomiarów jest krytyczna dla zarządzania kosztami energii.

Pytanie 30

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 31

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia lamp oświetleniowych
B. wymiany gniazd zasilających
C. czyszczenia urządzeń w rozdzielniach
D. montażu nowych punktów świetlnych
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 32

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z miedzi w formie drutu
B. Z miedzi w formie linki
C. Z aluminium w formie linki
D. Z aluminium w formie drutu
Wybór materiałów i formy przewodów jest naprawdę ważny dla bezpieczeństwa i wydajności instalacji elektrycznych. Aluminium jest używane w różnych miejscach, ale w elektryce miedź wciąż rządzi, bo ma lepsze właściwości przewodzące. Odpowiedzi sugerujące aluminium, czy to w linkach, czy drutach, nie biorą pod uwagę, że aluminium ma większą rezystywność niż miedź, co generuje większe straty energii. Do tego, aluminium łatwiej się psuje, zwłaszcza w wilgoci, co osłabia połączenia elektryczne. Ta kwestia z linkami też jest myląca, bo YDYp to drut, a nie linka, co daje mu większą sztywność i stabilność. Użycie linki w małych przewodach może być problematyczne przy montażu i izolacji. Wybierając przewody do instalacji elektrycznych, warto zwracać uwagę na materiały i ich właściwości, bo to zapewnia bezpieczeństwo i zgodność z normami.

Pytanie 33

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.
A. 0,07%
B. 0,74%
C. 0,62%
D. 6,10%
Względny błąd pomiaru napięcia wynosi 0,62%, co oznacza, że pomiar wykonany za pomocą woltomierza jest dokładny w granicach tego błędu. W celu obliczenia względnego błędu, należy dodać błąd stały urządzenia do błędu procentowego, a następnie podzielić tę sumę przez wartość zmierzoną (w tym przypadku 120 V). Takie podejście jest zgodne z profesjonalnymi standardami pomiarowymi, które wskazują, jak prawidłowo oceniać błędy pomiarowe. W praktyce, stosując woltomierz, bardzo ważne jest, aby zrozumieć i obliczyć te błędy, aby zapewnić dokładność i wiarygodność pomiarów. Na przykład, w zastosowaniach inżynieryjnych, gdzie precyzyjne parametry elektryczne są krytyczne, skuteczne zarządzanie błędami pomiarowymi pozwala na optymalizację procesów produkcyjnych, a także na zapewnienie bezpieczeństwa. W związku z tym, umiejętność obliczania względnych błędów pomiarowych jest kluczowa dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 34

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w złączu budynku
B. w puszkach instalacyjnych gniazd odbiorczych
C. w rozdzielnicach mieszkaniowych
D. na linii zasilającej budynek
Odpowiedź wskazująca na rozdzielnice mieszkaniowe jako miejsce instalacji ochronników przeciwprzepięciowych klasy C jest poprawna, ponieważ rozdzielnice te pełnią kluczową rolę w zarządzaniu i dystrybucji energii elektrycznej w budynku. Ochronniki klasy C są projektowane do ochrony przed przepięciami wynikającymi z różnorodnych zjawisk, takich jak wyładowania atmosferyczne czy zakłócenia w sieci. Montaż tych urządzeń w rozdzielnicach mieszkaniowych pozwala na skuteczną ochronę wszystkich obwodów, które z nich zasilają, co jest zgodne z normą PN-EN 61643-11 oraz wytycznymi zawartymi w dokumentach technicznych dotyczących instalacji elektrycznych. Przykładowo, w przypadku wyładowania atmosferycznego, przepięcia mogą przedostać się do instalacji, co może prowadzić do uszkodzenia sprzętu elektronicznego. Umiejscowienie ochronników w rozdzielnicach minimalizuje te ryzyka, zapewniając bezpieczeństwo i ciągłość działania urządzeń w gospodarstwie domowym.

Pytanie 35

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Przerwa w uzwojeniu fazy W
B. Zwarcie międzyzwojowe w fazie W
C. Przerwa w uzwojeniu fazy V
D. Zwarcie międzyzwojowe w fazie V
Zwarcie międzyzwojowe w fazie V jest poprawną odpowiedzią, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego ujawnia asymetrię, która wskazuje na uszkodzenie. W prawidłowo działającym silniku rezystancje uzwojeń powinny być zbliżone do siebie. W przypadku, gdy rezystancje między zaciskami U-V i V-W wynoszą 15 Ω, a rezystancja W-U wynosi 20 Ω, wyraźnie widać, że różnice te mogą być efektem zwarcia międzyzwojowego. Zwarcia te prowadzą do zmiany charakterystyki prądowej uzwojenia, co skutkuje obniżeniem rezystancji w fazie, w której występuje uszkodzenie. W praktyce, takie uszkodzenia mogą być niebezpieczne, prowadząc do przegrzania silnika i jego uszkodzenia. W związku z tym, regularne pomiary rezystancji uzwojeń są istotne dla utrzymania sprawności sprzętu. Zgodnie z normami branżowymi, takie kontrole powinny być częścią rutynowego przeglądu konserwacyjnego, co pozwala na wczesne wykrycie problemów i ich eliminację.

Pytanie 36

Układ przedstawiony na rysunku służy do pomiaru

Ilustracja do pytania
A. prądu zadziałania wyłącznika różnicowoprądowego.
B. rezystancji przewodów.
C. napięcia zadziałania wyłącznika różnicowoprądowego.
D. obciążenia układu.
Układ przedstawiony na rysunku rzeczywiście służy do pomiaru prądu zadziałania wyłącznika różnicowoprądowego (RCD). W tym układzie amperomierz jest podłączony szeregowo z rezystorem Rp, a obciążenie zostało odłączone. Taki sposób podłączenia pozwala na dokładne zbadanie prądu, przy którym wyłącznik różnicowoprądowy zareaguje, odłączając obwód. Prąd zadziałania RCD jest kluczowy dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, ponieważ jego zadaniem jest wykrywanie różnicy prądów między przewodem fazowym a neutralnym, co może wskazywać na obecność prądu upływowego. W praktyce, odpowiedni dobór wartości prądu zadziałania jest określony w normach, takich jak PN-EN 61008-1, które regulują działanie wyłączników różnicowoprądowych. Przykładem zastosowania jest montaż RCD w obwodach zasilających urządzenia o zwiększonym ryzyku porażenia prądem, takich jak urządzenia elektryczne w łazienkach czy na zewnątrz budynków. RCD przyczynia się do minimalizacji ryzyka porażenia prądem, a także pożarów spowodowanych zwarciem prowadzącym do przegrzania. Dlatego testowanie prądu zadziałania jest kluczowym elementem konserwacji i przeglądów instalacji elektrycznych.

Pytanie 37

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
B. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
C. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
D. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
Odpowiedzi sugerujące, że prace remontowe należy zawsze wykonywać po wyłączeniu napięcia, że pod napięciem można wymieniać tylko bezpieczniki lub żarówki, czy że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, mogą prowadzić do nieporozumień i błędnych praktyk. Owszem, wyłączenie napięcia jest generalnie najbezpieczniejszym podejściem, jednak w niektórych sytuacjach, takich jak wymiana bezpieczników czy żarówek, przy zachowaniu odpowiednich środków ostrożności, można te prace wykonać pod napięciem. Istnieją normy i przepisy BHP, które określają, kiedy i jak można pracować w warunkach napięcia, a także jakie środki ochrony osobistej należy stosować. Ponadto, nie wszystkie prace wymagają obecności osoby asekurującej, co może spowodować niepotrzebne opóźnienia w realizacji zadań. Kluczowym błędem myślowym w takich podejściach jest założenie, że każda sytuacja jest równoznaczna z wysokim ryzykiem i wymaga nadzoru, co nie zawsze jest prawdą. Zrozumienie kontekstu, w jakim przeprowadzane są prace oraz umiejętność oceny ryzyka to umiejętności, które powinny być rozwijane przez osoby pracujące w branży elektrycznej. Należy również pamiętać, że interpretacja przepisów powinna być dostosowywana do specyficznych warunków pracy oraz typu realizowanej operacji.

Pytanie 38

W jaki sposób i przewodem o jakim przekroju ma być wykonana trójfazowa wewnętrzna linia zasilająca (WLZ), której obciążalność prądowa wynosi 220 A?

Obciążalność prądowa długotrwała w A przewodów
o żyłach Cu w izolacji PVC ułożonych w różny sposób
Przekrój
znamionowy żył
w mm²
Instalacja wykonana
sposobami
CE
70211216
95225238
gdzie:
C – przewody układane po wierzchu, na ścianie lub suficie drewnianym
E – przewody wielożyłowe ułożone swobodnie w powietrzu lub korytku kablowym
A. Sposób E i 95 mm2
B. Sposób C i 70 mm2
C. Sposób C i 95 mm2
D. Sposób E i 70 mm2
W przypadku niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów logicznych, które mogą prowadzić do niewłaściwych wniosków. Na przykład, wybór metody C z przekrojem 95 mm², mimo że przekrój przewodu spełnia wymogi obciążalności, nie uwzględnia faktu, że sposób ułożenia ma zasadnicze znaczenie dla bezpieczeństwa i wydajności. Sposób C to układ przewodów w rurkach instalacyjnych, co ogranicza ich zdolność do odprowadzania ciepła. W rezultacie może to prowadzić do przegrzania i potencjalnych uszkodzeń instalacji. Również wybór sposobu E z mniejszym przekrojem 70 mm² jest nieadekwatny, ponieważ obciążalność tego przewodu wynosi jedynie 200 A, co nie wystarcza do obsługi wymaganej wartości 220 A. W takich przypadkach warto zwrócić uwagę na obliczenia dotyczące obciążalności prądowej przewodów, które są podstawą do projektowania prawidłowych instalacji elektrycznych. Niezastosowanie się do standardów, takich jak PN-IEC 60364, w kontekście doboru zarówno metody ułożenia, jak i przekroju przewodu, może prowadzić do awarii systemów zasilających oraz zagrożeń dla bezpieczeństwa użytkowników. Dlatego tak ważne jest, aby przed podjęciem decyzji o wyborze odpowiednich komponentów instalacji elektrycznej, dokładnie analizować wymagania oraz standardy branżowe.

Pytanie 39

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Sprawdzenie stanu izolacji oraz powłok przewodów
B. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
C. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
D. Zamiana wszystkich źródeł oświetlenia w oprawach
Sprawdzenie stanu izolacji i powłok przewodów jest kluczowym elementem konserwacji instalacji elektrycznych w mieszkaniach. Izolacja przewodów jest niezbędna do zapewnienia bezpieczeństwa użytkowania, ponieważ uszkodzona lub niewłaściwa izolacja może prowadzić do zwarć, pożarów, a także porażenia prądem. Regularne inspekcje stanu izolacji powinny być przeprowadzane zgodnie z obowiązującymi standardami, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych w obiektach budowlanych. Przykładowe metody oceny stanu izolacji obejmują pomiar rezystancji przy użyciu megomierza. Zastosowanie odpowiednich technik, takich jak testy izolacji, pozwala na wczesne wykrycie problemów i ich naprawę, co przekłada się na dłuższą żywotność instalacji oraz zwiększa bezpieczeństwo mieszkańców. Dbanie o stan izolacji to nie tylko spełnienie wymogów prawnych, ale także odpowiedzialność za bezpieczeństwo domowników i ich majątek.

Pytanie 40

Który element instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Ogranicznik mocy.
B. Wyłącznik ciśnieniowy.
C. Ogranicznik przepięć.
D. Wyłącznik priorytetowy.
Odpowiedzi, które wybrałeś, są nietrafne, bo opierają się na mylnych przekonaniach na temat funkcji różnych elementów w instalacjach elektrycznych. Na przykład, wyłącznik priorytetowy zajmuje się zarządzaniem priorytetami w zasilaniu, gdy mamy kilka źródeł prądu. Ale on nie ma nic wspólnego z monitorowaniem mocy elektrycznej. Działa tak, że przydziela zasilanie najważniejszym urządzeniom, gdy główne źródło przestaje działać.Dlatego akurat w kontekście rysunku, brak oznaczeń związanych z zasilaniem priorytetowym eliminuje tę odpowiedź. Ogranicznik przepięć ma na celu chronić instalacje przed nagłymi wzrostami napięcia, na przykład podczas burzy. To też ważne urządzenie, ale nie reguluje mocy. Wyłącznik ciśnieniowy kontroluje ciśnienie w systemach hydraulicznych albo pneumatycznych, i nie ma nic wspólnego z elektrycznością. Często popełniamy błąd, myląc różne urządzenia elektryczne, co prowadzi do złych wniosków. Żeby dobrze projektować i eksploatować instalacje elektryczne, warto znać specyfikacje i funkcje tych elementów.