Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 12:52
  • Data zakończenia: 17 grudnia 2025 13:02

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby sprawdzić precyzję poziomego ustawienia kolejnych warstw cegieł, należy użyć

A. łaty.
B. sznura murarskiego.
C. poziomicy.
D. warstwomierza.
Poziomica to narzędzie niezbędne do zapewnienia, że warstwy cegieł są ułożone w poziomie, co jest kluczowe dla trwałości i estetyki budowli. Użycie poziomicy pozwala na dokładne pomiary, które wskazują, czy trzymana powierzchnia jest idealnie równa. Jest to szczególnie ważne w przypadku konstrukcji, gdzie nawet niewielkie odchylenia mogą prowadzić do problemów strukturalnych. Standardy budowlane zalecają używanie poziomicy do kontroli poziomu podłoża przed rozpoczęciem murowania oraz podczas układania kolejnych warstw. Przykładem zastosowania poziomicy może być postawienie pierwszej warstwy cegieł na fundamentach, gdzie jej użycie pozwala na uzyskanie idealnego poziomu, co jest podstawą dla kolejnych etapów budowy. Warto również pamiętać, że poziomica może być wykorzystana w różnych sytuacjach budowlanych, takich jak montaż okien czy drzwi, gdzie precyzyjne ułożenie ma kluczowe znaczenie dla funkcjonalności i wyglądu. W związku z tym, posługiwanie się poziomicą jest nie tylko dobrą praktyką, ale także niezbędnym standardem w branży budowlanej.

Pytanie 2

Ilość pracy jednego robotnika przy zalewaniu 1 m3 wieńca na ścianie wynosi 0,8 r-g. Stawka za 1 r-g to 20 zł. Jaką kwotę trzeba zapłacić za robociznę 4 robotników, jeśli każdy z nich wykonał 10 m3 wieńca?

A. 640 zł
B. 160 zł
C. 800 zł
D. 320 zł
Obliczanie kosztu robocizny w kontekście prac budowlanych wymaga precyzyjnego zrozumienia, jak poszczególne elementy wpływają na całkowity koszt projektu. Wiele osób może popełnić błąd, nie uwzględniając całkowitego nakładu pracy, co prowadzi do niedoszacowania wydatków. Na przykład, jeśli ktoś obliczy koszt robocizny dla pojedynczego robotnika, a następnie pomnoży to przez liczbę m3, może uzyskać niepoprawne wyniki. Kluczowe jest zrozumienie, że każdy robotnik ma określony nakład pracy, który musi być pomnożony przez liczba robotników oraz ilość m3 wykonywanej pracy. Często pomija się również stawkę roboczą, co prowadzi do błędnych kalkulacji. Typowym błędem jest również nieprawidłowe zrozumienie koncepcji r-g, co może skutkować złym oszacowaniem czasu pracy i kosztów. Właściwe podejście wymaga znajomości standardów kalkulacji kosztów robocizny i umiejętności ich zastosowania w praktyce, co jest niezbędne dla efektywnego zarządzania projektami budowlanymi. W praktyce, niezrozumienie tych zasad może prowadzić do poważnych problemów finansowych na budowie, dlatego zawsze warto dążyć do dokładnych obliczeń i być świadomym wszystkich zmiennych wpływających na ostateczny koszt.

Pytanie 3

Jaką część konstrukcyjną należy umieścić bezpośrednio nad otworem okiennym?

A. Filar międzyokienny
B. Gzyms
C. Ławę podokaenną
D. Nadproże
Nadproże to naprawdę istotny element w budowie, który montujemy tuż nad oknem. Jego głównym zadaniem jest przenoszenie obciążeń z góry, żeby ściana była stabilna i nie zaczęły się robić pęknięcia. Z praktyki wiem, że najczęściej robimy je z betonu, stali, a czasami też z drewna, zależnie od tego, co jest w projekcie. Ważne, żeby nadproże było dobrze zaprojektowane, bo jego rozmiar i nośność muszą pasować do obciążeń, które będzie musiało wytrzymać. W budownictwie mamy takie normy, jak Eurokody, które podkreślają, że trzeba przeprowadzić obliczenia, aby upewnić się, że wszystko będzie bezpieczne i trwałe. Dobrze też pamiętać o izolacji termicznej nadproża, bo to znacznie poprawia efektywność energetyczną budynku.

Pytanie 4

Do przygotowywania zapraw tynkarskich, bez wcześniejszych badań dotyczących składu i właściwości, można wykorzystać wodę

A. z wodociągu
B. odzyskaną z produkcji betonu
C. z rzek i jezior
D. ze zbiorników podziemnych
Wybór wody z odzysku albo wody z rzek, jezior czy zbiorników podziemnych do robienia zapraw tynkarskich może prowadzić do wielu problemów. Woda, którą odzyskuje się po produkcji betonu, często ma resztki chemikaliów, które mogą negatywnie wpłynąć na zaprawę. Jeśli nie będziemy przestrzegać norm czystości, nasze tynki mogą być osłabione, a to sprzyja ich pękaniu czy erozji. Woda z rzek i jezior, mimo że łatwo dostępna, zazwyczaj ma różne zanieczyszczenia organiczne i mikroorganizmy, co może obniżyć jakość zaprawy oraz wywołać niespodziewane reakcje chemiczne. Natomiast woda ze zbiorników podziemnych może być skażona i nie znamy jej składu chemicznego, co dodatkowo stwarza zagrożenie dla konstrukcji. W budownictwie ważne jest, by trzymać się standardów jakości, takich jak normy PN-EN 1008, które dokładnie określają wymagania dla wody w betonie i zaprawach. Dlatego korzystanie z wody z wodociągu, która jest regularnie badana, to klucz do trwałości i jakości tynków.

Pytanie 5

Bloczki silikatowe to wyroby poddawane autoklawizacji?

A. wapienno-piaskowe
B. z betonu komórkowego
C. z zaczynu gipsowego
D. cementowo-piaskowe
Bloczki silikatowe, klasyfikowane jako autoklawizowane wyroby wapienno-piaskowe, są produktem, który powstaje w wyniku połączenia wapna, piasku oraz wody, a następnie poddawany jest obróbce w autoklawie, gdzie zachodzi proces utwardzania pod wysokim ciśnieniem i temperaturą. Ten proces nie tylko zapewnia wysoką wytrzymałość bloczków, ale również ich doskonałe właściwości izolacyjne. W praktyce, bloczki silikatowe są niezwykle cenione w budownictwie mieszkaniowym i przemysłowym, dzięki ich łatwości w obróbce oraz możliwości formowania różnych kształtów i wymiarów. Wiele projektów budowlanych korzysta z tych materiałów w celu budowy ścian nośnych oraz działowych, co przekłada się na oszczędności w kosztach materiałowych oraz czasu pracy. Zgodnie z normami PN-EN 771-1, bloczki silikatowe spełniają wymagania dotyczące wytrzymałości, a także izolacyjności akustycznej i cieplnej, co czyni je zgodnymi z dobrą praktyką budowlaną w zakresie efektywności energetycznej budynków.

Pytanie 6

Wszystkie techniczne wymagania związane z realizacją i odbiorem prac tynkarskich znajdują się w

A. kosztorysie ofertowym
B. dzienniku budowy
C. specyfikacji technicznej
D. projekcie architektonicznym
Specyfikacja techniczna to kluczowy dokument w procesie budowlanym, który określa wszystkie wymagania dotyczące wykonania i odbioru robót, w tym robót tynkarskich. Zawiera szczegółowe informacje o materiałach, technologiach, standardach jakości oraz metodach wykonania. Przykładowo, w specyfikacji technicznej dotyczącej tynków mogą być opisane wymagania dotyczące grubości tynku, rodzaju zastosowanych materiałów, a także procedury odbioru robót. Zgodnie z normami PN-EN 13914-1, specyfikacja powinna również zawierać zalecenia dotyczące warunków atmosferycznych, w jakich prace mogą być prowadzone, co jest kluczowe dla osiągnięcia trwałości i estetyki tynków. Tylko dobrze opracowana specyfikacja techniczna gwarantuje, że wykonawcy będą przestrzegać standardów branżowych, co w efekcie przyczynia się do wysokiej jakości realizacji inwestycji.

Pytanie 7

Jakim narzędziem należy oceniać konsystencję zapraw budowlanych?

A. młotkiem Szmidta
B. czerpakiem murarskim
C. aparatem Vicata
D. stożkiem pomiarowym
Stożek pomiarowy jest standardowym narzędziem używanym do oceny konsystencji zapraw budowlanych, takich jak zaprawy cementowe czy tynki. Metoda ta polega na wypełnieniu stożka zaprawą i następnie podniesieniu go, co powoduje, że materiał osiada. Głębokość osiadania zaprawy pozwala na ocenę jej płynności i konsystencji. Zgodnie z normami, takimi jak PN-EN 1015-3, właściwa konsystencja zaprawy ma kluczowe znaczenie dla trwałości budowli oraz jakości wykonania. W praktyce, pomiar konsystencji wykonuje się przed aplikacją zaprawy, co umożliwia dostosowanie proporcji składników, jeśli okazuje się, że materiał jest zbyt suchy lub zbyt płynny. Przykładowo, w przypadku tynków zewnętrznych, odpowiednia konsystencja jest niezbędna, aby zapewnić ich przyczepność oraz odporność na warunki atmosferyczne.

Pytanie 8

Zgodnie z zasadami przedmiarowania robót murarskich ilość ścian oblicza się w metrach kwadratowych ich powierzchni. Od powierzchni ścian należy odejmować powierzchnie projektowanych otworów okiennych i drzwiowych większych od 0,5 m².
Oblicz ilość robót związanych z wykonaniem ściany z cegły ceramicznej pełnej, której widok przedstawiono na rysunku.

Ilustracja do pytania
A. 18,13 m2
B. 20,02 m2
C. 19,11 m2
D. 21,00 m2
Odpowiedź 19,11 m2 jest prawidłowa, ponieważ przy obliczaniu powierzchni ścian należy uwzględnić zarówno ich całkowitą powierzchnię, jak i pomniejszyć ją o powierzchnię otworów okiennych i drzwiowych, które mają więcej niż 0,5 m². Aby obliczyć powierzchnię ściany, najpierw mierzymy wysokość i szerokość ściany, a następnie mnożymy te wartości. Następnie, jeśli w projekcie znajdują się okna lub drzwi, które spełniają powyższy warunek, ich powierzchnię również należy obliczyć i odjąć od całkowitej powierzchni ściany. Przykładowo, jeśli ściana ma wysokość 3 m i długość 7 m, jej powierzchnia wynosi 21 m². Jeśli w tej ścianie umieszczono okno o wymiarach 1,5 m x 1 m, jego powierzchnia wynosi 1,5 m², co daje w sumie 19,5 m². Jednakże, w zależności od dodatkowych wymiarów otworów, powinna być zachowana dokładność w obliczeniach, by uzyskać precyzyjny wynik. Udzielając odpowiedzi, ważne jest stosowanie się do zasad przedmiarowania zgodnych z normami obowiązującymi w branży budowlanej, co podkreśla znaczenie precyzyjnych obliczeń w kosztorysowaniu robót budowlanych.

Pytanie 9

Korzystając z danych zawartych w tabeli wskaż najmniejszą dopuszczalną grubość tynku z izolacją termiczną.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków wewnętrznych z fabrycznie suchej zaprawy105
dla jednowarstwowych tynków chroniących przed wodą z fabrycznie suchej zaprawy1510
dla tynków z izolacją termicznązależnie od
wymagań
20
A. 15 mm
B. 5 mm
C. 20 mm
D. 10 mm
Wybór grubości tynku mniejszej niż 20 mm, jak 10 mm, 5 mm czy 15 mm, nie spełnia wymagań dotyczących izolacji termicznej. Tynki o takiej grubości mogą nie zapewniać odpowiedniego poziomu izolacji, co jest kluczowe dla komfortu termicznego oraz efektywności energetycznej budynków. Izolacja termiczna ma na celu ograniczenie strat ciepła, a tynki o zbyt małej grubości mogą prowadzić do powstawania mostków termicznych. Przykładowo, przy grubości 10 mm, izolacja może być niewystarczająca, co w efekcie zwiększa zapotrzebowanie na energię do ogrzewania, a tym samym prowadzi do wyższych kosztów eksploatacyjnych. Dodatkowo, stosowanie tynku o grubości 5 mm lub 15 mm może być niezgodne z lokalnymi przepisami budowlanymi, które często wymagają minimalnych wartości grubości dla zapewnienia odpowiedniej izolacyjności. Kluczowym błędem w myśleniu przy doborze grubości tynku jest niedoszacowanie wpływu izolacji na całkowite koszty utrzymania budynku oraz komfort jego użytkowników. W praktyce, niewłaściwa grubość tynku może prowadzić do wielu problemów, w tym wilgoci wewnętrznej oraz obniżonej efektywności energetycznej, co jest niezgodne z najlepszymi praktykami w budownictwie nowoczesnym.

Pytanie 10

Tynki przeznaczone do użytku na zewnątrz obiektów powinny wyróżniać się wysoką

A. nasiąkliwością
B. mrozoodpornością
C. higroskopijnością
D. kapilarnością
Zaprawy tynkarskie przeznaczone do stosowania na zewnątrz budynków muszą charakteryzować się mrozoodpornością, aby zapewnić trwałość i ochronę elewacji przed szkodliwym wpływem niskich temperatur oraz zjawisk atmosferycznych. Mrozoodporność oznacza, że materiał jest odporne na cykle zamrażania i rozmrażania, co jest kluczowe w klimacie, gdzie występują takie warunki. W praktyce, użycie zaprawy mrozoodpornej minimalizuje ryzyko pęknięć, łuszczenia się tynku oraz innych uszkodzeń, które mogą prowadzić do konieczności kosztownych napraw. W standardach budowlanych, takich jak PN-EN 998-1, określone są wymagania dotyczące zapraw tynkarskich, w tym odporności na działanie mrozu. Przykładem zastosowania są budynki jednorodzinne oraz wielorodzinne, gdzie elewacja narażona jest na działanie zmiennych warunków atmosferycznych. Osoby budujące lub odnawiające elewacje powinny zawsze wybierać materiały certyfikowane pod kątem mrozoodporności, aby zagwarantować wysoką jakość i trwałość wykończenia."

Pytanie 11

Na podstawie przedstawionego rysunku oblicz powierzchnię dłuższej ściany bez otworów okiennych i drzwiowych w pokoju 3 zakładając, że wysokość pomieszczenia wynosi 3,00 m.

Ilustracja do pytania
A. 8,55 m2
B. 17,07 m2
C. 48,63 m2
D. 5,16 m2
Powierzchnia dłuższej ściany bez otworów okiennych i drzwiowych w pokoju 3 wynosi 17,07 m2, co możemy obliczyć, mnożąc szerokość ściany (5,69 m) przez wysokość pomieszczenia (3,00 m). Tego typu obliczenia są kluczowe w architekturze i budownictwie, gdzie precyzyjne określenie powierzchni pomaga w planowaniu i wykonaniu różnych prac, takich jak malowanie, tapetowanie czy instalacja materiałów wykończeniowych. Ustalanie powierzchni ścian jest również istotne przy obliczaniu ilości materiałów potrzebnych do izolacji czy montażu systemów wentylacyjnych. Вartości te powinny być zawsze zaokrąglane do dwóch miejsc po przecinku, aby zachować spójność w dokumentacji budowlanej. Zastosowanie standardów, takich jak PN-EN 1991-1-1, które dotyczą obliczeń budowlanych, oraz ściśle określone normy dotyczące materiałów budowlanych, pozwala na skuteczną kontrolę jakości i bezpieczeństwa budowli. W praktyce, znajomość zasad obliczania powierzchni pomieszczeń jest niezbędna dla architektów oraz projektantów wnętrz, co umożliwia im efektywne zarządzanie przestrzenią.

Pytanie 12

Który z elementów budynku przedstawiono na rysunku?

Ilustracja do pytania
A. Gzyms.
B. Attykę.
C. Cokół.
D. Pilaster.
Pilaster to element architektoniczny, który łączy w sobie cechy kolumny i ściany. Na przedstawionym rysunku widzimy pilaster, który jest wtopiony w mur i pełni zarówno funkcję dekoracyjną, jak i nośną. Pilastry są często stosowane w architekturze klasycznej, aby wzmocnić wizualnie budynek oraz podkreślić jego pionowe akcenty. W praktyce, pilastry mogą być używane do podtrzymywania belkowania bądź jako elementy dekoracyjne w elewacjach, co wpisuje się w zasady harmonii i proporcji w architekturze. Dobrą praktyką jest stosowanie pilastrów w proporcjach zgodnych z zasadami złotego podziału, co pozwala na osiągnięcie estetycznego i zrównoważonego efektu. Warto również zauważyć, że pilastry mogą mieć różne formy, w tym różne stylizacje kapiteli, co czyni je wszechstronnym elementem w projektowaniu budynków, od klasycznych po nowoczesne. Dlatego odpowiedź 'Pilaster' jest jak najbardziej trafna.

Pytanie 13

Koszty bezpośrednie materiałów, potrzebnych do wykonania zaprawy ciepłochronnej M5 z żużlem granulowanym 1200, wynoszą

L
p.
PodstawaOpisjmNakładyKoszt
jedn.
RMS
2KNR 2-02
1754-02
Zaprawa ciepłochronna M5 z żużlem granulo-
wanym 1200
obmiar = 50m³
1*-- R --
robocizna
2.33r-g/m³ * 29.00zł/r-g
r-g116.500067.5703378.50
2*-- M --
cement CEM II z dodatkami
0.321t/m³ * 462.56zł/t
t16.0500148.4827424.09
3*wapno suchogaszone
0.08t/m³ * 459.02zł/t
t4.000036.7221836.08
4*żużel wielkopiecowy granulowany półsuchy
1.04t/m³ * 48.38zł/t
t52.000050.3152515.76
5*abiesod P-1
1.21kg/m³ * 22.42zł/kg
kg60.500027.1281356.41
6*woda
0.45m³/m³ * 20.06zł/m³
22.50009.027451.35
7*materiały pomocnicze
1.5% * 13583.69zł
%1.50004.075203.76
8*-- S --
betoniarka 150 lub 250 dm3
0.74m-g/m³ * 49.00zł/m-g
m-g37.000036.2601813.00
Razem koszty bezpośrednie: 18978.953378.5013787.451813.00
Ceny jednostkowe379.57967.570275.74936.260
A. 13 787,45 zł
B. 18 978,95 zł
C. 1813,00 zł
D. 3 378,50 zł
Wybór innych odpowiedzi może wynikać z nieprecyzyjnego zrozumienia zasad kalkulacji kosztów materiałów w kontekście budownictwa. Warto zauważyć, że odpowiedzi, które wskazują na wartości znacznie wyższe od rzeczywistych kosztów, mogą sugerować mylne podejście do analizy danych. Na przykład, kwota 18 978,95 zł może wydawać się uzasadniona, jednak nie uwzględnia dokładnych danych przedstawionych w tabeli, co prowadzi do błędnych założeń finansowych. Ponadto, kwoty 3 378,50 zł i 1813,00 zł mogą sugerować, że osoba udzielająca odpowiedzi nie zrozumiała zakresu materiałów potrzebnych do zaprawy ciepłochronnej M5 oraz specyfiki ich kosztów. Kluczowe jest zrozumienie, że każde zadanie budowlane wymaga precyzyjnego analizy kosztów opartych na rzetelnych danych. Często błędne odpowiedzi wynikają z nadmiernego uproszczenia lub błędnej interpretacji danych dostępnych w dokumentacji projektowej. Rekomenduje się zwracanie uwagi na szczegółowe zestawienia kosztów oraz standardy w zakresie wyceny materiałów budowlanych, aby uniknąć takich pomyłek w przyszłości. Zrozumienie, jak rynkowe ceny materiałów wpływają na całkowity koszt projektu, jest kluczowe dla skutecznego zarządzania budżetem i zasobami.

Pytanie 14

Jak należy przygotować suchą zaprawę murarską do użycia?

A. wszystkie składniki zaprawy są odważane i mieszane na miejscu budowy
B. wszystkie składniki zaprawy są odważane i mieszane w betoniarni
C. spoiwo, piasek oraz ewentualne dodatki są odmierzane na sucho w betoniarni, a na miejscu budowy trzeba jedynie dodać wodę i wymieszać
D. piasek i woda są odmierzane w betoniarni, a na miejscu budowy należy dodać spoiwo i wymieszać
Wiele z błędnych koncepcji dotyczących przygotowania suchej zaprawy murarskiej wynika z niepełnego zrozumienia procesu technologicznego i wymagań dotyczących jakości materiałów budowlanych. Odmierzanie wszystkich składników na placu budowy, jak wskazuje jedna z odpowiedzi, może prowadzić do niejednorodności mieszanki i błędów w proporcjach, co negatywnie wpłynie na wytrzymałość i trwałość zaprawy. Na placu budowy trudniej jest osiągnąć spójność, ponieważ warunki atmosferyczne mogą wpłynąć na sposób mieszania oraz na ilość wody dodawanej do mieszanki. Ponadto, pominięcie etapu wcześniejszego wymieszania wszystkich składników w betoniarni, gdzie można kontrolować jakość piasku i spoiwa, zwiększa ryzyko wykorzystania materiałów o różnej granulacji czy zanieczyszczeń, co może być szkodliwe dla konstrukcji. Inne nieprawidłowe podejście, polegające na dodawaniu piasku i wody w betoniarni, a następnie dołożeniu spoiwa na placu budowy, prowadzi do problemów z jednorodnością zaprawy. W takiej sytuacji spoiwo może nie zostać dokładnie wymieszane z pozostałymi składnikami, co skutkuje niespójną jakością zaprawy. Kluczowe jest zrozumienie, że każda zmiana w procesie przygotowania materiałów budowlanych może wpłynąć na finalny wynik, a tym samym na bezpieczeństwo i trwałość całej konstrukcji.

Pytanie 15

Na ilustracji przedstawiono fragment lica muru wykonanego w wiązaniu

Ilustracja do pytania
A. polskim.
B. słowiańskim.
C. weneckim.
D. holenderskim.
No to odpowiedź 'polskim' jest rzeczywiście trafiona. To wiązanie ceglne, które widzisz na obrazku, ma taki ciekawy układ cegieł, gdzie każda warstwa jest przesunięta o pół cegły w stosunku do poprzedniej. To nie tylko fajnie wygląda, ale też sprawia, że mur jest bardziej stabilny i wytrzymały. Wiązanie polskie jest popularne w tradycyjnej architekturze w Polsce, zwłaszcza w zabytkowych budynkach. Możesz je zauważyć w zamkach, kościołach czy starych kamienicach z czasów renesansu i baroku. Fajnie jest znać różne rodzaje wiązań ceglanych, szczególnie jeśli planujesz być architektem albo budowlańcem. Wiedza o tym, jakie techniki stosować, jest ważna – przemyśl, co będzie pasować do stylu budynku i jakie ma być wrażenie wizualne. No i warto też znać lokalne tradycje budowlane, bo to pomaga zachować nasze dziedzictwo kulturowe.

Pytanie 16

Na podstawie danych zawartych w tablicy z KNR oblicz, ile zaprawy cementowo-wapiennej M30 potrzeba do wykonania 25 m2tynku kategorii III.

Tynki zwykłe biegów klatek schodowych
Nakłady na 100 m2Tablica 0811
Lp.WyszczególnienieJednostki miary, oznaczeniaBiegi klatek schodowych
kategoria tynku
symbole etorodzaje zawodów, materiałów i maszyncyfroweliteroweIIIIIIV
abcde010203
202380800Zaprawa wapienna M4060m3-0,150,14
212380802Zaprawa cementowo-wapienna M15060m31,790,900,91
222380803Zaprawa cementowo-wapienna M30060m30,230,21-
232380804Zaprawa cementowo-wapienna M50060m30,22-0,21
242380806Zaprawa cementowa M50060m3-1,081,08
252380807Zaprawa cementowa M80060m3-0,220,22
7034000Wyciąg148m-g3,514,004,00
A. 0,0595 m3
B. 0,0555 m3
C. 0,0575 m3
D. 0,0525 m3
Wybór nieprawidłowej odpowiedzi może wynikać z kilku typowych błędów myślowych i nieporozumień związanych z obliczeniami. Niektóre z niepoprawnych wyników, takich jak 0,0555 m3, 0,0595 m3 czy 0,0575 m3, mogą sugerować, że użytkownik niewłaściwie zastosował proporcje lub błędnie zinterpretował dane z KNR. Często zdarza się, że osoby rozważające takie problemy mylą jednostki miary lub nieprawidłowo wykonują obliczenia, co prowadzi do zawyżenia potrzebnej objętości zaprawy. Kluczowym krokiem w tym procesie jest zawsze upewnienie się, że dane wejściowe są odpowiednio analizowane i stosowane, co w przypadku podanej liczby 0,21 m3 na 100 m2 oznacza, że przed przystąpieniem do obliczeń należy dobrze zrozumieć, jak przeliczać wartości dla mniejszych powierzchni. Ponadto błędne odpowiedzi mogą wynikać z nieznajomości praktycznych zasad dotyczących aplikacji materiałów budowlanych, co jest istotne w kontekście jakości tynków. Właściwe obliczenia nie tylko wpływają na efektywność kosztową, ale również na jakość finalnego produktu, dlatego tak ważne jest, aby stosować się do wytycznych i standardów branżowych, które precyzyjnie określają wymagania dotyczące ilości materiałów na różnych powierzchniach. W przypadku tynków, ich nadmiar lub niedobór może mieć poważne konsekwencje, w tym problemy ze strukturą, estetyką i trwałością wykonanego tynku.

Pytanie 17

Do mineralnych spoiw hydraulicznych zalicza się

A. wapno hydratyzowane i palone
B. cement hutniczy i pucolanowy
C. gips szpachlowy i autoklawizowany
D. wapno dolomitowe i pokarbidowe
Wybór wapna hydratyzowanego i palonego jako spoiwa mineralnego hydraulicznego jest błędny, ponieważ te materiały nie mają zdolności do wiązania w obecności wody w takim samym stopniu jak cement hutniczy czy pucolany. Wapno hydratyzowane, po rozpuszczeniu w wodzie, prowadzi do hydratacji, jednak nie tworzy trwałych połączeń w warunkach wilgotnych, co ogranicza jego zastosowanie w konstrukcjach narażonych na działanie wody. Wapno palone, z kolei, wykazuje dużą reaktywność chemiczną, ale podobnie jak wapno hydratyzowane, nie zachowuje właściwości hydraulicznych. Gips szpachlowy i autoklawizowany również nie są klasyfikowane jako spoiwa mineralne hydrauliczne, ponieważ gips wiąże się na drodze procesów gipsowych i nie ma zdolności do wiązania w warunkach mokrych. Wapno dolomitowe i pokarbidowe również nie spełniają kryteriów hydraulicznych, co prowadzi do błędnych wniosków odnośnie ich funkcji w budownictwie. Te materiały są często mylone z cementami hydraulicznymi z powodu ich zastosowania w różnych aspektach budowy, jednak nie wykazują one wymaganych właściwości do efektywnego wiązania w obecności wody, co jest kluczowe dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Należy pamiętać, że zgodność z normami budowlanymi oraz dobrymi praktykami jest istotna dla osiągnięcia optymalnych efektów w użyciu spoiw w budownictwie.

Pytanie 18

Gładź tynków zewnętrznych można uzyskać z mieszanki

A. anhydrytowej
B. wapienno-gipsowej
C. wapiennej
D. cementowo-wapiennej
Wybór innych zapraw, takich jak wapienne, anhydrytowe czy wapienno-gipsowe, nie jest odpowiedni do gładzi tynków zewnętrznych. Zaprawa wapienna, choć ma swoje zalety, nie oferuje wystarczającej wytrzymałości mechanicznej i odporności na czynniki atmosferyczne w porównaniu do zaprawy cementowo-wapiennej. Wapno ma tendencję do łuszczenia się i kruszenia pod wpływem deszczu i wiatru, co sprawia, że nie nadaje się do stosowania jako główna warstwa wykończeniowa na elewacjach. Z kolei zaprawa anhydrytowa, będąca materiałem na bazie siarczanu wapnia, jest stosunkowo nowym rozwiązaniem, które znajduje swoje miejsce w budownictwie wnętrz, ale nie sprawdza się w warunkach zewnętrznych, ponieważ może ulegać degradacji pod wpływem wilgoci. Ostatnią z analizowanych opcji, zaprawa wapienno-gipsowa, nie jest również zalecana do zastosowań zewnętrznych, gdyż gips, mimo że jest materiałem łatwym w obróbce, ma niską odporność na wodę, co prowadzi do jego szybkiego zniszczenia pod wpływem deszczu. W przypadku gładzi tynków zewnętrznych kluczowe jest, aby materiał charakteryzował się odpowiednią odpornością na warunki atmosferyczne oraz zdolnością do regulacji wilgotności, dlatego zaprawa cementowo-wapienna jest najbardziej rekomendowaną opcją w tej dziedzinie.

Pytanie 19

Na rysunku przedstawiono układ cegieł w

Ilustracja do pytania
A. przenikających się murach o grubości 2½ i 2½ cegły.
B. narożniku murów o grubości 2½ i 2½ cegły.
C. narożniku murów o grubości 2½ i 1½ cegły.
D. przenikających się murach o grubości 2½ i 1½ cegły.
Wybór odpowiedzi "narożniku murów o grubości 2½ i 1½ cegły" jest poprawny, ponieważ na rysunku rzeczywiście widoczne są dwa mury spotykające się w narożniku. Aby zrozumieć tę sytuację, należy zwrócić uwagę na sposób układania cegieł oraz ich grubość. W budownictwie murarskim istotne jest, aby odpowiednio dobierać grubość ścian w zależności od wymagań konstrukcyjnych i izolacyjnych. Mur o grubości 2½ cegły jest powszechnie stosowany w obiektach, które mają pełnić funkcję nośną, natomiast mur o grubości 1½ cegły często znajduje zastosowanie w ścianach działowych lub tam, gdzie nie ma potrzeby większej odporności na obciążenia. Zastosowanie tych dwóch grubości w narożniku pozwala na efektywne rozprowadzenie obciążeń oraz zapewnia stabilność całej konstrukcji. Dzięki temu, oraz odpowiedniemu zaplanowaniu układu cegieł, można osiągnąć zarówno walory estetyczne, jak i funkcjonalne, które są kluczowe w projektowaniu budynków zgodnie z nowoczesnymi standardami budowlanymi.

Pytanie 20

Na podstawie przedstawionej instrukcji przygotowania gotowej zaprawy murarskiej podaj, ile wody należy przygotować do sporządzenia zaprawy z 4 opakowań?

Instrukcja przygotowania zaprawy
Suchą mieszankę należy zarobić z 3,5 litrami czystej i zimnej wody, mieszając mechanicznie przy użyciu wiertarki wolnoobrotowej.
Zawartość opakowania: 25 kg
A. 7,0 litrów
B. 10,5 litra
C. 3,5 litra
D. 14,0 litrów
Wybierając jedną z niepoprawnych odpowiedzi, można było napotkać typowe błędy w obliczeniach, które są powszechne w przypadku takich zadań. Niektórzy mogą sądzić, że wystarczy podzielić ilość wody potrzebną na jedno opakowanie przez liczbę opakowań, co prowadzi do błędnych danych. Na przykład, w przypadku odpowiedzi 10,5 litra, mogło to wynikać z mylącego założenia, że 3,5 litra wody należy podzielić przez cztery, co jest absolutnie błędne. Inne odpowiedzi, takie jak 7,0 litrów, mogą wynikać ze zrozumienia, że przy dwóch opakowaniach potrzeba byłoby 7 litrów, co także nie odpowiada zasadom matematycznym związanym z mnożeniem potrzebnym dla czterech jednostek. Proces przygotowania zaprawy w budownictwie opiera się na precyzyjnych proporcjach, które mają kluczowe znaczenie dla właściwego funkcjonowania zaprawy. Zastosowanie niewłaściwej ilości wody może prowadzić do nieodpowiednich właściwości mechanicznych zaprawy, takich jak niska wytrzymałość na ściskanie czy zwiększona podatność na pęknięcia. W praktyce budowlanej, zarówno nadmiar jak i niedobór wody mogą zniweczyć efekty pracy, dlatego tak istotne jest zrozumienie i stosowanie odpowiednich proporcji w każdej zaprawie murarskiej. Właściwe obliczenia są więc podstawą sukcesu w każdym projekcie budowlanym.

Pytanie 21

W celu skonstruowania jednowarstwowych ścian zewnętrznych, ze względu na potrzebę osiągnięcia właściwej izolacji cieplnej, najczęściej wykorzystuje się

A. cegły ceramiczne klinkierowe bądź cegły ceramiczne dziurawki
B. cegły ceramiczne pełne lub bloczki wykonane z betonu kruszywowego
C. bloczki silikatowe bądź płyty gipsowo-kartonowe
D. bloczki z betonu komórkowego lub pustaki ceramiczne poryzowane
Bloczki z betonu komórkowego oraz pustaki ceramiczne poryzowane są materiałami budowlanymi, które charakteryzują się doskonałymi właściwościami izolacyjnymi, co jest kluczowe w kontekście budowy jednowarstwowych ścian zewnętrznych. Beton komórkowy, znany również jako aerobeton, ma strukturę pełną mikroporów, co znacząco ogranicza przewodzenie ciepła. Dzięki temu, ściany wykonane z tych materiałów mogą skutecznie zapewnić komfort cieplny w budynku, minimalizując straty energii i przyczyniając się do obniżenia kosztów ogrzewania. Pustaki ceramiczne poryzowane, z kolei, posiadają unikalne właściwości akumulacyjne i również dobrze izolują termicznie. W praktyce zastosowanie tych materiałów zyskuje na znaczeniu przy realizacji budynków energooszczędnych i pasywnych, gdzie kluczowe jest uzyskanie jak najlepszych parametrów izolacyjnych. Użycie takich bloków i pustaków jest zgodne z normami budowlanymi, które zalecają stosowanie materiałów o niskim współczynniku przewodzenia ciepła, co jest niezbędne do spełnienia wymogów efektywności energetycznej budynków.

Pytanie 22

Jakie narzędzie jest używane do aplikacji tynków cienkowarstwowych na ścianie?

A. kaelnia trójkątna
B. paca stalowa z ząbkami
C. paca ze stali nierdzewnej
D. kaelnia trapezowa
Paca ze stali nierdzewnej jest narzędziem specjalistycznym, które znajduje zastosowanie w nakładaniu tynków cienkowarstwowych na ściany. Wykonana ze stali nierdzewnej, charakteryzuje się odpornością na korozję oraz trwałością, co sprawia, że jest idealna do pracy z materiałami tynkarskimi, które mogą zawierać substancje chemiczne. Jej gładka powierzchnia pozwala na równomierne rozprowadzanie tynku, co jest kluczowe dla uzyskania estetycznego i funkcjonalnego wykończenia. W praktyce, użycie pacy ze stali nierdzewnej umożliwia precyzyjne wygładzanie i formowanie tynku, co ma bezpośredni wpływ na jakość powierzchni ściany oraz jej trwałość. Zgodnie z najlepszymi praktykami w branży budowlanej, należy także pamiętać o regularnym czyszczeniu narzędzi, aby uniknąć zanieczyszczeń, które mogą wpłynąć na końcowy efekt pracy. Dodatkowa wiedza na temat różnorodnych rodzajów tynków oraz technik ich aplikacji może jeszcze bardziej usprawnić proces tynkowania, a odpowiedni dobór narzędzi jest kluczowy dla osiągnięcia pożądanych rezultatów.

Pytanie 23

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. jednowarstwowych zewnętrznych
B. szlachetnych
C. renowacyjnych
D. izolujących cieplnie
Zaprawa tynkarska oznaczona symbolem R jest stosowana przede wszystkim do wykonywania tynków renowacyjnych, co jest ściśle związane z jej właściwościami. Renowacyjne tynki mają na celu przywrócenie estetyki oraz funkcjonalności powierzchni, które mogą być uszkodzone lub w złym stanie. Zaprawy te charakteryzują się wysoką przyczepnością do podłoża, elastycznością oraz odpornością na czynniki atmosferyczne, co czyni je idealnym rozwiązaniem w przypadku starszych budynków, gdzie istnieje ryzyko pęknięć lub kruszenia się tynku. W praktyce, podczas renowacji zabytków, stosuje się zaprawy R, aby zapewnić odpowiednią ochronę i trwałość elewacji, a także aby zachować tradycyjne metody budowlane. W kontekście standardów, zaprawy te powinny spełniać normy PN-EN 998-1 dotyczące zapraw do tynkowania, co gwarantuje ich wysoką jakość i odpowiednie właściwości użytkowe.

Pytanie 24

Na rysunku przedstawiono pierwszą warstwę muru w wiązaniu kowadełkowym.

Na którym rysunku widoczna jest druga warstwa?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór odpowiedzi A, B lub C jest błędny, ponieważ nie uwzględnia istotnych zasad wiązania kowadełkowego, które wymagają, aby cegły w drugiej warstwie były układane prostopadle do cegieł w warstwie pierwszej. W przypadku odpowiedzi A, zakłada się, że cegły są ułożone w tym samym kierunku co w pierwszej warstwie, co prowadzi do powstania struktur o obniżonej stabilności. Takie podejście narusza podstawowe zasady budownictwa, które mówią o konieczności rozkładu obciążeń oraz wzmacniania konstrukcji poprzez odpowiednie wiązania. Odpowiedzi B i C również nie przedstawiają prawidłowego układu cegieł, co może prowadzić do osłabienia muru, a w skrajnych przypadkach do jego całkowitego zawalenia. Użytkownicy często popełniają błąd, myśląc, że dla estetyki wystarczy, aby cegły były ułożone w jednym kierunku. W rzeczywistości, efektywność muru należy oceniać nie tylko pod kątem walorów wizualnych, ale przede wszystkim jego funkcji nośnych i wytrzymałościowych. Z tego powodu, ignorowanie zasad wiązania kowadełkowego jest nie tylko nieprawidłowe, ale również może prowadzić do poważnych konsekwencji w budownictwie.

Pytanie 25

Abyzbudować ścianę o powierzchni 1 m2 zgodnie z KNR 2-02, wymaganych jest 8,20 szt. bloczków z betonu komórkowego. Na jednej palecie znajduje się 48 bloczków. Ile palet bloczków należy zamówić do zbudowania 75 m2 ścian?

A. 9
B. 13
C. 48
D. 75
Podczas próby obliczenia liczby potrzebnych palet bloczków, można natknąć się na różne błędy, które prowadzą do nieprawidłowych wyników. Niektórzy mogą wziąć pod uwagę tylko wartość bloczków na m², ignorując całkowitą powierzchnię, co skutkuje zaniżeniem liczby potrzebnych bloczków. Przykładowo, wybierając odpowiedź 9, można było zająć się tylko niewłaściwym przeliczeniem powierzchni lub zastosowaniem błędnego współczynnika bloków na m². Inni mogą podzielić liczbę bloczków przez 48 i zaokrąglić do najbliższej liczby całkowitej bez uwzględnienia, że zaokrąglenie powinno zawsze iść w górę, co w kontekście 12,8125 prowadzi do 12 palet, ale w praktyce wymaga 13. Również wybór odpowiedzi 48 sugeruje, że nie zrozumiano relacji między powierzchnią ściany a liczbą bloczków na palecie. Takie błędy mogą wynikać z niepełnego zrozumienia procesu budowlanego, co podkreśla znaczenie zrozumienia i przestrzegania standardów obliczeń w praktyce budowlanej. Kluczowe jest nie tylko zrozumienie liczby potrzebnych materiałów, ale także umiejętność ich prawidłowego zamówienia, aby uniknąć opóźnień w projekcie oraz dodatkowych kosztów związanych z niedoborem materiałów.

Pytanie 26

Na rysunku przedstawiono

Ilustracja do pytania
A. stanowisko produkcji wyrobów betonowych.
B. mieszarkę korytową do wykonywania zapraw.
C. betoniarkę z koszem zasypowym.
D. węzeł betoniarski.
Wybierając odpowiedzi, które nie odnoszą się do węzła betoniarskiego, można wprowadzić się w błąd co do funkcji i zastosowania różnych urządzeń w kontekście produkcji betonu. Odpowiedzi takie jak betoniarka z koszem zasypowym koncentrują się na mniejszych urządzeniach, które są używane w specyficznych zastosowaniach, jednak nie obejmują złożonego procesu, który zachodzi w węźle betoniarskim. Betoniarka sama w sobie ma ograniczoną zdolność do zarządzania różnorodnymi materiałami, jak np. kruszywa czy cement, które w węźle są precyzyjnie dozowane i mieszane. Mieszarka korytowa z kolei jest często używana do produkcji zapraw, ale nie jest odpowiednia do wytwarzania betonu, który wymaga specyficznych proporcji i dodatków, takich jak plastyfikatory. Stanowisko produkcji wyrobów betonowych zazwyczaj odnosi się do całego procesu wytwarzania prefabrykatów, co jest odmiennym procesem od produkcji betonu w węźle. Typowe błędy, które mogą prowadzić do wyboru tych odpowiedzi, obejmują niedostateczne zrozumienie różnicy między różnymi typami urządzeń oraz ich zastosowaniem w praktyce budowlanej. W branży budowlanej kluczowe jest zrozumienie, że węzeł betoniarski to kompleksowy system, który zapewnia jakość, efektywność i dostosowanie produkcji betonu do specyficznych wymagań projektowych.

Pytanie 27

Na podstawie wymiarów podanych na rysunku oblicz powierzchnię ściany przeznaczonej do wyburzenia, jeżeli wysokość pomieszczenia wynosi 270 cm.

Ilustracja do pytania
A. 8,24 m2
B. 10,67 m2
C. 8,91 m2
D. 10,07 m2
W przypadku błędnych odpowiedzi często pojawia się niedocenianie znaczenia właściwych wymiarów, co prowadzi do niepoprawnych obliczeń. Na przykład, jeśli ktoś podałby wysokość pomieszczenia jako 3,0 m zamiast 2,7 m, mógłby obliczyć powierzchnię jako 9,9 m², co jest wynikiem nieprawidłowym. Zmiana wysokości bez uwzględnienia faktycznych wymiarów prowadzi do błędnych wyników. Inny typowy błąd to mylenie długości ściany lub nieprawidłowe zaokrąglanie wartości, co może skutkować oferowaniem powierzchni 10,07 m² lub 10,67 m². Ważne jest, aby przy obliczeniach powierzchni uwzględniać wszystkie aktualne dane. Kolejnym błędem jest nieznajomość jednostek metrycznych i pomijanie konwersji, co prowadzi do niezgodności w jednostkach, np. podawania wartości w centymetrach zamiast w metrach. Użycie niewłaściwych wartości lub popełnienie błędu przy mnożeniu to częste pułapki, które mogą zmylić uczniów. Kluczowym wnioskiem z tych błędów jest potrzeba znajomości podstawowych zasad matematycznych oraz umiejętności ich zastosowania w praktycznych scenariuszach związanych z budownictwem. W kontekście budowy czy renowacji, precyzyjne obliczenia są nie tylko kwestią estetyki, ale również bezpieczeństwa i zgodności z obowiązującymi normami budowlanymi.

Pytanie 28

Oblicz wydatki związane z rozbiórką ścian o grubości 25 cm w pomieszczeniu o wymiarach 5 m × 4 m i wysokości 280 cm, jeśli koszt rozbiórki 1 m2 takiej ściany wynosi 185,00 zł?

A. 9 324,00 zł
B. 4 662,00 zł
C. 10 360,00 zł
D. 12 950,00 zł
Aby obliczyć koszt wyburzenia ścian o grubości 25 cm w pomieszczeniu, musimy najpierw obliczyć powierzchnię ścian, które będą wyburzane. Pomieszczenie ma wymiary 5 m × 4 m oraz wysokość 280 cm. Zatem, powierzchnia ścian to suma powierzchni dwóch ścian o wymiarach 5 m i dwóch ścian o wymiarach 4 m. Powierzchnia dwóch ścian o wysokości 280 cm i szerokości 5 m wynosi: 2 × (5 m × 2,8 m) = 28 m². Powierzchnia dwóch ścian o wymiarach 4 m wynosi: 2 × (4 m × 2,8 m) = 22,4 m². Łączna powierzchnia ścian wynosi 28 m² + 22,4 m² = 50,4 m². Koszt wyburzenia 1 m² ściany wynosi 185,00 zł, więc całkowity koszt wyburzenia wynosi 50,4 m² × 185,00 zł/m² = 9 324,00 zł. Takie obliczenia są istotne w branży budowlanej, gdzie precyzyjne oszacowanie kosztów jest kluczowe dla planowania budżetu i realizacji projektu. Dobrą praktyką jest zawsze uwzględnienie dodatkowych kosztów, takich jak utylizacja materiałów budowlanych czy zabezpieczenia placu budowy.

Pytanie 29

Jakiego rodzaju kruszywa należy użyć do stworzenia zaprawy, która będzie przeznaczona do wykonania tynku izolacyjnego?

A. Żużla wielkopiecowego
B. Miału marmurowego
C. Piasku kwarcowego
D. Piasku rzecznego
Piasek kwarcowy, choć często używany w budownictwie, nie jest odpowiedni do produkcji zapraw ciepłochronnych, głównie z powodu swoich właściwości termoizolacyjnych, które są znacznie gorsze niż te oferowane przez żużel wielkopiecowy. Piasek kwarcowy charakteryzuje się dużą gęstością i masą, co może prowadzić do zwiększenia ciężaru tynku, a tym samym do obniżenia jego efektów izolacyjnych. W kontekście tynków ciepłochronnych, kluczowe jest, aby kruszywo miało zdolność do zatrzymywania powietrza w swojej strukturze, co piasek kwarcowy nie jest w stanie zapewnić. Z kolei miał marmurowy, pomimo że ma estetyczne walory, nie spełnia wymogów dotyczących termoizolacyjności i może być zbyt drogi w zastosowaniu w skali budownictwa. Piasek rzeczny, choć z natury ma mniejsze zanieczyszczenia, również nie zapewnia odpowiednich właściwości izolacyjnych i może prowadzić do problemów z wilgocią w tynku. Wybór niewłaściwego kruszywa może skutkować nieefektywnymi rozwiązaniami budowlanymi, co podkreśla znaczenie stosowania materiałów zgodnych z wytycznymi branżowymi oraz normami, takimi jak PN-EN 998-1, które precyzują parametry technologiczne dla zapraw budowlanych. Dlatego też kluczowe jest, aby osoby zajmujące się doborem materiałów budowlanych miały świadomość właściwości technicznych i praktycznych aspektów używanych surowców.

Pytanie 30

Jeśli po przygotowaniu i dostarczeniu zaprawy cementowo-wapiennej na jej powierzchni zauważono mleczko cementowe, to świadczy to o tym, że zaprawa

A. jest odpowiednia do murowania, ponieważ mleczko cementowe wskazuje na dobre wymieszanie składników
B. nie nadaje się do murowania, ponieważ jest zbyt rzadka
C. nie nadaje się do murowania, ponieważ jest niejednorodna
D. jest odpowiednia do murowania, ponieważ ma właściwą konsystencję
Nieprawidłowe interpretacje dotyczące obecności mleczka cementowego wskazują na błędne zrozumienie procesu tworzenia zaprawy cementowo-wapiennej. Zaprawa, która jest za rzadka, rzeczywiście może generować mleczko, ale to nie oznacza, że jest odpowiednia do murowania. Mleczko cementowe powstaje w wyniku separacji wody i cementu, co prowadzi do niejednorodności mieszanki. Tego typu niejednorodność jest jednym z najczęstszych powodów, dla których zaprawa staje się nieodpowiednia do zastosowań budowlanych. Ponadto, za rzadkie mieszanki nie zapewniają odpowiedniej wytrzymałości i przyczepności, co czyni je nieodpowiednimi do murowania. Dobrze przygotowana zaprawa powinna mieć właściwą gęstość i konsystencję, co można osiągnąć przez dokładne wymieszanie składników w odpowiednich proporcjach. Zastosowanie nieodpowiednich proporcji składników prowadzi do ryzyka nieprawidłowego związania materiałów, co może skutkować pęknięciami i innymi uszkodzeniami w konstrukcji. Dlatego ważne jest, aby przed użyciem zawsze sprawdzać jakość zaprawy oraz przestrzegać norm i standardów dotyczących przygotowania i stosowania materiałów budowlanych, aby uniknąć kosztownych błędów i zapewnić trwałość konstrukcji.

Pytanie 31

Jak należy przeprowadzać wewnętrzne tynki gipsowe jednowarstwowe z gipsu tynkarskiego GTM?

A. Ręcznie poprzez rozkładanie zaprawy gęstoplastycznej pacą
B. Mechanicznie przy użyciu agregatu tynkarskiego
C. Ręcznie poprzez nakładanie rzadkiej zaprawy czerpakiem
D. Mechanicznie przy pomocy działka natryskowego
Ręczne natryskiwanie tynku czerpakiem oraz stosowanie działka natryskowego są metodami, które mogą wydawać się atrakcyjne, jednak niosą ze sobą szereg ograniczeń i potencjalnych problemów. Ręczne narzucanie rzadkiej zaprawy czerpakiem często prowadzi do nierówności powierzchni, co wymaga późniejszych poprawek i może zwiększać całkowity czas realizacji projektu. Taka metoda wymaga od pracownika dużej wprawy, aby uzyskać zadowalający efekt, a także jest bardziej czasochłonna, co w kontekście komercyjnych budów stanowi istotny minus. Z kolei mechaniczne aplikowanie tynku przy użyciu działka natryskowego, choć może oferować pewne korzyści, nie jest typowym rozwiązaniem dla tynków jednowarstwowych. Takie urządzenia są zazwyczaj stosowane w przypadku innych materiałów, jak np. farby lub masy izolacyjne, co może wprowadzać w błąd. Ręczne naciąganie zaprawy gęstoplastycznej pacą również ma swoje ograniczenia, ponieważ wymaga dużej precyzji i doświadczenia, co nie zawsze jest dostępne na placu budowy. Stosowanie tego typu technik wiąże się z ryzykiem rozczarowujących efektów końcowych, co może obniżyć jakość i trwałość tynków. Właściwe wykonanie tynków gipsowych wymaga zastosowania technologii, które zapewniają zarówno efektywność, jak i wysoką jakość, a agregaty tynkarskie zdecydowanie spełniają te wymagania.

Pytanie 32

Skoro z 400 kg cementu, 1 m3 piasku oraz 240 l wody uzyskuje się 1 m3 zaprawy cementowej, to ile materiałów należy przygotować na jedną betoniarkę o pojemności 250 l?

A. 300 kg cementu, 0,70 m3 piasku, 180 l wody
B. 200 kg cementu, 0,50 m3 piasku, 120 l wody
C. 100 kg cementu, 0,50 m3 piasku, 120 l wody
D. 100 kg cementu, 0,25 m3 piasku, 60 l wody
Podawane odpowiedzi zawierają błędy w obliczeniach i doborze składników, co prowadzi do nieprawidłowych proporcji w zaprawie cementowej. Niektóre propozycje sugerują zbyt dużą ilość cementu lub niewłaściwe ilości piasku i wody. Na przykład, odpowiedź sugerująca 200 kg cementu na 250 l betoniarki przekracza proporcje materiałów, ponieważ 1 m3 zaprawy wymaga tylko 100 kg cementu w przypadku użycia 0,25 m3. Wysoka ilość cementu może prowadzić do nadmiernego utwardzenia zaprawy, co jest niepożądane w kontekście elastyczności i przyczepności. Kolejne nieprawidłowe podejście to dobór 0,50 m3 piasku, co nie zgadza się z zasadą zachowania proporcji, ponieważ w 1 m3 zaprawy mamy tylko 1 m3 piasku, co w przypadku 0,25 m3 powinno odpowiadać 0,25 m3. Ponadto, woda jest kluczowym składnikiem, a niewłaściwe jej dozowanie, na przykład 120 l dla 0,25 m3, prowadzi do zbyt mokrej mieszanki, co wpływa na czas schnięcia i wytrzymałość zaprawy. W praktyce, zachowanie odpowiednich proporcji materiałów jest kluczowe dla uzyskania właściwych właściwości mechanicznych zaprawy, co jest zgodne z normami budowlanymi i najlepszymi praktykami w branży budowlanej.

Pytanie 33

Na rysunku przedstawiono mur wykonany z zastosowaniem wiązania

Ilustracja do pytania
A. wielowarstwowego.
B. pospolitego.
C. polskiego.
D. krzyżykowego.
Wybór wiązania krzyżykowego, pospolitego lub wielowarstwowego jest nieprawidłowy ze względu na fundamentalne różnice w sposobie układania cegieł, które wpływają na stabilność i wytrzymałość muru. Wiązanie krzyżykowe charakteryzuje się stosowaniem cegieł w układzie, gdzie na zmianę ułożone są długie i krótkie boki cegieł, co może prowadzić do niejednorodnego rozkładu obciążeń oraz potencjalnych punktów osłabienia. Wiązanie pospolite, z kolei, polega na układaniu cegieł w taki sposób, że wszystkie są ustawione w linii, co również osłabia spoiny i zwiększa ryzyko pęknięć. Zastosowanie wiązania wielowarstwowego, mimo że może być korzystne w niektórych konstrukcjach, nie jest adekwatne w kontekście muru przedstawionego w pytaniu, gdzie kluczowe jest zapewnienie jednorodności i stabilności. Typowym błędem myślowym jest zrozumienie, że różne metody układania cegieł mogą być używane wymiennie; jednak każda z nich ma swoje unikalne właściwości i zastosowania, które powinny być dostosowane do specyficznych wymagań projektowych. W związku z tym, ważne jest, aby przy wyborze odpowiedniego wiązania kierować się nie tylko estetyką, ale przede wszystkim zasadami inżynierii budowlanej i najlepszymi praktykami w zakresie konstrukcji.

Pytanie 34

Jakie wiązanie cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Główkowe.
B. Kowadełkowe.
C. Wozówkowe.
D. Gotyckie.
Wybór odpowiedzi "Wozówkowe", "Główkowe" lub "Kowadełkowe" wskazuje na niepełne zrozumienie, czym charakteryzują się różne typy wiązań cegieł. Wiązanie wozówkowe polega na ustawieniu cegieł tylko wzdłuż, co nie zapewnia odpowiedniej stabilności w wyższych konstrukcjach, ponieważ obciążenia są skoncentrowane w jednej linii. Z kolei wiązanie główkowe skupia się na ułożeniu cegieł poprzecznie, co również może prowadzić do problemów z rozkładem obciążeń, zwłaszcza w sytuacji, gdy nie jest wspierane przez inne formy wiązania. Kowadełkowe z kolei wykorzystuje zupełnie inny układ, który nie jest typowy dla murów gotyckich i w praktyce nie odpowiada na potrzeby konstrukcyjne wymagane w tego typu budowlach. Typowe błędy w myśleniu, które prowadzą do tych wyborów, często wynikają z nieznajomości różnic w układzie cegieł oraz ich wpływu na nośność konstrukcji. Wiedza na temat wiązań cegieł jest kluczowa dla architektów i inżynierów budownictwa, ponieważ właściwy dobór wiązania ma ogromne znaczenie dla bezpieczeństwa i trwałości budowli. W praktyce stosowanie wiązań, takich jak gotyckie, powinno być zgodne z najlepszymi praktykami inżynieryjnymi, które promują zrównoważony rozwój oraz efektywność konstrukcyjną.

Pytanie 35

Układ cegieł, który zastosowano do wykonania parapetu przedstawionego na rysunku, jest rolką

Ilustracja do pytania
A. stojącą.
B. stojącą zazębioną.
C. leżącą zazębioną.
D. leżącą.
Odpowiedź "stojąca zazębiona" sugeruje, że cegły są ustawione pionowo i się zazębiają, ale to raczej kiepski pomysł. W przypadku parapetów lepiej, żeby cegły były ułożone w poziomie, bo takim układzie obciążenie jest równomiernie rozłożone, a stabilność jest kluczowa. Jak są ustawione w sposób stojący, to obciążenie jest na mniejszej powierzchni, co zwiększa ryzyko pęknięć. To może prowadzić do problemów z parapetem, jak uszkodzenia albo zniekształcenia. Odpowiedzi dotyczące "leżąca zazębiona" i "stojąca" też nie są dobre, bo nie odzwierciedlają tego, co widać na rysunku. Zazębienie to sytuacja, gdzie cegły się wspierają, ale w parapetach liczy się bardziej ciągłość i estetyka. Często mylimy różne układy cegieł, a nie każdy da się zastosować wszędzie. W praktyce wybór układu cegieł zawsze powinien być związany z tym, co ten element budowli ma robić.

Pytanie 36

Narzędzie przedstawione na rysunku należy zastosować do

Ilustracja do pytania
A. wyznaczenia powierzchni tynku.
B. zacierania tynku.
C. wyrównywania tynku,
D. narzucania tynku,
Wybór odpowiedzi "wyrównywania tynku" jest na miejscu, bo to właśnie łata tynkarska, którą widać na rysunku, jest kluczowym narzędziem używanym do wyrównania powierzchni. Ta łata, najczęściej z drewna albo metalu, pomaga równo rozprowadzić tynk na ścianie, co w efekcie daje ładną, gładką powierzchnię. Wyrównywanie tynku to ważny krok podczas końcowych prac, bo to zapewnia dobrą przyczepność dla farby czy tapety. Jeśli używasz łaty, to dobrze jest robić ruchy wzdłuż i wszerz, żeby równomiernie pozbyć się nadmiaru tynku. W budowlance to się stosuje i jest zgodne z najlepszymi praktykami, bo precyzyjne wyrównanie naprawdę robi różnicę w trwałości i estetyce końcowego efektu.

Pytanie 37

Przedstawione na ilustracji prefabrykowane belki przeznaczone są do wykonywania

Ilustracja do pytania
A. żeber rozdzielczych.
B. nadproży.
C. podciągów.
D. belek stropowych.
Wybranie czegoś innego niż nadproża pokazuje, że możesz mieć pewne nieporozumienia co do tego, jak prefabrykowane belki działają w budownictwie. Na przykład, żebra rozdzielcze służą do podziału stropów, ale nie przenoszą obciążeń z górnych elementów, co jest kluczowe dla nadproży. Podciągi to inna sprawa – są poziomymi elementami, które przenoszą obciążenia ze stropu na słupy i są bardziej typowe w większych konstrukcjach. A belki stropowe? Te służą do nośności stropów i to zupełnie coś innego niż nadproża, które przenoszą ciężar nad otworami. Te różnice są ważne, bo niewłaściwe zrozumienie tego może spowodować, że projekty będą nieprawidłowe, a dobór materiałów złe. Dlatego wiedza o tych elementach jest super ważna dla inżynierów, żeby zapewnić, że budynki będą trwałe i bezpieczne.

Pytanie 38

Na podstawie informacji podanych w tabeli określ minimalną grubość tynku mozaikowego, wykonanego produktem MAJSTERTYNK MOZAIKOWY odmiany gruboziarnistej

Wyciąg z opisu stosowania masy tynkarskiej
L.p.Rodzaj masy tynkarskiejMinimalna grubość
wyprawy [mm]
Orientacyjne zużycie
na 1 m² wyprawy [kg]
1234
1.MAJSTERTYNK AKRYLOWY BARANEK
odmiany
1,01,01,9
1,51,52,6
2,02,03,0
2,52,53,6
2.MAJSTERTYNK AKRYLOWY KORNIK
odmiany
za1,52,6
2,02,03,0
2,52,53,7
3,03,04,2
3.MAJSTERTYNK MOZAIKOWY
odmiany:
drobnoziarnisty2,03,0
średnioziarnisty3,04,0
gruboziarnisty4,05,0
A. 5,0 mm
B. 2,0 mm
C. 4,0 mm
D. 3,0 mm
Wybierając grubość tynku mozaikowego, nie można kierować się jedynie intuicją lub przypuszczeniami. Odpowiedzi, które wskazują na mniejsze grubości, takie jak 5,0 mm, 3,0 mm czy 2,0 mm, są nieprawidłowe z kilku kluczowych powodów. Przede wszystkim, grubość tynku ma fundamentalne znaczenie dla jego funkcji. Tynki o zbyt małej grubości mogą nie tylko nie spełniać norm estetycznych, ale także prowadzić do poważnych problemów technicznych, takich jak osłabienie struktury, zwiększone ryzyko pęknięć, a także niewystarczająca ochrona przed czynnikami atmosferycznymi. Tynk o grubości 5,0 mm może być nadmierny, co nie jest zgodne z wytycznymi, podczas gdy 3,0 mm i 2,0 mm są znacznie poniżej zalecanego minimum, co może skutkować błędnymi interpretacjami właściwości materiału. Dodatkowo, warto zwrócić uwagę na to, że każdy produkt budowlany, w tym tynki, podlega normom technicznym, które jasno określają wymogi dotyczące ich użycia. Użycie grubości niezgodnych z zaleceniami producenta stwarza ryzyko nie tylko obniżenia jakości końcowego wykończenia, ale także może narazić inwestycje na dodatkowe koszty związane z naprawą i konserwacją. W związku z tym, kluczowe jest zrozumienie, że każda decyzja dotycząca grubości tynku musi być oparta na solidnych podstawach technicznych oraz standardach, które zapewniają zarówno estetykę, jak i funkcjonalność budynku.

Pytanie 39

Można zmniejszyć chłonność podłoża przeznaczonego do tynkowania poprzez

A. wcześniejsze wysuszenie ściany
B. zastosowanie gruntów podkładowych
C. pomalowanie powierzchni farbą
D. wykonanie tynków dedykowanych
Wysuszenie ściany przed tynkowaniem jest praktyką, która może wydawać się logiczna, jednak nie prowadzi do zmniejszenia chłonności podłoża. W rzeczywistości, zbyt wysoka temperatura i wentylacja mogą prowadzić do mikropęknięć, co w konsekwencji osłabia przyczepność tynku. Tynki specjalne, takie jak tynki wapienne czy cementowe, mogą mieć swoje unikalne właściwości, ale nie eliminują one problemu chłonności podłoża. Właściwy dobór tynku powinien być uzależniony od podłoża, a nie od jego wysuszenia. Pomalowanie ściany farbą również nie rozwiązuje problemu, ponieważ większość farb nie jest zaprojektowana do ograniczenia wchłaniania wilgoci, a ich warstwa może wręcz stworzyć barierę dla pary wodnej, co prowadzi do gromadzenia się wilgoci pod tynkiem. Typowe błędy polegają na przyjmowaniu, że wysuszenie i użycie farb wystarczą do prawidłowego przygotowania podłoża. Kluczowym elementem jest zrozumienie, że gruntowanie to proces, który nie tylko poprawia przyczepność, ale także zabezpiecza cały system tynkarski na dłuższy czas, zapewniając jego trwałość i estetykę.

Pytanie 40

Ścianę nośną w piwnicy powinno się wymurować z

A. bloczków z betonu komórkowego
B. bloczków z betonu zwykłego
C. cegieł kratówek
D. cegieł dziurawek
Ściany nośne kondygnacji piwnicznej powinny być wymurowane z bloczków z betonu zwykłego z kilku powodów. Po pierwsze, beton zwykły charakteryzuje się wysoką nośnością, co jest niezbędne w przypadku ścian, które muszą przenosić obciążenia z wyższych kondygnacji budynku. Ponadto, bloczki te są odporne na wilgoć, co jest kluczowe w przypadku piwnic, gdzie istnieje ryzyko podciągania wilgoci z gruntu. W praktyce, zastosowanie bloczków z betonu zwykłego pozwala na uzyskanie solidnej i trwałej konstrukcji, która spełnia wymagania norm budowlanych, takich jak PN-EN 1992-1-1 dotycząca projektowania konstrukcji betonowych. Dodatkowo, bloczki te są stosunkowo łatwe w obróbce i montażu, co przyspiesza proces budowy. W kontekście praktycznych zastosowań, wiele nowoczesnych budynków mieszkalnych i komercyjnych opiera swoje fundamenty na solidnych ścianach piwnicznych wykonanych z bloczków z betonu zwykłego, co potwierdza ich efektywność i niezawodność w długoterminowym użytkowaniu.