Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 11:07
  • Data zakończenia: 8 grudnia 2025 11:23

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na podstawie przedstawionego schematu oraz przedstawionych wyników pomiarów zlokalizuj usterkę typowego stycznika w układzie 1-fazowym, 230V.

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór odpowiedzi, w której wskazano na inne zestyki lub elementy układu, może wynikać z niepełnego zrozumienia podstaw działania stycznika oraz jego schematu. Uszkodzenie jednego z zestyków, jak zestyk 3-4, powoduje, że nie są one w stanie przełączać się w odpowiedni sposób, co prowadzi do niesprawności całego układu. Osoby, które wybrały inne odpowiedzi, mogą mylnie zakładać, że problem leży w innych zestyku, podczas gdy kluczem do rozwiązania jest skupienie się na rzeczywistych objawach, takich jak wynik pomiaru. Często takie błędne podejścia wynikają z braku znajomości zasad działania obwodów elektrycznych oraz interpretacji wyników pomiarów. Należy pamiętać, że pomiary rezystancji zestyków są kluczowe dla prawidłowego funkcjonowania urządzeń. Przykłady nieprawidłowego wnioskowania mogą obejmować pominięcie kontekstu schematu lub nieuwzględnienie specyfiki danego układu, co prowadzi do nieoptymalnych decyzji w zakresie diagnozowania usterek. Kluczem do skutecznej analizy jest nie tylko znajomość norm, ale także umiejętność ich stosowania w praktyce, co pozwala na skuteczne identyfikowanie i eliminowanie problemów w układach elektrycznych.

Pytanie 2

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. IV
B. II
C. III
D. I
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.

Pytanie 3

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Zmieniając ustawienie dźwigni "ON-OFF"
B. Sprawdzając napięcie oraz prąd wyłącznika
C. Tworząc zwarcie w obwodzie zabezpieczonym
D. Naciskając przycisk "TEST"
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 4

Którą lampę przedstawiono na rysunku?

Ilustracja do pytania
A. Żarową.
B. Sodową.
C. Rtęciową.
D. Ledową.
Lampy żarowe, sodowe i rtęciowe różnią się zasadniczo od lamp LED pod względem konstrukcji i działania. Lampy żarowe działają na zasadzie podgrzewania włókna, co prowadzi do emisji światła, ale mają one ograniczoną efektywność energetyczną oraz krótszy czas życia. Ich głównym mankamentem jest również niska wydajność świetlna, co sprawia, że w porównaniu do LED-ów, wymagają one większej mocy do uzyskania tej samej jasności. Lampy sodowe, znane z charakterystycznego pomarańczowego światła, wykorzystują reakcje chemiczne gazu sodu, co czyni je bardziej efektywnymi od żarówek, lecz nadal nie dorównują lampom LED pod względem oszczędności energii i żywotności. Z kolei lampy rtęciowe, pomimo ich zastosowań w przemyśle i oświetleniu ulicznym, również ustępują miejsca technologiom LED, które oferują lepszą jakość światła oraz mniejsze zużycie energii. Często mylone są ze sobą ze względu na ich zastosowanie w podobnych kontekstach, ale różnice technologiczne są znaczące. Prawidłowe rozpoznanie lamp LED w kontekście innych typów oświetlenia jest kluczowe dla efektywnego zarządzania energią oraz zgodności z aktualnymi standardami ochrony środowiska.

Pytanie 5

Strzałką oznaczono na rysunku

Ilustracja do pytania
A. przycisk zwiemy.
B. styk pomocniczy rozwierny.
C. styk pomocniczy zwiemy.
D. przycisk rozwierny.
Nieprawidłowe odpowiedzi na to pytanie często wynikają z nieporozumień dotyczących funkcji i zastosowania różnych typów przycisków oraz styków. Przyciski zwiemy i styki pomocnicze rozwierne różnią się zasadniczo w swojej funkcji. Przyciski zwiemy, nazywane również przyciskami zamykającymi, w momencie ich wciśnięcia zamykają obwód, co pozwala na przepływ prądu, a w stanie spoczynkowym obwód jest otwarty. Ta funkcjonalność jest wykorzystywana w wielu aplikacjach, takich jak włączniki świateł czy przyciski sterujące maszynami. Styk pomocniczy rozwierny działa na zasadzie podobnej do przycisku rozwiernego, ale jest używany w kontekście elementów sterujących i zabezpieczeń, gdzie ważne jest, aby w momencie awarii zasilania obwód został automatycznie otwarty, co zapobiega dalszym uszkodzeniom. Typowe błędy w myśleniu, które prowadzą do wybierania tych niepoprawnych odpowiedzi, opierają się na mylnym utożsamianiu funkcji tych elementów. Zrozumienie, że przycisk rozwierny odgrywa odwrotną rolę niż przycisk zwierny, jest kluczowe dla prawidłowego zrozumienia ich działania. Aby uniknąć tych błędów, warto dokładnie zapoznać się z dokumentacją techniczną oraz schematami obwodów, co pozwoli lepiej zrozumieć zasadę działania poszczególnych elementów oraz ich zastosowanie w praktyce.

Pytanie 6

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Uziemienie ochronne
B. Umieszczenie części dostępnych poza zasięgiem ręki
C. Separacja elektryczna
D. Samoczynne wyłączanie zasilania
Uziemienie ochronne jest istotnym elementem systemów ochrony przed porażeniem, jednak polega na stworzeniu niskooporowego połączenia z ziemią, a nie na pomiarze rezystancji pętli zwarcia. Jego głównym celem jest zapewnienie, że w przypadku awarii prądu, nadmiar energii zostanie bezpiecznie odprowadzony do ziemi. Choć ważne, nie jest to metoda, która sama w sobie gwarantuje szybkie odłączenie zasilania. Separacja elektryczna to inny środek, który ma na celu unikanie niebezpiecznych kontaktów między różnymi obwodami, ale również nie jest bezpośrednio związana z pomiarem rezystancji pętli zwarcia. Działa na zasadzie fizycznego oddzielenia części instalacji, co minimalizuje ryzyko porażenia, ale nie zmienia parametrów elektrycznych samej instalacji. Umieszczenie części dostępnych poza zasięgiem ręki, mimo że może zmniejszyć ryzyko kontaktu z niebezpiecznymi elementami, nie jest odpowiednim rozwiązaniem, gdyż nie eliminuje ryzyka porażenia w sytuacjach awaryjnych. W każdej z tych koncepcji brakuje kluczowego odniesienia do mechanizmu działania samoczynnego wyłączania zasilania, który jest bezpośrednio związany z pomiarem rezystancji pętli zwarcia. To pomiar ten dostarcza informacji, które są kluczowe dla oceny, czy instalacja elektryczna jest w stanie bezpiecznie odciąć zasilanie w sytuacji awaryjnej, co czyni go fundamentalnym dla zapewnienia bezpieczeństwa elektrycznego.

Pytanie 7

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Schemat D przedstawia poprawne podłączenie przewodów w puszce numer 3, zgodne z planem instalacji elektrycznej. W instalacjach elektrycznych kluczowe jest właściwe prowadzenie przewodów, aby zapewnić bezpieczeństwo oraz efektywność działania systemu. W tym schemacie przewód fazowy L jest poprowadzony przez łącznik, co umożliwia jego załączanie i wyłączanie. To zgodne z dobrymi praktykami, które nakazują, aby w obwodach oświetleniowych umieszczać łączniki w obwodzie fazowym, co minimalizuje ryzyko wystąpienia porażenia prądem. Dodatkowo, schemat D uwzględnia odpowiednie oznaczenia i kolorystykę przewodów, co jest zgodne z normami PN-IEC 60446. Przykładowo, przewód neutralny N powinien być niebieski, a przewód ochronny PE zielono-żółty. Użycie właściwych kolorów oraz odpowiednich połączeń zabezpiecza przed ewentualnymi awariami oraz błędami w instalacji, co jest kluczowe w każdej nowoczesnej instalacji elektrycznej.

Pytanie 8

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 26 A
B. 6 A
C. 20 A
D. 16 A
Zrozumienie mocy oraz obciążenia w obwodach elektrycznych jest kluczowe dla prawidłowego działania instalacji. Wybór niewłaściwej wartości prądu, na przykład 6 A, 16 A lub 26 A, wynika z typowych błędów myślowych związanych z analizą schematu. Udzielając odpowiedzi 6 A lub 16 A, można sądzić, że prąd ograniczający jest możliwy do przyjęcia na podstawie zastosowanych komponentów. Jednakże, wyłącznik B20 oraz stycznik SM-320, które są kluczowe w tym obwodzie, mogą bezpiecznie obsłużyć znacznie wyższy prąd – aż do 20 A. Wybór 26 A jest również niewłaściwy, ponieważ przekracza maksymalną wartość obciążenia, co prowadziłoby do ryzyka uszkodzenia elementów instalacji. Warto również zauważyć, że w praktyce inżynierskiej wymagane jest przestrzeganie standardów znamionowych oraz zapewnienie odpowiednich marginesów bezpieczeństwa. Właściwy dobór elementów i obliczeń jest zatem kluczowy dla bezpieczeństwa i długowieczności instalacji elektrycznych, a każdy element w obwodzie powinien być dostosowany do jego przewidywanego obciążenia. Analizując powyższe, nie powinno się pomijać znaczenia norm i przepisów, które mają na celu ochronę zarówno osób, jak i mienia przed niebezpieczeństwami wynikającymi z niewłaściwego doboru lub eksploatacji instalacji elektrycznych.

Pytanie 9

Który element regulacyjny występuje w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Regulator indukcyjny.
B. Dławik.
C. Przesuwnik fazowy.
D. Autotransformator.
Analizując błędne odpowiedzi, można zauważyć, że odpowiedź mówiąca o dławiku opiera się na niewłaściwym zrozumieniu roli elementów w układzie. Dławik jest urządzeniem, które służy głównie do tłumienia zakłóceń oraz stabilizacji prądu w obwodach, ale nie zmienia napięcia, co jest kluczową funkcją autotransformatora. Kolejną mylną koncepcją jest przesuwnik fazowy, który ma zastosowanie w regulacji fazy sygnałów, a nie w regulacji napięcia. Jest to urządzenie stosunkowo bardziej złożone, które znajduje swoje zastosowanie w systemach kontrolnych, ale nie jest to odpowiednie porównanie z autotransformatorem, którego podstawową funkcją jest transformacja napięcia. Z kolei regulator indukcyjny, często wykorzystywany w systemach automatyki do regulacji procesów, również nie ma zastosowania w kontekście zmiany napięcia, a jego działanie opiera się na zmianie pola magnetycznego w odpowiedzi na zmiany prądu. Niezrozumienie różnicy między tymi elementami może prowadzić do błędnych wniosków w projektowaniu układów elektrycznych. Kluczowe jest, aby przy wyborze elementów do układu zasilania zrozumieć ich podstawowe funkcje oraz zastosowanie, co pozwoli uniknąć typowych błędów i nieporozumień w pracy inżynieryjnej.

Pytanie 10

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Wyrównawczy.
B. Ochronny.
C. Neutralny.
D. Uziemiający.
Niepoprawne odpowiedzi mogą wynikać z błędnych skojarzeń dotyczących funkcji i oznaczeń przewodów w instalacjach elektrycznych. Odpowiedź "Uziemiający" może być mylnie wybrana przez osoby, które nie rozróżniają pomiędzy funkcjami przewodów. Uziemiający przewód rzeczywiście ma na celu odprowadzenie prądu do ziemi, jednak jego oznaczenie jest inne i nie jest to samo co przewód ochronny PE. Warto zaznaczyć, że przewód neutralny, oznaczany często jako N, służy do prowadzenia prądu powracającego do źródła, a jego rola jest zupełnie inna – nie ma on funkcji ochronnej. Wybór odpowiedzi "Wyrównawczy" również może wprowadzać w błąd, gdyż przewody wyrównawcze mają na celu wyrównanie potencjałów w różnych częściach instalacji, co nie odpowiada funkcji przewodu ochronnego, który ma chronić przed porażeniem. Typowe błędy myślowe obejmują mylenie funkcji przewodów oraz brak znajomości standardów dotyczących oznaczeń. Dlatego ważne jest, aby dokładnie zapoznać się z normami branżowymi i edukować się w zakresie oznaczeń, co przyczyni się do lepszego zrozumienia instalacji elektrycznych oraz zwiększy bezpieczeństwo ich użytkowania.

Pytanie 11

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. zabezpieczenie klinami ochronnymi
B. wyłożenie izolacją żłobkową
C. nałożenie oleju elektroizolacyjnego
D. nałożenie lakieru elektroizolacyjnego
Wybór nieprawidłowego podejścia do zabezpieczenia żłobków w silniku indukcyjnym wiąże się z fundamentalnymi błędami myślowymi. Smarowanie olejem elektroizolacyjnym jest niewłaściwe, ponieważ olej nie tworzy stałej warstwy izolacyjnej, a jego właściwości mogą się zmieniać w wyniku temperatury oraz obecności zanieczyszczeń. Taki stan rzeczy może prowadzić do zwarcia między uzwojenia a żłobkami, co z kolei może skutkować uszkodzeniem silnika. Smarowanie lakierem elektroizolacyjnym, choć nieco lepsze, nie zastępuje solidnej izolacji żłobkowej. Lakier nie jest w stanie zapewnić odpowiedniej grubości izolacji oraz odporności na mechaniczne uszkodzenia, które mogą wystąpić w trakcie eksploatacji. Zabezpieczenie klinami również nie rozwiązuje problemu, ponieważ ma na celu jedynie stabilizację uzwojenia, a nie ochronę przed skutkami zwarć czy degradacją materiału izolacyjnego. Dlatego kluczowe jest, aby podczas montażu silników indukcyjnych stosować sprawdzone metody izolacji, które są zgodne z obowiązującymi normami branżowymi, co zapewni nie tylko bezpieczeństwo, ale również długotrwałą i efektywną pracę urządzenia. Fail w zastosowaniu niewłaściwych metod może prowadzić do awarii, co w konsekwencji generuje znaczne koszty napraw oraz przestoju produkcji.

Pytanie 12

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. TT
B. TN-S
C. TN-C
D. IT
Odpowiedzi IT, TN-S, i TN-C nie są właściwe w kontekście przedstawionego rysunku pętli zwarciowej. W systemie IT, punkt neutralny nie jest uziemiony, co może prowadzić do niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. W takim układzie występuje ryzyko wystąpienia wysokich napięć na częściach przewodzących, co zagraża bezpieczeństwu użytkowników. Z kolei w systemie TN-S, przewody neutralne i robocze są oddzielone, ale wymagają wspólnego uziemienia, co w sytuacji zwarcia nie zapewnia dostatecznego poziomu bezpieczeństwa. Natomiast TN-C, w którym przewód neutralny i ochronny są połączone, nie może być stosowany w instalacjach wymagających wysokiego poziomu ochrony, szczególnie w miejscach, gdzie występuje ryzyko porażenia prądem, jak w obiektach przemysłowych. Łączenie funkcji ochronnych i roboczych w TN-C zwiększa ryzyko potencjalnych zagrożeń. Typowym błędem myślowym jest mylenie różnych typów systemów uziemienia i ich wpływu na bezpieczeństwo, co może prowadzić do niewłaściwych decyzji projektowych oraz poważnych konsekwencji w eksploatacji instalacji elektrycznych.

Pytanie 13

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Klejenie na gorąco przewodu kabelkowego.
B. Zaciskanie opaski kablowej.
C. Zaciskanie końcówki tulejkowej.
D. Ściąganie izolacji z przewodu.
Odpowiedź "Zaciskanie opaski kablowej" jest prawidłowa, ponieważ na zdjęciu przedstawiono narzędzie służące do zaciskania opasek kablowych. Opaski kablowe są powszechnie stosowane w instalacjach elektrycznych oraz w organizacji kabli w różnych aplikacjach, takich jak urządzenia komputerowe, automatyka przemysłowa czy instalacje domowe. Zaciskanie opaski kablowej pozwala na skuteczne zabezpieczenie wiązek przewodów, co zwiększa bezpieczeństwo instalacji oraz zapobiega przypadkowemu uszkodzeniu kabli. Stosując opaski kablowe, należy zwrócić uwagę na ich odpowiednią szerokość oraz materiał, z którego są wykonane, aby były zgodne z obowiązującymi standardami. Dobrą praktyką jest również stosowanie narzędzi mechanicznych, co pozwala uniknąć nadmiernego nacisku na przewody i ich uszkodzenia. Właściwe użycie opasek kablowych wpływa nie tylko na estetykę instalacji, ale także na jej funkcjonalność i trwałość.

Pytanie 14

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjną klatkową.
B. Synchroniczną jawnobiegunową.
C. Synchroniczną z biegunami utajonymi.
D. Komutatorową prądu przemiennego.
Maszyna przedstawiona na rysunku to synchroniczna maszyna jawnobiegunowa, co można zauważyć dzięki wyraźnym biegunom magnetycznym oznaczonym jako S i N. W takich maszynach, w przeciwieństwie do maszyn z biegunami utajonymi, bieguny są wyraźnie widoczne na wirniku. W kontekście zastosowań, maszyny synchroniczne jawnobiegunowe są powszechnie wykorzystywane w energetyce, na przykład w generatorach prądu przemiennego w elektrowniach. Ich główną zaletą jest możliwość utrzymania stałej prędkości obrotowej niezależnie od obciążenia, co czyni je idealnymi do zastosowań wymagających wysokiej stabilności. Dodatkowo, maszyny te cechują się wysoką sprawnością i zdolnością do pracy w szerokim zakresie prędkości, co sprawia, że są wykorzystywane w aplikacjach takich jak napędy elektryczne w transporcie czy w przemyśle. Wiedza na temat maszyn synchronicznych jawnobiegunowych jest kluczowa dla inżynierów zajmujących się projektowaniem systemów energetycznych, ponieważ ich zrozumienie pozwala na efektywne wykorzystanie takich maszyn w różnych konfiguracjach sieciowych.

Pytanie 15

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Wymiana złączki.
B. Wymiana oprawki.
C. Czyszczenie obudowy i styków.
D. Wykonanie pomiarów natężenia oświetlenia.
Czyszczenie obudowy i styków jest kluczowym elementem konserwacji opraw oświetleniowych. Regularne usuwanie kurzu, brudu oraz osadów poprawia nie tylko estetykę, ale przede wszystkim funkcjonalność urządzenia. Zabrudzenia na obudowie mogą prowadzić do przegrzewania się oprawy, co skraca jej żywotność i zwiększa ryzyko awarii. Czyszczenie styków zapewnia dobry kontakt elektryczny, co jest niezbędne do prawidłowego działania źródeł światła. W kontekście standardów branżowych, takich jak normy dotyczące bezpieczeństwa elektrycznego oraz efektywności energetycznej, regularna konserwacja opraw oświetleniowych jest wymagana do utrzymania ich w dobrym stanie technicznym. Przykładowo, w obiektach przemysłowych czy biurowych, gdzie oświetlenie ma kluczowe znaczenie dla bezpieczeństwa i wydajności pracy, regularne czyszczenie oraz konserwacja opraw są niezbędne do spełnienia norm BHP i ergonomii. Właściwe praktyki konserwacyjne przyczyniają się także do zmniejszenia kosztów eksploatacji poprzez ograniczenie konieczności przeprowadzania napraw oraz wymiany uszkodzonych elementów.

Pytanie 16

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. oprawy oświetleniowe o II klasie ochronności.
B. urządzenia zasilanie prądem zmiennym do 12 V.
C. elektryczne podgrzewacze wody.
D. przenośne odbiorniki o II klasie ochronności.
W strefie 0 pomieszczenia z wanną można instalować jedynie urządzenia zasilane niskim napięciem, czyli prądem zmiennym do 12 V. Jest to zgodne z normami IEC 60364 oraz polskimi przepisami dotyczącymi ochrony przeciwporażeniowej. Niskie napięcie zapewnia znacznie wyższy poziom bezpieczeństwa w obszarach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacząco zwiększone. W praktyce oznacza to, że w strefie 0 można bezpiecznie stosować niektóre elementy oświetleniowe, takie jak lampy LED zasilane niskim napięciem, co umożliwia tworzenie atrakcyjnych aranżacji wnętrz. Przykładem mogą być podwodne reflektory montowane w wannach, które nie tylko poprawiają estetykę, lecz także zapewniają bezpieczeństwo użytkowników, minimalizując ryzyko wypadku. Instalacje w strefach mokrych powinny być projektowane przez wyspecjalizowanych elektryków, aby zapewnić zgodność z normami i bezpieczeństwo użytkowników.

Pytanie 17

Do czego przeznaczone są szczypce przedstawione na ilustracji?

Ilustracja do pytania
A. Do formowania oczek na końcach żył jednodrutowych.
B. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
C. Do montażu zacisków zakleszczających.
D. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
Odpowiedź, że szczypce są przeznaczone do formowania oczek na końcach żył jednodrutowych, jest prawidłowa, ponieważ szczypce okrągłe zostały zaprojektowane z myślą o precyzyjnym formowaniu takich elementów w obszarze elektryki i mechaniki. Oczka na końcach żył są kluczowe, ponieważ umożliwiają solidne połączenie przewodów z zaciskami, co jest istotne dla zapewnienia bezpieczeństwa oraz niezawodności instalacji. W praktyce, formowanie oczek to nie tylko kwestia estetyki, ale również funkcjonalności; dobrze uformowane oczka minimalizują ryzyko luźnych połączeń, które mogą prowadzić do przegrzewania się lub awarii. W inżynierii elektrycznej stosuje się różne standardy, takie jak IEC 60947-1, które regulują wymagania dotyczące połączeń elektrycznych. Warto również wspomnieć, że odpowiednie formowanie końców żył ma kluczowe znaczenie w kontekście odporności na wibracje i długotrwałą niezawodność połączeń.

Pytanie 18

Jaki błąd został popełniony podczas pomiaru rezystancji izolacji instalacji elektrycznej, której schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik główny powinien być zamknięty.
B. Zabezpieczenie silnika powinno być otwarte.
C. Zabezpieczenie główne powinno być zamknięte.
D. Przewód ochronny powinien być odłączony.
Pomiar rezystancji izolacji to mega ważny proces, który ocenia stan izolacji w instalacjach elektrycznych. Jak się nie uważa na zabezpieczenia i wyłączniki, to można narobić błędów. Jeśli główne zabezpieczenie czy zabezpieczenie silnika są zamknięte podczas pomiaru, to mogą dodać jakieś dodatkowe rezystancje, co zafałszuje wyniki. Główny wyłącznik powinien być otwarty, żeby mieć pełny dostęp do obwodów, a przewody ochronne odłączone, bo one też mogą coś namieszać. Ważne jest też to, żeby przed pomiarem wszystko było odłączone od prądu, żeby uniknąć niebezpieczeństw związanych z porażeniem prądem. W branży przyjęte są zasady, że przed każdym pomiarem trzeba sprawdzić stan instalacji i upewnić się, że wszystko jest zgodne z normami. Dlatego tak istotne jest, żeby wiedzieć, jak te pomiary robić i jakie są ich procedury, żeby uzyskać wiarygodne wyniki.

Pytanie 19

Który symbol graficzny oznacza na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór innej odpowiedzi niż C może być spowodowany nieporozumieniem, jeśli chodzi o oznaczenia w instalacjach elektrycznych. Ważne jest, żeby zrozumieć, że każdy symbol na planie ma swoje konkretne znaczenie, które powinno być zgodne z normami. Wiele osób myśli, że inne symbole są podobne do tego samego sposobu prowadzenia przewodów, ale to nie zawsze prawda. Na przykład, jeśli ktoś wybierze symbol A, to może pomyśleć, że oznacza to coś analogicznego do kanału kablowego, ale w rzeczywistości chodzi o instalacje powierzchniowe i to inna sprawa. Takie błędy zdarzają się najczęściej, bo brakuje znajomości standardów rysunku technicznego i jest problem z interpretacją symboli. W projektowaniu instalacji elektrycznych granie na tych zasadach jest kluczowe, by mieć dobrą wiedzę teoretyczną i praktyczną o oznaczeniach. Często ludzie upraszczają sprawy i nie biorą pod uwagę kontekstu, w jakim instalacja jest realizowana. Zrozumienie symboli graficznych jest istotne dla bezpieczeństwa i efektywności projektowania instalacji elektrycznych.

Pytanie 20

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji kabla w temperaturze 20 oC, jeżeli rezystancja izolacji tego kabla zmierzona w temperaturze 10 oC wyniosła 8,1 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji kabli z izolacją połwinnitową
R₂₀ = K₂₀·Rₜ
Temperatura w °C4810121620242628
Współczynnik przeliczeniowy K₂₀0,110,190,250,330,631,001,852,383,13
A. 4,1 MΩ
B. 32,4 MΩ
C. 2,0 MΩ
D. 16,2 MΩ
Wartość rezystancji izolacji kabla w temperaturze 20°C to 2,0 MΩ. Żeby to obliczyć, trzeba pamiętać, że rezystancja zmienia się z temperaturą. Na przykład, jeśli przy 10°C zmierzyłeś 8,1 MΩ, to musisz uwzględnić, że jak temperatura rośnie, to rezystancja maleje. W praktyce, według norm IEC, rezystancja izolacji nie powinna spadać poniżej 1 MΩ na każde 1000 V napięcia roboczego. Wiedza o tym, jak obliczyć rezystancję w wyższej temperaturze, jest ważna, żeby ocenić, w jakim stanie jest kabel i zapobiec awariom. Dobrze jest regularnie kontrolować rezystancję izolacji, bo to daje nam szansę na zauważenie problemów, zanim dojdzie do awarii, co ma ogromne znaczenie dla bezpieczeństwa ludzi.

Pytanie 21

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Lutownicy.
B. Wkrętaka.
C. Praski hydraulicznej.
D. Szczypiec uniwersalnych.
Użycie praski hydraulicznej do połączenia przewodów za pomocą złączki tulejowej jest najlepszym rozwiązaniem, ponieważ praska hydrauliczna zapewnia odpowiednią siłę, co jest kluczowe dla uzyskania trwałego i bezpiecznego połączenia elektrycznego. Zaciskanie złączki tulejowej przy użyciu tego narzędzia pozwala na równomierne rozłożenie nacisku, co jest niezwykle istotne, aby uniknąć uszkodzenia przewodów. W praktyce, praski hydrauliczne są szeroko stosowane w branży elektrycznej i telekomunikacyjnej, zgodnie z normami, takimi jak PN-EN 60947-1. Używając praski, można również osiągnąć doskonałe połączenia, które są odporne na wibracje i zmiany temperatury, co jest kluczowe w instalacjach przemysłowych czy budowlanych. Dzięki tym właściwościom, praska hydrauliczna gwarantuje wysoką jakość połączeń, co ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 22

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęciowa.
B. halogenowa.
C. sodowa.
D. rtęci owo-żarowa.
Lampy rtęciowe, sodowe i rtęciowo-żarowe różnią się istotnie od lamp halogenowych, co może prowadzić do mylnych wniosków. Lampy rtęciowe, na przykład, wykorzystują pary rtęci do emisji światła i charakteryzują się specyficznym, niebieskawym odcieniem, co sprawia, że ich zastosowanie jest bardziej ograniczone do oświetlenia ulicznego oraz przemysłowego. Kształt lampy rtęciowej jest przeważnie bardziej masywny niż lamp halogenowych, co także wpływa na ich aplikację. Z kolei lampy sodowe, które emitują ciepłe, żółte światło, są powszechnie używane w oświetleniu zewnętrznym, ale ich wydajność w zakresie odwzorowania barw jest znacznie gorsza niż w przypadku lamp halogenowych. Lampy sodowe mają również dłuższy czas nagrzewania się, co czyni je mniej praktycznymi w zastosowaniach wymagających natychmiastowego oświetlenia. Natomiast lampy rtęciowo-żarowe łączące elementy obu tych technologii, także nie są porównywalne z lampami halogenowymi, gdyż opierają się na klasycznym, żarowym źródle światła i nie oferują równie wysokiej efektywności energetycznej. Mylne uchwycenie konstrukcji i funkcji lamp prowadzi do wyboru niewłaściwego rozwiązania, co może skutkować nieefektywnym oświetleniem oraz wyższymi kosztami eksploatacji.

Pytanie 23

Który z wymienionych typów instalacji elektrycznych jest używany w lokalach mieszkalnych?

A. Prowadzona na drabinkach
B. Wykonana przewodami szynowymi
C. W kanałach podłogowych
D. W listwach przypodłogowych
Pomimo że inne metody instalacji elektrycznej mogą być stosowane w różnych kontekstach, nie są one optymalnymi rozwiązaniami dla pomieszczeń mieszkalnych. Kanały podłogowe, mimo swojej funkcjonalności, często wymagają skomplikowanego montażu i mogą ograniczać elastyczność przestrzenną. Zainstalowanie kabli w kanałach podłogowych może prowadzić do problemów z dostępem do przewodów w przypadku awarii, co jest niepraktyczne w domowych warunkach. Prowadzenie instalacji na drabinkach zazwyczaj zarezerwowane jest dla zastosowań przemysłowych lub w obiektach o dużych wymaganiach przestrzennych, a nie dla pomieszczeń mieszkalnych, gdzie estetyka oraz funkcjonalność odgrywają kluczową rolę. Instalacje wykonane przewodami szynowymi są stosowane głównie w obiektach komercyjnych i przemysłowych, gdzie wymagane są zmiany i rozbudowy sieci elektrycznej. Takie podejście nie jest dostosowane do standardów domowych, w których przewody powinny być zakryte i zabezpieczone. Typowy błąd myślowy polega na myleniu funkcjonalności instalacji elektrycznych w różnych kontekstach, co może prowadzić do niewłaściwych wyborów w zakresie ich wykonania. Wniosek jest taki, że w kontekście pomieszczeń mieszkalnych preferowane są instalacje, które łączą estetykę z bezpieczeństwem oraz łatwością dostępu.

Pytanie 24

Jakie oznaczenie, zgodnie z Europejskim Komitetem Normalizacyjnym Elektrotechniki CENELEC posiada przewód przedstawiony na rysunku?

Ilustracja do pytania
A. H03VV-F
B. H07V-U
C. NAYY-O
D. NYM-J
Przewody 'NAYY-O' i 'H07V-U' niestety nie spełniają wymagań do tej instalacji, co można zauważyć na rysunku. 'NAYY-O' to przewody aluminiowe, które zazwyczaj wykorzystuje się w instalacjach na zewnątrz. Mają inną konstrukcję izolacyjną, więc nie nadają się do stałych instalacji w budynkach. Natomiast 'H07V-U' to przewód jednożyłowy, który również nie pasuje do wielożyłowych przewodów, jakie były potrzebne, by zapewnić prawidłowe zasilanie. Użycie takich przewodów może prowadzić do różnych błędów, bo jak źle dobierzesz przewód, to wpływa na bezpieczeństwo i funkcjonowanie całego systemu elektrycznego. Oznaczenie 'H03VV-F' odnosi się do przewodów elastycznych, używanych głównie w urządzeniach przenośnych, a nie w stałych instalacjach. Wybór niewłaściwego typu przewodu to nie tylko obniżona efektywność, ale też większe ryzyko awarii systemu, co jest wbrew normom CENELEC, które sugerują dobór przewodów odpowiednich do danej instalacji. Warto pamiętać, żeby wybierając przewody, kierować się ich przeznaczeniem oraz obowiązującymi normami, by zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 25

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
B. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
C. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
D. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
Analizując błędne odpowiedzi, należy skupić się na kilku kluczowych koncepcjach, które mogą prowadzić do mylnych wniosków. W wielu przypadkach odpowiedzi sugerujące, że wstawka kalibrowa może obsługiwać napięcie co najmniej 500 V, są nieprawdziwe. Oznaczenie "500 V" jednoznacznie wskazuje maksymalną wartość, a nie minimalną. W kontekście bezpieczeństwa elektrycznego, przekroczenie tego napięcia może skutkować poważnymi konsekwencjami, w tym ryzykiem pożaru czy porażenia prądem. Ponadto, odpowiedzi sugerujące wyższe wartości prądu znamionowego, takie jak "co najmniej 63 A", również są nieprawidłowe. Tego typu błędne rozumienie wynika najczęściej z niedostatecznej wiedzy na temat parametrów technicznych bezpieczników oraz ich zastosowania. Ważnym aspektem jest również zrozumienie, że każdy rodzaj zabezpieczenia musi być odpowiednio dobrany do specyfikacji instalacji, aby zapewnić maksymalną efektywność i bezpieczeństwo. W praktyce, stosowanie wzorców i standardów, jak PN-EN 60269, jest kluczowe dla prawidłowego doboru elementów zabezpieczających. Ignorowanie tych zasad może prowadzić do poważnych awarii oraz zagrożeń dla osób obsługujących instalacje elektryczne.

Pytanie 26

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00
A. 6,87 MΩ
B. 6,18 MΩ
C. 6,73 MΩ
D. 7,48 MΩ
Analiza rezystancji izolacji uzwojeń silnika w różnych temperaturach może stanowić wyzwanie, zwłaszcza gdy nie są brane pod uwagę odpowiednie współczynniki przeliczeniowe. W przypadku, gdy odpowiedzi sugerują wartości 6,73 MΩ, 6,87 MΩ, 7,48 MΩ oraz 6,18 MΩ, istotne jest zrozumienie, że każda z tych odpowiedzi opiera się na błędnych założeniach. Wartość 6,18 MΩ, choć może wydawać się poprawna, została obliczona w sposób nieprawidłowy, ponieważ pomija uwzględnienie odpowiednich współczynników przeliczeniowych i ich wpływu na wynik. W przypadku obliczania rezystancji izolacji, temperatura ma kluczowe znaczenie, a różnice między 20°C a 23°C mogą znacząco wpływać na wyniki. Przyjmuje się, że wzrost temperatury wpływa na zmniejszenie rezystancji, co oznacza, że rezystancja w niższej temperaturze powinna być wyższa. Wartości 6,73 MΩ i 6,87 MΩ mogą wynikać z pomyłek w korzystaniu z tabeli współczynników lub niewłaściwego zastosowania wzoru, co prowadzi do zaniżenia wartości izolacji. Natomiast 7,48 MΩ, choć na pierwszy rzut oka może wydawać się bardziej wiarygodne, jest wynikiem błędnych obliczeń, które nie uwzględniają prawidłowego przeliczenia na podstawie temperatury. Wiedza na temat prawidłowego wyznaczania rezystancji izolacji uzwojeń jest niezwykle istotna w kontekście bezpieczeństwa urządzeń elektrycznych oraz ich niezawodności w długotrwałym użytkowaniu.

Pytanie 27

Który z przedstawionych wyłączników należy zastosować do wykrywania prądów różnicowych przemiennych o zwiększonej częstotliwości, zawierających wyższe harmoniczne w układach energoelektronicznych?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór niewłaściwego wyłącznika różnicowoprądowego w aplikacjach z prądami o zwiększonej częstotliwości prowadzi do poważnych konsekwencji w zakresie bezpieczeństwa i efektywności energetycznej. Wyłączniki oznaczone literami A i B nie są przystosowane do detekcji prądów różnicowych w systemach, gdzie występują znaczne harmoniczne, co może prowadzić do fałszywych alarmów lub, co gorsza, do braku reakcji na rzeczywisty prąd różnicowy. Wyłączniki te zazwyczaj są zaprojektowane do standardowych warunków pracy, a ich parametry techniczne nie uwzględniają szczególnych wymagań układów energoelektronicznych. Użycie wyłączników bez odpowiednich specyfikacji może prowadzić do poważnych zagrożeń, takich jak porażenie prądem elektrycznym lub pożary spowodowane niewłaściwym działaniem systemów zabezpieczeń. Ponadto, w kontekście norm i standardów, wyłączniki te mogą nie spełniać wymogów określonych w normach EN 61008 i EN 61009, co dodatkowo podkreśla ich nieadekwatność w stosunku do potrzeb nowoczesnych instalacji elektrycznych. Dlatego kluczowe jest, aby w takich aplikacjach stosować wyłączniki, które są zaprojektowane z myślą o pracy z harmonicznymi i zwiększonymi częstotliwościami, jak w przypadku wyłącznika C.

Pytanie 28

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 10 do 20
B. 5 do 10
C. 2 do 3
D. 3 do 5
Odpowiedź "2 do 3" jest poprawna, ponieważ wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z działają w granicach krotności prądu znamionowego na poziomie od 2 do 3. To oznacza, że wyzwalacz zareaguje w przypadku, gdy prąd zwarciowy osiągnie wartość 2-3 razy wyższą od prądu znamionowego urządzenia. Wyłączniki te są przeznaczone do ochrony obwodów z wysoką odpornością na prądy rozruchowe, co czyni je idealnymi do stosowania w instalacjach z urządzeniami takimi jak transformatory czy silniki elektryczne. Standardy takie jak PN-EN 60947-2 definiują wymagania dotyczące wyłączników, a ich zastosowanie w praktyce pomaga w minimalizacji ryzyka uszkodzenia instalacji oraz zapewnienia bezpieczeństwa użytkowników. Przykładem może być sytuacja, w której w obwodzie z silnikiem występuje krótki impuls prądowy, co może prowadzić do zadziałania wyłącznika, zanim dojdzie do poważniejszych uszkodzeń. Stosując wyłączniki typu Z, można skutecznie ograniczyć ryzyko zwarć w obwodach o niskiej tolerancji na prądy zwarciowe.

Pytanie 29

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zaciskania końcówek tulejkowych.
B. Zaciskania końcówek oczkowych.
C. Ściągania izolacji z przewodu.
D. Docinania przewodu.
Wybór innej odpowiedzi może sugerować niepełne zrozumienie funkcji narzędzi elektrycznych oraz ich zastosowań. Zaciskanie końcówek oczkowych, docinanie przewodu oraz zaciskanie końcówek tulejkowych to czynności, które wymagają innych narzędzi i technik. Zaciskanie końcówek oczkowych, na przykład, polega na użyciu specjalnych szczypiec do zaciskania, które formują metalowy element w kształcie oczka na końcu przewodu, co umożliwia jego bezpieczne przyłączenie do śrub. Natomiast docinanie przewodu to czynność, którą wykonuje się za pomocą narzędzi tnących, takich jak nożyce do przewodów, które umożliwiają precyzyjne cięcie bez uszkodzenia izolacji. Zaciskanie końcówek tulejkowych również wymaga użycia odpowiednich narzędzi, które zapewniają mocne oraz trwałe połączenie. Wszelkie te czynności różnią się od ściągania izolacji, które jest specyficznie dedykowaną operacją z wykorzystaniem narzędzi do ściągania. Typowym błędem w myśleniu jest mylenie funkcji narzędzi, co może prowadzić do niewłaściwego użycia oraz potencjalnych zagrożeń, takich jak uszkodzenie przewodów czy zakończeń, co z kolei może prowadzić do awarii instalacji elektrycznej. Zrozumienie różnicy między tymi czynnościami jest niezbędne dla bezpiecznego i efektywnego wykonywania prac elektrycznych.

Pytanie 30

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym z jego końców. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły a i b są przerwane.
B. Żyły a i b są zwarte ze sobą.
C. Żyły c i a są zwarte ze sobą.
D. Żyły c i a są przerwane.
Wynik, który wskazuje, że żyły a i b są zwarte ze sobą, jest prawidłowy. Podczas pierwszej serii pomiarów, gdy końce żył były zwarte, odczytana rezystancja wynosiła niskie wartości, co sugeruje, że żyły są sprawne. Natomiast w drugiej serii, gdy żyły były rozwarte, rezystancja pomiędzy żyłami a i b była zaskakująco bliska wartości z pierwszej serii, co oznacza, że mogły być one zwarte. Wartości rezystancji pomiędzy żyłami a i c oraz b i c wynoszą nieskończoność, co potwierdza, że te żyły nie są ze sobą połączone. W praktyce, zrozumienie pomiarów rezystancji jest kluczowe w diagnostyce urządzeń elektrycznych i systemów kablowych. Używając odpowiednich narzędzi, takich jak mierniki rezystancji, technicy mogą szybko zidentyfikować problemy z izolacją kabli czy przerwy w obwodach. Zachowanie takich standardów jak IEC 60364 dotyczących instalacji elektrycznych jest niezbędne, aby zapewnić bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 31

Jakie zadania związane z utrzymaniem instalacji elektrycznych zgodnie z przepisami BHP powinny być realizowane przez co najmniej dwuosobowy zespół?

A. Przeprowadzane regularnie przez upoważnione osoby w określonych lokalizacjach w czasie testów i pomiarów urządzeń znajdujących się pod napięciem
B. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji kabli
C. Wykonywane na wysokości przekraczającej 2 m w sytuacjach, gdy konieczne jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości
D. Wykonywane w pobliżu urządzeń elektroenergetycznych wyłączonych z napięcia oraz uziemionych w widoczny sposób
Wybrana odpowiedź o pracach przy urządzeniach, które są wyłączone spod napięcia oraz pracach w wykopach do 2 metrów nie do końca uwzględnia ważne zasady BHP. Nawet jeśli urządzenia są wyłączone, to mogą pojawić się inne zagrożenia, jak urazy mechaniczne czy kontuzje przy obsłudze ciężkiego sprzętu. W przypadku wykopów, prace do 2 metrów nie muszą zwykle być wykonywane przez dwuosobowy zespół, ale i tak lepiej mieć kogoś obok, żeby móc pomóc w nagłej sytuacji. Muszę też dodać, że prace prowadzone przez upoważnione osoby w ustalonych miejscach mogą wydawać się bezpieczne, ale zawsze jest jakieś ryzyko, które warto zminimalizować odpowiednimi procedurami. Ignorowanie tych zasad może prowadzić do niebezpiecznych sytuacji, a co gorsza, może dać fałszywe poczucie bezpieczeństwa. Dlatego przestrzeganie standardów BHP, w tym norm PN-EN, jest naprawdę ważne dla ochrony wszystkich pracowników.

Pytanie 32

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
B. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
C. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
Pomiar impedancji pętli zwarciowej przy załączonej sieci jest kluczowy dla oceny bezpieczeństwa systemów elektroenergetycznych. W takiej konfiguracji, wszystkie elementy systemu, w tym transformatory, przewody oraz urządzenia zabezpieczające, działają w rzeczywistych warunkach operacyjnych. Uwzględnienie impedancji transformatorów zasilających jest istotne, ponieważ ich właściwości mogą znacząco wpływać na wartość impedancji pętli zwarciowej. W praktyce, taka analiza pozwala na poprawne zaprojektowanie zabezpieczeń przeciwprądowych, co jest kluczowe dla szybkiej reakcji systemu na awarie. Dobre praktyki, takie jak stosowanie norm IEC 60909, podkreślają znaczenie pomiaru impedancji w warunkach załączonych, co prowadzi do bardziej rzetelnych wyników i lepszej ochrony instalacji. Ostatecznie, znajomość rzeczywistych warunków pracy systemu przekłada się na większe bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 33

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. aluminiowymi umieszczonymi na tynku
B. aluminiowymi umieszczonymi pod tynkiem
C. miedzianymi umieszczonymi pod tynkiem
D. miedzianymi umieszczonymi na tynku
Odpowiedzi, które sugerują użycie przewodów aluminiowych w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi, są niewłaściwe. Aluminium, choć jest tańszym materiałem i ma swoje zalety, takich jak lekkość, ma znacznie gorsze właściwości w zakresie odporności na korozję w porównaniu do miedzi. W środowiskach z agresywnymi substancjami chemicznymi, aluminiowe przewody mogą szybko ulegać degradacji, co może prowadzić do przerwy w obwodzie elektrycznym, a tym samym zwiększać ryzyko pożaru i uszkodzeń sprzętu. Ponadto, przewody aluminiowe wymagają szczególnej staranności w montażu, aby uniknąć problemów z połączeniami, które mogą prowadzić do przegrzewania. Ułożenie przewodów pod tynkiem, zwłaszcza w warunkach przemysłowych, może być problematyczne ze względu na trudności w naprawach i kontroli stanu technicznego instalacji. Używanie przewodów aluminiowych na tynku również nie jest zalecane, ponieważ naraża je na uszkodzenia mechaniczne oraz niekorzystne działanie czynników atmosferycznych. W kontekście dobrych praktyk branżowych oraz norm, takich jak PN-IEC 60364, instalacje elektryczne w środowiskach przemysłowych powinny być projektowane z myślą o maksymalnej trwałości i bezpieczeństwie. Dlatego wybór materiałów i metod zastosowania przewodów elektrycznych powinien być starannie przemyślany, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji.

Pytanie 34

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Mostka prądu zmiennego
B. Megaomomierza induktorowego
C. Amperomierza cęgowego
D. Omomierza szeregowego
Jak wybierzesz złe urządzenie do mierzenia rezystancji izolacji, to może to prowadzić do błędnych wyników i braku zidentyfikowania problemów. Na przykład mostek prądu przemiennego, mimo że jest używany do pomiarów impedancji, nie nadaje się do oceny izolacji, bo nie daje wystarczającego napięcia, żeby pokazać ewentualne uszkodzenia. Użycie go w takich pomiarach może prowadzić do fałszywych pozytywnych wyników, co z kolei jest niebezpieczne dla ludzi. Amperomierz cęgowy też jest do pomiaru prądu, a nie rezystancji, więc to kompletnie się nie sprawdzi w tym kontekście. W tym przypadku omomierz szeregowy również odpada, bo bada rezystancję przy niskim napięciu, co nie pozwala dobrze ocenić jakości izolacji. Korzystanie z takich urządzeń może sprawić, że nie dostrzegasz ryzyka związanego z niewłaściwą izolacją, a to może prowadzić do poważnych zagrożeń dla zdrowia i życia. Dlatego lepiej używać odpowiednich narzędzi, jak megaomomierz induktorowy, żeby zapewnić bezpieczeństwo i trzymać się norm w branży.

Pytanie 35

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±0,02 mA
B. ±0,35 mA
C. ±2,35 mA
D. ±0,37 mA
Bezpośrednia wartość błędu pomiaru natężenia prądu obliczana jest na podstawie specyfikacji urządzenia oraz uzyskanego wyniku. W tym przypadku multimetr wyświetlił wynik 35,00 mA, a dokładność pomiaru wynosi ±(1 % + 2 cyfry). Aby obliczyć bezwzględną wartość błędu, najpierw należy obliczyć 1% z uzyskanej wartości. 1% z 35 mA to 0,35 mA. Następnie dodajemy 2 cyfry, co w przypadku pomiaru natężenia prądu oznacza 0,02 mA. Sumując te dwie wartości, otrzymujemy ±(0,35 mA + 0,02 mA) = ±0,37 mA. Takie podejście do obliczeń jest zgodne z dobrą praktyką w pomiarach elektrycznych, która uwzględnia zarówno procentowy błąd pomiaru, jak i błędy stałe, co jest kluczowe przy ocenie precyzji pomiarów. Dobrze dobrany multimetr oraz zrozumienie zasad obliczania błędów pomiarowych są niezbędne w laboratoriach oraz w zastosowaniach przemysłowych, gdzie precyzja i dokładność odgrywają istotną rolę.

Pytanie 36

Ze względu na ochronę przed dostępem wody przedstawiona na rysunku oprawa oświetleniowa jest

Ilustracja do pytania
A. wodoszczelna.
B. strugoszczelna.
C. odporna na krople wody.
D. nieodporna na wnikanie wody.
Twoja odpowiedź jest trafna, bo jeśli przyjrzymy się rysunkowi oprawy oświetleniowej, to nie widać żadnych uszczelnień ani odpowiednich zabezpieczeń. To oznacza, że ten produkt nie nadaje się do używania w miejscach, gdzie może być wilgoć lub woda. W praktyce, oprawy, które można stosować w miejscach z podwyższoną wilgotnością, jak w łazienkach czy na zewnątrz, muszą spełniać pewne normy odporności na wodę, na przykład normy IP. Jeżeli nie zastosujemy takich standardów, to mogą wystąpić problemy z elektroniką, a nawet zagrożenie pożarowe. Dlatego warto zwracać uwagę na klasę ochrony przy wyborze opraw oświetleniowych, bo to sprawi, że będą one bezpieczniejsze i dłużej posłużą.

Pytanie 37

Przewód zastosowany na odcinku obwodu elektrycznego wskazanym strzałką powinien mieć żyły o izolacjach w kolorze

Ilustracja do pytania
A. tylko czarnym lub brązowym.
B. żółtozielonym i czarnym lub brązowym.
C. niebieskim i czarnym lub brązowym.
D. żółtozielonym, niebieskim i czarnym lub brązowym.
Wybór niewłaściwych kolorów izolacji przewodów, takich jak niebieski lub żółtozielony, jest błędem, który wynika często z nieporozumienia dotyczącego klasyfikacji przewodów w instalacjach elektrycznych. Przewód niebieski jest zgodnie z normami przeznaczony jako przewód neutralny, a przewód o izolacji żółtozielonej oznacza przewód ochronny (uziemiający). Użycie tych kolorów w kontekście przewodów fazowych może prowadzić do poważnych pomyłek, szczególnie podczas prac serwisowych lub instalacyjnych. W sytuacji, gdy elektryk zidentyfikuje przewód niezgodnie z jego rzeczywistą funkcją, ryzykuje nie tylko uszkodzenie sprzętu, ale również swoje zdrowie. Kolejnym błędnym podejściem jest sugerowanie, że przewody mogą mieć różne kombinacje kolorów, co jest sprzeczne z ustalonymi normami. Odpowiednia kolorystyka przewodów ma kluczowe znaczenie dla bezpieczeństwa, a każdy odstępstwo od tych zasad może prowadzić do niebezpiecznych sytuacji. Dlatego ważne jest, aby wszyscy użytkownicy instalacji elektrycznych byli świadomi obowiązujących norm i praktyk, aby uniknąć niebezpieczeństw związanych z nieprawidłowym oznaczeniem przewodów.

Pytanie 38

Według przedstawionego schematu instalacji elektrycznej ochronnik przeciwprzepięciowy powinien być włączony między uziemienie oraz

Ilustracja do pytania
A. przewód fazowy i przewód neutralny.
B. wyłącznie przewody fazowe.
C. wyłącznie przewód neutralny.
D. przewody fazowe i przewód neutralny.
Wybór opcji ograniczającej włączenie ochronnika przeciwprzepięciowego wyłącznie między uziemieniem a przewodem neutralnym jest niewłaściwy, ponieważ nie uwzględnia pełnego zakresu zagrożeń, jakie mogą wystąpić w instalacjach elektrycznych. Ochronniki przeciwprzepięciowe są projektowane w taki sposób, aby chronić zarówno przewody fazowe, jak i neutralne, które mogą być narażone na przepięcia. Włączenie ochronnika tylko w relacji do przewodu neutralnego powoduje, że nie zabezpieczamy efektywnie pozostałych przewodów fazowych przed nadmiernymi napięciami. Podobnie, sugerowanie wyłącznie przewodów fazowych nie uwzględnia roli przewodu neutralnego, który również może doświadczać przepięć. Taka konfiguracja może prowadzić do poważnych uszkodzeń urządzeń, ponieważ energia z przepięcia nie zostanie odprowadzona w sposób bezpieczny, a sprzęt będzie narażony na awarie, co jest sprzeczne z zasadami projektowania instalacji elektrycznych oraz normami bezpieczeństwa. Właściwe włączenie ochronnika w sposób opisany w poprawnej odpowiedzi pozwala na zminimalizowanie ryzyka uszkodzeń oraz zapewnia zgodność z dobrymi praktykami branżowymi, co jest kluczowe w każdej instalacji elektrycznej.

Pytanie 39

Którego z urządzeń elektrycznych dotyczy etykieta przedstawiona na ilustracji?

Ilustracja do pytania
A. Źródła światła.
B. Czujnika ruchu.
C. Aparatu zmierzchowego.
D. Automatu schodowego.
Wybór niewłaściwej odpowiedzi może wynikać z kilku nieporozumień dotyczących funkcji i parametrów technicznych urządzeń elektrycznych. Czujnik ruchu, na przykład, nie jest urządzeniem, które generuje światło, lecz detektorem obecności, który aktywuje inne źródło światła w momencie wykrycia ruchu. W przypadku aparatu zmierzchowego, jego zadaniem jest automatyczne włączanie lub wyłączanie źródła światła w zależności od natężenia oświetlenia w otoczeniu, również nie dostarcza on informacji o lumenach, mocy czy gwincie, które są typowe dla źródeł światła. Automat schodowy to urządzenie, które steruje oświetleniem na klatkach schodowych, włączając światło na krótki czas po wykryciu ruchu, jednak także nie jest to źródło światła. Zrozumienie różnicy między tymi urządzeniami a źródłami światła jest kluczowe w kontekście projektowania instalacji oświetleniowych. Użytkownicy mogą popełnić błędy, jeśli nie rozumieją, że parametry takie jak lumeny i moc są związane wyłącznie z samymi źródłami światła, a nie z urządzeniami, które je aktywują lub kontrolują. Rzetelne podejście do klasyfikacji tych urządzeń jest niezbędne dla skutecznego zarządzania energią i zapewnienia odpowiedniego poziomu oświetlenia, co jest szczególnie ważne w kontekście zrównoważonego rozwoju i efektywności energetycznej.

Pytanie 40

W jakim celu należy użyć przyrządu przedstawionego na rysunku?

Ilustracja do pytania
A. Pomiaru natężenia oświetlenia.
B. Pomiaru prędkości obrotowej wałów.
C. Punktowego przenoszenia wysokości.
D. Wykrywania przewodów pod tynkiem.
Udzielenie odpowiedzi dotyczącej pomiaru prędkości obrotowej wałów, natężenia oświetlenia czy punktowego przenoszenia wysokości pokazuje nieporozumienie w zakresie zastosowania detektorów. Prędkość obrotowa wałów to parametr, który można mierzyć za pomocą tachometrów, a nie detektorów przewodów, które nie są przystosowane do tak specyficznych zadań. Z kolei pomiar natężenia oświetlenia wymaga użycia luksomierzy, które służą do oceny jasności w danym pomieszczeniu, a nie do lokalizacji obiektów w ścianach. Punktowe przenoszenie wysokości odnosi się do metod geodezyjnych, które również nie mają związku z funkcjonalnością detektorów przewodów. Użycie niewłaściwego przyrządu do konkretnego zadania może prowadzić do błędnych pomiarów oraz potencjalnych uszkodzeń sprzętu. W praktyce, wybór odpowiednich narzędzi do danego zadania jest kluczowy. Ignorowanie właściwych zastosowań detektorów i wybieranie ich z pomieszaniem terminologii może skutkować nie tylko nieefektywnością, ale także narażeniem na niebezpieczeństwo, co jest szczególnie istotne w kontekście prac budowlanych i remontowych. Dlatego znajomość przeznaczenia urządzeń oraz ich specyfikacji technicznych jest fundamentalna w każdym profesjonalnym środowisku.