Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 17 grudnia 2025 08:42
  • Data zakończenia: 17 grudnia 2025 08:49

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie danych technicznych zawartych w tabeli ustal parametry zasilania maty grzejnej.

Nazwa produktu:Mata grzejna 5,0 m² 170 W THERMOVAL
Powierzchnia grzewcza5,0 m²
Całkowita moc grzewcza850 W
Moc grzewcza / m²170 W
Napięcie zasilające230 V
Wymiary produktuszer. 0,5 x dł. 10 m
A. Napięcie 230 V, prąd 3,7 A
B. Napięcie 230 V, prąd 0,7 A
C. Napięcie 230 V, prąd 5,0 A
D. Napięcie 170 V, prąd 3,7 A
Odpowiedź z napięciem 230 V i prądem 3,7 A jest poprawna. Z tabeli wynika, że napięcie zasilające matę grzejną wynosi 230 V. Moc całkowita maty to 850 W, a prąd obliczamy z zależności P = U * I, gdzie P to moc, U to napięcie, a I to prąd. Podstawiając dane: 850 W = 230 V * I, otrzymujemy I = 850 W / 230 V, co daje w przybliżeniu 3,7 A. Stosowanie tej zależności to podstawa w elektrotechnice i pozwala na poprawne określenie parametrów zasilania urządzeń. W praktyce, taka mata grzejna znajdzie zastosowanie w ogrzewaniu podłogowym, co jest popularnym rozwiązaniem w nowoczesnym budownictwie. Zastosowanie odpowiedniego napięcia i prądu gwarantuje efektywność pracy urządzenia. Warto wiedzieć, że przy instalacjach elektrycznych zawsze należy przestrzegać odpowiednich norm i standardów, takich jak PN-EN 60335 dotyczący bezpieczeństwa użytkowania urządzeń elektrycznych. Prawidłowe zrozumienie i zastosowanie tej wiedzy jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności systemów grzewczych.

Pytanie 2

Narzędzie przedstawione na rysunku to szczypce

Ilustracja do pytania
A. tnące czołowe.
B. płaskie.
C. uniwersalne.
D. tnące boczne.
Świetnie, tnące boczne to narzędzie o naprawdę szerokim zakresie zastosowań w elektronice i elektrotechnice. Moim zdaniem, są one absolutnie niezbędne, jeśli planujesz jakiekolwiek prace związane z cięciem przewodów czy cienkich drutów. Zbudowane są z dwóch ostrzy, które ścinają materiał przez przyłożenie siły z boku, stąd ich nazwa 'boczne'. Typowo wykonane są z hartowanej stali, co zapewnia ich trwałość i długowieczność. Co ciekawe, w profesjonalnych warsztatach często używa się ich także do precyzyjnego modelowania i czyszczenia końców przewodów. Standardy branżowe, takie jak IEC 60900, podkreślają znaczenie właściwego wyboru narzędzi izolowanych do pracy z przewodami pod napięciem. Pamiętaj, że bezpieczeństwo jest kluczem, więc dobre tnące boczne powinny mieć izolację umożliwiającą pracę pod napięciem do 1000 V. To naprawdę ciekawy sprzęt, który przy odpowiednim użytkowaniu może służyć latami.

Pytanie 3

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. cięcia przewodów.
B. ściągania izolacji.
C. zaciskania końcówek tulejkowych.
D. zaciskania wtyków RJ45.
Dobrze, że wybrałeś tę odpowiedź. Narzędzia przedstawione na rysunkach to zaciskarki do końcówek tulejkowych. W praktyce, takie tulejkowe końcówki są używane do zabezpieczenia końcówek przewodów, co zapobiega ich strzępieniu się i zapewnia lepsze połączenie elektryczne. To niezwykle ważne w instalacjach elektrycznych, gdzie zależy nam na trwałości i bezpieczeństwie połączeń. Zaciskarki umożliwiają precyzyjne i mocne zaciśnięcie tulejki na przewodzie, co jest zgodne ze standardami branżowymi, takimi jak normy IEC czy DIN. Prawidłowo zaciśnięta tulejka zapewnia nie tylko mechaniczne, ale i elektryczne bezpieczeństwo połączenia, co jest kluczowe w zapobieganiu awariom i stratom energii. Warto pamiętać, że używanie odpowiednich narzędzi i technik w pracy z przewodami jest jednym z fundamentów profesjonalizmu w branży elektrycznej. Zaciskarki tego typu mogą mieć regulowany mechanizm zaciskowy, co pozwala na dostosowanie do różnych rozmiarów tulejek, a ich ergonomiczna konstrukcja ułatwia pracę nawet w trudnych warunkach.

Pytanie 4

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady blokady sygnałów wyjściowych.
B. Zasady blokady programowej sygnałów wejściowych.
C. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
D. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
Projektowanie układu sterującego bazującego na zasadach przerwy roboczej to kluczowy aspekt bezpieczeństwa i niezawodności w systemach zautomatyzowanych. Zasady te mówią, że w przypadku awarii lub konieczności bezpiecznego wyłączenia systemu, należy zapewnić możliwość wprowadzenia stanu 0 na wejście sterownika PLC. To działanie jest zgodne z podejściami fail-safe, które są powszechnie stosowane w przemyśle, aby minimalizować ryzyko niekontrolowanych operacji. W praktyce, projektując systemy sterowania, inżynierowie muszą przewidzieć scenariusze awaryjne i zbudować logikę, która umożliwi bezpieczne wyłączenie systemu bez ryzyka dla ludzi czy sprzętu. Moim zdaniem, jest to niezwykle istotne, zwłaszcza w branżach takich jak produkcja, gdzie zautomatyzowane linie produkcyjne muszą działać w precyzyjny i kontrolowany sposób. Standardy takie jak IEC 61131-3 zalecają projektowanie systemów z myślą o bezpieczeństwie i zrównoważonym zarządzaniu energią, co bezpośrednio łączy się z zasadami przerwy roboczej. Warto również pamiętać, że w sytuacjach kryzysowych łatwość dokonania natychmiastowego zatrzymania systemu może zapobiec poważnym awariom i potencjalnym stratom. Zastosowanie tej zasady w praktyce to dobry przykład na to, jak teoria znajduje odzwierciedlenie w realnych aplikacjach przemysłowych.

Pytanie 5

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód B
Ilustracja do odpowiedzi A
B. Przewód A
Ilustracja do odpowiedzi B
C. Przewód D
Ilustracja do odpowiedzi C
D. Przewód C
Ilustracja do odpowiedzi D
Dobór odpowiedniego przewodu do połączenia silnika 3-fazowego z przemiennikiem częstotliwości jest kluczowy dla zapewnienia prawidłowej pracy systemu. Przewód A to przewód przeznaczony do zastosowań przemysłowych, charakteryzuje się wysoką odpornością na wibracje, temperaturę oraz zakłócenia elektromagnetyczne. Tego typu przewody są zwykle ekranowane, co minimalizuje wpływ zakłóceń na sygnał sterujący, co w przypadku silników jest niezwykle ważne. Przewody te muszą również spełniać normy bezpieczeństwa, takie jak PN-EN 60204-1, co zapewnia ich niezawodność i zgodność z wymaganiami technicznymi. Moim zdaniem, dobrze jest także zwracać uwagę na elastyczność przewodu, co ułatwia jego montaż w trudnych warunkach. W praktyce, przewody takie są stosowane w środowiskach o wysokim stopniu zanieczyszczenia przemysłowego i mogą pracować w szerokim zakresie temperatur, co jest istotne w kontekście przemysłowym. Z mojego doświadczenia, warto również zwrócić uwagę na odpowiednie oznaczenie przewodów, co ułatwia ich identyfikację i minimalizuje ryzyko pomyłek podczas instalacji.

Pytanie 6

Do pomiaru wartości podciśnienia w zautomatyzowanej instalacji pneumatycznej, w której stosowane są ejektory wraz z przyssawkami, należy zastosować

A. manometr różnicowy.
B. manometr.
C. wakuometr.
D. barometr.
Wybór odpowiedniego przyrządu do pomiaru podciśnienia jest kluczowy w zautomatyzowanych systemach pneumatycznych. Często pojawia się błąd myślowy polegający na myleniu wakuometru z innymi przyrządami do pomiaru ciśnienia. Barometr, na przykład, mierzy ciśnienie atmosferyczne i jest używany głównie do celów meteorologicznych, a nie w systemach technicznych, gdzie potrzebny jest pomiar podciśnienia. Manometr, z kolei, to przyrząd mierzący ciśnienie powyżej ciśnienia atmosferycznego, stosowany najczęściej do pomiaru ciśnienia cieczy lub gazów w systemach zamkniętych. Manometr różnicowy mierzy różnicę ciśnień między dwoma punktami, co jest użyteczne w systemach, gdzie trzeba kontrolować przepływy, ale nie w pomiarze podciśnienia. Typowym błędem jest także niedocenianie znaczenia dokładnego pomiaru w aplikacjach takich jak ejektory. Ewentualne niepoprawne wartości mogą prowadzić do nieefektywnej pracy systemu, co w konsekwencji może wpłynąć na cały proces produkcyjny. Warto pamiętać, że poprawny dobór narzędzi pomiarowych to nie tylko kwestia techniczna, ale również ekonomiczna, gdyż niewłaściwe narzędzia mogą powodować przestoje i dodatkowe koszty związane z konserwacją systemu.

Pytanie 7

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. MUL
B. ADD
C. DIV
D. SUB
Funkcje dostępne w sterownikach PLC są kluczowe dla realizacji różnorodnych zadań automatyzacji. Zaczynając od DIV, odpowiada ona za dzielenie. To działanie jest często wykorzystywane w procesach przemysłowych, gdzie konieczne jest obliczanie średnich wartości czy proporcji. Niemniej jednak, nie jest to działanie odpowiedzialne za odejmowanie. Zamieszanie może wynikać z podobieństwa skrótów lub funkcjonalności związanych z podstawowymi działaniami arytmetycznymi, ale każda z tych funkcji ma swoje konkretne zastosowanie. ADD to funkcja dodawania, która z kolei sumuje wartości. Używa się jej często do akumulacji danych, czyli np. sumowania ilości wyprodukowanych sztuk. Podobnie jak w przypadku DIV, nie odpowiada ona za wykonanie odejmowania. MUL, czyli mnożenie, pozwala na zwiększanie wartości poprzez wielokrotność. Jest to przydatne np. w obliczeniach skalujących. Wszystkie te funkcje mają swoje miejsce w programowaniu PLC, ale żadna z nich nie realizuje odejmowania. Błędne przypisanie funkcji do nieodpowiedniego działania może wynikać z nieuwagi lub pomylenia skrótów. Kluczem jest zrozumienie ich specyfiki i zastosowań. Zrozumienie różnic między tymi podstawowymi działaniami jest fundamentalne dla efektywnego programowania PLC i unikania błędów logicznych w projektach.

Pytanie 8

Które ze stwierdzeń dotyczących prowadzenia przewodów sygnałowych w układach sterowania napędami nie jest poprawne?

A. Przewody sygnałowe należy prowadzić w odległości minimum 20 cm od przewodów zasilających.
B. Przewody sygnałowe należy prowadzić w korytach lub rurach z PVC w celu poprawy skuteczności ekranowania.
C. Końcówki nieużywanych żył przewodów sygnałowych w szafie należy połączyć ze sobą i uziemić.
D. Wszystkie krzyżowania przewodów sygnałowych z innymi rodzajami przewodów należy wykonać pod kątem prostym.
Zrozumienie zasad poprawnego prowadzenia przewodów sygnałowych jest kluczowe dla niezawodności systemów sterowania. Łączenie końcówek nieużywanych żył przewodów sygnałowych i ich uziemianie mogłoby wydawać się logiczne, ale w rzeczywistości nie jest to zalecana praktyka. Uziemianie nieużywanych żył może wprowadzić dodatkowe ścieżki zakłóceń, co może wpłynąć negatywnie na działanie systemu. Lepszą praktyką jest pozostawienie ich niepodłączonych, ale odpowiednio zabezpieczonych. Prowadzenie przewodów sygnałowych w odległości minimum 20 cm od przewodów zasilających to dobry sposób na minimalizację wpływu zakłóceń elektromagnetycznych. Właściwa separacja przestrzenna jest kluczowa, by uniknąć indukowania się zakłóceń z przewodów zasilających na przewody sygnałowe. Krzyżowanie przewodów sygnałowych z innymi przewodami pod kątem prostym to kolejna dobra praktyka, ponieważ minimalizuje to czas, w którym przewody są narażone na wzajemną indukcję. W praktyce, wiele błędów myślowych wynika z przekonania, że fizyczna ochronna osłona, jaką jest PVC, zapewnia ekranowanie. W rzeczywistości ekranowanie to proces ochrony sygnału przed zakłóceniami przy użyciu materiałów przewodzących, takich jak miedź czy aluminium, a nie jedynie bariera fizyczna. Dobre projektowanie systemów elektrycznych wymaga zrozumienia tych subtelności, co jest kluczowe dla niezawodności i bezpieczeństwa całego układu sterowania.

Pytanie 9

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA?

Ilustracja do pytania
A. input SW1 - 01011010, output SW2 - 0110
B. input SW1 - 10001100, output SW2 - 0000
C. input SW1 - 01011010, output SW2 - 1001
D. input SW1 - 01001001, output SW2 - 0000
Ustawienia separatora dla czujnika muszą być dokładne, aby system działał poprawnie. W przypadku błędnych ustawień, jak w odpowiedziach 1, 2 i 4, w systemie mogą pojawić się istotne błędy pomiarowe. Na przykład, ustawienie SW1 na 01011010 i SW2 na 1001 nie pokrywa właściwego zakresu prądowego, co może prowadzić do niedokładnych odczytów. Podobnie, konfiguracja SW1 na 10001100 i SW2 na 0000 jest nieodpowiednia, ponieważ nie w pełni odpowiada wymaganiom dla zakresu 0÷20 mA. To często spotykany błąd, gdy użytkownik nie dostosowuje ustawień do specyfikacji czujnika i sterownika, co skutkuje błędami w interpretacji danych. Każde urządzenie wymaga precyzyjnej kalibracji i dostosowania, co jest kluczowe w inżynierii systemów automatyki. Również ustawienie SW1 na 01011010 i SW2 na 0110 może być mylące, gdyż nie obejmuje prawidłowego zakresu dla sygnałów. Dobrą praktyką jest zawsze odwoływanie się do dokumentacji technicznej przed dokonaniem ustawień, aby uniknąć niezgodności i zapewnić optymalną pracę systemu.

Pytanie 10

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0-100 ºC/0-20 mA dla wejścia sterownika PLC 0-20 mA?

Ilustracja do pytania
A. input SW1 - 01001001, output SW2 - 0000.
B. input SW1 - 01011010, output SW2 - 0110.
C. input SW1 - 10001100, output SW2 - 0000.
D. input SW1 - 01011010, output SW2 - 1001.
Przyjrzyjmy się, dlaczego inne odpowiedzi są nieprawidłowe. Pierwsze ustawienie 01011010 dla SW1 i 1001 dla SW2 nie pasuje do wymaganej konfiguracji czujnika i sterownika. Taka kombinacja może wskazywać na inny typ sygnału lub zakres, co prowadziłoby do błędnych odczytów temperatury. Podobnie, konfiguracja 10001100 dla SW1 i 0000 dla SW2 również odbiega od standardów wymaganych dla sygnałów 0-20 mA. Takie ustawienie może być odpowiednie dla innych aplikacji, ale nie zapewni prawidłowego przetwarzania sygnału z czujnika temperatury na sygnał dla sterownika. Kolejna błędna kombinacja, 01011010 dla SW1 i 0110 dla SW2, wskazuje na jeszcze inne, niezgodne ustawienie, które nie odpowiada zakresowi 0-20 mA. Typowym błędem w takich sytuacjach jest nieuwzględnienie specyficznych wymagań dla zakresów pomiarowych i sygnałów sterujących. W praktyce należy zawsze odnosić się do dokumentacji technicznej, aby upewnić się, że używane ustawienia są zgodne z założeniami projektowymi i specyfikacją urządzeń. Takie podejście minimalizuje ryzyko błędów i zapewnia optymalne działanie całego systemu.

Pytanie 11

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. przetwornika pomiarowego.
B. separatora.
C. wzmacniacza operacyjnego.
D. przepływomierza.
Separator, przepływomierz i wzmacniacz operacyjny to urządzenia o zupełnie innych zastosowaniach niż przetwornik pomiarowy. Separator służy do oddzielania składników mieszanin, co jest istotne w przetwórstwie chemicznym, ale nie ma bezpośredniego związku z przetwarzaniem sygnałów. Przepływomierz natomiast mierzy przepływ cieczy lub gazu, kluczowy w systemach hydraulicznych i pneumatycznych, ale nie przetwarza sygnałów w sensie ich konwersji lub wzmacniania. Wzmacniacz operacyjny to element elektroniczny służący do wzmacniania sygnałów elektrycznych. Choć może być stosowany w niektórych przetwornikach, sam w sobie nie pełni funkcji przetwornika pomiarowego. Często myli się te elementy z przetwornikami z powodu ich zastosowania w systemach elektronicznych i automatyki, ale każde z nich pełni inną rolę. Typowe błędy myślowe polegają na utożsamianiu funkcjonalności z podobieństwami strukturalnymi, ale kluczowe jest zrozumienie specyficznej roli każdego z tych elementów. Dlatego zawsze należy uważnie analizować funkcje i przeznaczenie każdego komponentu w systemie.

Pytanie 12

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami aluminiowymi w izolacji z polwinitu, należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. ADS-t
B. ALY-t
C. ADY-w
D. ADS-w
Wybór przewodu oznaczonego jako ADY-w jest prawidłowy w kontekście wykonania połączeń wysokonapięciowych. Oznaczenie 'A' wskazuje na materiał przewodu – aluminium, co jest standardowym wyborem dla przewodów wykorzystywanych w aplikacjach wysokonapięciowych ze względu na jego lekkość i dobrą przewodność. 'D' oznacza, że żyła jest jednodrutowa, co zapewnia odpowiednią integralność i wytrzymałość mechaniczną przy przesyle wysokiego napięcia. 'Y' sugeruje, że izolacja przewodu wykonana jest z polwinitu, co jest powszechnie stosowane ze względu na swoją odporność na warunki atmosferyczne i izolacyjne właściwości. Dodatkowy symbol 'w' wskazuje, że przewód jest zaprojektowany do pracy na wysokie napięcie, co jest kluczowe w zapewnieniu bezpieczeństwa i efektywności w takich instalacjach. Zastosowanie przewodów ADY-w jest uznawane za standardową praktykę w branży energetycznej, zapewniając zgodność z normami bezpieczeństwa i efektywności energetycznej. Praktyczne zastosowanie to np. linie przesyłowe między stacjami transformatorowymi.

Pytanie 13

Która ilustracja przedstawia zawór szybkiego spustu?

A. Ilustracja 3
Ilustracja do odpowiedzi A
B. Ilustracja 4
Ilustracja do odpowiedzi B
C. Ilustracja 1
Ilustracja do odpowiedzi C
D. Ilustracja 2
Ilustracja do odpowiedzi D
Na ilustracjach 2, 3 i 4 widoczne są zupełnie inne elementy pneumatyki i automatyki, które często bywają mylone z zaworami szybkiego spustu. Drugi element to zawór rozdzielający (najczęściej 5/2 lub 4/2) sterowany ręcznie – służy do zmiany kierunku przepływu powietrza, a nie do jego szybkiego upustu. Trzeci element to zawór dławiąco-zwrotny, którego zadaniem jest regulacja prędkości przepływu powietrza w jednym kierunku (czyli kontrola szybkości ruchu siłownika). Czwarty element natomiast to wyłącznik krańcowy (mechaniczny), wykorzystywany w automatyce do sygnalizacji położenia elementu ruchomego, nie mający żadnego związku z pneumatyką przepływową. Zawór szybkiego spustu można rozpoznać po masywnej, często metalowej obudowie i trzech przyłączach – jedno do zasilania, jedno do siłownika i jedno odpowietrzające. W praktyce stosuje się go bezpośrednio przy siłowniku, żeby skrócić czas opróżniania przewodu roboczego. Typowym błędem jest użycie zwykłego zaworu sterującego zamiast szybkiego spustu, co prowadzi do spowolnienia ruchu tłoka. W układach przemysłowych taki zawór zwiększa efektywność i pozwala osiągnąć większą częstotliwość cykli pracy urządzenia. Rozpoznanie właściwego elementu opiera się więc na analizie jego funkcji – szybkie odprowadzenie powietrza po stronie roboczej jest jednoznacznym zadaniem zaworu szybkiego spustu.

Pytanie 14

W regulatorze PID symbolem Kₚ oznacza się współczynnik

A. proporcjonalności.
B. zdwojenia.
C. propagacji.
D. wyprzedzenia.
Regulator PID to jedno z najczęściej stosowanych narzędzi w inżynierii procesowej i automatyce. Kiedy mówimy o współczynniki K_p, mamy na myśli współczynnik proporcjonalności. To właściwie kluczowy element, który odpowiada za natychmiastową reakcję systemu na błąd. W praktycznych zastosowaniach, K_p jest używany do zwiększenia reaktywności systemu na zmiany. Im wyższa wartość K_p, tym system jest bardziej czuły na różnice między wartością rzeczywistą a zadaną. Oczywiście, nie zawsze wyższe oznacza lepsze – zbyt duży K_p może powodować oscylacje, co jest zjawiskiem niekorzystnym. Praktyka pokazuje, że najlepiej jest znaleźć optymalną wartość, która zapewnia stabilność systemu. Dobre praktyki branżowe zalecają przeprowadzanie tuningu regulatora PID, aby uzyskać najlepsze wyniki w specyficznych warunkach pracy, co często odbywa się metodą Zieglera-Nicholsa. Warto pamiętać, że regulator PID jest centralnym elementem wielu systemów sterowania, od prostych kontrolerów temperatury po skomplikowane systemy sterowania w branży lotniczej czy chemicznej. Takie podejście pozwala na przewidywalne i stabilne zachowanie całego systemu sterowania, zwiększając jego efektywność i niezawodność.

Pytanie 15

Na podstawie danych w tabeli, dobierz średnicę wiertła potrzebnego do wykonania otworu gwintowanego M5 w elemencie wykonanym z mosiądzu.

Średnice wierteł pod gwinty w różnych materiałach
Średnica gwintuŚrednica wiertła w mm
AluminiumŻeliwo, Brąz, MosiądzStal, Żeliwo ciągliwe, Stopy Zn,
32,32,42,5
3,52,72,82,9
43,13,23,3
4,53,53,63,7
54,04,14,2
5,54,34,44,5
64,74,85,0
75,75,86,0
86,46,56,7
108,18,28,4
............
A. 4,4 mm
B. 4,0 mm
C. 4,1 mm
D. 3,6 mm
Wybór średnicy wiertła na poziomie 4,1 mm dla gwintu M5 w mosiądzu jest idealny i zgodny z normami inżynierskimi. Dlaczego? Otóż, mosiądz, jako materiał o średniej twardości, wymaga odpowiedniej obróbki skrawaniem, by zapewnić trwałość i dokładność gwintu. Gwintowanie to proces, który powinien uwzględniać nie tylko średnicę gwintu nominalnego, ale także właściwości materiału, z którego jest wykonany element. Przy gwintowaniu w mosiądzu stosuje się wiertła o średnicy nieco większej niż w bardziej miękkich materiałach, takich jak aluminium. Wiertło 4,1 mm pozwala na uzyskanie odpowiedniego stosunku skrawania, co jest kluczowe, by uniknąć nadmiernego naprężenia gwintu oraz zapewnić płynność jego pracy. W praktyce, przy obróbce mosiądzu, ważne jest także chłodzenie oraz stosowanie odpowiednich płynów chłodzących, aby zminimalizować zużycie narzędzi i poprawić jakość powierzchni gwintu. Moim zdaniem, dobrze dobrane wiertło to podstawa, zarówno w amatorskiej, jak i profesjonalnej obróbce metali. Pamiętajmy, że wybór odpowiedniego narzędzia jest nie tylko kwestią precyzji, ale także efektywności i ekonomii pracy.

Pytanie 16

Na podstawie przedstawionego schematu wskaż stany przycisków, przy których lampka sygnalizacyjna świeci.

Ilustracja do pytania
A. S1 nieprzyciśnięty, S2 przyciśnięty.
B. S1 przyciśnięty, S2 przyciśnięty.
C. S1 przyciśnięty, S2 nieprzyciśnięty.
D. S1 nieprzyciśnięty, S2 nieprzyciśnięty.
Analiza błędnych odpowiedzi wymaga zrozumienia, jak działają przełączniki i obwody szeregowe. Przełącznik S1, jeśli nie jest przyciśnięty, nie przepuści prądu dalej, co oznacza, że obwód pozostaje otwarty i lampka nie zaświeci. Podobnie, jeśli S2 jest przyciśnięty, również otwiera obwód, przerywając przepływ prądu do lampki H1. Typowym błędem jest zakładanie, że wystarczy przycisnąć dowolny przełącznik, by obwód był zamknięty. Jednak w przypadku połączenia szeregowego, wszystkie elementy muszą być w odpowiednim stanie, by prąd mógł płynąć. Często mylone jest to z połączeniem równoległym, gdzie każdy element ma swoją ścieżkę prądu. W praktycznych zastosowaniach, takie błędy mogą prowadzić do nieprawidłowego działania systemów sterowania, co może być krytyczne w kontekstach przemysłowych. Dlatego ważne jest, by dokładnie przemyśleć każdą konfigurację i zwrócić uwagę na specyfikę używanych elementów. Moim zdaniem, zrozumienie różnicy między różnymi typami połączeń w obwodach elektrycznych jest niezbędne, by uniknąć takich pomyłek w przyszłości. Z tego też powodu, zawsze rekomenduje się dokładne przestudiowanie schematów i ich działania przed przystąpieniem do ich użycia.

Pytanie 17

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 2
Ilustracja do odpowiedzi A
B. Miernik 1
Ilustracja do odpowiedzi B
C. Miernik 4
Ilustracja do odpowiedzi C
D. Miernik 3
Ilustracja do odpowiedzi D
Wiele osób wybiera błędny miernik, bo patrzy jedynie na jednostkę „V” bez zwracania uwagi na zakres i typ napięcia. Miernik numer 1 ma zakres do 6 V – byłby zbyt mało czuły i mógłby się uszkodzić przy napięciu 10 V. Miernik numer 2 ma zakres aż do 75 V, przez co wskazówka przy pomiarze 10 V niemal się nie poruszy, co uniemożliwia dokładny odczyt. Z kolei miernik numer 4 jest przeznaczony do pomiaru napięcia przemiennego (oznaczenie „~”), a w naszym układzie występuje napięcie stałe (DC), więc jego zastosowanie byłoby błędem technicznym – nie pokaże prawidłowego wyniku, a w skrajnym przypadku może zostać uszkodzony. W praktyce automatyki i elektrotechniki zawsze trzeba dopasować zakres przyrządu do mierzonego sygnału – najlepiej, gdy maksymalna wartość na skali jest nieco wyższa od maksymalnej wartości sygnału. Typowy sygnał analogowy z czujnika lub przetwornika to 0–10 V DC, dlatego właściwy jest woltomierz o zakresie obejmującym ten przedział, np. –5...15 V. Stosowanie miernika do AC lub o zbyt dużym zakresie prowadzi do błędnych wniosków diagnostycznych, co w automatyce może skutkować niewłaściwą regulacją urządzenia, np. zaworu proporcjonalnego. Moim zdaniem właśnie znajomość zakresów i typów napięć odróżnia praktyka od kogoś, kto tylko „mierzy, żeby coś się ruszyło na wskazówce”.

Pytanie 18

Które przyłącze procesowe jest zastosowane w przedstawionym czujniku?

Parametry techniczne czujnika

- Ekonomiczny przetwornik ciśnienia

- Zakres pomiarowy: 0 ... 1 bar / 0 ... 250 bar

- Dokładność: 0,3%

- Przyłącze procesowe: G¼"

- Sygnał wyjściowy: 4 ... 20 mA

- Przyłącze elektryczne: wtyczka kątowa

- Temperatura medium: -25 ... 85 °C

- Zasilanie: 9 ... 30 V DC

Ilustracja do pytania
A. Wewnętrzny gwint 1/4"
B. Wewnętrzny gwint 1/8”
C. Zewnętrzny gwint 1/4”
D. Zewnętrzny gwint 1/8”
Dokładnie, ten czujnik ma przyłącze procesowe o gwincie zewnętrznym G¼”, który jest powszechnie stosowany w przemysłowych aplikacjach pomiaru ciśnienia. Ten typ przyłącza jest często wybierany ze względu na jego niezawodność i kompatybilność z różnymi systemami. G¼” to standardowy gwint metryczny, co oznacza, że jest szeroko stosowany na całym świecie, dzięki czemu łatwo znaleźć odpowiednie przejściówki czy złączki. Warto zauważyć, że gwint ten zapewnia dobrą szczelność i jest odporny na wysokie ciśnienia, co czyni go idealnym wyborem dla przetworników ciśnienia. W praktyce, wybór odpowiedniego przyłącza procesowego jest kluczowy, aby zapewnić prawidłowe działanie czujnika i uniknąć problemów z przeciekami. Dlatego też zrozumienie, jakie przyłącze jest używane, jest niezbędne dla inżynierów i techników podczas instalacji i konserwacji systemów pomiarowych. W branży przyjęło się, że wybierając komponenty instalacji, takie jak czujniki, zwraca się szczególną uwagę na zgodność przyłączy, co ułatwia montaż i późniejszą obsługę układu.

Pytanie 19

W regulatorze PID symbolem Kₚ oznacza się współczynnik

A. propagacji.
B. proporcjonalności.
C. zdwojenia.
D. wyprzedzenia.
Współczynnik Kₚ w regulatorze PID odnosi się do członu proporcjonalnego. To oznacza, że jego rola polega na proporcjonalnym reagowaniu na błąd regulacji. Kiedy pojawia się różnica między wartością zadaną a rzeczywistą, człon proporcjonalny zwiększa lub zmniejsza sygnał sterujący wprost proporcjonalnie do tego błędu. Dlatego nazywa się go członem proporcjonalnym. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, na przykład w automatyce przemysłowej, gdzie precyzyjna regulacja temperatury, ciśnienia czy prędkości jest kluczowa. Kiedy błąd jest duży, Kₚ zwiększa sygnał sterujący, aby szybko go zredukować, choć może to prowadzić do przeregulowań. Z mojego doświadczenia wynika, że właściwe dobranie tego parametru jest kluczowe dla stabilnej pracy układu. W literaturze technicznej często podkreśla się znaczenie tuningowania współczynnika Kₚ, co jest częścią standardowych procedur kalibracyjnych. Podsumowując, człon proporcjonalny jest fundamentem działania regulatorów PID i wymaga precyzyjnego dostrojenia, aby zapewnić optymalne działanie systemów sterowania.

Pytanie 20

Który z czujników należy zastosować przy wytłaczarce, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz zmiana temperatury od 0 do +90 °C?

TypHPD1204-PKHPD1202-NKHPD1406-NKHPD1408-PK
Zasięg (mm)0,8 do 1,40 do 1,60,5 do 1,80,8 do 2,4
Temperatura pracy
(°C)
+20 do +130-20 do +110-20 do +80+10 do +130
ObudowaIP68IP67IP54IP65
Czujnik 1.Czujnik 2.Czujnik 3.Czujnik 4.
A. Czujnik 1.
B. Czujnik 4.
C. Czujnik 2.
D. Czujnik 3.
Wybór czujnika do wytłaczarki to kluczowe zadanie, które musi uwzględniać specyfikacje techniczne oraz warunki pracy urządzenia. Czujnik 2, czyli HPD1202-NK, spełnia wymagania dotyczące zasięgu działania oraz zakresu temperatury. W przypadku wytłaczarek, gdzie precyzja jest kluczowa, zasięg 0 do 1,6 mm zapewnia wystarczającą dokładność, a temperatura pracy od -20 do +110 °C pozwala na pracę w zróżnicowanych warunkach. Ponadto, HPD1202-NK ma obudowę IP67, co oznacza, że jest dobrze chroniony przed pyłem oraz krótkotrwałym zanurzeniem w wodzie. Standardy IP są powszechnie uznawane w przemyśle i określają stopień ochrony przed ciałami stałymi i cieczami. W praktyce czujniki o takich parametrach są stosowane w przemyśle tworzyw sztucznych, gdzie często zmieniające się temperatury i wymagania dotyczące precyzji są na porządku dziennym. Dobrze dobrany czujnik wpływa na efektywność i niezawodność procesu produkcyjnego, minimalizując ryzyko awarii oraz zapewniając stabilną jakość produktów. To podejście zgodne z najlepszymi praktykami inżynierskimi, które kładą nacisk na zrozumienie specyfiki i wymagań procesu technologicznego przed wyborem odpowiedniego sprzętu.

Pytanie 21

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 30 mm
B. 20 mm
C. 60 mm
D. 10 mm
Wiele osób błędnie odczytuje ten rysunek, bo patrzy tylko na jedną część wymiarów, zamiast przeanalizować cały układ. Na pierwszy rzut oka może się wydawać, że krawędź X ma 10 mm lub 30 mm, bo te liczby pojawiają się na rysunku. Jednak po dokładnym prześledzeniu wymiarów widać, że całkowita szerokość figury to 70 mm, a część dolna ma dwa fragmenty poziome: 20 mm po lewej (przed ścięciem) i 30 mm po środku. Oznacza to, że brakuje jeszcze 20 mm do pełnych 70 – i właśnie tyle wynosi długość krawędzi X. Błąd często wynika z mylenia długości rzeczywistej z wymiarami skośnych krawędzi lub nieuwzględnienia wymiarów od osi. W praktyce technicznej takie pomyłki mogą prowadzić do błędnego wykonania detalu, bo nawet kilka milimetrów różnicy zmienia dopasowanie elementów. Warto pamiętać, że na rysunkach wykonawczych wymiary zawsze odnoszą się do krawędzi prostopadłych lub równoległych, a nie do długości linii po przekątnej. Dobrym nawykiem jest zawsze „zamykać” wymiar – czyli sprawdzić, czy suma wszystkich segmentów daje całkowity wymiar. W tym przypadku tylko 20 mm spełnia ten warunek, dlatego to poprawna długość krawędzi X.

Pytanie 22

Który zawór rozdzielający należy zamontować w układzie elektropneumatycznym przedstawionym na rysunku?

Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Zawór1234
Ilustracja do pytania
A. 2
B. 4
C. 3
D. 1
Wybór niewłaściwego zaworu w układzie elektropneumatycznym może prowadzić do problemów z kontrolą przepływu powietrza i efektywnością działania systemu. Zawory typu 4/2, mimo że mogą się wydawać opcją, nie są odpowiednie do tego specyficznego zastosowania. Układy wymagające precyzyjnego sterowania dwukierunkowego ruchem siłownika muszą mieć zawory 5/2 ze względu na ich zdolność do niezawodnego przełączania pomiędzy różnymi stanami roboczymi. Zawory 4/3, choć mają trzy pozycje, nie są optymalne tutaj, ponieważ ich konstrukcja jest bardziej złożona i przeznaczona do innych zastosowań, takich jak regulacja przepływu w systemach hydraulicznych. Typowym błędem jest myślenie, że większa liczba pozycji zaworu zawsze oznacza lepszą funkcjonalność, podczas gdy tak naprawdę zależy to od specyfiki aplikacji. Liczba cewek też jest kluczowa – jedna cewka w zaworach 5/2 nie zapewnia takiej samej precyzji jak dwie. W branży często spotykamy się z nadmiernym uproszczeniem przy doborze komponentów, co może prowadzić do nieoptymalnych rozwiązań. Dlatego, dla skutecznego działania i zgodności z najlepszymi praktykami, użycie zaworów 5/2 z dwiema cewkami jest zalecane w przedstawionym układzie.

Pytanie 23

Połączenie zacisku L2 przemiennika częstotliwości ze źródłem zasilania należy wykonać przewodem w izolacji o kolorze

Ilustracja do pytania
A. białym.
B. brązowym.
C. czerwonym.
D. niebieskim.
Wybór koloru białego, brązowego lub czerwonego dla przewodu L2 przemiennika częstotliwości jest niezgodny z normami elektrycznymi. Przewód neutralny powinien być zawsze oznaczony kolorem niebieskim. Kolor brązowy często stosuje się do przewodów fazowych, które są pod napięciem, a czerwony jest rzadko używany w nowoczesnych instalacjach, ale kiedyś był stosowany do oznaczania fazy. Biały, choć czasami używany w Stanach Zjednoczonych jako neutralny, nie jest standardem w Europie. Niewłaściwe oznaczenie przewodu może prowadzić do niebezpieczeństw podczas pracy, takich jak porażenie prądem czy nieodpowiednie działanie urządzeń. Takie błędy wynikają często z braku wiedzy o aktualnych standardach i przepisach, co podkreśla konieczność ciągłego kształcenia się w zakresie elektryki. Przestrzeganie norm, takich jak PN-EN 60446, to nie tylko kwestia zgodności z regulacjami, ale też fundamentalny aspekt bezpieczeństwa w każdej instalacji elektrycznej. Dlatego zawsze warto upewnić się, że używamy odpowiednich kolorów przewodów, co ułatwia diagnostykę i konserwację systemów.

Pytanie 24

Regulator służy do utrzymywania w urządzeniach grzewczych temperatury T z zadaną histerezą H. Pomiar temperatury dokonywany jest za pomocą czujnika temperatury, zaś sterowanie elementem grzewczym odbywa się przez wyjście przekaźnikowe. Na którym wykresie czasowym przedstawiony jest prawidłowy sposób załączania wyjścia regulatora, zgodny z zamieszczonym przebiegiem temperatury?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Problem z nieprawidłowymi odpowiedziami polega na niezrozumieniu zasady działania histerezy w układach regulacji temperatury. Wykresy, które pokazują zbyt częste przełączanie wyjścia przekaźnikowego, jak w przypadku niektórych błędnych odpowiedzi, wskazują na brak zastosowania właściwej histerezy. Jeśli wyjście włącza się i wyłącza zbyt szybko, powoduje to nadmierne zużycie elementów przekaźnikowych oraz zwiększone zużycie energii. Taki mechanizm nie jest efektywny, ani praktyczny w rzeczywistych zastosowaniach, jak systemy HVAC czy przemysłowe piece grzewcze. Typowym błędem jest myślenie, że im szybciej system reaguje, tym lepiej, podczas gdy w rzeczywistości prowadzi to do niepożądanych oscylacji w systemie. Brak właściwej histerezy może także prowadzić do niestabilności temperaturowej, co jest niekorzystne dla delikatnych procesów technologicznych. Dlatego tak ważne jest, aby zrozumieć, jak histereza działa jako element buforujący, stabilizujący cały proces regulacji. W systemach automatyki przemysłowej, takich jak sterowniki PLC, właściwe zaimplementowanie histerezy jest kluczem do efektywnego i trwałego działania systemu regulacji temperatury. Z mojego doświadczenia, często spotyka się błędne założenie, że mniejsza histereza oznacza lepszą kontrolę, podczas gdy w rzeczywistości optymalny dobór histerezy to kompromis między efektywnością a stabilnością.

Pytanie 25

Zgodnie z charakterystyką przetwarzania, dla temperatury 80ºC na wyjściu przetwornika pojawi się prąd o natężeniu

Ilustracja do pytania
A. 18 mA
B. 10 mA
C. 13 mA
D. 16 mA
Doskonale! Odpowiedź 16 mA jest prawidłowa, ponieważ związana jest z liniowym charakterem przetwornika prądu w odniesieniu do temperatury. Patrząc na wykres, można zauważyć, że przy 0°C prąd wynosi 0 mA, a przy 100°C wynosi 20 mA. To wskazuje, że przetwornik ma charakterystykę liniową z przelicznikiem 0,2 mA na każdy stopień Celsjusza. Przy 80°C, przeliczenie daje dokładnie 16 mA, co jest zgodne z wykresem. Takie przetworniki są powszechnie używane w przemysłowych systemach automatyki, gdzie precyzyjne odwzorowanie zmiennych fizycznych na sygnał elektryczny jest kluczowe. Dzięki temu, kontrola temperatur w procesach chemicznych czy energetycznych jest bardziej efektywna. Standardy przemysłowe, takie jak 4-20 mA, są często wykorzystywane ze względu na ich odporność na zakłócenia i łatwość integracji z systemami sterowania. Ułatwia to też diagnostykę, bo sygnały poniżej 4 mA mogą wskazywać na awarię czujnika.

Pytanie 26

Wartość temperatury wskazana przez termometr przedstawiony na rysunku wynosi

Ilustracja do pytania
A. 19°C
B. 9°C
C. 8°C
D. 18°C
Prawidłowo: 18°C. Na termometrze cieczowym odczyt wykonuje się na wysokości górnej krawędzi menisku słupa cieczy (rtęci lub alkoholu). Skala bywa opisana co 10°C grubszymi kreskami (np. 10, 20), a pomiędzy nimi znajdują się równomierne podziałki drobne. Jeśli między 10 a 20 widzisz 10 równych kresek, to każda odpowiada 1°C; jeśli jest ich 5 – to 2°C. Menisk w rysunku zatrzymuje się dokładnie przy znaku odpowiadającym 18°C – poniżej 20, wyraźnie powyżej 17, bez „zawieszenia” na 19. Dobra praktyka pomiarowa (WMO/ISO 7726) zaleca odczyt w osi wzroku, bez kąta, żeby uniknąć błędu paralaksy, oraz podanie wyniku z rozdzielczością równą najmniejszej działce. W technice HVAC i automatyce od 18°C startuje często nastawa komfortu nocnego; w chłodnictwie domowym 18°C to już poza zakresem bezpiecznego przechowywania żywności, co ma znaczenie szkoleniowe. Moim zdaniem warto nawykowo sprawdzać: etykiety liczby (10, 20, 30…), liczbę działek pośrednich i pozycję menisku. I drobiazg, ale ważny: nie dotykamy palcami zbiorniczka podczas odczytu – można podgrzać i przekłamać wynik. W laboratoriach stosuje się też korektę na rozszerzalność szkła i cieczy, ale w szkolnym odczycie wystarczy rzetelne policzenie działek i proste oko, serio.

Pytanie 27

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 1
Ilustracja do odpowiedzi A
B. Przewód 4
Ilustracja do odpowiedzi B
C. Przewód 2
Ilustracja do odpowiedzi C
D. Przewód 3
Ilustracja do odpowiedzi D
Do połączenia silnika 3-fazowego z przemiennikiem częstotliwości należy użyć przewodu ekranowanego, takiego jak ten przedstawiony na zdjęciu. Jest to specjalny przewód silnikowy z oplotem miedzianym (ekranem), który tłumi zakłócenia elektromagnetyczne generowane przez falownik. Wewnątrz znajdują się trzy żyły fazowe oraz przewód ochronny PE, co w pełni odpowiada wymaganiom zasilania silnika 3-fazowego. Ekran musi być podłączony po obu stronach – do obudowy falownika oraz do korpusu silnika – aby skutecznie odprowadzać prądy zakłóceniowe. Z mojego doświadczenia, tego typu przewody (oznaczenia np. ÖLFLEX SERVO, Bitner BiTservo, Helukabel TOPFLEX) są odporne na drgania, oleje i podwyższoną temperaturę, co ma duże znaczenie w aplikacjach przemysłowych. Dzięki ekranowi sygnały sterujące i komunikacyjne w sąsiednich przewodach są chronione przed interferencją. W praktyce warto też zwrócić uwagę, by długość przewodu między falownikiem a silnikiem była możliwie krótka – to minimalizuje emisję zakłóceń EMC.

Pytanie 28

Do bezpośredniego pomiaru wartości napięcia zasilającego cewkę elektrozaworu należy użyć

A. watomierza.
B. woltomierza.
C. amperomierza.
D. omomierza.
Woltomierz to narzędzie, które jest nieodzowne, jeśli chcemy zmierzyć napięcie elektryczne w obwodzie, jak na przykład napięcie zasilające cewkę elektrozaworu. Działa on na zasadzie pomiaru różnicy potencjałów między dwoma punktami obwodu. To urządzenie jest skonstruowane tak, by miało wysoką rezystancję, co minimalizuje wpływ na mierzony układ. Kiedy przykładasz woltomierz do cewki, mierzysz napięcie, które dostarczane jest do tego elementu, a nie przepływ prądu czy moc. W praktyce, woltomierze są używane w technice elektrycznej i elektronicznej do diagnozowania i monitorowania systemów, co pozwala na szybką identyfikację ewentualnych problemów z zasilaniem. Standardy przemysłowe, takie jak IEC 61010, określają wymagania bezpieczeństwa i dokładności dla takich urządzeń, co jest istotne w pracy profesjonalistów dbających o bezpieczeństwo i efektywność systemów elektrycznych. Moim zdaniem, każdy kto pracuje z elektryką powinien znać podstawy użycia woltomierza, bo to podstawa w diagnozowaniu problemów z zasilaniem.

Pytanie 29

W układzie zastosowano przekaźnik uniwersalny realizujący funkcję opóźnionego załączania. Aby uzyskać wymagane działanie przekaźnika, pokrętło nastawy funkcji należy ustawić

Ilustracja do pytania
A. w pozycji 3.
B. w pozycji 2.
C. w pozycji 1.
D. w pozycji 4.
Zastosowanie przekaźnika uniwersalnego w pozycji 1, 3 lub 4 nie spełnia wymagań dla funkcji opóźnionego załączania. W pozycji 1 przekaźnik załącza się natychmiast po podaniu zasilania, co jest typowe dla funkcji natychmiastowego załączania, ale nie pozwala na kontrolowanie sekwencji startowej urządzeń. Pozycja 3 reprezentuje przerywacz czasowy, który jest używany do cyklicznego włączania i wyłączania obwodu, co może być przydatne w aplikacjach, takich jak migające światła sygnalizacyjne, ale nie do opóźnionego załączania. Natomiast pozycja 4 to funkcja opóźnionego wyłączania, która jest przydatna, gdy konieczne jest utrzymanie działania urządzenia przez pewien czas po wyłączeniu zasilania, jak w przypadku wentylatorów chłodzących po wyłączeniu sprzętu elektronicznego. Typowe błędy myślowe obejmują mylenie funkcji przekaźnika z powodu podobieństwa ich piktogramów lub braku pełnego zrozumienia ich zastosowań w praktyce. Właściwe zrozumienie schematów czasowych i funkcji przekaźnika jest kluczem do ich poprawnego użycia w projektach inżynieryjnych.

Pytanie 30

Stosując zasadę stałego spadku napięcia na przewodzie zasilającym, w przypadku zwiększenia dwukrotnie odległości odbiornika od źródła zasilania należy zastosować przewód o

Ilustracja do pytania
A. cztery razy większym polu przekroju.
B. cztery razy mniejszym polu przekroju.
C. dwa razy mniejszym polu przekroju.
D. dwa razy większym polu przekroju.
W przypadku wyboru przewodu o dwa razy mniejszym polu przekroju, spadek napięcia byłby jeszcze większy przy wydłużeniu przewodu, co prowadzi do większych strat energii. To niezgodne z zasadą efektywności energetycznej, ponieważ większe straty mogą skutkować przegrzewaniem się przewodów, co jest niebezpieczne. Z kolei wybór przewodu o cztery razy większym polu przekroju jest nieekonomiczny i niepraktyczny, ponieważ przewód byłby zbyt duży i ciężki, co zwiększałoby koszty materiałów i instalacji bez rzeczywistej potrzeby. Natomiast przewód o cztery razy mniejszym przekroju to jeszcze gorszy wybór, ponieważ drastycznie zwiększyłby się spadek napięcia, co mogłoby prowadzić do niedostatecznego zasilania i uszkodzenia urządzeń podłączonych na końcu linii. Częstym błędem jest niedocenianie znaczenia odpowiedniego przekroju przewodów, który jest kluczowy dla stabilnej i bezpiecznej pracy instalacji elektrycznej. Normy takie jak PN-IEC 60364 dotyczące projektowania instalacji elektrycznych jasno wskazują, że wartość spadku napięcia powinna być utrzymywana na niskim poziomie, aby zapewnić efektywność i bezpieczeństwo systemu.

Pytanie 31

Która z przekładni mechanicznych na pokazanych rysunkach pracuje zgodnie z przedstawionym schematem kinematycznym?

Ilustracja do pytania
A. Przekładnia 3.
Ilustracja do odpowiedzi A
B. Przekładnia 2.
Ilustracja do odpowiedzi B
C. Przekładnia 1.
Ilustracja do odpowiedzi C
D. Przekładnia 4.
Ilustracja do odpowiedzi D
Poprawna odpowiedź to przekładnia 1. Jest to przekładnia stożkowa, w której osie kół zębatych przecinają się pod kątem prostym. Dokładnie taki układ przedstawiono na schemacie kinematycznym – dwa wały ustawione prostopadle względem siebie, przenoszące moment obrotowy przez zazębienie stożkowe. Przekładnie tego typu stosuje się wszędzie tam, gdzie trzeba zmienić kierunek obrotów o 90°, np. w skrzyniach biegów, w napędach maszyn przemysłowych, w mechanizmach różnicowych pojazdów czy obrabiarkach. Ich zaletą jest kompaktowa budowa i wysoka sprawność przy stosunkowo małych wymiarach. Z mojego doświadczenia wynika, że poprawny montaż przekładni stożkowej wymaga precyzyjnego ustawienia osi i odpowiedniego smarowania – niewielkie przesunięcia kątowe mogą powodować nierównomierne zużycie zębów. W praktyce technicznej często stosuje się też wersje hipoidalne, które pozwalają dodatkowo przesunąć osie napędzające względem siebie, zachowując tę samą zasadę pracy.

Pytanie 32

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. niebiesko-zielony.
B. czerwony.
C. niebieski.
D. żółto-zielony.
W instalacjach elektrycznych kolor żółto-zielony jest zarezerwowany dla przewodów ochronnych, znanych również jako przewody PE (Protective Earth). Takie przewody pełnią kluczową rolę w zapewnieniu bezpieczeństwa, chroniąc użytkowników przed porażeniem prądem oraz zabezpieczając urządzenia przed uszkodzeniami. Kolory izolacji w instalacjach elektrycznych są standaryzowane przez normy, takie jak PN-EN 60446, które określają, że przewód ochronny musi być żółto-zielony. Dlatego właśnie, łącząc zasilacz ze sterownikiem, punkty oznaczone jako PE powinny być połączone przewodem o takiej izolacji. W praktyce, w przypadku wystąpienia zwarcia, prąd zwarciowy zostaje skierowany do ziemi, co zapobiega porażeniu użytkownika. Warto również pamiętać, że odpowiednie oznaczenie przewodów w instalacji jest nie tylko kwestią zgodności z normami, ale również dobrym nawykiem, który ułatwia późniejsze prace serwisowe i zmniejsza ryzyko błędów podczas wykonywania instalacji. Moim zdaniem, zrozumienie znaczenia kolorów przewodów to podstawa bezpiecznej i zgodnej z normami pracy każdego elektryka.

Pytanie 33

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. obcinania przewodów koncentrycznych.
B. oznaczania przewodów.
C. ściągania izolacji kabli koncentrycznych.
D. zaciskania tulejek .
To narzędzie, które widzisz, jest przeznaczone do obcinania przewodów koncentrycznych. Przewody koncentryczne są szeroko stosowane w telekomunikacji i przesyłaniu sygnałów wideo. Ich specyficzna budowa, czyli centralna żyła przewodząca otoczona izolacją, ekranem z przewodzącej plecionki i zewnętrzną osłoną, wymaga precyzyjnego cięcia. Użycie odpowiedniego narzędzia, takiego jak te, które widzisz, gwarantuje czyste i równe cięcie bez uszkodzenia ekranu lub centralnej żyły. Technicy cenią sobie te narzędzia za możliwość pracy w trudno dostępnych miejscach i szybkość działania. Dodatkowo takie obcinarki są zaprojektowane tak, by minimalizować ryzyko zmiażdżenia przewodu, co jest kluczowe dla utrzymania integralności sygnału. Moim zdaniem, każdy kto zajmuje się instalacjami RTV powinien mieć przy sobie takie narzędzie, bo ułatwia ono życie na co dzień. W branży to po prostu standardowa praktyka, by korzystać z dedykowanych narzędzi do określonych rodzajów kabli.

Pytanie 34

W której przemysłowej sieci komunikacyjnej stosowane jest urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. DeviceNet
B. Profibus
C. Profinet
D. Modbus
To urządzenie to switch przemysłowy, wykorzystywany w sieciach Profinet. Profinet to nowoczesny otwarty standard przemysłowy, który opiera się na technologii Ethernetu. Jest to jeden z najczęściej wykorzystywanych protokołów w automatyce przemysłowej. Umożliwia integrację systemów automatyki z IT, co jest kluczowe w erze Przemysłu 4.0. Switche takie jak ten zarządzają ruchem danych w sieci, co pozwala na szybki i niezawodny przesył informacji między urządzeniami. Dzięki temu można łatwo monitorować i kontrolować procesy produkcyjne. Standard Profinet zapewnia wysoką wydajność i niezawodność, a także łatwość integracji z innymi systemami. Co ciekawe, Profinet obsługuje również przesył danych w czasie rzeczywistym, co jest niezbędne w wielu aplikacjach przemysłowych. Moim zdaniem, znajomość tego standardu to podstawa dla każdego inżyniera automatyki, zwłaszcza w kontekście rosnącego znaczenia sieci przemysłowych.

Pytanie 35

Do demontażu przekaźnika z szyny TH35 należy zastosować

Ilustracja do pytania
A. wkrętak płaski.
B. klucz oczkowy.
C. klucz nasadowy.
D. wkrętak krzyżowy.
Przekaźniki montowane na szynie TH35, znane jako szyny DIN, są standardem w instalacjach elektrycznych. Te szyny umożliwiają szybki montaż i demontaż urządzeń takich jak przekaźniki, styczniki czy automatyka przemysłowa. Użycie wkrętaka płaskiego do demontażu takiego przekaźnika to nie tylko wygodne, ale przede wszystkim bezpieczne rozwiązanie. Wynika to z konstrukcji urządzeń montowanych na tych szynach, które często posiadają specjalne zaczepy lub zatrzaski. Wkrętak płaski idealnie nadaje się do delikatnego podważenia tych zaczepów, umożliwiając szybkie i bezproblemowe zdjęcie przekaźnika bez ryzyka uszkodzenia samego urządzenia lub szyny. Moim zdaniem, znajomość tych drobnych, ale istotnych szczegółów montażowych jest kluczowa w pracy każdego elektryka. Właściwe narzędzia to podstawa efektywności i bezpieczeństwa pracy. W praktyce, często zdarza się, że narzędzia takie jak wkrętak płaski są niezastąpione, zwłaszcza gdy pracujemy w ograniczonej przestrzeni rozdzielnicy elektrycznej. Dobre praktyki mówią o stosowaniu narzędzi zgodnie z ich przeznaczeniem, co znacząco zmniejsza ryzyko uszkodzeń i zwiększa trwałość komponentów.

Pytanie 36

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. wkrętaków płaskich.
B. szczypiec Segera.
C. kluczy płaskich.
D. kluczy nasadowych.
Na zdjęciu widać czujnik indukcyjny z gwintowanym korpusem i nakrętkami montażowymi. Do jego zamocowania w otworze montażowym używa się kluczy płaskich, które pozwalają odpowiednio dokręcić nakrętki po obu stronach ścianki montażowej. Klucz płaski zapewnia dobre dopasowanie do sześciokątnych nakrętek i pozwala na kontrolę siły dokręcenia, co jest istotne, aby nie uszkodzić gwintu ani nie zdeformować czujnika. Wkrętaki czy szczypce Segera nie nadają się do tego zadania, ponieważ czujnik nie posiada żadnych śrub ani pierścieni sprężystych. Klucze nasadowe teoretycznie też mogłyby być użyte, ale w praktyce dostęp do nakrętek w obudowie maszyny bywa ograniczony, dlatego klucz płaski jest najwygodniejszym i najczęściej stosowanym narzędziem. Moim zdaniem to klasyczny przykład pytania praktycznego — widać od razu, kto faktycznie miał w rękach czujnik indukcyjny i zna jego montaż. Często stosuje się też podkładki sprężyste lub kontrnakrętki, żeby czujnik nie luzował się od drgań, ale sam montaż zawsze odbywa się właśnie przy użyciu klucza płaskiego.

Pytanie 37

Który termometr należy zastosować do bezkontaktowego pomiaru temperatury?

A. Dylatacyjny.
B. Rezystancyjny.
C. Pirometryczny.
D. Termoelektryczny.
Podczas gdy termoelektryczne, rezystancyjne i dylatacyjne metody pomiaru temperatury mają swoje zastosowania, nie są one odpowiednie do bezkontaktowego pomiaru. Termoelektryczne czujniki, takie jak termopary, działają na zasadzie różnicy potencjałów generowanej w wyniku zmian temperatury. Są one często używane w pomiarach wymagających dużej precyzji, ale wymagają fizycznego kontaktu z obiektem. Rezystancyjne termometry, takie jak PT100, opierają się na zmianie rezystancji materiału wraz z temperaturą. Choć bardzo dokładne, również wymagają kontaktu z mierzonym obiektem. Dylatacyjne metody, bazujące na rozszerzalności cieplnej materiałów, są coraz rzadziej stosowane, ponieważ są mniej dokładne i wolniejsze w odpowiedzi na szybkie zmiany temperatury. Wszystkie te metody są skuteczne, ale nie nadają się do bezkontaktowych pomiarów. Częstym błędem jest założenie, że każdy typ termometru może być użyty w dowolnym kontekście, co nie jest prawdą. Bez zrozumienia specyfiki i ograniczeń każdej z metod, można łatwo zastosować nieodpowiednie rozwiązanie, co prowadzi do błędów pomiarowych i potencjalnie niebezpiecznych sytuacji. Właściwe dobranie metody pomiarowej jest kluczowe dla uzyskania rzetelnych wyników w każdej aplikacji.

Pytanie 38

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. dławik.
B. silnik prądu stałego.
C. silnik prądu zmiennego.
D. transformator.
Silnik prądu zmiennego, szczególnie synchroniczny, jest kluczowym elementem wielu urządzeń, które wykorzystują elektryczność przemienną. To właśnie on odpowiada za precyzyjne sterowanie ruchem i synchronizację, co czyni go idealnym do zastosowań takich jak napędy precyzyjnych mechanizmów zegarowych czy systemy automatyki. Takie silniki działają w określonym rytmie zgodnie z częstotliwością sieci zasilającej, co zapewnia im stabilność obrotów. Z mojego doświadczenia wynika, że ważnym aspektem jest również ich efektywność energetyczna, co przekłada się na mniejsze zużycie prądu w dłuższym okresie użytkowania. Warto zauważyć, że standardy takie jak IEC czy RoHS zapewniają, że są one produkowane zgodnie z rygorystycznymi normami jakości i bezpieczeństwa. Dzięki temu są nie tylko wydajne, ale też bezpieczne w użytkowaniu. W praktyce, wybierając silnik synchroniczny, masz pewność, że osiągniesz dużą precyzję i niezawodność działania, co jest kluczowe w wielu aplikacjach przemysłowych i domowych.

Pytanie 39

W sterowniku PLC wejścia analogowe oznaczane są symbolem literowym

A. AQ
B. AI
C. I
D. Q
W sterownikach PLC wejścia analogowe oznacza się symbolem AI, co jest skrótem od 'Analog Input'. To standard w branży, który ułatwia jednoznaczną identyfikację typu sygnału na wejściu. Wejścia analogowe są niezwykle ważne, ponieważ umożliwiają przetwarzanie sygnałów zmieniających się w czasie – na przykład sygnałów z czujników temperatury, ciśnienia czy poziomu cieczy. W praktyce spotkasz się z różnymi typami wejść, które mogą odbierać sygnały prądowe (np. 4-20 mA) lub napięciowe (np. 0-10 V), co daje dużą elastyczność w łączeniu różnych urządzeń pomiarowych. Branża automatyki przemysłowej często wykorzystuje te standardy, aby uprościć integrację systemów od różnych producentów. Ważne jest, aby prawidłowo skonfigurować wejścia analogowe, biorąc pod uwagę parametry sygnału i jego źródło, co pozwala uniknąć błędów w odczycie danych. Z mojego doświadczenia, dobrze działające wejścia analogowe mogą znacznie poprawić efektywność całego systemu, a co za tym idzie – wpływać na optymalizację procesów produkcyjnych.

Pytanie 40

Zgodnie z zamieszczonym schematem lampka sygnalizacyjna H1 będzie świecić, gdy

Ilustracja do pytania
A. będzie naciśnięty tylko przycisk S1
B. będą naciśnięte tylko przyciski S1 i S2
C. będą naciśnięte tylko przyciski S1 i S3
D. będzie naciśnięty tylko przycisk S3
Wiele osób patrząc na taki schemat, może automatycznie założyć, że wystarczy wcisnąć dowolny z przycisków albo nawet kilka naraz, żeby lampka H1 się zapaliła. To jest dość częsty błąd wynikający z nieprzeanalizowania, w jaki sposób przewodzenie prądu jest uzależnione od stanu każdego z przekaźników. Jeżeli wybiera się opcję, że muszą być naciśnięte dwa lub trzy przyciski, albo tylko S3, to ignoruje się fakt, że przekaźniki w tym układzie pracują w taki sposób, że ich styki są połączone szeregowo – a więc otwarcie któregokolwiek z nich przerywa całą drogę prądu do lampki. Wciśnięcie tylko S3 spowoduje zadziałanie K3, ale ponieważ K1 i K2 nie są aktywne, ich styki nie zamykają obwodu, więc lampa się nie zaświeci. Podobnie, jednoczesne naciśnięcie kilku przycisków, np. S1 i S2, oznacza załączenie przekaźników K1 i K2, ale jeżeli K3 nie jest aktywny, to obwód nadal jest otwarty. Dobrym nawykiem jest analizowanie, czy układ jest typu 'AND', czyli wszystkie warunki muszą być spełnione, czy 'OR', czyli wystarczy spełnić jeden z warunków. W tym układzie mamy do czynienia z klasycznym połączeniem szeregowym, które sprawia, że brak zadziałania choćby jednego przekaźnika skutkuje rozwarciem całej gałęzi zasilającej lampkę. Mylenie się w tej kwestii prowadzi do błędnych wniosków i jest dość powszechne – szczególnie u osób, które nie mają jeszcze wyczucia w czytaniu schematów elektrycznych. Dobrą praktyką jest zawsze śledzenie drogi prądu od zasilania do odbiornika krok po kroku, sprawdzanie, które styki muszą być zamknięte, a które otwarte – to pomaga unikać takich pomyłek.