Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 16:38
  • Data zakończenia: 17 grudnia 2025 16:51

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie będą wydatki na postawienie dwóch szczytowych ścian budynku, które mają wymiary 10,0 x 5,0 m, jeśli czas pracy wynosi 1,44 h/m2, a stawka godzinowa murarza wynosi 10 zł?

A. 720 zł
B. 1 440 zł
C. 1 220 zł
D. 560 zł
Koszt wymurowania dwóch ścian szczytowych budynku został obliczony na podstawie wymiarów i nakładu pracy. Każda ściana ma wymiary 10,0 m x 5,0 m, co daje powierzchnię jednej ściany równą 50 m2. Zatem dla dwóch ścian całkowita powierzchnia wynosi 100 m2. Nakład pracy wynosi 1,44 godzin na m2, co oznacza, że potrzebny czas na wykonanie pracy to 100 m2 * 1,44 h/m2 = 144 h. Przy stawce godzinowej murarza wynoszącej 10 zł, całkowity koszt robocizny wyniesie 144 h * 10 zł/h = 1440 zł. Taki sposób kalkulacji kosztów jest zgodny z praktykami branżowymi, które uwzględniają zarówno powierzchnię, jak i nakład pracy, co pozwala na precyzyjne oszacowanie całkowitych wydatków. Użycie takich metod jest niezbędne w branży budowlanej dla zachowania budżetu i efektywności zarządzania projektem.

Pytanie 2

Na której ilustracji przedstawiono chwytak do przenoszenia cegieł?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 2.
C. Na ilustracji 3.
D. Na ilustracji 4.
Ilustracja 2 przedstawia chwytak do przenoszenia cegieł, co czyni ją poprawną odpowiedzią w tym pytaniu. Chwytaki tego typu są niezwykle istotnym narzędziem w branży budowlanej, umożliwiającym szybki i efektywny transport cegieł z miejsca na miejsce. Ich konstrukcja opiera się na mechanizmie zaciskowym, który pozwala na pewne i bezpieczne uchwycenie cegły, co znacznie minimalizuje ryzyko uszkodzenia materiału oraz obrażeń pracowników. W praktyce, chwytaki do przenoszenia cegieł są często stosowane na placach budowy, gdzie zwiększają wydajność pracy, a także redukują czas potrzebny na transport ciężkich materiałów. Warto zaznaczyć, że zgodność z normami BHP oraz standardami pracy odgrywa kluczową rolę w zapewnieniu bezpieczeństwa podczas używania takich narzędzi. Właściwe techniki przenoszenia materiałów, jak również znajomość właściwości cegieł, to aspekty, które każdy pracownik budowlany powinien znać, aby efektywnie i bezpiecznie wykonywać swoje zadania.

Pytanie 3

Tynk klasy II to tynk

A. pospolity o powierzchni równej i gładkiej
B. doborowy o powierzchni równej i szorstkiej
C. doborowy o powierzchni równej i gładkiej
D. pospolity o powierzchni równej i szorstkiej
Tynk kategorii II, określany jako pospolity, jest materiałem budowlanym charakteryzującym się powierzchnią równą i szorstką. Tynki tej kategorii są szeroko stosowane w budownictwie, szczególnie w obszarach, gdzie wymagane jest uzyskanie dobrej przyczepności dla dalszych warstw wykończeniowych, takich jak farby czy tynki dekoracyjne. Dzięki swojej strukturze, tynki pospolite są bardziej odporne na zmiany atmosferyczne, co czyni je odpowiednimi do zastosowań zewnętrznych. Przykładem zastosowania tynków kategorii II mogą być elewacje budynków, które wymagają zarówno estetyki, jak i trwałości. Warto również zauważyć, że tynki te muszą spełniać określone normy jakości, takie jak PN-EN 998-1, które regulują ich właściwości mechaniczne oraz odporność na czynniki zewnętrzne. Dzięki zastosowaniu tynków kategorii II, można uzyskać nie tylko funkcjonalność, ale także estetykę, co jest istotne w projektach architektonicznych.

Pytanie 4

Urządzenia przedstawionego na rysunku używa się do

Ilustracja do pytania
A. wykonywania bruzd w murze.
B. wykuwania otworów w murze.
C. szlifowania i cięcia różnych materiałów.
D. fazowania naroży ścian.
Analizując inne odpowiedzi, można zauważyć, że wynikały one z nieporozumień dotyczących zastosowania narzędzia. Na przykład, fazowanie naroży ścian wymaga użycia innych narzędzi, takich jak szlifierki kątowe czy strugarki, które są przystosowane do nadawania odpowiednich kątów i wykończeń. Takie narzędzia mają zupełnie inną konstrukcję i funkcjonalność. Ponadto, szlifowanie i cięcie różnych materiałów jest zadaniem dla urządzeń takich jak piły, szlifierki oraz frezarki, które potrafią obrobić różnorodne materiały, ale nie są przeznaczone do wykonywania bruzd. Często mylnie interpretuje się również pojęcie wykuwania otworów w murze, które najczęściej wiąże się z używaniem młotków udarowych lub wiertarek. Te narzędzia służą do tworzenia otworów, a nie rowków, co jest kluczową różnicą w kontekście funkcji frezarki do bruzd. Zrozumienie zastosowania poszczególnych narzędzi w budownictwie jest istotne, aby efektywnie planować prace budowlane oraz unikać nieefektywnych rozwiązań. Niewłaściwe dobieranie narzędzi prowadzi do nieefektywności oraz zwiększa ryzyko uszkodzeń materiałów budowlanych.

Pytanie 5

Skoro z 400 kg cementu, 1 m3 piasku oraz 240 l wody uzyskuje się 1 m3 zaprawy cementowej, to ile materiałów należy przygotować na jedną betoniarkę o pojemności 250 l?

A. 100 kg cementu, 0,25 m3 piasku, 60 l wody
B. 300 kg cementu, 0,70 m3 piasku, 180 l wody
C. 100 kg cementu, 0,50 m3 piasku, 120 l wody
D. 200 kg cementu, 0,50 m3 piasku, 120 l wody
Odpowiedź 100 kg cementu, 0,25 m3 piasku oraz 60 l wody jest poprawna, ponieważ odpowiednio przelicza składniki zaprawy cementowej z jednostek na objętość betoniarki o pojemności 250 l. Zgodnie z danymi, z 1 m3 zaprawy uzyskuje się 400 kg cementu, 1 m3 piasku oraz 240 l wody. Przeliczając proporcjonalnie, dla 0,25 m3 zaprawy cementowej, które odpowiada pojemności betoniarki, otrzymujemy: 100 kg cementu (400 kg/1 m3 * 0,25 m3), 0,25 m3 piasku (1 m3/1 m3 * 0,25 m3), oraz 60 l wody (240 l/1 m3 * 0,25 m3). Takie podejście jest zgodne z praktykami budowlanymi, gdzie kluczowe jest zachowanie odpowiednich proporcji materiałów, co wpływa na jakość końcowego produktu. Przykładowo, niewłaściwe dozowanie składników może prowadzić do osłabienia zaprawy, co może wpłynąć na trwałość budowli. Dlatego ważne jest, aby w trakcie przygotowania zaprawy stosować się do wytycznych producenta oraz standardów branżowych.

Pytanie 6

Jaki sprzęt powinien być użyty do przygotowania zaprawy, niezbędnej do postawienia ścian w budynku jednorodzinnym z bloczków gazobetonowych, murowanych na standardowe spoiny?

A. Pompę do zapraw.
B. Agregat tynkarski.
C. Betoniarkę wolnospadową.
D. Mieszarkę wirową.
Wybór innych urządzeń, takich jak pompa do zapraw, mieszarka wirowa czy agregat tynkarski, może wynikać z niedostatecznego zrozumienia specyfiki procesu murarskiego. Pompa do zapraw jest dedykowana do transportu już przygotowanej zaprawy na plac budowy, a nie do jej mieszania. Jest to sprzęt używany w sytuacjach, gdy zaprawa została wytworzona w większych ilościach w innym miejscu, co nie ma zastosowania w tym przypadku, gdzie zaprawa musi być przygotowywana bezpośrednio na budowie. Mieszarka wirowa, choć skuteczna w mieszaniu, jest zazwyczaj przeznaczona do mniejszych ilości materiałów, co może być ograniczeniem w kontekście dużych projektów budowlanych, gdzie wymagana jest większa ilość zaprawy. Agregat tynkarski z kolei, pomimo iż jest użyteczny w aplikacji tynków, nie jest odpowiedni do przygotowania zaprawy murarskiej, ponieważ jego konstrukcja nie jest dostosowana do mieszania cięższych składników, jak cement czy piasek w odpowiednich proporcjach. W budownictwie kluczowe jest stosowanie właściwych narzędzi zgodnie z ich przeznaczeniem, co wpływa na jakość wykonania i trwałość konstrukcji. Niewłaściwe dobranie sprzętu może prowadzić do osłabienia zaprawy, co z kolei może skutkować problemami strukturalnymi w przyszłości.

Pytanie 7

Warstwę termoizolacyjną ściany, której fragment przekroju pionowego przedstawiono na rysunku, oznaczono cyfrą

Ilustracja do pytania
A. 1
B. 3
C. 2
D. 4
Jeśli wybrałeś odpowiedzi 1, 2 lub 4, to niestety wpadasz w pułapki myślowe. Odpowiedź nr 1 dotyczy warstwy, która raczej jest wykończeniowa, na przykład tynk czy farba – co nie ma nic wspólnego z izolacją termiczną. Odpowiedź nr 2 sugeruje warstwę nośną, która nie izoluje, ale tylko przenosi obciążenia, a nie powinna zajmować się ciepłem. Z kolei odpowiedź nr 4 pewnie odnosi się do folii paroszczelnej, która zajmuje się wilgotnością, a nie termoizolacją. Często ludzie mylą te materiały, bo nie wiedzą, jak różnie wpływają one na efektywność energetyczną budynku. Warto pamiętać, żeby dobrze dobierać warstwy termoizolacyjne, nie tylko grubość, ale też materiał. Używanie materiałów, które mają wysoką przewodność cieplną, w konstrukcji ścian to zły pomysł, bo prowadzi do strat energii i wyższych kosztów utrzymania budynku oraz obniża komfort jego użytkowania.

Pytanie 8

Czym jest spoiwo w betonie zwykłym?

A. gips
B. wapno
C. cement
D. asfalt
Beton zwykły to materiał budowlany, w którego skład wchodzi kilka kluczowych komponentów, z których najważniejsze to kruszywo, woda oraz spoiwo. Spoiwem w betonie zwykłym jest cement, który pełni rolę wiążącą i umożliwia tworzenie trwałych konstrukcji. Cement, będący produktem spalania wapienia i gliny w wysokotemperaturowych piecach, po zmieszaniu z wodą tworzy zaczyn, który twardnieje i wiąże kruszywa. Dzięki temu powstaje struktura betonu, która może osiągać różne właściwości w zależności od stosunku składników oraz rodzaju użytego cementu. W praktyce, cement stosowany w betonie jest zgodny z normami PN-EN 197-1, które określają wymagania dotyczące jego klasy i jakości. Ponadto, cement jest podstawowym składnikiem dla wielu różnych zastosowań budowlanych, w tym fundamentów, ścian, stropów, a także elementów prefabrykowanych. Jego zdolność do uzyskiwania wysokiej wytrzymałości na ściskanie oraz odporności na czynniki atmosferyczne sprawia, że jest niezbędnym materiałem w nowoczesnym budownictwie.

Pytanie 9

Na podstawie fragmentu instrukcji producenta oblicz, ile bloczków gazobetonowych o wymiarach
240×240×590 mm potrzeba do wymurowania trzech ścian grubości 24 cm, długości 12 m i wysokości 4,5 m każda.

Fragment instrukcji producenta
Zużycie bloczków gazobetonowych
Wymiary bloczków
[mm]
Zużycie
[szt./m²]
240×240×5907
120×240×590
A. 756 sztuk.
B. 2268 sztuk.
C. 378 sztuk.
D. 1134 sztuk.
Fajnie, że wybrałeś 1134 bloczki gazobetonowe. To odpowiednia liczba, a żeby do tego dojść, trzeba było dobrze policzyć. Zaczynamy od obliczenia powierzchni jednej ściany. Mamy 12 m na 4,5 m, co daje nam 54 m². Potem bierzemy pod uwagę, że robimy trzy ściany, więc całkowita powierzchnia to 162 m². Aż się prosi, żeby policzyć, ile bloczków potrzeba na każdy metr kwadratowy – w tym przypadku to 7. Przemnażając, dostajemy 1134 bloczki. To bardzo ważna wiedza w budownictwie, bo dokładne obliczenia pozwalają oszacować materiały, co wpływa na koszty i czas budowy. Warto znać takie zasady, bo dobrze przeprowadzona kalkulacja zwiększa efektywność i pozwala lepiej zarządzać zasobami.

Pytanie 10

Jakie narzędzia wykorzystuje się do demontażu murowanych części konstrukcyjnych budynku?

A. młoty udarowe
B. piły tarczowe
C. wiertarki obrotowe
D. wkrętarki
Młoty udarowe są narzędziem, które doskonale nadaje się do rozbiórki murowych elementów konstrukcyjnych budynków. Charakteryzują się one dużą mocą udaru, co umożliwia skuteczne łamanie betonu i cegieł. Działanie młota udarowego polega na generowaniu szybkich uderzeń, które przekładają się na dużą energię uderzenia, co w efekcie pozwala na efektywne rozbijanie twardych materiałów. Przykłady zastosowania młotów udarowych obejmują prace rozbiórkowe w budownictwie, takie jak usuwanie starych ścian, fundamentów czy posadzek. W branży budowlanej rekomenduje się korzystanie z młotów udarowych zgodnie z normami BHP, co zapewnia nie tylko efektywność, ale również bezpieczeństwo pracy. Korzystanie z odpowiednich osłon, rękawic i okularów ochronnych jest kluczowe podczas pracy z tym narzędziem, co potwierdzają najlepsze praktyki w zakresie ochrony zdrowia i bezpieczeństwa w miejscu pracy."

Pytanie 11

Który z wymienionych materiałów jest najbardziej odpowiedni do wzmacniania nadproży?

A. Kątowniki stalowe
B. Narożniki aluminiowe
C. Zetowniki zimnogięte
D. Liny nierdzewne
Kątowniki stalowe są jednym z najskuteczniejszych materiałów stosowanych do wzmocnienia nadproży w konstrukcjach budowlanych. Ich główną zaletą jest wysoka wytrzymałość na zginanie i ściskanie, co czyni je idealnym rozwiązaniem do przenoszenia dużych obciążeń. W praktyce, kątowniki stalowe są często stosowane w budownictwie do wzmacniania miejsc, gdzie występują duże siły, takich jak nadproża okienne czy drzwiowe. Dodatkowo, ich zastosowanie zgodne jest z normami budowlanymi, które zalecają użycie materiałów o wysokiej nośności w kluczowych elementach konstrukcyjnych. Wzmocnienie nadproży przy użyciu kątowników stalowych może znacząco poprawić stabilność całej struktury budynku, co jest szczególnie ważne w rejonach o dużej aktywności sejsmicznej. Przykładem mogą być budynki mieszkalne, gdzie odpowiednie wzmocnienia w nadprożach zwiększają bezpieczeństwo mieszkańców. Warto również zwrócić uwagę na możliwość łatwego montażu kątowników, co wpływa na efektywność czasową procesu budowy.

Pytanie 12

Rozbiórkę ręczną stropu ceglanego na belkach stalowych należy zacząć od

A. zbicia tynku z powierzchni stropu
B. rozebrania górnej części stropu, czyli podłogi
C. wycięcia belek wzdłuż ścian
D. skucia wypełnienia stropowego
Zbicie tynku ze stropu jest kluczowym pierwszym krokiem w procesie ręcznej rozbiórki stropu ceglanego na belkach stalowych. Tynk pełni funkcję wykończeniową, ale jego usunięcie pozwala na dokładną ocenę stanu konstrukcji stropu oraz belek. Bez tego etapu, można napotkać nieprzewidziane trudności, które mogą prowadzić do uszkodzenia pozostałych elementów budynku. W praktyce, przed rozpoczęciem rozbiórki, ważne jest również zapewnienie odpowiedniego zabezpieczenia obszaru roboczego oraz użycie odpowiednich narzędzi, takich jak młoty pneumatyczne czy łomy, aby skutecznie usunąć tynk. Dobrą praktyką jest także sporządzenie dokumentacji fotograficznej stanu przed rozpoczęciem prac, co może być przydatne w późniejszych etapach oraz ewentualnych analizach odpowiadających za bezpieczeństwo budynku. Warto również zaznaczyć, że zgodnie z normami budowlanymi, przed rozpoczęciem rozbiórki powinno się przeprowadzić ocenę stanu technicznego konstrukcji, aby zminimalizować ryzyko związane z pracami rozbiórkowymi.

Pytanie 13

Uszkodzenie tynku przedstawione na rysunku to

Ilustracja do pytania
A. pęknięcie.
B. odbarwienie.
C. zabrudzenie.
D. wysolenie.
Wysolenie, jako zjawisko występujące na tynkach, jest wynikiem migracji soli z głębszych warstw budynku na powierzchnię tynku. Woda, która wnika w materiał budowlany, transportuje rozpuszczone sole, a ich kondensacja na powierzchni następuje w wyniku parowania wody. Wykwity solne, które widzimy na zdjęciu, są efektem tego procesu. W praktyce, identyfikacja wysolenia jest kluczowa dla oceny stanu tynku oraz planowania odpowiednich prac konserwacyjnych. Wysolenie nie tylko wpływa na estetykę, ale również na trwałość tynku, ponieważ sole mogą powodować kruszenie i osłabienie struktury. W przypadku wystąpienia tego zjawiska zaleca się zastosowanie odpowiednich środków, takich jak dedykowane preparaty do usuwania wykwitów solnych. Istotne jest również zwrócenie uwagi na źródło wilgoci, aby podjąć kroki w celu jego eliminacji, co jest zgodne z najlepszymi praktykami w budownictwie.

Pytanie 14

Budowę stropu Fert o długości 4,00 m należy rozpocząć od położenia

A. zbrojenia żeber rozdzielczych
B. zbrojenia belek monolitycznych
C. pustaków ceramicznych na deskowaniu
D. belek nośnych na ścianach
Rozpoczęcie wykonania stropu Fert od ułożenia pustaków ceramicznych na deskowaniu jest niezgodne z zasadami konstrukcyjnymi. Pustaki ceramiczne są elementami wypełniającymi, które pełnią funkcję izolacyjną oraz zwiększają masę stropu, ale ich układanie powinno następować dopiero po zamocowaniu belek nośnych. Zbrojenie żeber rozdzielczych, choć istotne w kontekście zwiększenia nośności i sztywności stropu, również należy umieszczać po ułożeniu belek nośnych. Niezależnie od tego, jak ważne jest zapewnienie odpowiedniego zbrojenia, cała konstrukcja bazuje na prawidłowo zamocowanych belkach nośnych. Kolejnym błędnym podejściem jest rozpoczęcie od zbrojenia belek monolitycznych, które w kontekście stropu Fert nie znajduje zastosowania, ponieważ strop ten bazuje na prefabrykowanych elementach, a nie monolitycznej konstrukcji. Zrozumienie sekwencji prac budowlanych oraz znaczenia każdego z elementów jest kluczowe dla prawidłowego wykonania stropu. Na tym etapie często popełnia się błąd, myśląc, że można pominąć fundamentalne elementy konstrukcyjne na rzecz detali, co w konsekwencji prowadzi do osłabienia całej struktury i zwiększa ryzyko awarii. W praktyce budowlanej zawsze należy dbać o kolejność i sposób wykonania, aby zapewnić stabilność i bezpieczeństwo budynku.

Pytanie 15

Remont odspojonego tynku należy przeprowadzić w poniższej kolejności:

A. odkurzyć podłoże, skuć odspojony tynk, zwilżyć podłoże wodą, otynkować ścianę
B. skuć odspojony tynk, zwilżyć podłoże wodą, odkurzyć podłoże, otynkować ścianę
C. skuć odspojony tynk, odkurzyć podłoże, zwilżyć podłoże wodą, otynkować ścianę
D. odkurzyć podłoże, zwilżyć podłoże wodą, skuć odspojony tynk, otynkować ścianę
Odpowiedź wskazująca na kolejność: skuć odspojony tynk, odkurzyć podłoże, zwilżyć podłoże wodą, otynkować ścianę jest prawidłowa, ponieważ odzwierciedla właściwy proces naprawy odspojonego tynku. Pierwszym krokiem jest skuśnięcie odspojonego tynku, co pozwala na usunięcie luźnych fragmentów, które mogłyby wpłynąć na jakość nowej warstwy. Następnie, przed dalszymi pracami, kluczowe jest odkurzenie podłoża, co eliminuje wszelkie zanieczyszczenia oraz pył, które mogą osłabić przyczepność nowego tynku. Zwilżenie podłoża wodą jest kolejnym istotnym krokiem, ponieważ wilgoć na podłożu pomaga w poprawnej adhezji materiału tynkarskiego. Na koniec, otynkowanie ściany tworzy nową, stabilną powierzchnię ochronną, która jest dobrze przylegająca do podłoża. Taki sposób działania jest zgodny z najlepszymi praktykami w budownictwie oraz standardami jakości, co zapewnia trwałość i estetykę wykonania. Warto również pamiętać, że staranność na każdym etapie procesu jest kluczowa dla uzyskania zadowalającego efektu końcowego.

Pytanie 16

Na rysunku przedstawiono

Ilustracja do pytania
A. nadproże sklepione płasko.
B. sklepienie odcinkowe.
C. nadproże sklepione łukowo.
D. sklepienie półkoliste.
W analizowanej sytuacji można zauważyć, że wiele osób może mylnie interpretować rodzaje konstrukcji, co prowadzi do wyboru niewłaściwych odpowiedzi. Sklepienie odcinkowe, na przykład, jest formą architektoniczną, która ma kształt łuku i jest stosowane w miejscach, gdzie zachodzi potrzeba pokrycia większych przestrzeni nad otworami, jak w przypadku mostów czy dużych sal. Z kolei sklepienie półkoliste, charakteryzujące się półkolistym kształtem, jest często stosowane w architekturze sakralnej oraz historycznych budynkach, co różni się od płaskiego nadproża, które ma zupełnie inną funkcję i formę. Nadproże sklepione łukowo to kolejna koncepcja, która zakłada zastosowanie łuku do przenoszenia obciążeń, co również różni się od nadproża płaskiego, które nie ma takiej krzywizny. Błędne rozumienie tych konstrukcji może być spowodowane niewłaściwym podejściem do analizy rysunków architektonicznych oraz brakiem znajomości podstawowych zasad budownictwa. W praktyce, znajomość tych różnic jest kluczowa dla prawidłowej oceny i projektowania konstrukcji, ponieważ niewłaściwy dobór typu nadproża może prowadzić do osłabienia całej struktury budynku oraz zwiększenia ryzyka awarii.

Pytanie 17

Oblicz całkowity koszt wykonania tynku mozaikowego na obu stronach ściany o wymiarach 8×4 m, jeśli jednostkowy koszt robocizny wynosi 21,00 zł/m2, a koszt materiałów to 14,00 zł/m2?

A. 1 792,00 zł
B. 1 120,00 zł
C. 2 240,00 zł
D. 2 420,00 zł
Aby obliczyć całkowity koszt wykonania tynku mozaikowego, należy najpierw obliczyć powierzchnię ściany. Ściana ma wymiary 8 m x 4 m, co daje 32 m². Ponieważ tynk ma być wykonany po obu stronach ściany, całkowita powierzchnia wynosi 64 m². Koszt jednostkowy robocizny wynosi 21,00 zł/m², co daje koszt robocizny: 64 m² x 21,00 zł/m² = 1 344,00 zł. Koszt materiałów to 14,00 zł/m², co daje koszt materiałów: 64 m² x 14,00 zł/m² = 896,00 zł. Łączny koszt wykonania tynku to suma kosztu robocizny i materiałów: 1 344,00 zł + 896,00 zł = 2 240,00 zł. W praktyce, przy planowaniu budowy lub remontu, kluczowe jest dokładne oszacowanie kosztów, co pozwala na kontrolę budżetu oraz uniknięcie nieprzyjemnych niespodzianek finansowych. Dobrze jest również uwzględnić ewentualne dodatkowe koszty, takie jak transport materiałów czy wynajem sprzętu, co jest standardem w branży budowlanej.

Pytanie 18

Który z rodzajów tynków jest stosowany do finalizacji powierzchni elewacji podczas ocieplania budynku płytami styropianowymi w systemie BSO (Bezspoinowym Systemie Ocieplania)?

A. Akrylowy
B. Cementowo-wapienny
C. Gipsowo-wapienny
D. Cementowy
Wybór tynków cementowo-wapiennych, cementowych czy gipsowo-wapiennych w kontekście ocieplania budynków płytami styropianowymi nie jest odpowiedni z kilku powodów. Tynki cementowo-wapienne i cementowe, mimo że są powszechnie stosowane w budownictwie, nie oferują takiej elastyczności jak tynki akrylowe. Ich twarda struktura może prowadzić do pęknięć w momencie, gdy budynek poddawany jest ruchom, a zmiany temperatury mogą wpływać na integralność tynku. Tynki gipsowo-wapienne, z kolei, nie są zalecane do zastosowań zewnętrznych, ponieważ gips jest materiałem higroskopijnym, co oznacza, że wchłania wilgoć, co może prowadzić do osłabienia struktury tynku. Dodatkowo, tynki te mają ograniczoną odporność na czynniki atmosferyczne. W przypadku elewacji, gdzie wymagana jest nie tylko estetyka, ale także trwałość i odporność na działanie warunków zewnętrznych, tynki akrylowe pojawiają się jako jedyne sensowne rozwiązanie. Często popełniany błąd to założenie, że każdy typ tynku jest uniwersalny i można go stosować w każdej sytuacji; w rzeczywistości, wybór odpowiedniego tynku powinien być dokładnie dostosowany do specyfiki budynku i jego lokalizacji.

Pytanie 19

Obrzutkę na stropie z cegły wykonuje się z

A. gęstej zaprawy cementowej
B. gęstej zaprawy wapiennej
C. rzadkiej zaprawy cementowej
D. rzadkiej zaprawy wapiennej
Wybór gęstej zaprawy cementowej lub wapiennej do wykonania obrzutki na stropie ceglanym oparty jest na pewnych błędnych założeniach. Gęsta zaprawa cementowa charakteryzuje się zbyt dużą lepkością, co sprawia, że nie przylega ona prawidłowo do chropowatej powierzchni cegły. W wyniku tego mogą pojawić się odspojenia, co doprowadzi do osłabienia całej konstrukcji. Z kolei gęsta zaprawa wapienna, pomimo że ma swoje zalety, nie zapewnia odpowiedniej przyczepności oraz elastyczności, które są kluczowe w przypadku stropów narażonych na zmienne obciążenia. Rzadka zaprawa wapienna, podobnie jak gęsta, nie dostarcza wymaganej twardości i odporności na działanie wilgoci, co również negatywnie wpływa na trwałość stropu. Typowym błędem, który prowadzi do takich niepoprawnych wniosków, jest niedostateczne zrozumienie roli, jaką zaprawa odgrywa w przenoszeniu obciążeń oraz jak jej właściwa konsystencja może wpływać na stabilność całej konstrukcji. Warto zaznaczyć, że zgodnie z zasadami budownictwa, obrzutka powinna być wykonana z materiałów o właściwościach dostosowanych do specyfiki zastosowania, co w przypadku stropów ceglanych oznacza użycie rzadkiej zaprawy cementowej.

Pytanie 20

W remontowanym budynku na poddaszu zamierzono stworzyć lekką ściankę działową, aby oddzielić dwa pokoje mieszkalne. Jakie materiały powinno się zastosować do jej budowy?

A. cegły szamotowe
B. płyty Pro-Monta
C. płyty wiórowe laminowane
D. cegły klinkierowe
Wybór płyty wiórowej laminowanej na ściankę działową może wydawać się spoko, ale w praktyce nie jest najlepszym pomysłem. One nie mają wystarczającej stabilności ani izolacji akustycznej, a to w mieszkaniach jest kluczowe. Może się zdarzyć, że dźwięki będą przenikały między pokojami, co jest trochę irytujące. Z kolei cegły klinkierowe to w ogóle nie jest dobre rozwiązanie, bo są za ciężkie i niepraktyczne w tym kontekście. Mogą obciążać konstrukcję budynku, co na poddaszu jest istotne, gdyż stropy mają swoje ograniczenia. A cegły szamotowe, mimo że mają swoją wartość w wysokich temperaturach, to też nie nadają się na ścianki działowe. Wybierając materiały budowlane, warto zwrócić uwagę na ich funkcjonalność i trwałość, a także na normy budowlane, które mówią, co jest dozwolone w wewnętrznych konstrukcjach.

Pytanie 21

Na rysunku przedstawiono układ cegieł w

Ilustracja do pytania
A. narożniku murów o grubości 2½ i 2½ cegły.
B. przenikających się murach o grubości 2½ i 2½ cegły.
C. przenikających się murach o grubości 2½ i 1½ cegły.
D. narożniku murów o grubości 2½ i 1½ cegły.
Wybór odpowiedzi "narożniku murów o grubości 2½ i 1½ cegły" jest poprawny, ponieważ na rysunku rzeczywiście widoczne są dwa mury spotykające się w narożniku. Aby zrozumieć tę sytuację, należy zwrócić uwagę na sposób układania cegieł oraz ich grubość. W budownictwie murarskim istotne jest, aby odpowiednio dobierać grubość ścian w zależności od wymagań konstrukcyjnych i izolacyjnych. Mur o grubości 2½ cegły jest powszechnie stosowany w obiektach, które mają pełnić funkcję nośną, natomiast mur o grubości 1½ cegły często znajduje zastosowanie w ścianach działowych lub tam, gdzie nie ma potrzeby większej odporności na obciążenia. Zastosowanie tych dwóch grubości w narożniku pozwala na efektywne rozprowadzenie obciążeń oraz zapewnia stabilność całej konstrukcji. Dzięki temu, oraz odpowiedniemu zaplanowaniu układu cegieł, można osiągnąć zarówno walory estetyczne, jak i funkcjonalne, które są kluczowe w projektowaniu budynków zgodnie z nowoczesnymi standardami budowlanymi.

Pytanie 22

Proces naprawy wilgotnego tynku powinien rozpocząć się od

A. zlikwidowania nalotów pleśni
B. nałożenia środka gruntującego
C. eliminacji źródła zawilgocenia
D. osuchania powierzchni tynku
W przypadku podejmowania działań w celu naprawy zawilgoconego tynku, wybór pierwszego kroku jest kluczowy, a wprowadzenie nieefektywnych metod może prowadzić do długotrwałych problemów. Osuszenie powierzchni tynku jako pierwsza reakcja jest często mylone z rzeczywistym rozwiązaniem problemu. Choć usunięcie widocznej wilgoci może przynieść chwilową ulgę, to nie eliminuje ono źródła problemu, co może prowadzić do dalszych uszkodzeń i ponownego zawilgocenia. Pokrycie środkiem gruntującym również nie jest odpowiednią strategią, ponieważ takie działanie nie adresuje przyczyny wilgoci, a jedynie maskuje objawy. Zastosowanie gruntów w sytuacji, gdy przyczyna zawilgocenia nie została usunięta, może spowodować, że wilgoć zostanie uwięziona w tynku, co prowadzi do powstawania pleśni i grzybów, a także innego rodzaju uszkodzeń strukturalnych. Usuwanie nalotów pleśni może być krokiem koniecznym, ale powinno być traktowane jako działanie wspierające, a nie zastępujące fundamentalną konieczność wyeliminowania źródła wilgoci. Innymi słowy, kluczowym błędem jest skupienie się na powierzchownych rozwiązaniach, które nie prowadzą do długotrwałej poprawy sytuacji, co jest sprzeczne z najlepszymi praktykami w zakresie konserwacji budynków.

Pytanie 23

Korzystając z Warunków Technicznych Wykonania i Odbioru Robót Tynkarskich wskaż, dla której kategorii tynku niedopuszczalne są widoczne miejscowe nierówności powierzchni, pochodzące od zacierania packą.

Warunki Techniczne Wykonania i Odbioru Robót Tynkarskich (fragment)
Dla wszystkich odmian tynku niedopuszczalne są:
- wykwity w postaci nalotu wykrystalizowanych na powierzchni tynku roztworów soli przenikających z podłoża, pleśń itp.
- zacieki w postaci trwałych śladów na powierzchni tynków,
- odstawanie, odparzenia, pęcherze spowodowane niedostateczną przyczepnością tynku do podłoża.
Pęknięcia na powierzchni tynków są niedopuszczalne z wyjątkiem tynków surowych, w których dopuszcza się włoskowate rysy skurczowe. Wypryski i spęcznienia powstające na skutek obecności niezgaszonych cząstek wapna, gliny itp. są niedopuszczalne dla tynków pocienionych, pospolitych, doborowych i wypalonych, natomiast dla tynków surowych są niedopuszczalne w liczbie do 5 sztuk na 10 m2 tynku.
Widoczne miejscowe nierówności powierzchni otynkowanych wynikające z technik wykonania tynku (np. ślady wygładzania kielnią lub zacierania packą) są niedopuszczalne dla tynków doborowych, a dla tynków pospolitych dopuszczalne są o szerokości i głębokości do 1 mm oraz długości do 5 cm w liczbie 3 sztuk na 10 m2 powierzchni otynkowanej.
A. Dla tynku kategorii I
B. Dla tynku kategorii III
C. Dla tynku kategorii II
D. Dla tynku kategorii IV
Wybór niewłaściwej kategorii tynku świadczy o braku zrozumienia norm i zasad jakościowych dotyczących robót tynkarskich. Tynki kategorii I, II oraz III mają zróżnicowane wymagania dotyczące estetyki, które jednak nie mogą być mylone z wymaganiami dla tynków doborowych. Kategoria I to tynki, które mogą być stosowane w obszarach, gdzie estetyka nie jest kluczowym czynnikiem, a ich wykończenie może być mniej staranne. Tynki kategorii II i III również dopuszczają pewne niedoskonałości, co oznacza, że widoczne nierówności mogą być akceptowane w określonych warunkach. Niezrozumienie tych różnic prowadzi do wnioskowania, że dopuszczalne są widoczne ślady technik wykonawczych, co jest absolutnie błędne w kontekście tynków doborowych. W praktyce, każda z tych kategorii tynków ma swoje zastosowania w zależności od funkcji budynku i oczekiwań inwestora. Wybór niewłaściwej kategorii może skutkować nie tylko estetycznymi niedociągnięciami, ale również obniżeniem wartości rynkowej obiektu. Warto zwrócić szczególną uwagę na dokumentację techniczną i standardy branżowe, aby uniknąć takich pomyłek w przyszłości.

Pytanie 24

W ścianie z cegieł przeznaczonej do remontu pomierzono pęknięcia. Stwierdzono:
- 10 m pęknięć o głębokości 1/2 cegły,
- 2 m pęknięć o głębokości 1 cegły.

Na podstawie danych zawartych w tablicy 0307 oblicz, ile cegieł należy użyć do przemurowania pęknięć w tej ścianie.

Nakłady na 1 m pęknięciatablica 0307 (wyciąg z KNR nr 4-01)
Lp.WyszczególnienieJ. m.Przemurowanie ciągłe pęknięć
przy użyciu zaprawy
cementowej w ścianach
głębokość pęknięć w cegłach
½1
01Robociznar-g3,625,239,05
20Cegły budowlane pełneszt.142947
21Cement portlandzkikg3,887,3412,95
A. 318 szt.
B. 516 szt.
C. 564 szt.
D. 198 szt.
Obliczenie ilości cegieł potrzebnych do przemurowania pęknięć w ścianie z cegieł wymaga uwzględnienia zarówno długości pęknięć, jak i głębokości każdego z nich. W tym przypadku mamy do czynienia z pęknięciami o dwóch różnych głębokościach: 1/2 cegły oraz 1 cegła. Dla pęknięć o głębokości 1/2 cegły, które mają długość 10 m, standardowo przyjmuje się, że na 1 metr pęknięcia potrzebne są 2 cegły, co daje w sumie 20 cegieł. Z kolei dla pęknięć o głębokości 1 cegły i długości 2 m potrzebne są 5 cegieł na 1 metr, co daje 10 cegieł. Suma cegieł potrzebnych na oba typy pęknięć wynosi 20 + 10 = 30 cegieł. Należy jednak uwzględnić dodatkowe zapasy na wypadek uszkodzeń oraz błędów w obliczeniach, co w praktyce podnosi liczbę potrzebnych cegieł do około 198 sztuk. Przy realizacji prac budowlanych warto stosować się do branżowych praktyk, takich jak dodawanie 10-15% zapasu materiałów budowlanych, co jest zgodne z normami budowlanymi. Zrozumienie tego procesu jest kluczowe dla właściwego planowania remontów budowlanych oraz efektywnego zarządzania materiałami.

Pytanie 25

Tynk III kategorii powszechny to

A. narzut jedno- lub dwu-warstwowy wygładzany pacą
B. narzut o jednej warstwie, wyrównany kielnią
C. tynk trójwarstwowy wygładzony pacą pokrytą filcem
D. tynk trójwarstwowy zatarty packą na gładko
Tynk pospolity III kategorii, jako tynk trójwarstwowy zatarty packą na gładko, jest odpowiednim rozwiązaniem w przypadku, gdy zależy nam na uzyskaniu estetycznej, gładkiej powierzchni. Tego rodzaju tynk składa się z trzech warstw: warstwy podkładowej, warstwy zasadniczej oraz warstwy wykończeniowej, co pozwala na uzyskanie odpowiedniej wytrzymałości oraz trwałości. Takie podejście jest zgodne z normami budowlanymi, które zalecają stosowanie trzech warstw w celu osiągnięcia najlepszych właściwości termoizolacyjnych oraz akustycznych. Przykładem zastosowania tynku pospolitego III kategorii mogą być wnętrza budynków mieszkalnych, gdzie gładka powierzchnia ścian jest zarówno estetyczna, jak i funkcjonalna. Dobra praktyka polega na prawidłowym wykonaniu każdej z warstw, co wpływa na końcowy efekt estetyczny oraz trwałość tynku, a także na jego odporność na uszkodzenia mechaniczne czy wilgoć. Dodatkowo, tynk taki może być malowany, co otwiera dodatkowe możliwości aranżacyjne w przestrzeni. Zastosowanie tynku trójwarstwowego zwiększa też wartość estetyczną obiektów budowlanych.

Pytanie 26

Na podstawie tablicy 0803 oblicz ilości zapraw cementowo-wapiennych M2 i M7, potrzebnych do ręcznego wykonania tynku zwykłego kategorii II, na ścianach o łącznej powierzchni 200 m2.

Ilustracja do pytania
A. M2 - 2,06 m3 i M7 - 0,21 m3
B. M2 - 1,86 m3 i M7 - 0,20 m3
C. M2 - 4,12 m3 i M7 - 0,42 m3
D. M2 - 3,72 m3 i M7 - 0,40 m3
Analizując pozostałe odpowiedzi, można zauważyć, że dochodzi w nich do błędów w procesie obliczania ilości zapraw niezbędnych do wykonania tynku. Warto zwrócić uwagę na to, że każda z pozostałych odpowiedzi opiera się na niewłaściwej interpretacji danych z tabeli 0803. Na przykład, w odpowiedzi M2 - 2,06 m3 i M7 - 0,21 m3, ilość zaprawy M2 jest zaniżona o ponad 1 m3, co może wynikać z błędnego przyjęcia podstawy obliczeń. Podobnie, odpowiedzi z wartościami 1,86 m3 zaprawy M2 i 0,20 m3 zaprawy M7 są oparte na danych dla 100 m2, ale nie uwzględniają, że przy powiększonej powierzchni do 200 m2 musimy zastosować odpowiednią skalę. Kolejny typowy błąd polega na nieuwzględnieniu, że podwajając powierzchnię, musimy także podwoić ilości zaprawy. W rezultacie, nieprzestrzeganie tej zasady prowadzi do niedoszacowania potrzebnych materiałów, co może skutkować przestojami w pracy oraz dodatkowymi kosztami. W branży budowlanej istotne jest, aby dobrze zrozumieć zasady obliczeń i ich praktyczne zastosowanie, aby uniknąć takich problemów i realizować projekty zgodnie z harmonogramem i budżetem.

Pytanie 27

W przedstawionym na rysunku remontowanym budynku należy wymienić następującą stolarkę drzwiową:

Ilustracja do pytania
A. 3 drzwi prawych i 2 drzwi lewych.
B. 5 drzwi lewych i 1 okno.
C. 5 drzwi prawych i 1 okno.
D. 3 drzwi lewych i 2 drzwi prawych.
Analiza błędnych odpowiedzi wykazuje szereg nieporozumień dotyczących kategorii i kierunku otwierania drzwi. Udzielenie odpowiedzi wskazującej na wymianę 5 drzwi lewych lub prawych może wynikać z nieprawidłowego odczytania rysunku, co podkreśla znaczenie dokładnej wizualizacji w procesie projektowym. Istotne jest, aby przed przystąpieniem do wymiany stolarki drzwiowej, dokładnie zrozumieć, jakie kierunki otwierania powinny być zachowane w danym kontekście. W szczególności, nieprawidłowe zaklasyfikowanie liczby drzwi lub ich kierunku może prowadzić do dysfunkcji w układzie pomieszczeń oraz problemów z dostępem do przestrzeni. Zrozumienie, że w budynku zidentyfikowano konkretne elementy, takie jak 3 drzwi prawe i 2 lewe, jest kluczowe, aby uniknąć błędów w projektowaniu, które mogą skutkować koniecznością dodatkowych prac remontowych. Często popełnianym błędem jest również nieuwzględnianie faktu, że w przypadku wymiany drzwi nie powinno się ich liczby pomijać, co mogłoby prowadzić do niekompletnego stanu użytkowania. Podstawową zasadą w praktyce budowlanej jest przestrzeganie zasad ergonomii oraz standardów, które zapewniają nie tylko estetykę, ale przede wszystkim funkcjonalność, co tym bardziej podkreśla znaczenie precyzyjnego określenia wymiany stolarki drzwiowej na etapie analizy rysunków.

Pytanie 28

Naprawę pękniętej ściany murowanej przedstawionej na rysunku wykonano prętami stalowymi ϕ8 mm. Które stwierdzenie jest nieprawdziwe?

Ilustracja do pytania
A. Rozstaw między prętami w pionie wynosi 50 cm.
B. Do naprawy pęknięcia wykorzystano 4 pręty o średnicy 8 mm.
C. Pręty sięgają 50 cm poza zewnętrzne pęknięcie ściany.
D. Do naprawy pęknięcia wykorzystano 4 pręty o długości 150 cm każdy.
Odpowiedź "Do naprawy pęknięcia wykorzystano 4 pręty o długości 150 cm każdy" jest nieprawdziwa, gdyż wynika z niej błędne założenie co do wymiarów stosowanych materiałów. Analizując rysunek oraz szczegóły podane w pytaniu, można zauważyć, że pęknięcie ściany ma długość około 100 cm, a pręty stalowe zostały zastosowane w sposób, który zapewnia ich skuteczność w naprawie. Dodatkowo, pręty te sięgają 50 cm poza zewnętrzne pęknięcie, co oznacza, że ich całkowita długość wynosi 200 cm (100 cm pęknięcia + 50 cm z każdej strony). Stosowanie prętów stalowych o średnicy 8 mm jest powszechną praktyką w budownictwie, zapewniającą odpowiednią wytrzymałość na naprężenia. W podobnych sytuacjach, jak naprawa pęknięć ścian czy wzmocnienia konstrukcji, dobór odpowiednich materiałów oraz ich właściwa długość są kluczowe dla zachowania stabilności budynku. Warto zawsze dokładnie analizować wymiary i rozstawienie elementów naprawczych, aby zapewnić ich zgodność z normami budowlanymi oraz praktykami inżynierskimi.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Cementowa zaprawa wyróżnia się wysoką

A. kapilarnością
B. wytrzymałością na ściskanie
C. higroskopijnością
D. odpornością na skurcz
Zaprawa cementowa charakteryzuje się dużą wytrzymałością na ściskanie, co czyni ją materiałem o kluczowym znaczeniu w budownictwie. Wytrzymałość na ściskanie definiuje zdolność materiału do przenoszenia obciążeń bez deformacji czy zniszczenia. W przypadku zapraw cementowych, wartość ta jest wynikiem odpowiednich proporcji składników, takich jak cement, woda i kruszywo. Przykładowo, zaprawy stosowane w murach nośnych muszą spełniać normy PN-EN 998-1, które precyzują minimalne wartości wytrzymałościowe zależnie od zastosowania. W praktyce, wytrzymałość zaprawy na ściskanie jest kluczowa w kontekście budowy ścian, fundamentów, oraz wszelkich innych konstrukcji, gdzie obciążenia są znaczące. Dodatkowo, odpowiednie dobranie klasy cementu oraz techniki mieszania i aplikacji zaprawy wpływa na jej trwałość i odporność na czynniki atmosferyczne, co jest istotne dla długowieczności obiektów budowlanych.

Pytanie 31

Aby nałożyć tynk zwykły na suficie, jakie narzędzia są wymagane?

A. kielnia i listwa tynkarska
B. czerpak tynkarski i packa
C. deska z trzonkiem oraz packa
D. deska z trzonkiem i kielnią
Wybór narzędzi do narzutu tynku jest kluczowy dla uzyskania wysokiej jakości wykończenia. Odpowiedzi wskazujące na stosowanie czerpaka tynkarskiego oraz packi są nieprawidłowe, ponieważ te narzędzia nie są przeznaczone do aplikacji tynku na suficie. Czerpak tynkarski jest najczęściej używany do przygotowania mieszanki tynkarskiej, ale jego forma i kształt nie pozwalają na precyzyjne nakładanie tynku na dużą powierzchnię, taką jak sufit. Packa, która jest bardziej odpowiednia do wygładzania powierzchni, nie jest wystarczająco elastyczna, aby efektywnie rozprowadzić materiał w ruchu roboczym. Z kolei lista tynkarska, mimo że może być używana w pewnych zastosowaniach, nie zastąpi funkcji deski z trzonkiem. Dodatkowo, niepoprawne podejście do narzutu tynku może prowadzić do problemów takich jak nierówności, pęknięcia czy złe przyleganie tynku do podłoża. Wybór niewłaściwych narzędzi może wynikać z braku wiedzy na temat procesów tynkarskich oraz złych praktyk w branży budowlanej. Dlatego istotne jest, aby każdy wykonawca posiadał solidną wiedzę na temat narzędzi oraz umiejętności ich właściwego zastosowania zgodnie z normami i standardami obowiązującymi w budownictwie.

Pytanie 32

W technologii szalunku traconego, którego fragment przestawiono na rysunku, ściany wznosi się z

Ilustracja do pytania
A. prefabrykatów żelbetowych w deskowaniach z tektury.
B. betonu komórkowego na cienkowarstwowej zaprawie klejącej.
C. bloczków silikatowych na zaprawie ciepłochronnej.
D. kształtek styropianowych z rdzeniem żelbetowym.
Kształtki styropianowe z rdzeniem żelbetowym stanowią innowacyjne rozwiązanie w technologii szalunków traconych, które znacznie przyspiesza proces budowlany oraz zapewnia doskonałe właściwości izolacyjne. Szalunki tracone z tych kształtek nie tylko tworzą formę dla wylanego betonu, ale także po zakończeniu pracy pozostają integralną częścią konstrukcji, co eliminuje konieczność ich demontażu. We wnętrzu kształtek umieszczane jest zbrojenie, które po zalaniu betonem tworzy rdzeń żelbetowy, co zapewnia odpowiednią nośność i trwałość ścian. Zastosowanie tego typu szalunków jest szczególnie korzystne w budownictwie mieszkaniowym oraz przemysłowym, gdzie wymagana jest oszczędność czasu i materiałów. Technologie te są zgodne z europejskimi standardami budowlanymi, co potwierdza ich efektywność i bezpieczeństwo w zastosowaniach budowlanych. Dodatkowo, stosując kształtki styropianowe, można osiągnąć wyższe parametry energooszczędności budynku, co jest zgodne z obecnymi trendami w budownictwie ekologicznym.

Pytanie 33

Na rysunku przedstawiono zestaw narzędzi stosowanych podczas wznoszenia ścian z

Ilustracja do pytania
A. bloczków z betonu komórkowego.
B. płyt gipsowo-kartonowych.
C. cegły klinkierowej szkliwionej.
D. pustaków keramzytobetonowych.
Wybór pustaków keramzytobetonowych, cegły klinkierowej szkliwionej czy płyt gipsowo-kartonowych jest nietrafiony, ponieważ różnią się one w narzędziach i technikach, które się używa do ich obróbki. Pustaki keramzytobetonowe wymagają innych narzędzi, jak młoty udarowe czy specjalne kielnie, gdyż mają swoją specyfikę. Cegła klinkierowa jest cięższa i wymaga dokładnego murowania, więc potrzebne są narzędzia typu poziomice i łaty murarskie, żeby wszystko ładnie wyglądało. A płyty gipsowo-kartonowe potrzebują noży do cięcia gipsu i wkrętarek, co czyni je zupełnie inną grupą narzędzi. Jak się wybiera odpowiedź, trzeba wiedzieć o tych różnicach i właściwościach materiałów budowlanych, bo to ma duże znaczenie w praktyce. Ignorowanie tych szczegółów może prowadzić do złych wyborów i kiepskiej jakości pracy budowlanej.

Pytanie 34

Na podstawie wyciągu ze Szczegółowej Specyfikacji Technicznej Wykonania i Odbioru Robót Budowlanych SST wskaż, ile litrów zaprawy gipsowej można uzyskać z 20 kg worka suchej, gotowej mieszanki?

Szczegółowa Specyfikacja Techniczna Wykonania i Odbioru Robót Budowlanych SST
(wyciąg)
B.3.03. Tynk gipsowy
Dane techniczne:
- średnia grubość tynku: 10 mm (grubość min.8 mm)
- ciężar nasypowy: 800kg/m3
- uziarnienie: do 1,2 mm
- wydajność: 100 kg = 125 l zaprawy
- zużycie: 0,8 kg na mm i m2
- czas schnięcia: średnio około 14 dni
A. 25,01
B. 2,51
C. 50,01
D. 5,01
Odpowiedź 25,01 l jest poprawna, ponieważ wynika z właściwego przeliczenia masy suchej mieszanki na objętość zaprawy. Zgodnie z danymi technicznymi w Szczegółowej Specyfikacji Technicznej Wykonania i Odbioru Robót Budowlanych, stosunek masy do objętości wynosi 100 kg do 125 l. Oznacza to, że na każdy kilogram suchej mieszanki przypada 1,25 l zaprawy. W przypadku 20 kg suchej mieszanki, obliczenia są proste: 20 kg x 1,25 l/kg = 25 l. Tę wartość można również zaokrąglić do 25,01 l, co jest zgodne z wymaganiami technicznymi dotyczącymi precyzyjnego podawania objętości. Wiedza ta jest istotna nie tylko w kontekście przygotowania zaprawy, ale także w planowaniu ilości materiałów budowlanych. Znajomość przeliczeń pozwala na lepsze zarządzanie kosztami projektów budowlanych oraz minimalizację odpadów, co jest zgodne z zasadami zrównoważonego rozwoju i efektywnego gospodarowania zasobami.

Pytanie 35

Całkowita powierzchnia dwóch ścian o rozmiarach 4,0 x 2,5 x 0,25 m, wykonanych z cegły ceramicznej pełnej na zaprawie cementowej, jest równa

A. 2,5 m2
B. 5,0 m2
C. 20,0 m2
D. 10,0 m2
Aby obliczyć powierzchnię dwóch ścian o wymiarach 4,0 x 2,5 m, trzeba użyć wzoru na pole prostokąta. No, wychodzi, że jedna ściana ma 4,0 m razy 2,5 m, co daje 10,0 m2. A jak mamy dwie takie ściany, to łączna powierzchnia to po prostu 10,0 m2 razy 2, czyli w sumie 20,0 m2. Takie wyliczenia są naprawdę ważne w budowlance, zwłaszcza przy planowaniu i obliczaniu kosztów materiałów. Z mojego doświadczenia, dobrze jest umieć tak liczyć, bo dzięki temu można dokładniej ocenić, ile materiałów będzie potrzebnych. Warto też zwrócić uwagę na różne normy dotyczące materiałów budowlanych, bo to może wpłynąć na to, co wybierzemy do naszego projektu, czy to cegły, czy zaprawę. Zrozumienie takich podstawowych obliczeń geometrycznych to niezbędna umiejętność dla każdego inżyniera budowlanego i architekta.

Pytanie 36

Która z wymienionych czynności nie jest częścią badań kontrolnych przeprowadzanych podczas odbioru tynków cienkowarstwowych?

A. Weryfikacja prawidłowości przygotowania podłoża
B. Sprawdzenie przyczepności tynku do podłoża
C. Badanie nasiąkliwości tynku
D. Pomiar grubości tynku
Wśród czynności kontrolnych podczas odbioru tynków pocienionych, badanie przyczepności tynku do podłoża oraz badanie grubości tynku są kluczowymi parametrami, które wpływają na jakość i trwałość aplikacji. Często pomija się znaczenie tych testów, co prowadzi do błędnych przekonań o ich nieważności. Przyczepność tynku do podłoża jest niezbędna dla stabilności i długowieczności całej konstrukcji. Niewłaściwa przyczepność może powodować odspajanie się tynku, co skutkuje poważnymi uszkodzeniami i kosztownymi naprawami. Z kolei badanie grubości tynku jest istotne dla zapewnienia, że aplikacja spełnia normy projektowe oraz gwarantuje odpowiednie właściwości izolacyjne i estetyczne. Właściwa grubość tynku bezpośrednio wpływa na jego funkcjonalność, a także na ochronę podłoża przed działaniem czynników atmosferycznych. Mimo że badanie nasiąkliwości tynku może dostarczać informacji o jego właściwościach, w przypadku tynków pocienionych nie jest kluczowe, ponieważ ich formuły są zaprojektowane z myślą o zminimalizowaniu wchłaniania wody. Dlatego wiele osób myli tę kwestię, uznając, że wszystkie powyższe badania są równie istotne dla oceny jakości tynku, co prowadzi do nieprawidłowych wniosków i zaniedbań w procesie kontroli jakości.

Pytanie 37

Gdzie można wykorzystać zaprawy gipsowe?

A. do tynkowania działowych ścian w pomieszczeniach o podwyższonej wilgotności
B. do murowania ścian z gipsowych elementów w suchych pomieszczeniach
C. do murowania fundamentów z elementów betonowych
D. do tynkowania elewacji budynków
Stwierdzenie, że zaprawy gipsowe można stosować do tynkowania ścian zewnętrznych, jest nieprawidłowe, ponieważ gips nie jest materiałem odpornym na działanie warunków atmosferycznych, takich jak deszcz czy zmiany temperatury. Tynki gipsowe, ze względu na swoją strukturę i właściwości, nadają się jedynie do stosowania w pomieszczeniach zamkniętych, gdzie nie występuje duża wilgotność ani agresywne czynniki zewnętrzne. Podobnie, tynkowanie ścian działowych w pomieszczeniach wilgotnych również nie jest zalecane, gdyż gips w takim środowisku może ulegać degradacji, co prowadzi do uszkodzenia struktury i estetyki wykończenia. Co więcej, wykorzystanie zapraw gipsowych do murowania ścian fundamentowych z elementów betonowych jest błędne, ponieważ fundamenty wymagają materiałów o wysokiej wytrzymałości na ściskanie i odporności na wilgoć, a gips nie spełnia tych wymagań. Typowe błędy myślowe związane z tymi odpowiedziami to nieznajomość właściwości materiałów budowlanych oraz ich zastosowania w kontekście różnorodnych warunków środowiskowych. Rekomendacje dotyczące stosowania zapraw budowlanych powinny być oparte na ich specyfikacjach technicznych oraz na normach budowlanych, aby zapewnić trwałość i bezpieczeństwo konstrukcji.

Pytanie 38

W murze niespoinowanym z pustaków ceramicznych zostały wykonane otwory okienne o zaprojektowanych wymiarach 120 x 150 cm (szer. x wys.). Który z rzeczywistych wymiarów szerokości otworu spełnia warunki techniczne wykonania i odbioru robót murarskich podanych w tabeli?

Ilustracja do pytania
A. 130 cm
B. 115 cm
C. 119 cm
D. 121 cm
Wybór 115 cm, 119 cm i 130 cm zdecydowanie nie pasuje do technicznych wymagań dla otworów w murze niespoinowanym. Po pierwsze, 115 cm jest za małe i nie mieści się w tolerancjach, co zdecydowanie może prowadzić do kłopotów przy montażu okien. W ogóle wymiary te mogą wymusić jakieś szpachlowanie albo poprawki, a to przecież wydłuża czas realizacji projektu i podnosi koszty. Odpowiedź 119 cm jest blisko, ale też nie spełnia norm. Natomiast 130 cm to już sporo powyżej akceptowalnych tolerancji, co naraża na ryzyko błędnego wykonania otworów, a to w efekcie może osłabić całą konstrukcję. W praktyce projektanci muszą zawsze zwracać uwagę na precyzyjne pomiary i tolerancje, żeby uniknąć takich problemów. Zanim podejmiesz decyzję o wymiarach, dobrze jest sprawdzić aktualne normy i rekomendacje. To kluczowe, żeby zapewnić dobrą jakość wykonania i nie wpaść w niepotrzebne kłopoty podczas budowy.

Pytanie 39

Określ szerokość i długość węgarka na podstawie przedstawionego fragmentu rzutu budynku.

Ilustracja do pytania
A. 38 x 180 cm
B. 12 x 12 cm
C. 26 x 38 cm
D. 12 x 26 cm
Wybierając inne odpowiedzi, można wpaść w kilka typowych pułapek myślowych, które prowadzą do złych wniosków. Na przykład, odpowiedzi 26 x 38 cm czy 38 x 180 cm mogą wyglądać na sensowne z powodu większych wymiarów, ale tak naprawdę nie pasują do tego, co jest pokazane na rysunku. W przypadku węgarków ważne jest, żeby wymiary były zgodne z tym, co jest potrzebne w projekcie. Złe wymiary mogą sprawić, że cała konstrukcja będzie niestabilna. Odpowiedź 12 x 26 cm też jest zła, ponieważ sugeruje, że węgarek ma jedną stronę dłuższą, co nie pasuje do tego, co widzimy na rysunku. W architekturze i inżynierii, proporcje elementów są mega istotne. Zbyt duże lub za małe wymiary mogą powodować problemy z dopasowaniem do innych części budynku. Ważne, żeby zrozumieć, jak różne wymiary wpływają na cały projekt, bo to może uratować nas przed drogimi błędami i sprawić, że budynek będzie spełniał wszelkie normy bezpieczeństwa. Dobrze jest też zwracać uwagę na detale na rysunkach, bo mogą one wskazywać konkretne wymiary, co pomoże w poprawnej interpretacji danych.

Pytanie 40

Jaką zaprawę wykorzystuje się do budowy elementów konstrukcyjnych budynków, które muszą przenosić duże obciążenia oraz do elementów podatnych na wilgoć, jak na przykład ściany fundamentowe?

A. Gipsowo-wapienna
B. Cementowa
C. Gipsowa
D. Wapienna
Zaprawa cementowa jest odpowiednia do murowania konstrukcji elementów budynku, które przenoszą duże obciążenia oraz są narażone na wilgoć, takich jak ściany fundamentowe. Charakteryzuje się wysoką wytrzymałością na ściskanie oraz niską przepuszczalnością wody, co czyni ją idealnym materiałem w sytuacjach, gdzie trwałość i odporność na czynniki zewnętrzne są kluczowe. Standardy budowlane, takie jak EN 998-2, podkreślają znaczenie stosowania zapraw cementowych w obszarach wymagających większej wytrzymałości oraz ochrony przed wilgocią. Przykładem zastosowania zaprawy cementowej może być fundament budynku, gdzie odpowiednia mieszanka cementu, piasku i wody tworzy mocną strukturę, zdolną wytrzymać ciężar budowli oraz działanie wód gruntowych. Dodatkowo, w przypadkach budownictwa przemysłowego, zaprawy cementowe są często stosowane do murowania ścian nośnych hal produkcyjnych, co podkreśla ich wszechstronność i kluczowe znaczenie w inżynierii budowlanej.