Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 12:58
  • Data zakończenia: 19 grudnia 2025 13:28

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie działania regulacyjne w systemie mechatronicznym opartym na falowniku i silniku indukcyjnym należy podjąć, aby obniżyć prędkość obrotową silnika bez zmiany wartości poślizgu?

A. Zwiększyć proporcjonalnie częstotliwość i wartość napięcia zasilającego
B. Obniżyć proporcjonalnie częstotliwość oraz wartość napięcia zasilającego
C. Zwiększyć wartość napięcia zasilającego
D. Zmniejszyć częstotliwość napięcia zasilającego
Poprawna odpowiedź polega na zmniejszeniu proporcjonalnie częstotliwości oraz wartości napięcia zasilającego w silniku indukcyjnym napędzanym przez przemiennik częstotliwości. W praktyce, takie działanie prowadzi do obniżenia prędkości wirowania wirnika, przy jednoczesnym zachowaniu stałego poziomu poślizgu. Poślizg jest to różnica między prędkością synchronizacyjną a rzeczywistą prędkością obrotową wirnika, a jego wartość pozostaje stabilna, gdy zmienia się obie te parametry w równym stopniu. W aplikacjach przemysłowych, gdy chcemy kontrolować prędkość silników, często stosuje się systemy regulacji, które uwzględniają te zależności. Zmniejszenie zarówno częstotliwości, jak i napięcia jest zgodne z zasadami dobrych praktyk w inżynierii mechatronicznej i pozwala na efektywne zarządzanie energią oraz minimalizację zużycia energii. Dodatkowo, takie podejście zapobiega przeciążeniom silnika oraz wydłuża jego żywotność.

Pytanie 2

Która z podanych kategorii regulatorów powinna być brana pod uwagę w projekcie systemu mechatronicznego o nieciągłej regulacji temperatury?

A. Proporcjonalny
B. Dwustawny
C. Całkujący
D. Różniczkujący
Wybór odpowiedzi inne niż "dwustawny" wskazuje na pewne nieporozumienia dotyczące sposobu działania różnych typów regulatorów. Regulator całkujący jest stosowany w systemach, gdzie istotne jest uwzględnienie długu regulacyjnego, co czyni go nieodpowiednim w przypadku nieciągłej regulacji temperatury. Jego działanie polega na ciągłym dostosowywaniu sygnału wyjściowego na podstawie skumulowanej różnicy między wartością zadaną a rzeczywistą, co nie jest skuteczne przy prostym włączaniu i wyłączaniu. Regulator różniczkujący z kolei reaguje na szybkość zmian, co również nie jest istotne w kontekście systemu, który wymaga jedynie dwóch stanów. Z kolei regulator proporcjonalny, który dostosowuje sygnał wyjściowy w oparciu o bieżące odchylenie wartości, także nie pasuje do opisanej sytuacji, ponieważ nie zapewnia jednoznacznej kontroli temperatury w trybie on/off. Często przyczyną błędnych odpowiedzi jest mylenie charakterystyk różnych typów regulatorów z ich praktycznymi zastosowaniami w systemach automatyki. Kluczowe jest zrozumienie, że regulator dwustawny najlepiej odpowiada wymaganiom nieciągłego sterowania, co odróżnia go od pozostałych typów, które są bardziej odpowiednie w kontekście regulacji ciągłej.

Pytanie 3

Który z wymienionych elementów jest najważniejszy przy projektowaniu automatycznej linii do napełniania i etykietowania rozcieńczalników do farb?

A. Jak największa niezawodność funkcjonowania zaprojektowanej linii
B. Brak elektryzowania się zastosowanych elementów
C. Użycie najtańszych komponentów
D. Wysoka wydajność zaprojektowanej linii
Wybór najtańszych podzespołów może wydawać się atrakcyjną opcją z perspektywy budżetowej, jednak w kontekście projektowania zautomatyzowanej linii do napełniania i etykietowania rozcieńczalników do farb, jest to podejście mylące. Tanie podzespoły często charakteryzują się niższą jakością, co prowadzi do większej podatności na awarie. W dłuższej perspektywie, oszczędności w kosztach początkowych mogą prowadzić do znacznych wydatków związanych z naprawą, wymianą sprzętu oraz przestojami w produkcji, co jest szczególnie krytyczne w branży zajmującej się materiałami łatwopalnymi. Ponadto, niezawodność jest kluczowym czynnikiem w każdej linii produkcyjnej, a użycie niskiej jakości komponentów może negatywnie wpłynąć na wydajność i bezpieczeństwo. Z kolei dążenie do maksymalnej wydajności bez odpowiednich zabezpieczeń, takich jak antystatyczność podzespołów, może prowadzić do sytuacji, w której proces produkcyjny zostanie przerwany przez uszkodzenia lub awarie sprzętu. Takie podejście pokazuje brak zrozumienia istoty projektowania systemów, w których bezpieczeństwo i niezawodność powinny mieć najwyższy priorytet, zwłaszcza w kontekście pracy z substancjami chemicznymi. Dlatego ważne jest, aby inwestować w wysokiej jakości podzespoły, które zapewnią bezpieczeństwo i stabilność operacyjną, zgodnie z najlepszymi praktykami inżynieryjnymi.

Pytanie 4

Za pomocą którego symbolu powinno przedstawić się na schemacie magnetyczny czujnik zbliżeniowy?

Ilustracja do pytania
A. Symbolu 4.
B. Symbolu 3.
C. Symbolu 1.
D. Symbolu 2.
Wybór symbolu 2. jako oznaczenia czujnika zbliżeniowego na schemacie magnetycznym jest prawidłowy z kilku powodów. Symbol ten jest zgodny z normami branżowymi, które definiują reprezentację różnych elementów w schematach elektrycznych i pneumatycznych. W przypadku czujników zbliżeniowych, standardowe oznaczenie polega na użyciu prostokątnej obudowy, która symbolizuje fizyczną formę czujnika, oraz wewnętrznego oznaczenia, które wskazuje na specyfikę jego działania, czyli w tym przypadku detekcję magnetyczną. Takie oznaczenie jest istotne nie tylko dla identyfikacji komponentów, ale również dla ich prawidłowego podłączenia w obwodach. W praktyce czujniki zbliżeniowe mają szerokie zastosowanie w automatyzacji procesów, gdzie ich zdolność do detekcji obecności obiektów bez kontaktu jest kluczowa. Na przykład, w liniach produkcyjnych czujniki te mogą być używane do monitorowania pozycji elementów, co zwiększa efektywność i bezpieczeństwo operacji. Zrozumienie i poprawne stosowanie symboli w schematach jest fundamentalne dla każdego inżyniera czy technika, co podkreśla znaczenie identyfikacji komponentów w instalacjach elektrycznych i automatyce.

Pytanie 5

Mechanizm przedstawiony na rysunku zapewnia członowi napędzanemu (element w kolorze czerwonym)

Ilustracja do pytania
A. multiplikację obrotów.
B. ruch ciągły.
C. multiplikację przełożenia.
D. ruch przerywany.
Odpowiedź 'ruch przerywany' jest prawidłowa, ponieważ mechanizm przedstawiony na rysunku jest typowym przykładem mechanizmu krzywkowego, który przekształca ruch obrotowy w ruch przerywany. W zastosowaniach przemysłowych, mechanizmy krzywkowe są często używane w automatyzacji procesów, takich jak w maszynach pakujących, robotach przemysłowych czy systemach transportowych. Dzięki swojej zdolności do generowania ruchu z okresowymi przestojami, mechanizmy te pozwalają na precyzyjne dozowanie materiałów oraz synchronizację działania różnych elementów maszyn. W standardach branżowych, takich jak ISO 9001, efektywność procesów produkcyjnych jest kluczowa, a zastosowanie ruchu przerywanego przyczynia się do optymalizacji cykli produkcyjnych i zwiększenia wydajności. Dlatego zrozumienie działania tych mechanizmów jest istotne dla inżynierów i projektantów maszyn, którzy muszą zapewnić najwyższą jakość i niezawodność w swoich projektach.

Pytanie 6

Na rysunkach technicznych cienką linią dwupunktową oznacza się

A. linie gięcia przedmiotów ukazanych w rozwinięciu
B. powierzchnie elementów, które są poddawane obróbce powierzchniowej
C. widoczne krawędzie oraz wyraźne kontury obiektów w widokach i przekrojach
D. przejścia pomiędzy jedną powierzchnią a drugą w miejscach delikatnie zaokrąglonych
Wybór odpowiedzi, która wskazuje, że linie dwupunktowe cienkie oznaczają widoczne krawędzie i wyraźne zarysy przedmiotów w widokach i przekrojach, jest błędny, ponieważ te elementy są zazwyczaj reprezentowane przez linie ciągłe grube. Zrozumienie konwencji rysunków technicznych jest kluczowe, ponieważ każda linia pełni określoną funkcję, a ich niewłaściwe stosowanie może prowadzić do poważnych błędów w interpretacji dokumentacji. Co więcej, powierzchnie elementów podlegających obróbce powierzchniowej, które w rysunkach technicznych oznaczane są najczęściej liniami przerywanymi, również nie są reprezentowane przez linie dwupunktowe cienkie. W ten sposób można zauważyć, że błędne rozpoznanie tych elementów może prowadzić do nieporozumień w procesie produkcyjnym. Ponadto, przejścia jednej powierzchni w drugą w miejscach łagodnie zaokrąglonych są zazwyczaj oznaczane innymi rodzajami linii, co również można pomylić, jeśli nie zna się podstawowych zasad rysunku technicznego. W ten sposób, niewłaściwa interpretacja linii i ich znaczenia na rysunkach może prowadzić do poważnych konsekwencji, jak błędne wykonanie elementów, co naraża na straty finansowe oraz czasowe. Dlatego niezwykle istotne jest przyswojenie wiedzy na temat oznaczeń stosowanych w rysunkach technicznych oraz ich znaczenia w praktyce inżynierskiej.

Pytanie 7

Ile par połączonych ze sobą przewodów (ramek) tworzy najprostszy wirnik w trójfazowym silniku indukcyjnym?

A. Z jednej pary
B. Z sześciu par
C. Z trzech par
D. Z dziewięciu par
Zrozumienie konstrukcji wirnika silnika indukcyjnego trójfazowego jest kluczowe dla prawidłowego projektowania i zastosowania tych urządzeń. Odpowiedzi sugerujące, że wirnik składa się z trzech, sześciu lub dziewięciu par przewodów opierają się na błędnym założeniu, że więcej par przewodów przekłada się na lepsze właściwości silnika. W rzeczywistości, wirniki silników indukcyjnych trójfazowych najczęściej wykorzystują jedną parę przewodów w konstrukcji klatkowej. To podejście umożliwia stabilne wytwarzanie pola magnetycznego, co jest kluczowe dla działania silnika. W przypadku większej liczby par, takie jak sześć czy dziewięć, mogłoby to prowadzić do nieefektywności w generowaniu momentu obrotowego oraz zwiększenia strat energii. Typowym błędem myślowym jest mylenie liczby faz z liczbą par przewodów w wirniku. Silnik trójfazowy posiada trzy fazy zasilania, natomiast wirnik jako komponent ma jedną parę przewodów, co skutkuje powstawaniem obrotowego pola magnetycznego. Zgodnie ze standardami branżowymi, stosowanie wirników klatkowych z jedną parą przewodów zapewnia wysoką efektywność energetyczną oraz prostotę konstrukcji, co jest istotne w zastosowaniach przemysłowych. W ten sposób, opierając się na dobrych praktykach projektowych oraz normach, można zoptymalizować parametry pracy silnika, dostosowując go do konkretnych wymagań aplikacji.

Pytanie 8

Które nastawy muszą zostać wybrane w oknie konfiguracyjnym timera, aby załączał swoje wyjście na 5 sekund od momentu podania na jego wejście logicznej jedynki?

Ilustracja do pytania
A. Typ timera – TP, czas bazowy – 10 ms, wartość Preset - 500
B. Typ timera – TP, czas bazowy – 10 ms, wartość Preset - 50
C. Typ timera – TOF, czas bazowy – 10 ms, wartość Preset - 500
D. Typ timera – TON, czas bazowy – 1 ms, wartość Preset - 500
W przypadku nieprawidłowego wyboru timerów, takich jak TOF (Timer Off Delay) lub błędnych ustawień wartości Preset i czasów bazowych, mogą wystąpić istotne problemy w realizacji zadania. Timer TOF jest przeznaczony do opóźnienia wyłączenia sygnału, co oznacza, że po zaniku sygnału na wejściu, timer odlicza zdefiniowany czas. Wybór TOF w tym kontekście jest niewłaściwy, ponieważ nie spełnia wymogu załączenia wyjścia przez 5 sekund. Podobnie, jeśli czas bazowy jest zbyt krótki lub nieodpowiednio dobrany do wartości Preset, może to prowadzić do niepoprawnych wyników. Przykładowo, ustawienie czasu bazowego na 1 ms przy Preset równym 500 prowadzi do zaledwie 0,5 sekundy działania, co jest zdecydowanie niewystarczające. Tego typu błędy myślowe często wynikają z braku zrozumienia podstawowych zasad działania timerów, co może prowadzić do nieefektywnego programowania i błędów w automatyzacji procesów. Dla skutecznego i bezpiecznego projektowania systemów automatyki kluczowe jest zrozumienie różnic między różnymi typami timerów oraz ich zastosowaniem w praktyce, w zgodzie z zasadami inżynierii systemów oraz normami branżowymi.

Pytanie 9

W systemie mechatronicznym planowane jest użycie sieci polowej AS-i w wersji 2.0. Jaką maksymalną ilość urządzeń podrzędnych jedno urządzenie główne (master) może obsługiwać?

A. 24 urządzenia
B. 32 urządzenia
C. 64 urządzenia
D. 31 urządzeń
Wybór liczby 24, 32 lub 64 urządzeń jest nieprawidłowy i opiera się na nieporozumieniach dotyczących specyfikacji technicznych sieci AS-i. Standard AS-i 2.0 wyraźnie określa maksymalną liczbę urządzeń podporządkowanych na poziomie 31. Wybierając 24, można sądzić, że jest to mniejsza liczba, jednak nie odnosi się to do rzeczywistych możliwości systemu AS-i. Użytkownicy mogą myśleć, że niższe liczby są łatwiejsze w zarządzaniu, co jest błędnym założeniem, ponieważ sieć AS-i jest zaprojektowana do obsługi dużych ilości urządzeń w sposób wydajny i zorganizowany. Z kolei wybór 32 lub 64 urządzeń wskazuje na niedopasowanie do specyfikacji standardu, co może prowadzić do przekroczenia możliwości, co w praktyce skutkuje awariami, błędami komunikacyjnymi i znacznymi opóźnieniami w operacjach. Takie błędne podejście często wynika z niewłaściwego zrozumienia koncepcji architektury sieci oraz jej ograniczeń, co jest kluczowe w kontekście projektowania i implementacji systemów automatyzacji. Wiedza na temat tych ograniczeń jest niezbędna dla inżynierów, aby unikać nieefektywnych rozwiązań i zapewnić zgodność z najlepszymi praktykami w branży.

Pytanie 10

Młot pneumatyczny, który jest częścią robota frezarskiego, ma zamontowane urządzenie do smarowania. Jakie z zaleceń dotyczących uzupełnienia oleju, jeśli nie zostanie spełnione, może prowadzić do obrażeń pracownika obsługującego?

A. Przed odkręceniem korka wlewu oleju konieczne jest odcięcie dopływu sprężonego powietrza oraz spuścić powietrze z wnętrza młota.
B. Najpierw należy oczyścić powierzchnię wokół korka wlewu oleju, a następnie przystąpić do jego odkręcania.
C. Należy wlać do młota zalecaną ilość oleju, tak aby poziom oleju nie przekraczał najniższego zwoju gwintu, a następnie umieścić korek wlewu oleju i dokręcić go.
D. Warto sprawdzić, czy wąż doprowadzający sprężone powietrze oraz jego złącza są w dobrym stanie, a także upewnić się, że wszystkie połączenia zostały wykonane prawidłowo.
Odpowiedź jest poprawna, ponieważ odcięcie dopływu sprężonego powietrza oraz spuszczenie powietrza z wnętrza młota pneumatycznego to kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa podczas uzupełniania oleju. W przypadku braku tych działań, ciśnienie wewnętrzne może spowodować nagłe uwolnienie, co prowadzi do potencjalnie niebezpiecznych sytuacji, takich jak wyrzucenie korka z dużą siłą, co może narażać obsługującego na poważne obrażenia. Przykład praktyczny: w standardach BHP oraz przy użytkowaniu narzędzi pneumatycznych, zawsze przed jakąkolwiek interwencją serwisową należy zadbać o bezpieczeństwo, co obejmuje również sprawdzenie, czy nie ma ciśnienia w systemie. Dobre praktyki branżowe zalecają stosowanie etykiet informujących o konieczności wyłączenia sprężarki oraz spuszczenia powietrza z urządzeń przed ich serwisowaniem, co ma na celu minimalizację ryzyka wystąpienia wypadków.

Pytanie 11

Gdy sprzęt komputerowy jest w trakcie pożaru i podłączony do zasilania, nie wolno go gasić

A. gaśnicą śniegową
B. gaśnicą proszkową
C. pianą
D. kocem gaśniczym
Nieprawidłowe odpowiedzi bazują na nieporozumieniach dotyczących właściwości środków gaśniczych oraz ich zastosowania w kontekście sprzętu komputerowego. Zastosowanie koca gaśniczego w celu stłumienia ognia w sytuacji, gdy sprzęt jest podłączony do zasilania, jest nieodpowiednie, ponieważ koc gaśniczy nie jest w stanie skutecznie odciąć dostępu tlenu do ognia w sposób, który zapobiega jego rozprzestrzenieniu, zwłaszcza w przypadku intensywnego ognia. Gaśnice proszkowe, chociaż skuteczne w wielu zastosowaniach, w przypadku sprzętu komputerowego mogą przynieść więcej szkód niż korzyści, ponieważ proszek gaśniczy może uszkodzić delikatne podzespoły elektroniczne oraz spowodować trudności w późniejszej konserwacji sprzętu. Również gaśnice śniegowe, które działają poprzez wypieranie tlenu, nie są zalecane w przypadku sprzętu komputerowego z uwagi na ryzyko uszkodzenia komponentów wrażliwych na zmiany temperatury. W praktyce, nieznajomość odpowiednich środków gaśniczych oraz ich właściwego zastosowania prowadzi do błędnych decyzji w sytuacjach awaryjnych, co może skutkować poważnymi konsekwencjami zarówno materialnymi, jak i zdrowotnymi. Dlatego kluczowe jest, aby wszyscy użytkownicy sprzętu elektronicznego byli świadomi, jakie metody gaszenia są stosowne w obliczu pożaru i w jaki sposób można skutecznie zareagować, by uniknąć niebezpieczeństwa.

Pytanie 12

Obniżenie błędu statycznego, skrócenie czasu odpowiedzi, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów z przetwornika pomiarowego charakteryzuje działanie regulatora

A. I
B. P
C. PD
D. PID
Wybór nieodpowiednich typów regulatorów, takich jak P, I czy PID, wskazuje na pewne nieporozumienia dotyczące ich zastosowania i charakterystyki. Regulator P (proporcjonalny) nie jest w stanie eliminować błędu statycznego, co oznacza, że może prowadzić do stałego odchylenia od wartości docelowej. Taki regulator reaguje jedynie proporcjonalnie do błędu, nie biorąc pod uwagę jego zmiany w czasie, co czyni go niewystarczającym w zastosowaniach wymagających szybkiej regulacji. Regulator I (integralny) z kolei skupia się na eliminacji błędu statycznego, ale może prowadzić do opóźnień w reakcji systemu, co jest szczególnie problematyczne w systemach, gdzie czas reakcji jest kluczowy. Regulator PID (proporcjonalno-całkująco-derywacyjny) łączy w sobie cechy regulatorów P, I oraz D, jednak w niektórych przypadkach może wprowadzać dodatkowe złożoności i opóźnienia, co nie jest pożądane w systemach o dynamice zmiany. Wybór regulatora powinien być dostosowany do specyfiki danego systemu oraz jego wymagań, co oznacza, że warto znać nie tylko ich teoretyczne podstawy, ale także praktyczne implikacje ich stosowania.

Pytanie 13

Jakie czujniki mogą dostarczać dane do sterownika PLC o poziomie cieczy nieprzewodzącej w zbiorniku mechatronicznym działającym jako niezależny system napełniania i dozowania?

A. Pojemnościowe
B. Indukcyjne
C. Termoelektryczne
D. Magnetyczne
Czujnik pojemnościowy to urządzenie, które mierzy poziom cieczy nieprzewodzącej poprzez pomiar zmiany pojemności elektrycznej między elektrodami, która zmienia się w zależności od poziomu cieczy. W przypadku cieczy nieprzewodzących, takich jak oleje czy niektóre chemikalia, czujnik pojemnościowy jest idealnym rozwiązaniem, ponieważ nie wymaga kontaktu z cieczą, co eliminuje ryzyko korozji czy zanieczyszczenia. Zastosowanie czujników pojemnościowych w systemach mechatronicznych, takich jak autonomiczne układy napełniania i dozowania, jest powszechne ze względu na ich dużą precyzję oraz niezawodność. Przykładowo, w przemyśle spożywczym, czujniki te mogą być wykorzystywane do monitorowania poziomu oleju w maszynach do pakowania, co zapewnia optymalne warunki pracy urządzenia. Stosowanie czujników pojemnościowych jest zgodne z normami ISO 9001 dotyczącymi zapewnienia jakości w procesach produkcyjnych.

Pytanie 14

Na podstawie fragmentu instrukcji serwisowej wskaż prawdopodobną przyczynę nieprawidłowej pracy urządzenia, jeżeli na jego wyświetlaczu wyświetla się kod błędu E5.

KODY BŁĘDÓW
NrKod błęduProblem
1.E1Usterka czujnika temperatury pomieszczenia
2.E2Usterka czujnika temperatury wymiennika zewn.
3.E3Usterka czujnika temperatury wymiennika wewn.
4.E4Usterka silnika jednostki wewnętrznej lub problem
z sygnałem zwrotnym
5.E5Brak komunikacji między jednostkami wewn. i zewn.
6.F0Usterka silnika prądu stałego wentylatora jednostki zewn.
7.F1Uszkodzenie modułu IPM
8.F2Uszkodzenie modułu PFC
9.F3Problem ze sprężarką
10.F4Błąd czujnika temperatury przegrzania
11.F5Zabezpieczenie temperatury głowicy sprężarki
12.F6Błąd czujnika temperatury otoczenia jednostki zewn.
13.F7Zabezpieczenie przed zbyt wysokim lub za niskim na-
pięciem zasilania
14.F8Błąd komunikacji modułów jednostki zewnętrznej
15.F9Błąd pamięci EEPROM jednostki zewnętrznej
16.FABłąd czujnika temperatury ssania
(uszkodzenie zaworu 4 drogowego)
A. Uszkodzenie modułu IPM.
B. Brak komunikacji między jednostkami.
C. Problem ze sprężarką.
D. Błąd czujnika temperatury ssania.
Kod błędu E5, oznaczający 'Brak komunikacji między jednostkami wewn. i zewn.', wskazuje na istotny problem w systemach HVAC, gdzie współpraca i wymiana informacji między jednostkami są kluczowe dla prawidłowego funkcjonowania. W przypadku, gdy urządzenie nie może nawiązać komunikacji, może to prowadzić do braku synchronizacji w działaniu systemu, a tym samym do nieefektywnej pracy lub całkowitego zatrzymania. W praktyce, przed podjęciem dalszych kroków diagnostycznych, warto najpierw sprawdzić połączenia kablowe oraz zasilanie jednostek, co jest zgodne z dobrymi praktykami serwisowymi. W przypadku potwierdzenia braku komunikacji, zastosowanie narzędzi do testowania sygnałów komunikacyjnych (np. oscyloskopy) może pomóc w zdiagnozowaniu, czy problem leży w uszkodzeniu kabla, czy w jednym z modułów sterujących. Działania te są niezbędne, aby zapewnić działanie systemu na najwyższym poziomie efektywności oraz minimalizować ryzyko awarii w przyszłości.

Pytanie 15

Jakiego czujnika należy używać do obserwacji temperatury uzwojeń silnika elektrycznego?

A. Termistora
B. Hallotronu
C. Tensometru
D. Warystora
Termistor jest elementem, który charakteryzuje się znaczną zmianą oporu elektrycznego w zależności od temperatury. Dzięki temu, jest idealnym czujnikiem do monitorowania temperatury uzwojeń silników elektrycznych, gdzie precyzyjne pomiary są kluczowe dla ich prawidłowego działania. W zastosowaniach przemysłowych, gdzie silniki elektryczne pracują w trudnych warunkach, termistory są wykorzystywane do zabezpieczania przed przegrzaniem, co może prowadzić do uszkodzenia silnika. Dobrą praktyką w branży jest stosowanie termistorów w obwodach ochronnych, co pozwala na automatyczne wyłączanie silnika w przypadku osiągnięcia krytycznej temperatury. Dzięki swojej prostocie i niezawodności, termistory są szeroko stosowane w różnych aplikacjach, takich jak klimatyzacja, wentylacja oraz w systemach automatyki przemysłowej. Warto również zauważyć, że termistory mogą być stosowane w różnych konfiguracjach, co czyni je wszechstronnym rozwiązaniem w monitorowaniu temperatury. Ich zastosowanie przyczynia się do zwiększenia efektywności energetycznej oraz niezawodności urządzeń elektrycznych.

Pytanie 16

Który warunek zagwarantuje przejście z kroku k do kroku k+1?

Ilustracja do pytania
A. Gdy a zmieni wartość z 1 na 0
B. Gdy a zmieni wartość z 0 na 1
C. Gdy wartość a=0
D. Gdy wartość a=1
Odpowiedź "Gdy a zmieni wartość z 0 na 1" jest poprawna, ponieważ odzwierciedla zasadę działania bramki typu 'trigger Schmitta'. Tego rodzaju bramka reaguje na zmiany sygnału wejściowego, co oznacza, że przejście z kroku k do kroku k+1 następuje tylko wtedy, gdy sygnał wejściowy a osiągnie wyższy poziom - z 0 (niski) do 1 (wysoki). W praktycznych zastosowaniach, bramki Schmitta są wykorzystywane w obwodach elektronicznych do eliminacji drgań sygnału, co zapewnia stabilność w systemach cyfrowych. Przykładem mogą być układy wykorzystywane w przetwarzaniu sygnałów lub w automatyce przemysłowej, gdzie istotne jest pewne przełączenie stanu. Zgodnie z najlepszymi praktykami, zastosowanie bramek Schmitta pozwala na poprawę niezawodności systemów oraz minimalizację potencjalnych błędów związanych z szumami sygnałowymi. Warto również zaznaczyć, że ten typ bramki znajduje zastosowanie w aplikacjach, gdzie istotna jest ochrona przed przypadkowymi przełączeniami, co jest kluczowe w systemach kontrolnych i pomiarowych.

Pytanie 17

W dokumentacji dotyczącej obsługi i konserwacji sieci komunikacyjnej sterowników PLC, które współpracują z urządzeniami mechatronicznymi, powinno się zawrzeć zalecenie dotyczące

A. wykorzystania przewodów o dużej pojemności wzajemnej żył
B. stosowania tylko przewodów nieekranowanych
C. układania przewodów komunikacyjnych równolegle do przewodów zasilających
D. dodawania dodatkowego przewodu do wyrównywania potencjałów pomiędzy żyłami
W przypadku prowadzenia przewodów komunikacyjnych stosowanie przewodów o wysokiej pojemności wzajemnej żył jest podejściem błędnym, ponieważ zwiększa ryzyko zakłóceń i pogorszenia jakości sygnału. Przewody o wysokiej pojemności mogą prowadzić do pojawiania się opóźnień i zniekształceń sygnałów, co w systemach mechatronicznych, gdzie czas reakcji jest kluczowy, może być katastrofalne. Ponadto, stosowanie wyłącznie przewodów nieekranowanych naraża instalacje na wpływ zewnętrznych pól elektromagnetycznych, co z kolei może prowadzić do dodatkowych zakłóceń w komunikacji. Z kolei dołączanie dodatkowego przewodu wyrównującego potencjały między żyłami, mimo iż może być uzasadnione w niektórych przypadkach, nie rozwiązuje problemu zakłóceń wywołanych przez równoległe prowadzenie przewodów zasilających i komunikacyjnych. Często pojawia się błędne przekonanie, że wystarczającym rozwiązaniem jest ekranowanie przewodów, jednakże to nie eliminuje wszystkich rodzajów zakłóceń, szczególnie w sytuacjach, gdzie przewody są prowadzone ze sobą równolegle. Dobre praktyki w tej dziedzinie, zgodne ze standardami branżowymi, zalecają unikanie takich metod, które mogą osłabić integrację i stabilność systemów, co jest szczególnie ważne w złożonych układach mechatronicznych.

Pytanie 18

Jakie typy silników są wykorzystywane w drukarkach atramentowych do ruchu głowicy?

A. Silniki indukcyjne klatkowe
B. Silniki indukcyjne synchroniczne
C. Silniki liniowe
D. Silniki krokowe
Wybór innych typów silników, takich jak indukcyjne synchroniczne, indukcyjne klatkowe czy liniowe, w przypadku drukarek atramentowych prowadzi do istotnych problemów związanych z precyzją i kontrolą ruchu. Silniki indukcyjne synchroniczne, mimo że oferują wysoką wydajność, nie zapewniają odpowiedniej precyzji niezbędnej do dokładnego pozycjonowania głowicy. Ich zastosowanie w drukarstwie mogłoby skutkować niewłaściwym nałożeniem atramentu, co wpłynęłoby negatywnie na jakość wydruku. Z kolei silniki indukcyjne klatkowe, które są bardziej powszechne w zastosowaniach przemysłowych, nie oferują wystarczającej kontroli nad pozycjonowaniem w małych krokach, co jest kluczowe w druku atramentowym. W przypadku silników liniowych, które mogą zapewniać dużą prędkość, również brak precyzyjnej kontroli ruchu sprawia, że nie są one odpowiednie do tego typu aplikacji. Typowe błędy myślowe prowadzące do takich wniosków mogą obejmować przekonanie, że silniki o wyższej mocy zawsze są lepsze, co w kontekście precyzyjnego druku jest błędne. Właściwe zrozumienie wymagań technologicznych druku atramentowego oraz charakterystyki dostępnych silników jest kluczowe do wyboru odpowiedniego rozwiązania, co potwierdzają standardy branżowe i najlepsze praktyki w tej dziedzinie.

Pytanie 19

Jakiej z wymienionych funkcji nie może realizować pracownik obsługujący prasę hydrauliczną, która jest sterowana przy pomocy sterownika PLC?

A. Weryfikować stanu osłon urządzenia
B. Konfigurować parametrów urządzenia
C. Modernizować urządzenia
D. Inicjować programu sterującego
Modernizacja sprzętu, jak na przykład pras hydraulicznych z PLC, to złożony proces, który wymaga sporej wiedzy technicznej i odpowiednich uprawnień. Operator maszyny skupia się głównie na jej obsłudze, a nie na wprowadzaniu większych zmian konstrukcyjnych. Wiesz, że według norm bezpieczeństwa, modyfikacje powinny być przeprowadzane przez osoby z odpowiednimi kwalifikacjami? Na przykład, zmiany w parametrach hydraulicznych czy wymiana kluczowych części to rzeczy, które wymagają dokładnych analiz, a do tego operatorzy nie są przeszkoleni. To oni uruchamiają programy sterujące, ustawiają parametry i monitorują stan osłon. Dbają o codzienną eksploatację maszyny, co przekłada się na bezpieczeństwo i efektywność pracy. Dlatego stwierdzenie "Modernizować urządzenia." jest jak najbardziej słuszne, bo w końcu to nie jest zadanie dla każdego.

Pytanie 20

Który składnik gwarantuje stabilne unieruchomienie nurnika pionowo umiejscowionego siłownika w sytuacji awarii hydraulicznego przewodu zasilającego?

A. Zamek hydrauliczny
B. Elektrohydrauliczny zawór proporcjonalny
C. Hydrauliczny zawór różnicowy
D. Hydrauliczny regulator przepływu
Zamek hydrauliczny jest kluczowym elementem w systemach hydraulicznych, który zapewnia unieruchomienie nurnika siłownika w sytuacji awaryjnej, takiej jak uszkodzenie przewodu zasilającego. Działa poprzez zablokowanie przepływu cieczy hydraulicznej, co skutkuje stabilizacją pozycji nurnika. Przy zastosowaniu zamków hydraulicznych w maszynach budowlanych, takich jak dźwigi czy podnośniki, możliwe jest bezpieczne zatrzymanie operacji w przypadku awarii, zapobiegając niebezpiecznym sytuacjom, takim jak nagłe opadanie ładunków. Zgodnie z normami branżowymi, stosowanie zamków hydraulicznych jest zalecane w systemach, gdzie bezpieczeństwo jest priorytetem. Dobrą praktyką jest również regularne testowanie tych zamków w celu zapewnienia ich sprawności i niezawodności w krytycznych momentach pracy. Warto również zwrócić uwagę na odpowiednią konserwację i utrzymanie w dobrym stanie technicznym tych elementów, aby sprostać wysokim wymaganiom operacyjnym.

Pytanie 21

Jaki z wymienionych sposobów powinien być zastosowany podczas przeprowadzania początkowego testowania programu stworzonego dla robota przemysłowego?

A. Ręczne powtarzanie ruchów, etap po etapie z prędkością ustawioną na 20%
B. Automatyczne powtarzanie ruchów, z prędkością ustawioną na 20%
C. Ręczne powtarzanie ruchów, etap po etapie z prędkością ustawioną na 100%
D. Automatyczne powtarzanie ruchów z prędkością ustawioną na 100%
Ręczne odtwarzanie ruchów robota przemysłowego, krok po kroku, z prędkością ustawioną na 20% jest kluczowym podejściem podczas wstępnego testowania programów. Takie podejście zapewnia możliwość szczegółowego monitorowania każdego etapu ruchu robota, co jest niezbędne w kontekście analizy poprawności funkcjonowania zaprogramowanych sekwencji. Prędkość 20% umożliwia dokładne obserwowanie zachowań robota, co jest szczególnie istotne przy pierwszych testach, kiedy to jeszcze nie ma pełnej pewności co do stabilności i bezpieczeństwa działania robota. Działania te są zgodne z najlepszymi praktykami w obszarze automatyzacji i robotyki, gdzie bezpieczeństwo użytkowników i sprzętu ma kluczowe znaczenie. W praktyce, zarówno w laboratoriach jak i w środowiskach przemysłowych, zaleca się wprowadzenie stopniowego zwiększania prędkości po pomyślnym zakończeniu testów przy niskiej prędkości, co pozwala na minimalizację ryzyka uszkodzeń oraz błędów w działaniu systemu.

Pytanie 22

Cyfrą 1 na schemacie przekładni obiegowej oznaczono koło

Ilustracja do pytania
A. zębate o uzębieniu zewnętrznym.
B. cierne.
C. zębate o uzębieniu wewnętrznym.
D. stożkowe.
Na tym schemacie przekładni, koło zębate z numerem 1 to koło zębate o uzębieniu wewnętrznym. To jest bardzo ważny element w wielu mechanizmach, bo pozwala na zbudowanie przekładni w sposób bardziej kompaktowy. Dzięki temu, osie obrotu mogą być blisko siebie, co jest super praktyczne. Koła zębate z uzębieniem wewnętrznym mają zęby w środku, co znaczy, że przenoszenie momentu obrotowego jest bardziej efektywne i mniej miejsca zajmuje przekładnia. W rzeczywistości, takie rozwiązania używa się często w przemyśle motoryzacyjnym i robotyce, bo to się po prostu sprawdza. Projektując takie przekładnie, trzeba pamiętać o zasadach dotyczących przełożenia, wytrzymałości materiałów i dynamiki ruchu. To ważne, żeby maszyny działały długo i wydajnie. Co więcej, te koła pomagają w synchronizacji ruchu i można je łączyć z innymi typami przekładni, co jest bardzo praktyczne.

Pytanie 23

Aby uzyskać możliwość regulacji prędkości posuwu napędu wałków, który jest zasilany silnikiem bocznikowym prądu stałego, należy zastosować

A. cyklokonwerter.
B. falownik.
C. prostownik diodowy.
D. sterowany prostownik tyrystorowy.
Użycie falownika, cyklokonwertera lub prostownika diodowego w kontekście zasilania silnika bocznikowego prądu stałego ma swoje ograniczenia, które mogą prowadzić do nieprawidłowej regulacji prędkości posuwu. Falowniki, choć efektywne w zastosowaniach z silnikami prądu przemiennego, nie są odpowiednie do silników prądu stałego, ponieważ nie dostarczają stałego napięcia, co jest kluczowe dla ich prawidłowego działania. Cyklokonwertery z kolei, mimo że mogą być używane do konwersji prądu stałego na prąd przemienny, są bardziej skomplikowane w implementacji i często nieefektywne w zastosowaniach wymagających regulacji prędkości silnika prądu stałego. Prostowniki diodowe, chociaż mogą zasilać silnik prądu stałego, nie umożliwiają regulacji napięcia w czasie rzeczywistym, co jest niezbędne dla precyzyjnego sterowania prędkością. Typowym błędem myślowym jest założenie, że jakiekolwiek urządzenie do konwersji mocy będzie odpowiednie do regulacji prędkości. W rzeczywistości, dla silników prądu stałego kluczowe jest dostarczenie odpowiednio przetworzonego napięcia, co zapewniają jedynie sterowane prostowniki tyrystorowe, zdolne do dynamicznej regulacji parametrów pracy silnika.

Pytanie 24

Zakłada się, że projektowane urządzenie mechatroniczne będzie umieszczone w obudowie IP 65. Oznacza to, że

Stopnie ochrony IP zgodnie z normą PN-EN 60529
OznaczenieOchrona przed wnikaniem do urządzeniaOznaczenieOchrona przed wodą
IP 0Xbrak ochronyIP X0brak ochrony
IP 1Xobcych ciał stałych
o średnicy > 50 mm
IP X1kapiąca
IP 2Xobcych ciał stałych
o średnicy > 12,5 mm
IP X2kapiąca – odchylenie obudowy
urządzenia do 15°
IP 3Xobcych ciał stałych
o średnicy > 2,5 mm
IP X3opryskiwaną pod kątem
odchylonym max. 60° od
pionowego
IP 4Xobcych ciał stałych
o średnicy > 1 mm
IP X4rozpryskiwaną ze wszystkich
kierunków
IP 5Xpyłu w zakresie
nieszkodliwym dla
urządzenia
IP X5laną strumieniem
IP 6Xpyłu w pełnym zakresieIP X6laną mocnym strumieniem
----------------IP X7przy zanurzeniu krótkotrwałym
IP X8przy zanurzeniu ciągłym
A. posiadać będzie najwyższy stopień ochrony przed pyłem.
B. nie będzie chronione przed pyłem.
C. nie będzie chronione przed wodą.
D. posiadać będzie najwyższy stopień ochrony przed wodą.
Odpowiedź, że projektowane urządzenie mechatroniczne posiada najwyższy stopień ochrony przed pyłem, jest poprawna. Oznaczenie IP 65 wskazuje, że urządzenie jest w pełni chronione przed pyłem (stopień 6) oraz odporniejsze na strumień wody z dowolnego kierunku (stopień 5). Taki poziom ochrony jest szczególnie istotny w aplikacjach, gdzie urządzenia muszą funkcjonować w trudnych warunkach, na przykład w zakładach przemysłowych, gdzie kurz i zanieczyszczenia są powszechne. W przypadku urządzeń montowanych na zewnątrz, standard IP 65 zapewnia również ich dłuższą żywotność oraz niezawodność. Warto zaznaczyć, że zgodnie z normą PN-EN 60529, oznaczenia IP są kluczowe dla wyboru odpowiedniego sprzętu do zastosowań wymaganego poziomu ochrony. Na przykład, w automatyce przemysłowej, zastosowanie urządzeń z wysokim stopniem ochrony jest niezbędne w celu zapewnienia osób i sprzętu przed potencjalnymi zagrożeniami. Użytkownicy powinni zawsze zwracać uwagę na parametry IP przed zakupem, aby dostosować je do specyficznych warunków operacyjnych.

Pytanie 25

Podczas wymiany uszkodzonego kondensatora, można użyć zamiennika o

A. niższej wartości napięcia nominalnego
B. wyższej wartości pojemności
C. niższej wartości pojemności
D. wyższej wartości napięcia nominalnego
Wybór zamiennika kondensatora o mniejszej wartości napięcia nominalnego jest poważnym błędem, który może prowadzić do katastrofalnych skutków w działaniu układu elektronicznego. Wyższe napięcia mogą szybko zniszczyć kondensator o niższej wartości, co skutkuje nie tylko awarią samego kondensatora, ale także uszkodzeniem innych komponentów w układzie. Użytkownicy często mylą pojęcia związane z napięciem i pojemnością; mogą myśleć, że kondensator o niższej wartości napięcia będzie działał poprawnie, jeśli nie osiągnie on teoretycznie maksymalnego napięcia roboczego, co jest błędne. Oprócz tego, wybór kondensatora o mniejszej wartości pojemności, w odpowiedzi na pytanie, może prowadzić do nieprawidłowego działania obwodu, ponieważ zmienia to jego charakterystykę czasową i pojemnościową. W praktyce, błędne podejście do doboru kondensatorów często wynika z braku zrozumienia podstawowych zasad działania tych elementów. Konsekwencje mogą być poważne, od zwiększonej awaryjności układów aż po całkowitą utratę funkcjonalności. Standardy branżowe, takie jak IEC 61076, jasno określają, jakie wartości powinny być stosowane w różnych aplikacjach, a ich ignorowanie prowadzi do nieprzewidywalnych rezultatów i potencjalnych zagrożeń.

Pytanie 26

Jaką czynność projektową można uznać za niemożliwą do zrealizowania w programie CAM?

A. Stworzenia kodu dla maszyny CNC
B. Realizowania symulacji obróbki elementu w środowisku wirtualnym
C. Przygotowania instrukcji (G-CODE) dla urządzeń Rapid Prototyping
D. Przygotowania dokumentacji technologicznej produktu
Wybierając odpowiedź, która wskazuje na możliwość opracowania dokumentacji technologicznej wyrobu w oprogramowaniu CAM, można wpaść w pułapkę myślenia, że wszystkie procesy projektowe są ze sobą ściśle powiązane i są realizowane w jednolitym środowisku. Oprogramowanie CAM jest narzędziem, które ma na celu wspieranie procesów produkcyjnych poprzez generowanie instrukcji dla maszyn CNC oraz symulowanie obróbki. Nie jest przystosowane do zadań związanych z tworzeniem dokumentacji technologicznej, co jest kluczowe dla zapewnienia efektywności i zgodności z wymaganiami jakościowymi. Typowym błędem jest założenie, że każda forma technologii wspiera wszystkie aspekty cyklu życia produktu; w rzeczywistości CAM i CAD pełnią różne funkcje. Dobrą praktyką jest zrozumienie, że dokumentacja technologiczna wymaga nie tylko schematów czy rysunków, ale także szczegółowych opisów procesów, które są tworzone w kontekście projektowania. Często można spotkać się z sytuacjami, gdzie dokumentacja technologiczna jest wytwarzana równolegle z projektowaniem, co nie jest możliwe bez użycia odpowiednich narzędzi i systemów, takich jak CAD. Świadomość odrębności tych dwóch obszarów jest kluczowa dla skutecznego zarządzania procesami produkcyjnymi oraz zapewnienia ich jakości.

Pytanie 27

W jakim celu stosuje się enkodery w systemach automatyki?

A. Redukcja zużycia energii
B. Poprawa jakości dźwięku
C. Zwiększanie mocy silnika
D. Pomiar przemieszczenia i prędkości
Enkodery są niezbędnym elementem w systemach automatyki, ponieważ pozwalają na precyzyjny pomiar przemieszczenia i prędkości. Te urządzenia przetwarzają ruch mechaniczny na sygnał elektryczny, co umożliwia dokładne śledzenie pozycji i ruchu elementów w maszynach. Na przykład w robotyce, enkodery są używane do precyzyjnej kontroli położenia ramion robotów, co jest kluczowe dla dokładności i powtarzalności operacji. W przemyśle maszynowym, enkodery pomagają monitorować prędkość obrotową silników, co jest istotne dla synchronizacji procesów produkcyjnych. Stosowanie enkoderów to standard w branży automatyki, ponieważ ich zdolność do dostarczania dokładnych danych w czasie rzeczywistym znacząco poprawia efektywność i bezpieczeństwo systemów przemysłowych. Enkodery mogą być inkrementalne lub absolutne, w zależności od potrzeb aplikacji, co dodatkowo zwiększa ich wszechstronność. Dzięki temu, firmy mogą implementować bardziej zaawansowane systemy sterowania, które są w stanie dynamicznie reagować na zmiany w procesie produkcyjnym, optymalizując tym samym działanie całego systemu.

Pytanie 28

Przegląd konserwacji napędów elektrycznych nie uwzględnia

A. sprawdzania napięć silnika
B. czyszczenia żeber radiatorów
C. wymiany zabrudzonego komutatora wirnika
D. sprawdzania połączeń elektrycznych
Dobra decyzja, wybierając odpowiedź o wymianie zabrudzonego komutatora wirnika. Wiesz, przegląd konserwacyjny napędów elektrycznych to głównie rutynowe zadania, jak czyszczenie czy kontrola, a nie jakieś skomplikowane prace wymagające rozkręcania całego silnika. Robimy takie rzeczy jak sprawdzanie napięć silnika czy czyszczenie radiatorów, które są fundamentalne dla tego, żeby wszystko działało jak należy. Wymiana komutatora wirnika to już inna bajka – trzeba mieć specjalistyczne umiejętności, narzędzia i trochę więcej czasu. Takie konkretne wymiany najlepiej załatwiać w ramach większych przeglądów serwisowych, a nie przy każdej rutynowej kontroli, żeby nie marnować czasu i zachować sprawność urządzeń.

Pytanie 29

Jakie urządzenie opisuje parametr określany jako liczba stopni swobody?

A. Pralka automatyczna
B. Kserokopiarka
C. Manipulator
D. Prasa hydrauliczna
Manipulator to urządzenie, które charakteryzuje się liczbą stopni swobody, co oznacza, że może poruszać się w wielu kierunkach i na różnych płaszczyznach. Liczba ta wskazuje, ile niezależnych ruchów manipulator może wykonać, co jest kluczowe w kontekście automatyzacji i robotyki. Przykładowo, w robotyce przemysłowej manipulatory stosowane są do precyzyjnego montażu, gdzie wymagana jest zdolność do ruchu w wielu osiach. Manipulatory z sześcioma stopniami swobody potrafią wykonywać ruchy podobne do ruchów ludzkiej ręki, co niezwykle zwiększa ich funkcjonalność. Ważne jest, aby projektowanie robotów uwzględniało standardy ergonomiczne oraz normy bezpieczeństwa, takie jak ISO 10218 dotyczące robotów przemysłowych, aby zapewnić ich efektywność i bezpieczeństwo w użytkowaniu. Wiedza na temat liczby stopni swobody jest kluczowa dla inżynierów i specjalistów zajmujących się automatyzacją, ponieważ pozwala na optymalne dobieranie i programowanie manipulatorów do konkretnych zadań produkcyjnych.

Pytanie 30

Jaki adres, przyznawany przez producenta w sieci, pozostaje stały w trakcie działania urządzenia i jednoznacznie je identyfikuje?

A. TCP
B. IP
C. OSI
D. MAC
Poprawna odpowiedź to MAC, co oznacza Media Access Control. Adres MAC to unikalny identyfikator przypisywany do interfejsu sieciowego przez producenta, który pozostaje niezmienny przez cały okres użytkowania urządzenia. Dzięki temu adresowi możliwe jest jednoznaczne identyfikowanie urządzeń w sieci lokalnej oraz umożliwienie komunikacji między nimi. Adresy MAC są wykorzystywane w warstwie łącza danych modelu OSI, co czyni je kluczowymi dla działania lokalnych sieci Ethernet. Przykładem zastosowania adresów MAC może być przydzielanie adresów IP w sieci poprzez protokół DHCP, który pozwala na dynamiczne przypisywanie adresów IP na podstawie adresów MAC. W praktyce oznacza to, że router identyfikuje urządzenia w sieci, a następnie przydziela im odpowiednie adresy IP, co jest zgodne z dobrą praktyką w zarządzaniu sieciami.

Pytanie 31

Które z wymienionych w tabeli czynności wchodzą w zakres oględzin napędu mechatronicznego, w którym elementem wykonawczym (napędowym) jest silnik komutatorowy?

Lp.Czynność
1.Sprawdzanie skuteczności chłodzenia elementów energoelektronicznych
2.Sprawdzanie stanu pierścieni ślizgowych i komutatorów
3.Pomiar temperatury obudowy i łożysk
4.Sprawdzanie stanu szczotek i szczotkotrzymaczy
5.Sprawdzanie jakości połączeń elementów urządzenia
A. 1, 2, 4
B. 2, 4, 5
C. 1, 2, 3
D. 2, 3, 5
Wybór czynności, które nie obejmują stanów pierścieni ślizgowych, komutatorów, szczotek oraz jakości połączeń, może prowadzić do niewłaściwej oceny stanu silnika komutatorowego. Sprawdzanie skuteczności chłodzenia elementów elektroniki (1) oraz pomiar temperatury obudowy i łożysk (3) są istotne dla ogólnej diagnostyki urządzenia, lecz nie są specyficzne dla silników komutatorowych. Problemy z chłodzeniem mogą występować w różnych rodzajach napędów, ale nie dotyczą bezpośrednio mechanizmu działania silnika komutatorowego, co sprawia, że te czynności, mimo że ważne, nie powinny być priorytetem w kontekście jego oględzin. Typowym błędem w myśleniu jest zakładanie, że ogólne czynności diagnostyczne są wystarczające dla specyficznych układów. Przykładowo, niewłaściwe zrozumienie roli szczotek i komutatorów może prowadzić do poważnych problemów operacyjnych, takich jak niestabilność pracy silnika czy jego przegrzewanie. Skupienie się wyłącznie na temperaturze lub chłodzeniu ignoruje kluczowe elementy, które mogą bezpośrednio wpływać na funkcjonowanie silnika. W rezultacie, takie podejście może prowadzić do nieefektywnej diagnostyki i w konsekwencji do awarii systemu lub zwiększonego zużycia komponentów.

Pytanie 32

Długotrwałe użytkowanie układu hydraulicznego z czynnikiem roboczym o innej lepkości niż ta wskazana w dokumentacji techniczno-ruchowej może prowadzić do

A. intensywnych drgań układu
B. uszkodzenia pompy hydraulicznej
C. zwiększenia tempa działania układu
D. spadku ciśnienia czynnika roboczego
Długotrwała eksploatacja układu hydraulicznego z czynnikiem roboczym o innej lepkości niż zalecana w dokumentacji techniczno-ruchowej może prowadzić do uszkodzenia pompy hydraulicznej. Pompy hydrauliczne są projektowane do pracy z określoną lepkością oleju, co wpływa na ich wydajność oraz żywotność. Zmiana lepkości czynnika roboczego może skutkować nieprawidłowym smarowaniem i przegrzewaniem się pompy, co w konsekwencji prowadzi do jej uszkodzenia. Przykładem zastosowania tej wiedzy jest regularne monitorowanie lepkości oleju oraz jego wymiana zgodnie z zaleceniami producenta. W praktyce, stosowanie oleju o nieodpowiedniej lepkości może skutkować zwiększonym zużyciem elementów układu hydraulicznego, co nie tylko wpływa na efektywność działania, ale również na bezpieczeństwo całego systemu. Standardy, takie jak ISO 6743, dostarczają szczegółowych wytycznych dotyczących właściwego doboru olejów hydraulicznych, co jest kluczowe dla zapewnienia długotrwałej i niezawodnej pracy układów hydraulicznych.

Pytanie 33

Co opisuje pojęcie 'histereza' w kontekście przetworników ciśnienia?

A. Minimalna wartość ciśnienia, jaką może zmierzyć przetwornik
B. Czas reakcji przetwornika na zmianę ciśnienia
C. Różnica między wartościami mierzonego sygnału przy zwiększaniu i zmniejszaniu ciśnienia
D. Maksymalne ciśnienie robocze przetwornika
Histereza w kontekście przetworników ciśnienia to zjawisko polegające na różnicy w wartościach sygnału wyjściowego dla tego samego ciśnienia, zależnie od tego, czy ciśnienie to zostało osiągnięte poprzez jego zwiększanie czy zmniejszanie. Jest to istotny parametr, który wpływa na dokładność pomiarów. W praktyce, gdy ciśnienie wzrasta, sygnał wyjściowy przyjmuje inną wartość niż w przypadku, gdy ciśnienie maleje do tej samej wartości. Dlatego, podczas kalibracji i eksploatacji przetworników, wartość histerezy jest uwzględniana, aby zapewnić precyzyjne odczyty. Dobre praktyki inżynierskie zalecają zwracanie uwagi na specyfikację histerezy, szczególnie w aplikacjach, gdzie dokładność jest kluczowa, jak w systemach sterowania czy monitorowania procesów. Zrozumienie histerezy pozwala lepiej dostosować systemy pomiarowe do wymagań aplikacji i zminimalizować potencjalne błędy pomiarowe wynikające z tego zjawiska.

Pytanie 34

Najwyższą precyzję pomiaru rezystancji uzwojenia silnika elektrycznego zapewnia metoda

A. pomiaru bezpośredniego omomierzem cyfrowym
B. pomiaru bezpośredniego omomierzem analogowym
C. mostkowa przy zastosowaniu mostka Wheatstone'a lub Thomsona
D. pośrednia przy użyciu woltomierza oraz amperomierza
Pomiar rezystancji uzwojeń silnika elektrycznego przy użyciu woltomierza i amperomierza, mimo że jest techniką powszechnie stosowaną, nie gwarantuje wysokiej dokładności. Ta metoda opiera się na zastosowaniu prawa Ohma i pomiarze napięcia oraz natężenia prądu, jednak jest podatna na błędy, które mogą wynikać z wpływu reaktancji indukcyjnej oraz oporu wewnętrznego przyrządów pomiarowych. Takie pomiary mogą być zniekształcone przez różne czynniki, jak np. zmiany temperatury, co wpływa na rezystancję i może prowadzić do nieprecyzyjnych wyników. W przypadku pomiaru bezpośredniego omomierzem cyfrowym czy analogowym, również można napotkać na problemy związane z dokładnością. Omomierze cyfrowe, chociaż bardziej precyzyjne niż ich analogowe odpowiedniki, mogą wprowadzać błędy w pomiarze w sytuacjach, gdy rezystancje są bardzo małe, na co wskazuje ich specyfikacja. Z kolei omomierze analogowe mogą być mniej precyzyjne z powodu wpływu czynnika ludzkiego, ponieważ odczyt wymaga manualnej interpretacji wskazania. W praktyce, pomiar rezystancji uzwojeń silników elektrycznych wymaga metod, które minimalizują te błędy i zapewniają wiarygodność wyników, co czyni pomiar mostkowy najbardziej odpowiednim rozwiązaniem dla takich zastosowań. Porozumienie o właściwych metodach pomiarowych, zgodne z normami branżowymi, jest kluczowe dla zapewnienia wysokiej jakości i bezpieczeństwa w pracy z urządzeniami elektrycznymi.

Pytanie 35

Jakiego rodzaju silnik elektryczny powinno się wykorzystać do zasilania taśmociągu, jeśli dostępne jest tylko napięcie 400 V, 50 Hz?

A. Bocznikowy
B. Obcowzbudny
C. Szeregowy
D. Klatkowy
Klatkowy silnik elektryczny, znany także jako silnik asynchroniczny, jest idealnym rozwiązaniem do napędu taśmociągu przy zasilaniu 400 V, 50 Hz. Jego działanie opiera się na różnicy prędkości między polem magnetycznym a wirnikiem, co pozwala na uzyskanie wysokiej efektywności energetycznej. W praktyce, silniki klatkowe charakteryzują się niskimi kosztami eksploatacji, łatwością wmontowania oraz niskimi wymaganiami konserwacyjnymi. Stosuje się je powszechnie w różnych aplikacjach przemysłowych, takich jak transport materiałów, ponieważ potrafią pracować z dużymi obciążeniami i są odporne na przeciążenia. W przypadku taśmociągów, kluczowe jest, aby silnik zapewniał stałą prędkość obrotową i był w stanie sprostać zmiennym warunkom operacyjnym, co silnik klatkowy realizuje w sposób optymalny, zgodnie z normami IEC 60034 dotyczącymi maszyn elektrycznych. Dodatkowo, ich konstrukcja jest prosta, co minimalizuje ryzyko awarii, co czyni je standardem w branży.

Pytanie 36

W procesie automatyzacji produkcji, jaką rolę pełni czujnik indukcyjny?

A. Monitorowanie wilgotności
B. Pomiar temperatury
C. Detekcja obecności metalowych obiektów
D. Kontrola poziomu płynów
Czujnik indukcyjny to niezwykle ważny element w automatyzacji produkcji, szczególnie w branżach, gdzie kluczowe jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego w momencie, gdy obiekt metalowy zbliża się do czujnika. Taki mechanizm działania pozwala na skuteczną detekcję metali bez konieczności fizycznego kontaktu z obiektem, co jest nieocenione w aplikacjach, gdzie kontakt może być niebezpieczny lub niewygodny. Przykłady zastosowań obejmują linie montażowe, gdzie czujniki indukcyjne kontrolują obecność metalowych części, czy systemy bezpieczeństwa, gdzie monitorują obecność metalowych elementów w krytycznych punktach systemu. Czujniki te charakteryzują się również dużą trwałością i odpornością na warunki środowiskowe, co czyni je niezastąpionymi w trudnych warunkach przemysłowych. Dzięki swojej precyzji i niezawodności, czujniki indukcyjne są powszechnie stosowane w różnych gałęziach przemysłu, od motoryzacyjnego po spożywczy, zapewniając efektywność i bezpieczeństwo procesów technologicznych.

Pytanie 37

Zakład produkcyjny zlecił unowocześnienie automatu wiertarskiego, który jest napędzany silnikiem indukcyjnym z czterostopniową przekładnią pasową, służącą do regulacji prędkości obrotowej wrzeciona wiertarki. Unowocześnienie ma na celu zamianę przekładni mechanicznej na urządzenie elektroniczne. Który z poniższych elementów powinien być użyty do realizacji tego przedsięwzięcia?

A. Przetwornicę napięcia
B. Przemiennik częstotliwości
C. Prostownik jednopołówkowy niesterowany
D. Przetwornik analogowo-cyfrowy
Wybór przetwornicy napięcia, prostownika jednopołówkowego niesterowanego czy przetwornika analogowo-cyfrowego jako zamiany przekładni mechanicznej na rozwiązania elektroniczne nie jest dobrym pomysłem. Przetwornica napięcia to urządzenie, które tylko zmienia napięcie z jednego poziomu na inny i nie ma opcji regulacji prędkości obrotowej silnika. W automatyce wykorzystuje się ją do zasilania, ale nie do kontroli obrotów. Prostownik jednopołówkowy niesterowany, który zamienia prąd zmienny na stały, też nie wpłynie na prędkość obrotową silnika, jego zadanie to dostarczanie stałego napięcia, co w tym przypadku nie wystarczy. Co do przetwornika analogowo-cyfrowego, to on przetwarza sygnały analogowe na cyfrowe, co jest przydatne do monitorowania, ale sam nie zmienia parametrów silnika. Widać tutaj błąd w myśleniu: do regulacji prędkości obrotowej potrzebna jest nie tylko konwersja napięcia, ale też zaawansowana kontrola, którą daje przemiennik częstotliwości. Wybierając niewłaściwy komponent, możesz napotkać poważne problemy z działaniem maszyny i z wyższymi kosztami eksploatacji.

Pytanie 38

Jakim kolorem sygnalizowane jest w sterowniku PLC działanie w trybie RUN?

A. Zielonym ciągłym
B. Czerwonym ciągłym
C. Pomarańczowym migającym
D. Zielonym migającym
Zielone ciągłe światło w sterowniku PLC jest istotnym wskaźnikiem stanu pracy urządzenia. Oznacza ono, że sterownik funkcjonuje w trybie RUN, co oznacza, że przetwarza dane wejściowe oraz wykonuje zaprogramowane funkcje. W praktyce, to światło sygnalizuje operatorowi, że system jest gotowy do działania i że wszystkie procesy są realizowane poprawnie. W środowiskach przemysłowych, gdzie ciągłość pracy jest kluczowa, takie wskaźniki pomagają w monitorowaniu stanu operacyjnego maszyn. W standardach branżowych, takich jak IEC 61131, definiowane są zasady dotyczące oznaczeń i wskaźników stanu urządzeń automatyki. Przykładem zastosowania może być linia produkcyjna, gdzie operatorzy regularnie sprawdzają stan pracy PLC, aby upewnić się, że nie występują żadne zakłócenia, co pozwala na bieżące monitorowanie i szybką reakcję w razie problemów.

Pytanie 39

Jakiego typu wyjście powinien mieć sterownik PLC, aby w systemie sterowania wykorzystującym ten sterownik możliwa była modulacja szerokości impulsu – PWM?

A. Binarne tranzystorowe
B. Analogowe prądowe
C. Analogowe napięciowe
D. Binarne przekaźnikowe
Sterownik PLC z wyjściami binarnymi tranzystorowymi jest kluczowym elementem w systemach automatyki, szczególnie w zastosowaniach wymagających modulacji szerokości impulsu (PWM). Wyjścia te umożliwiają bardzo precyzyjne sterowanie czasem trwania impulsu, co jest niezbędne do regulacji mocy dostarczanej do urządzeń, takich jak silniki czy podgrzewacze. Przykładem zastosowania PWM w praktyce jest kontrola prędkości obrotowej silnika, gdzie zmiana czasu włączenia i wyłączenia impulsu pozwala na osiągnięcie płynnej regulacji prędkości. Dodatkowo, wyjścia tranzystorowe charakteryzują się szybkim czasem przełączania oraz minimalnymi stratami mocy, co czyni je idealnymi do zastosowań w systemach, gdzie efektywność energetyczna ma kluczowe znaczenie. W branżowych standardach, takich jak IEC 61131-3, podkreśla się znaczenie wyjść binarnych tranzystorowych w kontekście nowoczesnych aplikacji automatyki, co czyni je praktycznym wyborem dla inżynierów projektujących nowoczesne układy sterowania.

Pytanie 40

Wskaż właściwy sposób adresacji zmiennej 32-bitowej w obszarze pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 102

A. MB102
B. ML102.
C. MW102.
D. MD102.
MD102 jest prawidłową odpowiedzią, ponieważ adresuje zmienną 32-bitową (marker dwubajtowy) w systemach PLC, takich jak Siemens. W nomenklaturze PLC oznaczenie MD wskazuje na standardowy sposób adresowania zmiennych, które zajmują 4 bajty pamięci, więc adres 102 odnosi się do pierwszego bajtu tej zmiennej. Zmienne 32-bitowe są często stosowane w aplikacjach wymagających precyzyjnego przechowywania danych, takich jak zliczanie, akumulacja i inne operacje arytmetyczne w procesach przemysłowych. Używanie odpowiednich oznaczeń jest istotne dla zapewnienia, że programy działają zgodnie z zamierzeniami, a także dla przyszłej konserwacji i rozwoju systemów. Przykładowo, w programowaniu PLC, gdzie istotne jest efektywne zarządzanie zasobami pamięci, prawidłowe adresowanie zmiennych 32-bitowych minimalizuje ryzyko błędów związanych z odczytem lub zapisem danych, co jest szczególnie ważne w zautomatyzowanych liniach produkcyjnych, gdzie błędy mogą prowadzić do poważnych strat. Znajomość takich konwencji jest zatem kluczowa dla każdego inżyniera automatyki.