Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 17 grudnia 2025 12:23
  • Data zakończenia: 17 grudnia 2025 12:32

Egzamin niezdany

Wynik: 9/40 punktów (22,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Serwer DNS pełni rolę

A. zdalnego i szyfrowanego dostępu
B. który umożliwia przekształcenie nazw mnemonicznych (opisowych) na odpowiadające im adresy IP
C. dynamicznego przydzielania adresów IP
D. usług terminalowych
Zrozumienie roli serwera DNS jest kluczowe dla funkcjonowania internetu, dlatego warto przyjrzeć się nieprawidłowym koncepcjom zawartym w innych odpowiedziach. Stwierdzenie, że serwer DNS zapewnia zdalny i szyfrowany dostęp, jest mylące, ponieważ główną funkcją serwera DNS jest tłumaczenie nazw domenowych na adresy IP, a nie bezpośrednie zarządzanie dostępem. Zdalny dostęp i szyfrowanie są bardziej związane z protokołami komunikacyjnymi, takimi jak VPN czy SSL/TLS, które zapewniają bezpieczeństwo transmisji danych, a nie z funkcjonalnością serwerów DNS. Kolejna koncepcja, że serwer DNS ma funkcje usług terminalowych, jest również błędna. Usługi terminalowe dotyczą zdalnego dostępu do systemów operacyjnych lub aplikacji, co jest odmienną funkcjonalnością niż tłumaczenie nazw domen na adresy IP. Co więcej, twierdzenie o dynamicznym przydzielaniu adresów IP odnosi się do funkcji DHCP (Dynamic Host Configuration Protocol), a nie DNS. DHCP zajmuje się przydzielaniem adresów IP urządzeniom w sieci, podczas gdy DNS koncentruje się na przekładywaniu nazw na adresy. Te nieporozumienia mogą wynikać z braku zrozumienia podstawowych koncepcji sieciowych i ich funkcji, co jest istotne w dziedzinie informatyki i administracji sieci. Zrozumienie różnic między tymi technologiami jest kluczowe dla prawidłowego zarządzania infrastrukturą IT oraz zapewnienia efektywności działania systemów sieciowych.

Pytanie 2

Przedstawiony na rysunku kolor zapisany w modelu RGB, w systemie szesnastkowym będzie zdefiniowany następująco

Ilustracja do pytania
A. 77A1C1
B. 76A3C1
C. 77A0C1
D. 71A0B2
Zamiana wartości RGB na zapis szesnastkowy może wydawać się prosta, ale bardzo łatwo o pomyłkę, jeśli nie zwróci się uwagi na detale. Wskazane odpowiedzi zawierają typowe pułapki, które często spotykam podczas pracy ze studentami lub początkującymi grafikami. Najczęstszy błąd polega na nieprawidłowym przeliczeniu wartości z dziesiętnego na szesnastkowy albo na pomyleniu kolejności składników (R, G, B). Przykładowo, 71A0B2 czy 77A1C1 zawierają albo złą wartość jednego ze składników, albo drobne przekłamanie w zapisie drugiej czy trzeciej pary znaków. Warto przypomnieć, że w zapisie heksadecymalnym każda para znaków odpowiada konkretnej wartości jednej składowej koloru – pierwszy składnik to czerwień (R), drugi to zieleń (G), trzeci to niebieski (B). Jeśli np. zamienimy miejscami wartości albo użyjemy niewłaściwego kodu dla danej liczby dziesiętnej, powstanie kolor, który w żaden sposób nie odpowiada temu przedstawionemu na rysunku. Takie błędy są często efektem nieuważnego odczytania liczby lub automatycznego skojarzenia z podobnymi ciągami znaków, które gdzieś już widzieliśmy. Prawidłowa praktyka to dokładne przeliczanie wartości – np. 119 dziesiętnie to 77 szesnastkowo, 160 to A0, a 193 to C1. Każdy inny wariant, nawet jeśli wydaje się zbliżony, nie spełnia wymogów dokładności. Dlatego tak ważne jest świadome przechodzenie przez każdy etap konwersji i sprawdzenie wyników. Z mojego doświadczenia wynika, że solidne opanowanie tej zamiany przekłada się nie tylko na poprawność projektów, ale też na szybszą i bardziej efektywną współpracę z innymi specjalistami – czy to grafikami, programistami, czy osobami odpowiedzialnymi za branding.

Pytanie 3

Jak będzie wyglądać liczba 29A16 w systemie binarnym?

A. 1010011010
B. 1010010110
C. 1000011010
D. 1001011010
Podczas analizy błędnych odpowiedzi, należy zwrócić uwagę na kilka typowych pułapek, które mogą prowadzić do niepoprawnych wyników. Wiele osób popełnia błąd w interpretacji cyfr szesnastkowych, nie zdając sobie sprawy z ich wartości dziesiętnych. Na przykład, nie uwzględniając wartości cyfry A w systemie szesnastkowym, co skutkuje błędnym przeliczeniem. Zamiast traktować A jako 10, niektórzy mogą mylnie użyć wartości 11 lub innej, co prowadzi do błędnych wyników. Dodatkowo, konwersja z systemu szesnastkowego do binarnego wymaga znajomości odpowiednich reprezentacji binarnych dla każdej cyfry. W przypadku niepoprawnych odpowiedzi, mogły one wyniknąć z pomyłek w tej konwersji, na przykład poprzez złą kombinację binarną dla cyfr 2, 9 i A. Ważne jest również, aby przy konwersji nie zapominać o zerach wiodących, które są istotne w kontekście liczby binarnej. Błąd w dodawaniu lub pomijaniu zer może prowadzić do znacznej różnicy w końcowym wyniku. Takie pomyłki są częste wśród osób uczących się, dlatego warto zwracać uwagę na szczegóły i upewnić się, że każda cyfra jest poprawnie przetłumaczona na jej równowartość binarną. Zrozumienie tych koncepcji jest kluczowe w programowaniu oraz w pracy z systemami informatycznymi, gdzie precyzyjna reprezentacja danych jest niezbędna.

Pytanie 4

Minimalna odległość toru nieekranowanego kabla sieciowego od instalacji elektrycznej oświetlenia powinna wynosić

A. 50 cm
B. 20 cm
C. 30 cm
D. 40 cm
Odpowiedzi takie jak 20 cm, 40 cm, czy 50 cm nie są zgodne z wymaganiami dotyczącymi instalacji kabli sieciowych w pobliżu instalacji elektrycznych. W przypadku podania zbyt małej odległości, jak 20 cm, ryzyko wystąpienia zakłóceń elektromagnetycznych znacząco wzrasta. Zakłócenia te mogą wpływać negatywnie na jakość przesyłanego sygnału, co prowadzi do problemów z komunikacją w sieci. Z kolei wybór większej odległości, jak 40 cm czy 50 cm, może być bezpieczny, ale nie jest zgodny z minimalnymi wymaganiami, co może prowadzić do niepotrzebnych komplikacji związanych z instalacją, jak zwiększona ilość używanego kabla czy trudności w umiejscowieniu gniazdek. W praktyce, wiele osób może sądzić, że większa odległość z automatu zapewnia lepszą jakość, jednak nie jest to zasada bezwzględna. Kluczowym błędem jest również myślenie, że różnice w długości kabli mają mniejsze znaczenie, co jest nieprawdziwe, bowiem każdy dodatkowy metr kabla zwiększa opór i potencjalne straty sygnału. Z tego powodu, kluczowe jest przestrzeganie określonych norm i standardów, aby zapewnić prawidłowe funkcjonowanie systemu i minimalizować ryzyko błędów w instalacji.

Pytanie 5

Schemat ilustruje zasadę funkcjonowania sieci VPN o nazwie

Ilustracja do pytania
A. L2TP
B. Client – to – Site
C. Gateway
D. Site – to – Site
Client-to-Site VPN różni się od Site-to-Site VPN tym że jest używana do bezpiecznego połączenia pojedynczego klienta z siecią prywatną. Oznacza to że użytkownik zdalny może uzyskać dostęp do zasobów sieci tak jakby był fizycznie obecny w lokalizacji sieciowej. Chociaż jest to korzystne rozwiązanie dla pracowników zdalnych nie spełnia funkcji łączenia całych sieci co jest kluczowe dla Site-to-Site VPN. Gateway nie jest typem połączenia VPN ale raczej urządzeniem lub punktem dostępowym w sieci który umożliwia przesyłanie danych między różnymi sieciami. Chociaż bramki mogą być częścią infrastruktury VPN nie definiują one samego rodzaju sieci VPN. L2TP czyli Layer 2 Tunneling Protocol to protokół tunelowania używany w wielu sieciach VPN ale sam w sobie nie definiuje typu połączenia VPN. Jest często łączony z protokołem IPsec w celu zwiększenia bezpieczeństwa ale nie determinuje czy połączenie jest typu Client-to-Site czy Site-to-Site. Zrozumienie różnic między tymi rozwiązaniami jest kluczowe dla świadomego projektowania i wdrażania rozwiązań sieciowych w organizacjach co pomaga uniknąć typowych błędów związanych z niewłaściwym wyborem technologii sieciowej. Podstawowym błędem myślowym jest mylenie funkcji i zastosowań poszczególnych technologii co prowadzi do nieoptymalnych decyzji projektowych i może zagrażać bezpieczeństwu oraz wydajności sieci firmowej. Kluczowe jest aby pamiętać o specyficznych potrzebach organizacyjnych i dopasowywać rozwiązania VPN do tych wymagań co jest zgodne z najlepszymi praktykami branżowymi i standardami zarządzania IT które promują zrozumienie oraz umiejętność adaptacji różnych technologii w odpowiednich kontekstach.

Pytanie 6

Aby zwiększyć lub zmniejszyć wielkość ikony na pulpicie, należy obracać kółkiem myszy, trzymając jednocześnie klawisz:

A. ALT
B. CTRL
C. SHIFT
D. TAB
Odpowiedź 'CTRL' jest poprawna, ponieważ przytrzymanie klawisza Ctrl podczas kręcenia kółkiem myszy pozwala na powiększanie lub zmniejszanie ikon na pulpicie w systemie Windows. Ta funkcjonalność jest zgodna z ogólną zasadą, że kombinacja klawisza Ctrl z innymi czynnościami umożliwia manipulację rozmiarem obiektów. Na przykład, wiele aplikacji graficznych czy edytorów tekstowych również wspiera taką interakcję, umożliwiając użytkownikowi precyzyjne dostosowywanie widoku. Dobrą praktyką jest znajomość tej kombinacji klawiszy, szczególnie dla osób pracujących w środowisku biurowym lub dla tych, którzy często korzystają z komputerów. Dodatkowo, kombinacja ta jest używana również w innych kontekstach, takich jak zmiana powiększenia w przeglądarkach internetowych, co czyni ją niezwykle uniwersalną. Warto również zauważyć, że w systemie macOS zamiast klawisza Ctrl często używa się klawisza Command, co podkreśla różnice między systemami operacyjnymi, ale zasada działania pozostaje podobna.

Pytanie 7

Jaki instrument służy do określania długości oraz tłumienności kabli miedzianych?

A. Woltomierz
B. Omomierz
C. Reflektometr TDR
D. Miernik mocy
Woltomierz, omomierz oraz miernik mocy to przyrządy, które mają swoje specyficzne zastosowania, jednak nie są odpowiednie do pomiarów długości i tłumienności przewodów miedzianych. Woltomierz służy do mierzenia napięcia elektrycznego, co czyni go istotnym narzędziem w diagnostyce układów zasilających, ale nie jest w stanie ocenić parametrów geometrycznych przewodu ani jego strat sygnałowych. Omomierz, z kolei, umożliwia pomiar rezystancji, co jest przydatne w testowaniu przewodów pod kątem ciągłości i ewentualnych uszkodzeń, ale nie dostarcza informacji na temat długości przewodu ani jego tłumienności. Miernik mocy jest używany do oceny ilości energii przekazywanej przez sygnał, co również nie odpowiada na potrzeby pomiarów geometrii i strat sygnałowych. Często popełnianym błędem w rozumieniu zastosowań tych przyrządów jest mylenie ich funkcji z pomiarami specyficznymi dla telekomunikacji. Prawidłowe podejście do diagnostyki przewodów miedzianych powinno uwzględniać wykorzystanie reflektometrów TDR, które są zaprojektowane z myślą o tych konkretnych wymaganiach, zamiast stosować przyrządy, które mogą jedynie dostarczać fragmentaryczne informacje o stanie przewodów.

Pytanie 8

Jakie narzędzie w systemie Windows Server umożliwia zarządzanie zasadami grupy?

A. Menedżer procesów
B. Serwer DNS
C. Ustawienia systemowe
D. Konsola GPMC
Wybór panelu sterowania jako narzędzia do zarządzania zasadami grupy jest nieprawidłowy, ponieważ panel sterowania skupia się głównie na lokalnych ustawieniach systemowych i konfiguracji komputera, a nie na zarządzaniu politykami w środowisku sieciowym. Jego funkcjonalność jest ograniczona do zarządzania lokalnymi konfiguracjami systemu operacyjnego, co nie odpowiada potrzebom zarządzania w skali całej domeny. Z kolei menedżer zadań jest narzędziem do monitorowania procesów i zarządzania wydajnością systemu, co również nie ma związku z politykami grupowymi. Narzędzie to służy do analizy i zarządzania bieżącymi procesami w systemie, a nie do wdrażania i egzekwowania zasad bezpieczeństwa czy konfiguracji na wielu maszynach jednocześnie. Serwer DNS, mimo że jest kluczowym elementem infrastruktury sieciowej, nie ma nic wspólnego z zarządzaniem zasadami grupy. DNS koncentruje się na rozwiązywaniu nazw i zarządzaniu adresowaniem w sieci, co jest zupełnie inną funkcjonalnością. Wybór nieodpowiednich narzędzi do zarządzania politykami grupowymi może prowadzić do nieefektywności w administracji IT, co podkreśla znaczenie świadomego podejścia do wyboru narzędzi administracyjnych oraz ich odpowiedniego zastosowania w kontekście zarządzania infrastrukturą sieciową.

Pytanie 9

Który z protokołów jest stosowany w procesie rozpoczęcia sesji VoIP?

A. SDP
B. SIP
C. MIME
D. MCGP
Wybór pozostałych protokołów nie jest odpowiedni w kontekście inicjacji sesji VoIP. MIME (Multipurpose Internet Mail Extensions) jest standardem określającym sposób przesyłania różnorodnych typów danych przez Internet, ale nie ma zastosowania w kontekście zarządzania sesjami telekomunikacyjnymi. MIME jest używany głównie w e-mailach do kodowania załączników, co czyni go nieprzydatnym dla funkcji inicjacji i zarządzania połączeniami VoIP. SDP (Session Description Protocol), mimo że jest wspierany przez SIP do określenia parametrów sesji, nie pełni roli protokołu inicjującego. Zamiast tego, SDP koncentruje się na dostarczaniu informacji o sesji, takich jak kodeki i adresy, ale nie jest odpowiedzialny za zestawianie połączeń. Z kolei MCGP (Media Control Gateway Protocol) to protokół stosunkowo niszowy, który służy do zarządzania mediami w bardziej specyficznych kontekstach, ale nie jest standardem w obszarze VoIP. Zrozumienie różnicy między tymi protokołami jest kluczowe dla prawidłowego podejścia do tematu komunikacji przez Internet. Typowe błędy w myśleniu wynikają z mylenia funkcji protokołów w różnych kontekstach technologicznych, co prowadzi do dalszych nieporozumień w zakresie ich zastosowania.

Pytanie 10

Jaką rolę należy przypisać serwerowi z rodziny Windows Server, aby mógł świadczyć usługi rutingu?

A. Usługi zarządzania dostępem w Active Directory
B. Serwer sieci Web (IIS)
C. Usługi domenowe w Active Directory
D. Usługi zasad i dostępu sieciowego
Wybór usługi zarządzania dostępu w usłudze Active Directory jako odpowiedzi na pytanie o ruting jest błędny, ponieważ ta rola skupia się głównie na kontrolowaniu dostępu do zasobów w sieci, a nie na zarządzaniu ruchem sieciowym. Usługi te mają na celu autoryzację i uwierzytelnianie użytkowników oraz urządzeń w sieci, co jest ważne, ale nie wystarcza do realizacji zadań rutingowych. Z drugiej strony, usługi domenowe w usłudze Active Directory są fundamentalne dla organizacji i zarządzania użytkownikami, ale nie zajmują się bezpośrednio przesyłaniem pakietów danych pomiędzy różnymi segmentami sieci, co jest kluczowe w kontekście rutingu. Serwer sieci Web (IIS) ma zupełnie inną funkcję, koncentrując się na hostowaniu aplikacji internetowych, a nie na zarządzaniu ruchem sieciowym. Takie nieprawidłowe podejście może wynikać z mylnej interpretacji roli poszczególnych serwisów w infrastrukturze IT. W praktyce, aby poprawnie skonfigurować serwer do pełnienia roli routera, należy skupić się na odpowiednich usługach, które rzeczywiście obsługują ruting, a odpowiedzi nie związane z tym tematem prowadzą do błędnych wniosków, co może skutkować brakiem efektywności w zarządzaniu siecią.

Pytanie 11

Jak nazywa się protokół bazujący na architekturze klient-serwer oraz na modelu żądanie-odpowiedź, który jest używany do transferu plików?

A. ARP
B. SSH
C. FTP
D. SSL
Protokół FTP (File Transfer Protocol) jest standardowym rozwiązaniem stosowanym do przesyłania plików w architekturze klient-serwer. Umożliwia on transfer danych pomiędzy komputerami w sieci, co czyni go jednym z najpopularniejszych protokołów do udostępniania plików. FTP działa na zasadzie żądania-odpowiedzi, gdzie klient wysyła żądania do serwera, a serwer odpowiada na te żądania, wysyłając pliki lub informacje na temat dostępnych zasobów. Przykładem praktycznego zastosowania FTP jest użycie go przez webmasterów do przesyłania plików na serwery hostingowe. Umożliwia to łatwe zarządzanie plikami strony internetowej. Dodatkowo, w kontekście bezpieczeństwa, często używa się jego rozszerzonej wersji - FTPS lub SFTP, które oferują szyfrowanie danych w trakcie transferu, zgodne z najlepszymi praktykami branżowymi. Zastosowanie protokołu FTP jest kluczowe w wielu dziedzinach, w tym w zarządzaniu danymi w chmurze oraz w integracji systemów informatycznych."

Pytanie 12

W systemie Linux narzędzie, które umożliwia śledzenie trasy pakietów od źródła do celu, pokazując procentowe straty oraz opóźnienia, to

A. route
B. mtr
C. tracert
D. ping
Narzędzie mtr (My Traceroute) jest zaawansowanym narzędziem do monitorowania tras pakietów w sieci, które łączy funkcje tradycyjnych poleceń traceroute i ping. Jego zastosowanie pozwala na zmierzenie nie tylko trasy, jaką pokonują pakiety od źródła do celu, ale również na analizę strat pakietów i opóźnień na każdym hopie. Mtr działa w czasie rzeczywistym, co oznacza, że może dostarczać bieżące informacje o stanie połączenia. Użytkownik może zaobserwować, jak zmieniają się opóźnienia i straty pakietów w czasie, co jest nieocenione w diagnostyce sieci. Dodatkowo, mtr umożliwia identyfikację problemów z łącznością, takich jak wąskie gardła w trasie, co jest kluczowe przy optymalizacji sieci. Dzięki swojej wszechstronności i możliwościom, mtr stał się standardowym narzędziem wśród administratorów sieci i inżynierów, co pozwala na efektywne zarządzanie i monitorowanie jakości usług sieciowych.

Pytanie 13

Rejestry widoczne na diagramie procesora mają rolę

Ilustracja do pytania
A. przechowywania argumentów obliczeń
B. zarządzania wykonywaniem programu
C. zapisywania adresu do kolejnej funkcji programu
D. realizowania operacji arytmetycznych
Rejestry nie służą do przechowywania adresu do następnej funkcji programu. Tę funkcję pełni licznik programowy PC który przechowuje adres następnej instrukcji do wykonania w ramach aktualnej sekwencji programu. Rejestry również nie są odpowiedzialne za sterowanie wykonywanym programem. Kontrolę nad przepływem programu sprawuje układ sterowania który dekoduje instrukcje i odpowiednio zarządza zasobami procesora. Kolejnym błędnym koncepcyjnie podejściem jest przypisywanie rejestrom funkcji wykonywania działań arytmetycznych. Za faktyczne wykonywanie operacji matematycznych odpowiada jednostka arytmetyczno-logiczna ALU która korzysta z danych przechowywanych w rejestrach w celu wykonania obliczeń. Typowym błędem myślowym jest zakładanie że rejestry i ALU są tożsame podczas gdy rejestry służą jako tymczasowe miejsce przechowywania danych a ALU jest jednostką wykonawczą. Zrozumienie tych różnic jest kluczowe dla prawidłowej interpretacji funkcjonowania procesora i efektywnego programowania niskopoziomowego gdzie zarządzanie rejestrami może wpływać na optymalizację i wydajność kodu. W architekturach nowoczesnych procesorów stosuje się także bardziej zaawansowane techniki zarządzania rejestrami aby sprostać wymaganiom współczesnych aplikacji co dodatkowo podkreśla ich kluczową rolę w systemach komputerowych

Pytanie 14

Emisja dźwięków: jednego długiego oraz dwóch krótkich przez BIOS firmy AMI wskazuje na

A. usterkę karty graficznej
B. defekt zegara systemowego
C. awarię pamięci
D. błąd parzystości w pamięci
Pojawienie się długiego sygnału dźwiękowego oraz dwóch krótkich przez BIOS AMI wskazuje na błąd związany z kartą graficzną, co czyni inne odpowiedzi nieprawidłowymi. Uszkodzenie zegara systemowego, błąd parzystości pamięci oraz uszkodzenie pamięci to różne typy błędów, które mają swoje unikalne sygnały akustyczne, a ich zrozumienie wymaga znajomości standardów POST. Na przykład, błąd parzystości pamięci jest zazwyczaj sygnalizowany innym ciągiem dźwięków, co może prowadzić do mylnych wniosków, jeśli technik nie jest zaznajomiony z tymi standardami. Typowym błędem myślowym jest łączenie symptomów z przypuszczalnymi problemami, zamiast analizowania konkretnego wzoru sygnałów. W przypadku uszkodzenia pamięci, BIOS zazwyczaj emituje inną sekwencję dźwięków, co podkreśla znaczenie precyzyjnego rozpoznawania i interpretacji tych sygnałów. Ostatecznie, podejmowanie decyzji diagnostycznych powinno opierać się na rzetelnej wiedzy o sygnałach BIOS oraz ich znaczeniu, co jest kluczowe w praktyce naprawy sprzętu komputerowego.

Pytanie 15

Ile par kabli jest używanych w standardzie 100Base-TX do obustronnej transmisji danych?

A. 1
B. 8
C. 2
D. 4
Wybór jednej pary przewodów do transmisji danych w standardzie 100Base-TX jest błędny, ponieważ nie zaspokaja wymagań dotyczących prędkości i wydajności. Standard 100Base-TX, będący częścią rodziny Ethernet, działa z prędkością 100 Mbps i wymaga pełnodupleksowej komunikacji, co oznacza, że dane muszą być przesyłane jednocześnie w obie strony. Użycie tylko jednej pary przewodów prowadziłoby do znacznych ograniczeń w wydajności, ponieważ w takim układzie dane mogłyby być przesyłane tylko w jednym kierunku w danym czasie, co skutkowałoby utratą efektywności i opóźnieniami w przesyłaniu informacji. W przypadku wyboru czterech lub ośmiu par, również pojawiają się problemy, ponieważ standard 100Base-TX nie jest zaprojektowany do pracy z taką liczbą przewodów. W rzeczywistości, cztery pary stosowane są w bardziej zaawansowanych standardach, jak 1000Base-T, które obsługują prędkości 1 Gbps. Dlatego też, kluczowym błędem jest myślenie, że większa liczba par zapewnia automatycznie lepszą wydajność, co w kontekście 100Base-TX jest nieprawdziwe. Zrozumienie różnicy między standardami Ethernet i ich wymaganiami jest istotne dla skutecznej budowy infrastruktury sieciowej oraz dla efektywnego zarządzania sieciami w każdym środowisku.

Pytanie 16

Jaki typ pamięci powinien być umieszczony na płycie głównej komputera w miejscu, które wskazuje strzałka?

Ilustracja do pytania
A. SIMM
B. FLASH
C. SO-DIMM DDR2
D. SD-RAM DDR3
SD-RAM DDR3 jest typem pamięci używanym w nowoczesnych komputerach osobistych i serwerach. Charakterystyczną cechą pamięci DDR3 jest szybsza prędkość przesyłania danych w porównaniu do jej poprzednich wersji, jak DDR2. DDR3 oferuje większe przepustowości i mniejsze zużycie energii, co czyni ją bardziej efektywną energetycznie. Pamięci DDR3 zazwyczaj pracują przy napięciu 1,5V, co jest niższe od DDR2, które pracuje przy 1,8V, co przekłada się na mniejsze zużycie energii i mniejsze wydzielanie ciepła. Dzięki temu, DDR3 jest idealnym wyborem do systemów, które wymagają wysokiej wydajności oraz stabilności. W praktyce, DDR3 jest stosowane w komputerach przeznaczonych do zadań takich jak przetwarzanie grafiki, gry komputerowe, czy też przy obróbce multimediów. Standardy takie jak JEDEC określają parametry techniczne i zgodność modułów DDR3, zapewniając, że każdy moduł spełnia określone wymagania jakości i wydajności. Wybór DDR3 dla miejsca wskazanego strzałką na płycie głównej jest właściwy, ponieważ sloty te są zaprojektowane specjalnie dla tego typu pamięci, zapewniając ich prawidłowe działanie i optymalną wydajność.

Pytanie 17

Wskaź 24-pinowe lub 29-pinowe złącze żeńskie, które jest w stanie przesyłać skompresowany sygnał cyfrowy do monitora?

A. RCA
B. DVI
C. VGA
D. HDMI
RCA to złącze, które zostało zaprojektowane głównie do przesyłania analogowego sygnału audio i wideo. Nie jest w stanie przesyłać skompresowanego cyfrowego sygnału wideo, co czyni je nieodpowiednim wyborem w kontekście nowoczesnych technologii monitorów. Złącze HDMI (High-Definition Multimedia Interface) jest nieco bardziej skomplikowane, ponieważ może przesyłać zarówno sygnał wideo, jak i audio w formacie cyfrowym, jednak nie odpowiada wymaganiom dotyczącym 24 lub 29-pinowego złącza żeńskiego. Z kolei VGA (Video Graphics Array) jest analogowym standardem, który nie obsługuje sygnałów cyfrowych i w rezultacie nie zapewnia takiej samej jakości obrazu jak DVI. Typowe błędy myślowe, które prowadzą do wyboru tych opcji, mogą wynikać z niepełnego zrozumienia różnicy między sygnałami analogowymi a cyfrowymi, oraz zastosowania złączy w praktyce. Współczesne rozwiązania w dziedzinie technologii multimedialnych silnie opierają się na cyfrowych standardach, a złącze DVI jest jednym z kluczowych elementów w tym kontekście.

Pytanie 18

Który z elementów oznaczonych numerami od 1 do 4, ukazanych na schemacie blokowym frame grabbera oraz opisanych w fragmencie dokumentacji technicznej, jest odpowiedzialny za wymianę danych z innymi urządzeniami przetwarzającymi obraz wideo, unikając zbędnego obciążenia magistrali PCI?

Ilustracja do pytania
A. 4
B. 1
C. 2
D. 3
Odpowiedź 4 jest prawidłowa, ponieważ element oznaczony numerem 4 na schemacie blokowym pełni rolę VMChannel, który umożliwia bezpośrednią wymianę danych z innymi urządzeniami przetwarzającymi obraz wideo bez obciążania magistrali PCI. VMChannel jako dedykowany interfejs zapewnia szybki transfer danych, osiągając prędkości do 132 MB/s, co jest niezwykle korzystne w aplikacjach wymagających dużej przepustowości i niskich opóźnień. W praktyce takie rozwiązanie pozwala na efektywne przetwarzanie danych w czasie rzeczywistym, co jest kluczowe w zastosowaniach przemysłowych, takich jak systemy wizyjne w automatyce czy monitoring wizyjny. Zastosowanie VMChannel wpisuje się w standardy projektowania systemów wbudowanych, gdzie minimalizacja obciążenia głównych magistrali systemowych jest istotnym aspektem. Transfer danych przez VMChannel odbywa się poza magistralą PCI, co pozwala na równoległe wykonywanie innych operacji przez procesor, zwiększając ogólną wydajność systemu. Tego typu rozwiązania są zgodne z dobrymi praktykami optymalizacji przepływu danych w zaawansowanych systemach wizyjnych.

Pytanie 19

Jaki jest standard 1000Base-T?

A. standard sieci Ethernet o prędkości 1GB/s
B. standard sieci Ethernet o prędkości 100Mb/s
C. standard sieci Ethernet o prędkości 1000Mb/s
D. standard sieci Ethernet o prędkości 1000MB/s
Wybór odpowiedzi, która sugeruje, że 1000Base-T to standard o przepustowości 100Mb/s, jest wynikiem nieporozumienia dotyczącego klasyfikacji standardów Ethernet. 1000Base-T to technologia, która osiąga prędkości do 1000 Mb/s, co jest równoważne z 1 Gb/s. Wprowadzenie do sieci szerokopasmowej wymaga zrozumienia różnic między standardami. Standard 100Base-T, który operuje z prędkością 100 Mb/s, oznacza zupełnie inne parametry i zastosowania. W praktyce, wykorzystywanie 100Base-T w sytuacjach, gdzie wymagana jest wyższa wydajność, prowadzi do wąskich gardeł i ograniczeń w transferze danych, co jest niepożądane w nowoczesnych środowiskach IT. Ponadto, pomylenie jednostek miary - Megabitów (Mb) z Gigabitami (Gb) - to typowy błąd, który może prowadzić do poważnych konsekwencji w projektowaniu i wdrażaniu infrastruktury sieciowej. Upewnienie się, że używamy odpowiednich standardów oraz rozumiemy ich możliwości, jest kluczowe dla zapewnienia efektywności operacyjnej i wydajności sieci. Dlatego istotne jest, aby w kontekście planowania sieci, nie ograniczać się do zastanawiania się nad przepustowością 100Mb/s, lecz uwzględniać nowoczesne standardy, takie jak 1000Base-T, które odpowiadają na rosnące wymagania użytkowników.

Pytanie 20

W systemie Linux do wyświetlania treści pliku tekstowego służy polecenie

A. type
B. list
C. more
D. cat
Polecenie 'cat', będące skrótem od 'concatenate', jest podstawowym narzędziem w systemie Linux służącym do wyświetlania zawartości plików tekstowych. Dzięki niemu użytkownik może szybko przeglądać zawartość pliku w terminalu. Jest to szczególnie przydatne w sytuacjach, gdy chcemy zobaczyć zawartość małych plików bez konieczności ich edytowania. Dodatkowo, polecenie 'cat' może być używane do łączenia kilku plików w jeden, co czyni je bardzo wszechstronnym narzędziem. Na przykład, używając komendy 'cat plik1.txt plik2.txt > połączony.txt', możemy stworzyć nowy plik o nazwie 'połączony.txt', który zawiera zarówno zawartość 'plik1.txt', jak i 'plik2.txt'. 'cat' jest uznawane za jedno z podstawowych narzędzi w codziennym użytkowaniu systemu Linux i znane wśród administratorów systemu oraz programistów. Zrozumienie i umiejętność wykorzystywania tego polecenia jest kluczowe w każdej pracy związanej z administracją systemami operacyjnymi Linux.

Pytanie 21

Jakim protokołem komunikacyjnym w warstwie transportowej, który zapewnia niezawodność przesyłania pakietów, jest protokół

A. TCP (Transmission Control Protocol)
B. ARP (Address Resolution Protocol)
C. UDP (User Datagram Protocol)
D. IP (Internet Protocol)
TCP (Transmission Control Protocol) jest protokołem warstwy transportowej, który zapewnia niezawodność w dostarczaniu danych poprzez zastosowanie mechanizmów potwierdzania odbioru, retransmisji pakietów oraz kontrolowania przepływu. Dzięki temu, TCP jest szeroko stosowany w aplikacjach wymagających wysokiej niezawodności, takich jak przeglądarki internetowe, poczta elektroniczna czy protokoły transferu plików (FTP). W odróżnieniu od UDP (User Datagram Protocol), który jest protokołem bezpołączeniowym i nie zapewnia gwarancji dostarczenia pakietów, TCP wykorzystuje połączenia oparte na sesji, co umożliwia osiągnięcie pełnej integralności danych. Mechanizmy takie jak 3-way handshake oraz numeracja sekwencyjna gwarantują, że dane są przesyłane w odpowiedniej kolejności i bez utraty. Dobrze zaprojektowane aplikacje sieciowe powinny wybierać TCP w sytuacjach, gdzie niezawodność i kolejność dostarczania informacji są kluczowe, co czyni go standardem w wielu rozwiązaniach stosowanych w Internecie.

Pytanie 22

Thunderbolt stanowi interfejs

A. równoległy, dwukanałowy, dwukierunkowy, bezprzewodowy
B. szeregowy, asynchroniczny, bezprzewodowy
C. równoległy, asynchroniczny, przewodowy
D. szeregowy, dwukanałowy, dwukierunkowy, przewodowy
Odpowiedzi sugerujące, że Thunderbolt mógłby być interfejsem równoległym, które klasyfikują go jako asynchroniczny lub bezprzewodowy, są nieprawidłowe. Równoległe interfejsy przesyłają wiele bitów jednocześnie, co w praktyce jest mniej efektywne w kontekście dzisiejszych wysokich prędkości transferu, ponieważ występują ograniczenia związane z crosstalkiem i synchronizacją sygnału. Podczas gdy niektóre starsze technologie, jak USB 2.0, mogły wykorzystywać architekturę równoległą, nowoczesne standardy dążą do uproszczenia i zwiększenia wydajności, co prowadzi do preferencji dla interfejsów szeregowych. Asynchroniczność natomiast sugeruje brak synchronizacji między urządzeniami, co w przypadku Thunderbolt jest sprzeczne z jego architekturą, gdzie każda transmisja jest ściśle synchronizowana, co zapewnia wysoki poziom integralności danych. Ponadto, bezprzewodowe przesyłanie danych, takie jak w przypadku Wi-Fi, nie oferuje tej samej przepustowości ani stabilności, co przewodowe połączenia, zwłaszcza w kontekście profesjonalnych zastosowań, gdzie opóźnienia i zakłócenia mogą mieć krytyczne znaczenie. W związku z tym, w przypadku zastosowań wymagających dużej przepustowości, takich jak edycja multimediów, preferowane są interfejsy przewodowe, takie jak Thunderbolt, które wyposażone są w technologie zapewniające zarówno wysoką szybkość, jak i niezawodność, co czyni je standardem branżowym w wielu zastosowaniach.

Pytanie 23

Firma Dyn, której serwery DNS zostały zaatakowane, przyznała, że część tego ataku … miała miejsce z użyciem różnych urządzeń podłączonych do sieci. Ekosystem kamer, czujników i kontrolerów określany ogólnie jako 'Internet rzeczy' został wykorzystany przez cyberprzestępców jako botnet − sieć maszyn-zombie. Jakiego rodzaju atak jest opisany w tym cytacie?

A. DOS
B. flooding
C. DDOS
D. mail bombing
Wybór odpowiedzi związanej z mail bombingiem, nawet jeśli może wydawać się związany z atakami, nie jest adekwatny w kontekście opisanego ataku na Dyn. Mail bombing odnosi się do masowego wysyłania wiadomości e-mail, mającego na celu zasypanie skrzynek odbiorczych ofiary, co może prowadzić do zatorów, ale nie wpływa na dostępność serwisów internetowych. Z kolei atak typu DoS (Denial of Service) oraz flooding są bliskie pojęciu DDoS, jednak różnią się od niego kluczowym aspektem: DoS zazwyczaj pochodzi z jednego źródła, podczas gdy DDoS angażuje wiele rozproszonych urządzeń. Ataki flooding są technicznie rodzajem DoS, ale nie obejmują wykorzystania maszyn-zombie, co czyni je nieodpowiednimi w tym przypadku. Typowe błędy myślowe, które mogą prowadzić do błędnych odpowiedzi, obejmują mylenie pojęć związanych z atakami oraz niepełne zrozumienie, jak konkretne techniki wpływają na systemy. Właściwe zabezpieczenia przed atakami DDoS wymagają zrozumienia specyfiki tych zagrożeń oraz implementacji odpowiednich środków ochrony, co stanowi ważny element zarządzania bezpieczeństwem w każdej organizacji. Zachowanie wysokiej dostępności usług wymaga również świadomości o potencjalnych zagrożeniach oraz ciągłego monitorowania ruchu sieciowego.

Pytanie 24

W systemie Windows, po wydaniu komendy systeminfo, nie da się uzyskać danych o

A. ilości procesorów
B. zainstalowanych aktualizacjach
C. podłączonych kartach sieciowych
D. liczbie partycji podstawowych
Wszystkie wymienione odpowiedzi, z wyjątkiem liczby partycji podstawowych, są informacjami, które można uzyskać za pomocą polecenia systeminfo. Zainstalowane poprawki są kluczowe dla utrzymania bezpieczeństwa i stabilności systemu. Systeminfo wyświetla szczegóły dotyczące każdej zainstalowanej poprawki, co pozwala administratorom na monitorowanie i zarządzanie aktualizacjami. Ponadto informacja o liczbie procesorów jest istotna dla analizy wydajności systemu. Systeminfo pokazuje liczbę rdzeni oraz wątków, co jest niezbędne przy ocenie możliwości sprzętowych. Zamontowane karty sieciowe są także kluczowym elementem konfiguracji systemu. Biorąc pod uwagę, że sieciowy dostęp do zasobów oraz ich efektywne zarządzanie jest fundamentem pracy w nowoczesnym środowisku komputerowym, administratorzy muszą mieć świadomość, które karty sieciowe są aktywne i jak są skonfigurowane. Często można się spotkać z mylnym przekonaniem, że wszystkie dostępne dane powinny być dostępne w pojedynczym narzędziu. W rzeczywistości jednak, polecenie systeminfo ma swoje ograniczenia i nie dostarcza informacji na temat partycji, co jest ważnym aspektem, który można zbadać przy użyciu innych narzędzi administracyjnych. Ignorowanie tego faktu może prowadzić do błędnych wniosków na temat stanu dysków i ich struktury.

Pytanie 25

Jakie urządzenie w sieci lokalnej NIE ROZDZIELA obszaru sieci komputerowej na domeny kolizyjne?

A. Przełącznik
B. Koncentrator
C. Router
D. Most
Router, most i przełącznik to urządzenia, które mają na celu efektywniejsze zarządzanie ruchem w sieci lokalnej. Router działa na warstwie trzeciej modelu OSI, co pozwala mu na trasowanie pakietów między różnymi sieciami i segmentami. W przeciwieństwie do koncentratora, router nie tylko przekazuje dane, ale również dokonuje analizy adresów IP, co skutkuje podziałem sieci na różne domeny kolizyjne. Mosty, działające na warstwie drugiej, również segmentują ruch, filtrując dane w oparciu o adresy MAC, co zmniejsza liczbę kolizji w sieci. Z kolei przełączniki, mające również warstwę drugą, operują na zasadzie przekazywania danych tylko do określonego portu, co znacznie minimalizuje ryzyko kolizji. Wiele osób może mylić te urządzenia z koncentratorami, myśląc, że wszystkie działają w ten sam sposób. Kluczowym błędem jest przekonanie, że każde urządzenie w sieci lokalnej funkcjonuje na tym samym poziomie i nie wprowadza różnic w zarządzaniu ruchem. Zrozumienie różnic pomiędzy tymi urządzeniami jest istotne, aby projektować i zarządzać efektywnymi sieciami komputerowymi, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 26

Metoda przesyłania danych pomiędzy urządzeniami CD/DVD a pamięcią komputera w trybie bezpośredniego dostępu do pamięci to

A. SATA
B. PIO
C. DMA
D. IDE
DMA (Direct Memory Access) to technika, która umożliwia bezpośredni transfer danych pomiędzy urządzeniami, takimi jak napędy CD/DVD, a pamięcią komputera bez angażowania procesora. Dzięki temu, procesor ma więcej zasobów dostępnych do innych zadań, co poprawia ogólną wydajność systemu. W standardzie DMA możliwe jest realizowanie transferów w dwu kierunkach, co oznacza, że dane mogą być zarówno odczytywane z urządzenia, jak i zapisywane do pamięci. Przykładem zastosowania DMA jest odczyt danych z płyty DVD, gdzie duże pliki multimedialne są przesyłane do pamięci RAM w sposób efektywny i szybki. Stosowanie DMA jest szczególnie istotne w kontekście nowoczesnych aplikacji, które wymagają przetwarzania dużych ilości danych, jak edytory wideo czy aplikacje do obróbki grafiki. Dobrą praktyką w projektowaniu systemów jest implementacja DMA, aby zminimalizować obciążenie CPU i zwiększyć przepustowość systemu.

Pytanie 27

Jak brzmi nazwa klucza rejestru w systemie Windows, gdzie zapisane są relacje między typami plików a programami je obsługującymi?

A. HKEY_CLASSES_ROT
B. HKEY_USERS
C. HKEY_CURRENT_PROGS
D. HKEY_LOCAL_MACHINE
HKEY_CURRENT_PROGS nie istnieje w standardowej hierarchii rejestru systemu Windows, co czyni tę odpowiedź niepoprawną. Możliwe, że użytkownik pomylił tę nazwę z innym kluczem, co prowadzi do błędnych wniosków o jego istnieniu. Klucz HKEY_CLASSES_ROOT, na przykład, jest rzeczywiście używany do przechowywania powiązań typów plików, a HKEY_USERS przechowuje ustawienia dla różnych kont użytkowników, jednak HKEY_LOCAL_MACHINE jest bardziej właściwym miejscem dla ogólnych ustawień systemowych, w tym powiązań aplikacji. HKEY_USERS odpowiada za przechowywanie profili użytkowników, co nie ma związku z powiązaniami typów plików. W praktyce, błędne rozumienie tej struktury rejestru może prowadzić do nieefektywnego zarządzania systemem. Administratorzy, którzy nie są świadomi właściwych kluczy, mogą wprowadzać zmiany w niewłaściwych miejscach, co skutkuje niestabilnością systemu lub problemami z dostępem do aplikacji. Wiedza na temat rejestru systemowego jest fundamentalna dla efektywnego rozwiązywania problemów oraz dostosowywania środowiska użytkownika, dlatego tak ważne jest zrozumienie, jakie klucze są kluczowe dla funkcjonowania systemu. Przypisanie odpowiednich aplikacji do typów plików wymaga precyzyjnego zarządzania rejestrem, a wszelkie nieporozumienia mogą prowadzić do poważnych problemów w codziennej pracy użytkowników.

Pytanie 28

Jak wygląda konwencja zapisu ścieżki do udziału w sieci, zgodna z UNC (Universal Naming Convention)?

A. //nazwa_komputera/nazwa_zasobu
B. \nazwa_komputera\nazwa_zasobu
C. \nazwa_zasobu\nazwa_komputera
D. //nazwa_zasobu/nazwa_komputera
Znajomość konwencji zapisu ścieżki UNC jest naprawdę istotna, jeśli chcesz korzystać z zasobów w sieci. Wiele osób myli tę konwencję, co czasami prowadzi do frustracji przy dostępie do plików. Na przykład, zapisy takie jak //nazwa_zasobu/nazwa_komputera są oparte na URL, a to zupełnie inna bajka. Użycie ukośników w przód (//) nie zadziała w Windows, więc lepiej unikać takich kombinacji. Również, zapis \nazwa_zasobu\nazwa_komputera jest błędny, bo to zamienia kolejność i nie zgadza się z tym, co mówi UNC. Ważne jest rozumienie tej struktury, bo to nie tylko dla adminów, ale też dla użytkowników, którzy chcą wiedzieć, jak się łączyć z plikami i folderami. Prawidłowe użycie tej konwencji umożliwia lepsze zarządzanie w sieci, a zła interpretacja może powodować problemy z dostępem do danych.

Pytanie 29

Które złącze powinna posiadać karta graficzna, aby można było bezpośrednio ją połączyć z telewizorem LCD wyposażonym wyłącznie w analogowe złącze do podłączenia komputera?

A. DVI-D
B. DP
C. HDMI
D. DE-15F
Myśląc o podłączeniu karty graficznej do telewizora LCD, który ma wyłącznie analogowe wejście, sporo osób automatycznie skupia się na najnowszych i najpopularniejszych złączach, takich jak DVI-D, HDMI czy DisplayPort. Rzeczywistość jest jednak taka, że te standardy są w pełni cyfrowe i nie obsługują przesyłu sygnału analogowego, jaki wymagany jest przez klasyczne wejście VGA (DE-15F). Na przykład HDMI czy DVI-D są świetne do przesyłania wysokiej jakości obrazu i dźwięku w nowoczesnych urządzeniach, ale nie poradzą sobie bez dodatkowych konwerterów z urządzeniami mającymi tylko analogowe wejście. Często spotykam się z przekonaniem, że każda przejściówka rozwiąże problem, ale to nie jest takie proste – sygnał cyfrowy nie przejdzie do analogowego bez aktywnej konwersji i specjalnego układu, czyli tzw. konwertera sygnału. Z kolei DisplayPort również nie oferuje natywnej obsługi sygnału analogowego, a jego przejściówki DP-VGA bazują na dodatkowej elektronice, co generuje koszty i komplikacje. Typowym błędem jest zakładanie, że DVI zawsze daje możliwość połączenia analogowego, ale dotyczy to wyłącznie wersji DVI-I i DVI-A, jednak w tym pytaniu mamy DVI-D, które jest wyłącznie cyfrowe. Z praktycznego punktu widzenia, żeby podłączyć kartę graficzną bezpośrednio do starszego telewizora LCD z analogowym wejściem, wyłącznie DE-15F (VGA) pozwala na takie połączenie bez dodatkowych urządzeń i strat jakości sygnału. Wszystkie inne wymienione opcje wymagają większych nakładów i mogą prowadzić do niekompatybilności, co w branży IT jest uznawane za nieefektywne rozwiązanie. Dlatego warto przed podłączeniem sprzętu dobrze rozpoznać wymagania dotyczące sygnału – analogowego albo cyfrowego – i dobierać złącza zgodnie z tą zasadą.

Pytanie 30

Jakie polecenie należy użyć w wierszu poleceń systemu Windows, aby utworzyć nowy katalog?

A. rmdir
B. mv
C. md
D. dir
Komendy 'mv', 'dir' i 'rmdir' działają zupełnie inaczej w Windows, co może być mylące. 'mv' to komenda z Unix/Linux, która służy do przenoszenia plików, więc w Windows nie ma sensu jej używać, bo i tak nie działa. Z kolei 'dir' jest do przeglądania plików i folderów w aktualnym katalogu, a nie do tworzenia nowych. Może to być trochę frustrujące, jak ktoś myśli, że 'dir' może zrobić nowy folder. A 'rmdir' służy do usuwania pustych katalogów, co jest totalnie na przeciwnym biegunie w porównaniu do 'md'. Takie nieporozumienia mogą wprowadzać chaos, zwłaszcza gdy próbujesz zorganizować swoje pliki. Lepiej wiedzieć, co dana komenda robi, żeby uniknąć problemów w codziennym korzystaniu z systemu.

Pytanie 31

Aby skonfigurować wolumin RAID 5 na serwerze, wymagane jest minimum

A. 4 dyski
B. 5 dysków
C. 2 dyski
D. 3 dyski
Wybór pięciu dysków, dwóch lub czterech dysków w kontekście tworzenia woluminu RAID 5 jest nieprawidłowy z kilku powodów. RAID 5 wymaga minimalnie trzech dysków, co wynika z jego architektury i sposobu, w jaki dane i parzystość są rozprzestrzeniane. Użycie dwóch dysków jest niewystarczające, ponieważ nie umożliwia to implementacji parzystości, która jest kluczowym elementem RAID 5. W przypadku tylko dwóch dysków nie ma możliwości przechowywania danych i ich parzystości w sposób, który zapewni ochronę przed awarią jednego z dysków. Wybór czterech dysków jest technicznie możliwy, jednakże nie jest to najbardziej efektywna konfiguracja, ponieważ przy trzech dyskach można już utworzyć wolumin RAID 5, a każdy dodatkowy dysk tylko zwiększa koszt i złożoność systemu, nie dostarczając proporcjonalnych korzyści w zakresie redundancji. Typowym błędem myślowym jest założenie, że większa liczba dysków zawsze przekłada się na lepsze zabezpieczenie danych. W rzeczywistości, w przypadku RAID 5, kluczowe jest zrozumienie, że to właśnie minimalna liczba trzech dysków pozwala na efektywne zarządzanie danymi i zabezpieczenie ich przed utratą. Dlatego w praktyce, zarówno w zastosowaniach domowych, jak i w środowiskach profesjonalnych, należy przestrzegać wymogów dotyczących liczby dysków dla konkretnych poziomów RAID, aby zapewnić optymalną wydajność i bezpieczeństwo danych.

Pytanie 32

Przy realizacji projektu dotyczącego sieci LAN wykorzystano medium transmisyjne standardu Ethernet 1000Base-T. Które z poniższych stwierdzeń jest prawdziwe?

A. Standard ten pozwala na transmisję typu full-duplex przy maksymalnym zasięgu 100 metrów
B. To standard sieci optycznych działających na wielomodowych światłowodach
C. To standard sieci optycznych, którego maksymalny zasięg wynosi 1000 metrów
D. Standard ten umożliwia transmisję typu half-duplex przy maksymalnym zasięgu 1000 metrów
Pierwsza odpowiedź, która sugeruje, że 1000Base-T to standard sieci optycznych pracujących na wielomodowych światłowodach, jest błędna, ponieważ 1000Base-T jest standardem Ethernetowym, który odnosi się do kabli miedzianych, a nie światłowodowych. Istnieją inne standardy, takie jak 1000Base-LX, które dotyczą transmisji w sieciach optycznych, ale 1000Base-T nie ma z nimi nic wspólnego. Kolejna odpowiedź, która wskazuje na maksymalny zasięg 1000 metrów, również nie jest prawidłowa. Zasięg standardu 1000Base-T wynosi 100 metrów, co jest zgodne z parametrami dla kabli miedzianych, a nie 1000 metrów, co jest zasięgiem stosowanym w niektórych standardach światłowodowych, jak 1000Base-LX na przewodach jedno- lub wielomodowych. Argument sugerujący, że ten standard umożliwia transmisję half-duplex przy maksymalnym zasięgu 1000 metrów, jest także mylny. 1000Base-T standardowo działa w trybie full-duplex, co oznacza, że jednoczesna transmisja i odbiór danych jest możliwa, co jest kluczowe w nowoczesnych sieciach, gdzie wydajność i prędkość komunikacji są kluczowe. Zrozumienie różnicy między różnymi standardami Ethernet oraz ich specyfikacjami technicznymi jest niezbędne do prawidłowego projektowania i wdrażania sieci lokalnych.

Pytanie 33

Który z protokołów będzie wykorzystany przez administratora do przesyłania plików na serwer?

A. DNS (DomainName System)
B. FTP (File Transfer Protocol)
C. HTTP (Hyper Text Transfer Protocol)
D. DHCP (Domain Host Configuration Protocol)
Wybór innych protokołów jak DHCP, DNS czy HTTP nie jest najlepszym pomysłem, kiedy mówimy o przesyłaniu plików na serwer. DHCP służy do przypisywania adresów IP, żeby ułatwić komunikację w sieci. Więc, w ogóle nie nadaje się do transferu plików. DNS z kolei tłumaczy nazwy domen na adresy IP, a to jest super ważne dla działania stron, ale też nie ma nic wspólnego z przesyłaniem plików. A HTTP? No, to jest głównie do przesyłania danych w Internecie i nie jest zbyt dobrym rozwiązaniem, gdy chodzi o pliki. Po prostu nie jest optymalne, a dla administratorów, którzy chcą dobrze zarządzać transferem plików, to nie jest dobry wybór. Ludzie często mylą te protokoły i używają ich w niewłaściwy sposób, co może prowadzić do problemów i większego ryzyka błędów przy transferze danych.

Pytanie 34

Jakiego typu dane są przesyłane przez interfejs komputera osobistego, jak pokazano na ilustracji?

Bit
startu
Bit
danych
Bit
danych
Bit
stopu
Bit
startu
Bit
danych
Bit
startu
Bit
danych
Bit
danych
Bit
stopu
Bit
startu
Bit
danych
Bit
stopu
A. Szeregowy asynchroniczny
B. Szeregowy synchroniczny
C. Równoległy synchroniczny
D. Równoległy asynchroniczny
Transmisja danych przez interfejs równoległy asynchroniczny wymaga przesyłania kilku bitów jednocześnie co jest realizowane za pomocą wielu linii sygnałowych W ten sposób dane są przesyłane szybciej niż w przypadku interfejsów szeregowych jednak wymaga to synchronizacji wszystkich linii co jest bardziej skomplikowane i kosztowne Podczas gdy ten typ transmisji był popularny w starszych drukarkach i innych urządzeniach peryferyjnych dzisiaj jest rzadziej stosowany ze względu na wysoki koszt opracowania i utrzymania Transmisja szeregowa synchroniczna różni się od asynchronicznej tym że wymaga synchronizacji zegara pomiędzy nadajnikiem a odbiornikiem Oznacza to że zarówno urządzenie przesyłające jak i odbierające muszą dokładnie zsynchronizować swoje zegary aby zagwarantować poprawność danych Choć zwiększa to skuteczność i szybkość transmisji wymaga to dodatkowych linii do przesyłania sygnału zegara co powoduje większe komplikacje w budowie urządzeń Przykładem może być SPI lub I2C które choć efektywne są bardziej skomplikowane niż transmisja szeregowa asynchroniczna Równoległa transmisja synchroniczna to najbardziej zaawansowany typ transmisji jednocześnie przesyłający wiele bitów z pełną synchronizacją zegara Umożliwia to błyskawiczne przesyłanie dużych ilości danych na krótkich dystansach jednak jej koszt zarówno w projektowaniu jak i produkcji jest znaczny co powoduje że jest rzadko stosowana w standardowych interfejsach komputerowych Te różne podejścia choć mają swoje zalety są często trudniejsze do implementacji i mniej praktyczne niż proste i szeroko stosowane interfejsy szeregowe asynchroniczne które oferują wystarczającą szybkość i niezawodność dla większości zastosowań

Pytanie 35

Użytkownik systemu Windows może korzystając z programu Cipher

A. ochronić dane poprzez szyfrowanie plików
B. zeskanować system w celu wykrycia malware
C. wykonać przyrostową kopię zapasową plików systemowych
D. usunąć konto użytkownika wraz z jego profilem i dokumentami
Wszystkie pozostałe odpowiedzi są błędne, ponieważ nie dotyczą funkcjonalności programu Cipher. Po pierwsze, program ten nie jest narzędziem do skanowania systemu w poszukiwaniu malware. Do takiego zadania służą dedykowane programy antywirusowe, które analizują pliki w celu wykrycia złośliwego oprogramowania. Skanowanie systemu wymaga odmiennych mechanizmów porównawczych i heurystycznych, których Cipher nie posiada. Kolejnym nieporozumieniem jest stwierdzenie, że Cipher może wykonywać przyrostowe kopie zapasowe plików systemowych. Funkcjonalność tworzenia kopii zapasowych w systemie Windows realizują inne narzędzia, jak na przykład Windows Backup, które oferują różne typy kopii zapasowych, w tym przyrostowe. Cipher skupia się na ochronie danych przez szyfrowanie, a nie na ich archiwizacji. Również nie można używać Cipher do usuwania kont użytkowników wraz z ich profilami czy dokumentami; operacje takie są zarządzane przez Panel sterowania lub PowerShell, które oferują odpowiednie polecenia do zarządzania kontami. W związku z tym, kluczowym błędem jest mylenie funkcji szyfrowania z innymi operacjami, co może prowadzić do nieefektywnego zarządzania bezpieczeństwem danych oraz narażenia na zagrożenia związane z utratą danych.

Pytanie 36

Obniżenie ilości jedynek w masce pozwala na zaadresowanie

A. mniejszej liczby sieci i większej liczby urządzeń
B. większej liczby sieci i mniejszej liczby urządzeń
C. mniejszej liczby sieci i mniejszej liczby urządzeń
D. większej liczby sieci i większej liczby urządzeń
Rozumienie, jak modyfikacja maski podsieci wpływa na liczbę dostępnych adresów IP, jest bardzo istotne. Kiedy zwiększamy liczbę jedynek w masce, to w rzeczywistości ograniczamy liczbę dostępnych adresów w sieci, co sprawia, że możemy obsłużyć tylko kilka urządzeń. Niektórzy mogą myśleć, że więcej jedynek=więcej sieci, ale tak nie jest. Mniejsza liczba jedynek w masce to większa liczba adresów dla konkretnej podsieci, ale nie zwiększa liczby sieci. Na przykład w masce /24 mamy 256 adresów, ale już w masce /25 (255.255.255.128), która ma więcej jedynek, liczba dostępnych adresów dla urządzeń spada, co może być frustracją w dużych sieciach. Doświadczeni administratorzy dobrze znają te zasady i stosują subnetting zgodnie z potrzebami swojej sieci, bo nieprzemyślane zmiany mogą narobić niezłych kłopotów.

Pytanie 37

Jakie oznaczenie potwierdza oszczędność energii urządzenia?

A. Energy ISO
B. Energy STAR
C. Energy IEEE
D. Energy TCO
Wybór innej odpowiedzi może wynikać z mylenia różnych certyfikacji związanych z efektywnością energetyczną. Na przykład, Energy ISO odnosi się do standardów międzynarodowych, które mogą dotyczyć różnych aspektów zarządzania jakością i bezpieczeństwa, ale nie są specyficznie ukierunkowane na energooszczędność produktów. Standardy ISO, choć istotne w kontekście jakości, nie oferują bezpośrednich informacji na temat zużycia energii przez urządzenia. Energy TCO odnosi się do całkowitych kosztów posiadania i może obejmować różne aspekty, w tym zużycie energii, ale nie jest to certyfikat potwierdzający energooszczędność samych produktów. Warto zauważyć, że Energy IEEE nie istnieje jako certyfikat energooszczędności; IEEE to organizacja zajmująca się standardami w dziedzinie elektronicznej i inżynierii komputerowej, a nie efektywnością energetyczną. Te pomyłki wskazują na nieporozumienie w zakresie certyfikacji i ich skutków. Przy wyborze energooszczędnych urządzeń warto kierować się sprawdzonymi i uznawanymi programami, takimi jak Energy STAR, które mają jasne kryteria skuteczności energetycznej, co jest kluczowe w podejmowaniu świadomych decyzji zakupowych.

Pytanie 38

W systemie DNS, aby powiązać nazwę hosta z adresem IPv4, konieczne jest stworzenie rekordu

A. PTR
B. A
C. MX
D. ISDN
Odpowiedzi PTR, ISDN i MX są błędne w kontekście mapowania nazw hostów na adresy IPv4. Rekord PTR służy do odwrotnego mapowania, czyli przekształcania adresów IP na nazwy domen. Używany jest głównie do celów diagnostycznych i w bezpieczeństwie, aby zweryfikować, czy dany adres IP odpowiada konkretnej nazwie domeny. W praktyce, często używany w konfiguracji serwerów pocztowych, aby uniknąć problemów z dostarczaniem wiadomości. Natomiast ISDN w ogóle nie odnosi się do systemów DNS, jest to technologia używana do przekazywania danych przez linie telefoniczne. Rekord MX, z drugiej strony, jest stosowany do wskazywania serwerów odpowiedzialnych za obsługę poczty e-mail dla danej domeny. Choć jest niezwykle istotny w kontekście zarządzania pocztą elektroniczną, nie ma zastosowania w mapowaniu nazw hostów do adresów IP. Interesującym aspektem jest to, że wiele osób myli funkcje tych różnych rekordów, co prowadzi do nieporozumień w konfiguracji usług internetowych. Właściwe zrozumienie typów rekordów DNS i ich funkcji jest kluczowe dla zapewnienia prawidłowego działania sieci oraz aplikacji internetowych. Przykłady konfiguracji DNS i analiza błędów mogą być pomocne w unikaniu takich nieporozumień.

Pytanie 39

Jakie narzędzie powinno być użyte do zbadania wyników testu POST dla modułów na płycie głównej?

Ilustracja do pytania
A. Rys. B
B. Rys. A
C. Rys. D
D. Rys. C
Prawidłowa odpowiedź to Rys. B. Jest to specjalne narzędzie diagnostyczne znane jako karta POST, używane do testowania i diagnozowania problemów z płytą główną komputera. Kiedy komputer jest uruchamiany, przechodzi przez test POST (Power-On Self-Test), który sprawdza podstawowe komponenty sprzętowe. Karta POST wyświetla kody wyników testu, co umożliwia technikom zidentyfikowanie problemów, które mogą uniemożliwiać prawidłowy rozruch systemu. Karty POST są niezwykle przydatne w środowiskach serwisowych, gdzie szybka diagnostyka jest kluczowa. Dają one bezpośredni wgląd w proces rozruchu płyty głównej i wskazują na potencjalne awarie sprzętowe, takie jak uszkodzone moduły pamięci RAM, problemy z procesorem czy kartą graficzną. W praktyce, kody wyświetlane przez kartę POST mogą być porównywane z tabelami kodów POST producenta płyty głównej, co pozwala na szybkie i precyzyjne określenie przyczyny awarii i przystąpienie do jej usunięcia. Warto zaznaczyć, że użycie karty POST jest standardem w diagnostyce komputerowej i stanowi dobrą praktykę w pracy serwisanta.

Pytanie 40

W systemie Linux wykonanie polecenia chmod 321 start spowoduje przyznanie następujących uprawnień plikowi start:

A. wykonanie i zapis dla właściciela pliku, zapis dla grupy, wykonanie dla pozostałych
B. czytanie, zapis i wykonanie dla właściciela pliku, zapis i wykonanie dla grupy i czytanie dla pozostałych
C. pełna kontrola dla użytkownika root, zapis i odczyt dla użytkownika standardowego, odczyt dla pozostałych
D. zapis, odczyt i wykonanie dla użytkownika root, odczyt i wykonanie dla użytkownika standardowego, odczyt dla pozostałych
W analizowanym pytaniu pojawiają się różne odpowiedzi, które nie oddają prawidłowego zrozumienia działania polecenia chmod oraz nadawania uprawnień w systemie Linux. Warto zauważyć, że wiele osób myli pojęcie uprawnień pliku z rolą użytkownika. Na przykład w pierwszej opcji stwierdzono, że użytkownik root ma pełną kontrolę, co w kontekście polecenia chmod 321 jest nieprawidłowe. Użytkownik root mógłby mieć te uprawnienia, ale chmod 321 odnosi się do konkretnego pliku i jego ustawień, a nie do użytkownika, który go modyfikuje. Druga odpowiedź sugeruje, że uprawnienia wykonania są nadawane grupie oraz właścicielowi pliku, co jest sprzeczne z rzeczywistym podziałem uprawnień w chmod 321. W rzeczywistości tylko właściciel pliku ma prawo do zapisu i wykonania, a grupa posiada jedynie prawo do zapisu. Trzecia odpowiedź myli pojęcia uprawnień, zakładając, że właściciel pliku ma pełne uprawnienia do czytania, zapisu i wykonania, co również jest błędne w kontekście podanych wartości oktalnych. W końcu ostatnia odpowiedź nie tylko nie oddaje rzeczywistego podziału uprawnień, ale też wprowadza nieporozumienie co do tego, jakie uprawnienia są przydzielane poszczególnym grupom użytkowników. Przykładowo, gdyby użytkownik standardowy miał jedynie prawo do odczytu i wykonania, nie mógłby edytować pliku, co jest kluczowym punktem w kontekście nadawania uprawnień. Właściwe zrozumienie działania polecenia chmod oraz logiki przydzielania uprawnień jest kluczowe dla efektywnego zarządzania bezpieczeństwem i dostępem do zasobów w systemie Linux.