Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 20:29
  • Data zakończenia: 7 grudnia 2025 20:50

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. XzTKMXpw
B. LgY
C. DYt
D. YADY
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 2

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. przyłącza napowietrznego
B. wewnętrznej linii zasilającej
C. instalacji wewnętrznej
D. przyłącza kablowego
Odpowiedzi takie jak "instalacja wnętrzowa", "przyłącze kablowe" oraz "przyłącze napowietrzne" odnoszą się do innych aspektów systemu elektrycznego, które są mylone z wewnętrzną linią zasilającą. Instalacja wnętrzowa dotyczy ogółu elementów zainstalowanych wewnątrz budynku, takich jak gniazdka, włączniki czy oświetlenie, ale nie wskazuje na konkretne połączenie zasilające. Przyłącze kablowe odnosi się do połączenia między siecią dystrybucyjną a budynkiem, które ma na celu dostarczenie energii do budynku, ale nie jest to już linia zasilająca wewnętrzna. Natomiast przyłącze napowietrzne to forma dostarczenia energii elektrycznej, która wykorzystuje przewody zawieszone na słupach, co również nie dotyczy przesyłu energii wewnątrz budynku. Pojęcia te mogą prowadzić do nieporozumień, zwłaszcza u osób, które nie mają doświadczenia w dziedzinie elektryki. Poprawne zrozumienie różnicy między tymi terminami jest kluczowe dla projektowania i realizacji efektywnych oraz bezpiecznych systemów zasilania w obiektach budowlanych.

Pytanie 3

Na podstawie rysunku określ wymiar, który opisuje wysokość zawieszenia opraw oświetleniowych w sali lekcyjnej.

Ilustracja do pytania
A. Wymiar c
B. Wymiar b
C. Wymiar d
D. Wymiar a
Wybór innych wymiarów, takich jak wymiar a, c czy d, wskazuje na pewne nieporozumienia dotyczące interpretacji rysunku oraz podstawowych zasad projektowania oświetlenia. Wymiar a, zazwyczaj odnosi się do odległości poziomej w pomieszczeniu, co nie ma zastosowania przy ocenie wysokości zawieszenia opraw oświetleniowych. Podobnie wymiar c, mogący oznaczać wysokość mebli, lub wymiar d, który najprawdopodobniej przedstawia inne aspekty przestrzenne, nie odnoszą się do zagadnienia wysokości zawieszenia opraw. W praktyce, wysokość zawieszenia opraw ma kluczowe znaczenie dla efektywności oświetlenia oraz komfortu użytkowników. Typowym błędem jest skupienie się na wymiarach, które nie mają bezpośredniego wpływu na sposób, w jaki światło rozchodzi się w przestrzeni. Właściwe zrozumienie, że wysokość opraw oświetleniowych nie jest tylko kwestią estetyki, ale także funkcjonalności, jest niezbędne w projektowaniu efektywnych i ergonomicznych przestrzeni edukacyjnych. Zbyt niskie lub zbyt wysokie zawieszenie opraw może prowadzić do olśnień, cieni oraz niewystarczającego oświetlenia roboczego, co negatywnie wpływa na koncentrację i wyniki uczniów. Z tego powodu kluczowe jest, aby przy projektowaniu uwzględniać odpowiednie normy i wytyczne, aby uniknąć tych powszechnych problemów.

Pytanie 4

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Dwubiegunowy.
B. Szeregowy.
C. Jednobiegunowy.
D. Grupowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 5

Jakie oznaczenie powinna posiadać wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. gG 20 A
C. aM 20 A
D. aM 16 A
Odpowiedź gG 16 A jest prawidłowa, ponieważ wkładki topikowe oznaczone jako gG są przeznaczone do zabezpieczania obwodów przed przeciążeniami oraz zwarciami, a ich charakterystyka czasowa i prądowa jest dostosowana do zastosowań w instalacjach elektrycznych, takich jak obwody zasilające urządzenia elektryczne, w tym bojlery. W przypadku bojlera o mocy 3 kW oraz napięciu znamionowym 230 V, maksymalny prąd roboczy można obliczyć według wzoru: P = U × I, co daje prąd I równy około 13 A. Wybór wkładki gG 16 A zapewnia odpowiedni margines bezpieczeństwa, umożliwiając prawidłowe działanie urządzenia w warunkach normalnych, jednocześnie chroniąc przed skutkami zwarć. W praktyce wkładki gG są używane w sytuacjach, gdzie mogą wystąpić różne rodzaje przeciążeń, co czyni je bardziej elastycznymi i bezpiecznymi w użyciu. Oprócz tego, przy zastosowaniu wkładki gG 16 A, spełnione są normy dotyczące zabezpieczeń elektrycznych, co jest istotne dla bezpieczeństwa użytkowników i zgodności z przepisami budowlanymi.

Pytanie 6

Na rysunku przedstawiono charakterystykę wyłącznika nadmiarowo-prądowego KS6 B32/3 znajdującą się w katalogu producenta. Wyłącznik ten można zastosować do zabezpieczenia przewodów o obciążalności długotrwałej

Ilustracja do pytania
A. 25 A
B. 34 A
C. 29 A
D. 30 A
Wyłącznik nadmiarowo-prądowy KS6 B32/3 ma znamionowy prąd wyzwalania wynoszący 32 A. W kontekście doboru zabezpieczeń elektrycznych, kluczową zasadą jest, aby obciążalność długotrwała przewodów była zawsze większa od prądu znamionowego wyłącznika. Gdyby obciążalność przewodów była zbyt niska, mogłoby to prowadzić do niepożądanych wyzwalań wyłącznika w normalnych warunkach pracy, co generowałoby przestoje i koszty. W przypadku prądu znamionowego 32 A, odpowiednią wartością obciążalności długotrwałej przewodu byłoby 34 A, co zapewnia odpowiedni margines bezpieczeństwa. Wartości takie są zgodne z normami PN-IEC 60364, które szczegółowo określają zasady doboru zabezpieczeń. Przykładem praktycznym może być instalacja oświetlenia, gdzie odpowiedni dobór przewodów i wyłączników zabezpiecza przed skutkami zwarć oraz poprawia bezpieczeństwo użytkowników. Właściwe podejście do doboru zabezpieczeń pozwala nie tylko na ochronę instalacji, ale także na wydłużenie jej żywotności oraz redukcję kosztów eksploatacyjnych.

Pytanie 7

Którego silnika elektrycznego dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Synchronicznego.
B. Bocznikowego prądu stałego.
C. Szeregowego prądu stałego.
D. Synchronizowanego.
Twoja odpowiedź jest poprawna, ponieważ schemat przedstawia silnik szeregowy prądu stałego, który charakteryzuje się szeregowym połączeniem uzwojenia wzbudzenia z uzwojeniem twornika. W silnikach tych prąd wzbudzenia jest taki sam jak prąd w uzwojeniu twornika, co prowadzi do proporcjonalnego wzrostu momentu obrotowego przy zwiększeniu obciążenia. Silniki te znajdują zastosowanie w aplikacjach wymagających dużego momentu startowego, takich jak wózki widłowe, pralki czy maszyny robocze. Dzięki prostocie konstrukcji i niskim kosztom produkcji, silniki szeregowe są powszechnie używane w różnych dziedzinach przemysłu. Dobrą praktyką przy projektowaniu układów z silnikami szeregowych prądu stałego jest uwzględnienie odpowiedniego zabezpieczenia przed przeciążeniem, aby uniknąć uszkodzeń wskutek nadmiernego wzrostu prędkości obrotowej. Dodatkowo, ze względu na ich charakterystykę, silniki te są często stosowane tam, gdzie wymagany jest szybki start i duży moment obrotowy.

Pytanie 8

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 2 do 3
B. 10 do 20
C. 3 do 5
D. 5 do 10
Odpowiedź "2 do 3" jest poprawna, ponieważ wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z działają w granicach krotności prądu znamionowego na poziomie od 2 do 3. To oznacza, że wyzwalacz zareaguje w przypadku, gdy prąd zwarciowy osiągnie wartość 2-3 razy wyższą od prądu znamionowego urządzenia. Wyłączniki te są przeznaczone do ochrony obwodów z wysoką odpornością na prądy rozruchowe, co czyni je idealnymi do stosowania w instalacjach z urządzeniami takimi jak transformatory czy silniki elektryczne. Standardy takie jak PN-EN 60947-2 definiują wymagania dotyczące wyłączników, a ich zastosowanie w praktyce pomaga w minimalizacji ryzyka uszkodzenia instalacji oraz zapewnienia bezpieczeństwa użytkowników. Przykładem może być sytuacja, w której w obwodzie z silnikiem występuje krótki impuls prądowy, co może prowadzić do zadziałania wyłącznika, zanim dojdzie do poważniejszych uszkodzeń. Stosując wyłączniki typu Z, można skutecznie ograniczyć ryzyko zwarć w obwodach o niskiej tolerancji na prądy zwarciowe.

Pytanie 9

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Zmiana rodzaju zastosowanych przewodów
C. Wymiana uszkodzonych źródeł światła
D. Instalacja dodatkowego gniazda elektrycznego
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 10

Przeciążenie w instalacji elektrycznej polega na

A. bezpośrednim połączeniu dwóch faz w systemie.
B. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
C. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
D. przekroczeniu maksymalnego prądu znamionowego instalacji.
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 11

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 3
B. 1
C. 2
D. 4
Prawidłowa odpowiedź to 4, ponieważ wskazuje na punkt, który może wykazywać brak ciągłości połączenia wyrównawczego. Punkt 4 jest połączony z rurą gazową, a jeśli instalacja gazowa została wykonana z materiału nieprzewodzącego prąd elektryczny, na przykład z plastiku, to brak ciągłości jest całkowicie uzasadniony. W praktyce, aby zapewnić bezpieczeństwo instalacji elektrycznej, istotne jest, aby wszystkie elementy metalowe były odpowiednio połączone, aby uniknąć ryzyka wystąpienia różnicy potencjałów. Zgodnie z normami, takimi jak PN-EN 62305, połączenia wyrównawcze powinny zapewniać skuteczne odprowadzanie prądów zakłócających oraz zabezpieczać przed niebezpiecznymi napięciami. Kiedy mówimy o punktach 1, 2 i 3, są one połączone z elementami metalowymi, które są przewodnikami elektryczności, co oznacza, że powinny wykazywać ciągłość połączenia. To pokazuje, jak ważne jest zrozumienie materiałów używanych w instalacji i ich właściwości przewodzących w kontekście bezpieczeństwa elektrycznego.

Pytanie 12

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do wzmacniaczy maszynowych
B. Do indukcyjnych sprzęgieł dwukierunkowych
C. Do prądnic tachometrycznych
D. Do transformatorów
Przekładniki prądowe są urządzeniami elektrycznymi, które zaliczają się do kategorii transformatorów. Ich podstawową funkcją jest pomiar prądu elektrycznego poprzez jego przekształcenie na mniejszy, proporcjonalny prąd, co pozwala na łatwiejsze i bezpieczniejsze wykonanie pomiarów oraz ochronę obwodów. Przekładniki prądowe są szeroko stosowane w systemach elektroenergetycznych, a ich zastosowanie jest kluczowe dla zapewnienia precyzyjnych odczytów w urządzeniach takich jak liczniki energii, systemy zabezpieczeń oraz różnego rodzaju apparatura kontrolno-pomiarowa. Standard IEC 61869 określa wymagania dotyczące budowy i testowania przekładników prądowych, co zapewnia ich wysoką jakość oraz niezawodność w eksploatacji. Umożliwiają one również zdalny monitoring, co zwiększa efektywność zarządzania infrastrukturą energetyczną, a ich poprawne zastosowanie ma istotne znaczenie dla bezpieczeństwa instalacji oraz optymalizacji kosztów eksploatacji.

Pytanie 13

Kierunek rotacji wirnika silnika elektrycznego ustala się, obserwując jego wał z perspektywy

A. przewietrznika
B. czopu
C. tabliczki znamionowej
D. wprowadzenia przewodu zasilającego
Kierunek obrotów wirnika silnika elektrycznego określa się patrząc na jego wał od strony czopu, ponieważ jest to standardowa praktyka w inżynierii elektrycznej. Patrzenie z tej strony pozwala na jednoznaczne ustalenie, czy wirnik obraca się w prawo czy w lewo. W przypadku urządzeń napędzanych elektrycznie, znanie kierunku obrotów wirnika jest kluczowe dla prawidłowego działania systemu, ponieważ wpływa na wydajność i bezpieczeństwo całej instalacji. Wiele urządzeń, takich jak pompy czy wentylatory, jest zaprojektowanych do działania w określonym kierunku, a ich niewłaściwe zainstalowanie może prowadzić do uszkodzeń czy zmniejszenia efektywności. Dobrym przykładem jest zastosowanie silników w aplikacjach przemysłowych, gdzie niewłaściwy kierunek obrotów może skutkować nieprawidłowym działaniem maszyn. W związku z tym, podczas instalacji i konserwacji urządzeń elektrycznych, istotne jest przypilnowanie, aby kierunek obrotów był sprawdzany w odpowiedni sposób, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 14

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt małe wzbudzenie silnika
B. Zbyt duże wzbudzenie silnika
C. Zbyt mała powierzchnia styku szczotek z komutatorem
D. Zbyt duży nacisk szczotek na komutator
Odpowiedź dotycząca za małej powierzchni styku szczotek z komutatorem jest poprawna, ponieważ kontakt między szczotkami a komutatorem jest kluczowy dla prawidłowego działania silnika prądu stałego. Niewłaściwa powierzchnia styku może prowadzić do zwiększonego oporu elektrycznego, co skutkuje większym iskrzeniem i nadmiernym zużyciem szczotek. W praktyce, odpowiedni dobór szczotek, które powinny być dobrze dopasowane do średnicy komutatora, jest istotny dla optymalizacji ich kontaktu. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie jakości materiałów używanych do produkcji szczotek i ich geometrii, aby zapewnić skuteczny transfer prądu. Wymiana szczotek na modele o większej powierzchni styku lub z lepszymi właściwościami przewodzącymi może znacząco poprawić wydajność silnika i zmniejszyć iskrzenie, co zwiększa jego trwałość oraz bezpieczeństwo eksploatacji. Poprawny dobór szczotek i regularne ich kontrolowanie to praktyki, które powinny być stosowane w każdej aplikacji wykorzystującej silniki prądu stałego.

Pytanie 15

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. rok
B. 2 lata
C. kwartał
D. 4 lata
Przeprowadzanie kontroli instalacji elektrycznych narażonych na szkodliwe wpływy atmosferyczne co najmniej raz w roku jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami w branży budowlanej. Regularne inspekcje pozwalają na wczesne wykrycie potencjalnych problemów, takich jak korozja czy uszkodzenia izolacji, co może znacząco obniżyć ryzyko awarii elektrycznych. Na przykład, w przypadku instalacji znajdujących się na zewnątrz budynków, narażonych na opady deszczu, śniegu czy zmiany temperatury, roczna kontrola pozwala na ocenę stanu technicznego wszystkich elementów. Dzięki temu możemy podjąć działania prewencyjne, takie jak wymiana uszkodzonych części czy poprawa izolacji, co przekłada się na bezpieczniejsze użytkowanie budynków. Dodatkowo, zgodnie z przepisami prawa budowlanego oraz normami PN-IEC 60364, regularne kontrole są niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z normami technicznymi.

Pytanie 16

W jaki sposób powinno się podłączyć obwód prądowy oraz obwód napięciowy jednofazowego elektronicznego licznika energii elektrycznej do systemu pomiarowego?

A. Prądowy szeregowo, napięciowy równolegle
B. Prądowy i napięciowy szeregowo
C. Prądowy równolegle, napięciowy szeregowo
D. Prądowy i napięciowy równolegle
Zastosowanie różnych konfiguracji połączeń prądowego i napięciowego może prowadzić do nieprawidłowego działania licznika energii elektrycznej. W przypadku podłączenia zarówno obwodu prądowego, jak i napięciowego równolegle, pojawia się ryzyko, że prąd nie przepłynie przez licznik, co uniemożliwi jego prawidłowe zarejestrowanie. Równoległe połączenie obwodu prądowego sprawia, że licznik nie mierzy rzeczywistego przepływu prądu przez obciążenie, co prowadzi do fałszywych odczytów. Analogicznie, podłączenie obwodu napięciowego szeregowo z prądowym również jest nieodpowiednie, ponieważ pomiar napięcia nie będzie reprezentatywny dla napięcia zasilającego odbiornik. Warto zauważyć, że takie pomyłki często wynikają z braku zrozumienia zasad działania liczników energii oraz z nieodpowiedniej analizy schematów połączeń. Dobrze skonfigurowany układ pomiarowy powinien być zgodny z najlepszymi praktykami branżowymi, które zalecają szeregowe połączenie obwodu prądowego oraz równoległe połączenie obwodu napięciowego, co zapewnia dokładne i wiarygodne pomiary energii elektrycznej.

Pytanie 17

Działanie którego środka ochrony przeciwporażeniowej w instalacji elektrycznej o napięciu znamionowym 230 V, pozwala ocenić miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Samoczynnego wyłączenia zasilania.
B. Zasilania napięciem bezpiecznym.
C. Izolacji roboczej.
D. Połączeń wyrównawczych.
Izolacja robocza jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Miernik izolacji, przedstawiony na rysunku, służy do oceny stanu tej izolacji poprzez pomiar rezystancji. Wysoka rezystancja izolacji wskazuje na dobrą kondycję izolacji, co zapobiega przebiciu prądu do ziemi i potencjalnemu porażeniu elektrycznemu. W kontekście standardów, zgodnie z normą PN-EN 60204-1, regularne pomiary izolacji są wymagane w celu zapewnienia bezpieczeństwa urządzeń elektrycznych. W praktyce, miernik ten jest szczególnie użyteczny w okresowych przeglądach instalacji oraz w przypadku napraw i modyfikacji, aby upewnić się, że izolacja zachowuje odpowiednie właściwości, co jest niezbędne w każdej instalacji elektrycznej. Prawidłowe przeprowadzanie takich pomiarów jest elementem dobrych praktyk w branży elektroinstalacyjnej, co na pewno podnosi poziom bezpieczeństwa użytkowania instalacji.

Pytanie 18

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, lutownica, tester
B. Tester, wkrętak, lutownica
C. Ściągacz izolacji, wkrętak, próbnik
D. Szczypce, wkrętak, lutownica
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 19

Jakim elementem powinno się zabezpieczyć nakrętkę przed jej odkręceniem?

A. Tuleją redukcyjną
B. Podkładką sprężystą
C. Podkładką dystansową
D. Tuleją kołnierzową
Podkładka sprężysta jest kluczowym elementem w procesie zabezpieczania nakrętek przed odkręceniem, ponieważ jej konstrukcja została zaprojektowana w celu generowania siły, która przeciwdziała luzom mechanicznym. W praktyce, podkładki te wykorzystują swoją elastyczność, aby wypełnić mikrouszkodzenia na powierzchniach stykowych oraz dostarczyć dodatkowy opór przeciwko luźnieniu się połączenia w wyniku drgań, uderzeń czy zmian temperatury. Przykłady zastosowania obejmują szeroki zakres branż, od motoryzacji po budownictwo, gdzie mechanizmy narażone są na dynamiczne obciążenia. Zgodnie z normami ISO 7089 i ISO 7090, stosowanie podkładek sprężystych jest zalecane w połączeniach wymagających dużej niezawodności i trwałości, co czyni je istotnym elementem w projektowaniu konstrukcji. Dodatkowo, ich dostępność w różnych materiałach (np. stal nierdzewna, mosiądz) pozwala na dopasowanie do specyficznych warunków pracy, co zwiększa efektywność zabezpieczeń.

Pytanie 20

Narzędzie z rysunku służy do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. tworzenia oczek na przewodzie.
C. profilowania przewodów.
D. ściągania izolacji.
Narzędzie przedstawione na zdjęciu to ściągacz izolacji, który jest niezbędnym przyrządem w dziedzinie prac elektrycznych. Jego głównym zadaniem jest usuwanie izolacji z przewodów bez uszkodzenia samego przewodu, co jest kluczowe dla zapewnienia właściwego połączenia elektrycznego. Dzięki regulowanej średnicy szczęk, ściągacz izolacji może być używany do różnych grubości przewodów, co zwiększa jego uniwersalność. W praktyce, stosowanie tego narzędzia pozwala na szybkie i precyzyjne przygotowanie przewodów do dalszej obróbki, na przykład przed lutowaniem lub zaciskaniem końcówek. W branży elektrycznej, standardy dotyczące bezpieczeństwa i jakości często wymagają, aby przewody były odpowiednio przygotowane, co czyni to narzędzie niezastąpionym. Ponadto, stosowanie ściągacza pozwala na zachowanie integralności przewodu, co ma kluczowe znaczenie dla przewodności elektrycznej i bezpieczeństwa instalacji.

Pytanie 21

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. prądu różnicowego oraz czasu jego działania
B. napięcia sieciowego oraz prądu obciążenia
C. prądu obciążenia oraz czasu jego działania
D. napięcia sieciowego oraz prądu różnicowego
Sprawdzanie wyłącznika różnicowoprądowego to naprawdę ważna sprawa, bo chodzi tu o nasze bezpieczeństwo. Mierzymy prąd różnicowy i czas, w jakim wyłącznik zadziała, bo to zapewnia, że wszystko działa jak należy w instalacjach elektrycznych. Prąd różnicowy to różnica pomiędzy prądem, który idzie do urządzenia, a tym, który wraca. W normalnych warunkach ta różnica powinna być mała. RCD działa w ten sposób, że jeśli ta różnica przekroczy pewien próg, najczęściej 30 mA dla ochrony osób, to odcina zasilanie. Regularne testy wyłączników pozwalają upewnić się, że są w porządku i że nas chronią przed porażeniem prądem. Moim zdaniem, dobrze jest testować to przynajmniej raz w roku, aby mieć pewność, że ochrona działa jak należy. Do testów można użyć specjalnych urządzeń, które naśladują prąd różnicowy i pokazują, w jakim czasie wyłącznik się włączy. Jest to naprawdę istotne, żeby się tym zajmować.

Pytanie 22

Schemat jakiego łącznika instalacyjnego przedstawiono na rysunku?

Ilustracja do pytania
A. Schodowego.
B. Świecznikowego.
C. Krzyżowego.
D. Hotelowego.
Schemat przedstawiony na rysunku to schemat łącznika krzyżowego, który jest kluczowym elementem w bardziej złożonych instalacjach oświetleniowych. Łącznik krzyżowy umożliwia sterowanie jednym obwodem świetlnym z więcej niż dwóch miejsc, co jest szczególnie przydatne w dużych pomieszczeniach, korytarzach czy schodach. Wykorzystuje się go w połączeniu z łącznikami schodowymi, dzięki czemu można włączać i wyłączać światło w różnych punktach budynku. Schemat łącznika krzyżowego charakteryzuje się czterema zaciskami: dwa zaciski wejściowe i dwa wyjściowe. Taki układ pozwala na swobodne przełączanie prądu między różnymi obwodami, co zwiększa elastyczność instalacji. Zgodnie z dobrymi praktykami branżowymi, instalacje elektryczne powinny być projektowane z myślą o wygodzie użytkowników, a zastosowanie łącznika krzyżowego stanowi doskonały przykład tego podejścia. Warto również pamiętać, że poprawne zainstalowanie łącznika krzyżowego wymaga odpowiedniego przeszkolenia, aby zapewnić bezpieczeństwo i trwałość instalacji.

Pytanie 23

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Naciskając przycisk "TEST"
B. Sprawdzając napięcie oraz prąd wyłącznika
C. Zmieniając ustawienie dźwigni "ON-OFF"
D. Tworząc zwarcie w obwodzie zabezpieczonym
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 24

Który układ połączeń sond pomiarowych miernika rezystancji IMU względem badanego uziomu Rx jest zgodny z zasadami pomiaru rezystancji uziemienia?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
W przypadku niepoprawnych odpowiedzi, takich jak A, C i D, można zauważyć, że nie spełniają one wymogów dotyczących układu sond pomiarowych. W odpowiedzi A, potencjalna sonda znajduje się zbyt blisko badanego uziomu, co prowadzi do zniekształcenia wyników, ponieważ nie uwzględnia się rzeczywistego spadku napięcia w gruncie. W odpowiedzi C, nieprawidłowe rozmieszczenie sond skutkuje brakiem możliwości precyzyjnego pomiaru rezystancji, co może prowadzić do błędnych wniosków na temat stanu uziomu. W odpowiedzi D, konieczność zrozumienia, jak prąd wpływa na pomiary rezystancji, nie została spełniona, co jest kluczowe dla obliczeń związanych z bezpieczeństwem instalacji elektrycznych. Typowe błędy myślowe to ignorowanie zasad dotyczących odległości sond, co może prowadzić do błędnych wniosków o efektywności uziemienia. W praktyce, brak znajomości zasad pomiarowych może mieć poważne konsekwencje, takie jak uszkodzenie sprzętu lub zagrożenie dla bezpieczeństwa użytkowników. Dlatego ważne jest, aby przed przystąpieniem do pomiarów zrozumieć podstawowe zasady dotyczące rozmieszczenia sond oraz ich wpływu na dokładność wyniku, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 25

Na którym rysunku przedstawiono symbol graficzny przycisku zwiernego?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Rysunek A przedstawia graficzny symbol przycisku zwiernego, który jest powszechnie stosowany w systemach automatyki oraz w instalacjach elektrycznych. Symbol ten oznacza kontakt, który zamyka się pod wpływem naciśnięcia, co jest kluczowe w wielu aplikacjach, takich jak przyciski dzwonków, włączniki oświetlenia czy inne urządzenia sterujące. Zgodnie z normą IEC 60617, symbol ten przedstawia kontakt, który po aktywacji przełącza obwód, co pozwala na załączenie lub wyłączenie prądu. W praktyce, przyciski zwierne są niezwykle użyteczne w sytuacjach, gdzie wymagana jest prosta interakcja użytkownika z systemem, na przykład w domowych instalacjach oświetleniowych, gdzie naciśnięcie przycisku włącza światło. Wiedza o rozpoznawaniu tych symboli jest niezbędna dla każdego specjalisty zajmującego się projektowaniem oraz analizą układów elektrycznych, ponieważ umożliwia prawidłowe zrozumienie schematów elektrycznych i poprawną interpretację ich działania.

Pytanie 26

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Uzbrojone
B. Rdzeniowe
C. Szynowe
D. Kabelkowe
Odpowiedź 'szynowe' jest poprawna, ponieważ szyny montowane są na izolatorach wsporczych w systemach elektroenergetycznych. Izolatory wsporcze pełnią kluczową rolę w podtrzymywaniu szyn, zapewniając jednocześnie ich izolację od otoczenia. Szyny są elementami wykorzystywanymi do przesyłania energii elektrycznej na dużą skalę, a ich zastosowanie w instalacjach wysokiego napięcia jest standardem w branży. Przykładem mogą być linie przesyłowe oraz rozdzielnie, gdzie szyny są stosowane do efektownego i bezpiecznego przekazywania prądu. Dobrą praktyką jest również korzystanie z szyn w instalacjach przemysłowych, gdzie ich zastosowanie zwiększa niezawodność oraz zmniejsza opory elektryczne. W instalacjach szynowych należy przestrzegać standardów dotyczących materiałów i konstrukcji, co zapewnia długotrwałość i bezpieczeństwo operacyjne tych systemów.

Pytanie 27

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Żarowej
B. Halogenowej
C. Rtęciowej
D. Sodowej
Wybór żarowej, rtęciowej lub halogenowej lampy oświetleniowej jako zastosowania tyrystorowego układu zapłonowego opiera się na nieporozumieniach dotyczących charakterystyki tych źródeł światła. Lampy żarowe działają na zasadzie bezpośredniego przepływu prądu przez żarnik, co sprawia, że nie wymagają skomplikowanych układów zapłonowych. W przypadku lamp rtęciowych, ich zapłon oparty jest na innych zasadach, w tym na użyciu zapłonników gazowych, które nie są zgodne z zastosowaniem tyrystorów. Te lampy również potrzebują czasami większej mocy podczas zapłonu, co może prowadzić do niewłaściwego działania tyrystorów. Lampy halogenowe z kolei stosują nieco odmienną technologię, wykorzystując cykle odparowania, co również eliminuje potrzebę stosowania układów tyrystorowych. Typowym błędem myślowym w tym kontekście jest zakładanie, że wszystkie lampy wymagają podobnych układów zapłonowych, co prowadzi do mylnych wniosków. Ważne jest zrozumienie, że dobór odpowiednich komponentów do systemów oświetleniowych musi być oparty na ich specyficznych wymaganiach technicznych, co podkreśla konieczność dogłębnej analizy charakterystyk różnych typów lamp oraz ich zastosowań w praktyce.

Pytanie 28

Który z przedstawionych na rysunkach zestawów narzędzi należy dobrać do montażu elementów mieszkaniowych instalacji elektrycznych?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Zestaw narzędzi oznaczony literą C to właściwy wybór do montażu elementów mieszkaniowych instalacji elektrycznych, ponieważ zawiera narzędzia izolowane. Narzędzia te mają specjalną powłokę, która minimalizuje ryzyko porażenia prądem, co jest kluczowe, gdy pracujemy z instalacjami elektrycznymi. Przykładowo, obcęgi i szczypce izolowane pozwalają na precyzyjne manipulowanie przewodami bez obawy o kontakt z napięciem. Standardy bezpieczeństwa, takie jak normy IEC 60900, definiują wymagania dotyczące narzędzi używanych w środowiskach elektrycznych, w tym wymagania dotyczące izolacji. Ponadto, dobór narzędzi zgodnych z tymi normami jest często wymogiem w profesjonalnych pracach elektrycznych, co zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Zastosowanie odpowiednich narzędzi może znacząco zwiększyć komfort oraz bezpieczeństwo w trakcie realizacji zadań montażowych.

Pytanie 29

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,50 V)
B. 230 V (±1,20 V)
C. 230 V (±1,30 V)
D. 230 V (±1,40 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 30

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±0,02 mA
B. ±2,35 mA
C. ±0,35 mA
D. ±0,37 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentową dokładność, jak i dodatkowe cyferki. W naszym przypadku multimetr wyświetlił rezultat 35,00 mA, a dokładność producenta została określona jako ±(1 % +2). Rozpoczynamy od obliczenia 1 % z 35,00 mA, co daje 0,35 mA. Następnie dodajemy stałą wartość 2 jednostek, co w przypadku mA odpowiada 2 mA. Sumując te wartości, uzyskujemy 0,35 mA + 2 mA = 2,35 mA, co wskazuje, że przy takiej dokładności błąd może być dość istotny. Jednak dla pomiarów w praktyce do obliczeń najczęściej stosuje się wartości w granicach typowych pomiarów. Wartość ±0,37 mA, która została uznana za poprawną, uwzględnia precyzyjne zaokrąglenie i daje bardziej realistyczny obraz błędu, gdyż błąd nie powinien przekraczać jednostek pomiarowych, co w praktyce oznacza, że nawet niewielkie różnice mogą wpływać na dalsze analizy. Tego rodzaju wiedza jest kluczowa w wielu dziedzinach, zwłaszcza w inżynierii i elektrotechnice, gdzie precyzyjne pomiary są niezbędne do prawidłowego funkcjonowania systemów elektrycznych i elektronicznych.

Pytanie 31

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Omomierz
B. Fazomierz
C. Waromierz
D. Watomierz
Fazomierz to przyrząd, który służy do pomiaru kątów fazowych prądu i napięcia w obwodach elektrycznych. W kontekście pomiaru cosinus kąta (cos φ), fazomierz jest nieocenionym narzędziem, ponieważ pozwala na bezpośrednie określenie tego parametru, który jest kluczowy w ocenie charakterystyki obciążenia elektrycznego. W praktyce, pomiar cos φ ma istotne znaczenie w zarządzaniu energią oraz w poprawie efektywności energetycznej systemów elektrycznych. Umożliwia on monitorowanie współczynnika mocy, co jest istotne dla zapobiegania stratom energii oraz redukcji kosztów operacyjnych. Właściwe zarządzanie współczynnikiem mocy jest także zgodne z normami jakości energii, takimi jak PN-EN 50160, które definiują wymagania dotyczące jakości energii w sieciach elektroenergetycznych. Przykładem zastosowania fazomierza może być analiza obciążeń w zakładach przemysłowych, gdzie poprawne dopasowanie obciążeń do parametrów zasilania przekłada się na niższe koszty i większą trwałość urządzeń.

Pytanie 32

Który łącznik elektryczny ma dwa przyciski oraz trzy terminale?

A. Krzyżowy
B. Świecznikowy
C. Schodowy
D. Dwubiegunowy
Świecznikowy łącznik instalacyjny jest odpowiednim rozwiązaniem w sytuacjach, gdy chcemy sterować jednym źródłem światła z dwóch miejsc, co jest typowe w korytarzach, schodach czy dużych pomieszczeniach. Posiada on dwa klawisze i trzy zaciski elektryczne, co pozwala na realizację funkcji przełączania obwodu. Dzięki zastosowaniu tego typu łącznika, użytkownik ma możliwość włączania i wyłączania oświetlenia z dwóch różnych lokalizacji, co znacząco zwiększa komfort użytkowania. W praktyce, łącznik świecznikowy jest często wykorzystywany w instalacjach domowych, w których architektura wnętrza wymaga takiej funkcjonalności. Dobrą praktyką jest stosowanie łączników zgodnych z normami elektrycznymi, co zwiększa bezpieczeństwo i niezawodność instalacji. Warto również zauważyć, że w przypadku modernizacji instalacji elektrycznej, wybór łącznika świecznikowego może być kluczowy dla poprawy ergonomii użytkowania oświetlenia.

Pytanie 33

Które z oznaczeń posiada trzonek źródła światła przedstawiony na ilustracji?

Ilustracja do pytania
A. G9
B. GU10
C. MR16
D. E27
Odpowiedź GU10 jest prawidłowa, ponieważ trzonek źródła światła przedstawiony na ilustracji ma charakterystyczne cechy, które są typowe dla tego rodzaju gniazda. Trzonki GU10 mają dwie wypustki po bokach, które umożliwiają łatwe i pewne mocowanie w oprawach oświetleniowych poprzez system 'push and twist'. Jest to szczególnie przydatne w zastosowaniach, gdzie wymagana jest wysoka stabilność i łatwość wymiany źródła światła, jak w przypadku halogenów oraz niektórych modeli lamp LED. W praktyce trzonki GU10 są często wykorzystywane w oświetleniu wnętrz, takich jak sufitowe lampy halogenowe czy reflektory. Używanie trzonków zgodnych z normą GU10 jest zalecane, aby zapewnić bezpieczeństwo oraz efektywność energetyczną, co jest zgodne z najlepszymi praktykami branżowymi w oświetleniu. Dodatkowo, trzonki te często pozwalają na korzystanie z energooszczędnych rozwiązań, co jest istotne w kontekście ochrony środowiska i redukcji kosztów energii.

Pytanie 34

Przedstawiony na rysunku przełącznik funkcji przyrządu do pomiaru parametrów instalacji elektrycznych ustawiono na pomiar

Ilustracja do pytania
A. impedancji pętli zwarcia.
B. ciągłości przewodów.
C. rezystancji uziemienia.
D. rezystancji izolacji.
Prawidłowa odpowiedź to rezystancja uziemienia, co zostało wskazane przez ustawienie przełącznika na pozycję "RE". Pomiar rezystancji uziemienia jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Uziemienie chroni użytkowników przed skutkami przepięć oraz zapewnia stabilność układu elektrycznego. W praktyce, pomiar rezystancji uziemienia pozwala na ocenę skuteczności systemu uziemiającego, co jest szczególnie istotne w obiektach przemysłowych, gdzie bezpieczeństwo jest kluczowe. Niskie wartości rezystancji uziemienia, zalecane w normach takich jak PN-IEC 60364-5-54, powinny wynosić poniżej 10 ohmów. Regularne pomiary są niezbędne do weryfikacji, czy system uziemiający spełnia te normy, a ich stosowanie w praktyce zapobiega zagrożeniom związanym z przepięciami i może ochronić przed pożarami czy porażeniem prądem.

Pytanie 35

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Uniwersalnych.
B. Asynchronicznych pierścieniowych.
C. Asynchronicznych klatkowych.
D. Synchronicznych.
Wirnik, który widzisz na obrazku, to typowy element silników asynchronicznych klatkowych. Te silniki są naprawdę powszechne w przemyśle, bo są proste w budowie i bardzo niezawodne. Mówi się na nie często 'klatka wiewiórki'. Jak to działa? No, wirnik składa się z prętów przewodzących, które są zamknięte na końcach pierścieniami. Dzięki temu mają świetne właściwości elektromagnetyczne. Co ciekawe, te silniki idealnie nadają się tam, gdzie potrzebna jest duża moc przy niskich kosztach. Przykładowo, używa się ich w wentylatorach, pompach czy kompresorach. W takich aplikacjach stała prędkość obrotowa i łatwość obsługi są mega ważne. Dodatkowo, są zgodne z międzynarodowymi standardami efektywności energetycznej, co jest dużym plusem dla środowiska. Nie zapominajmy też, że ich konstrukcja ułatwia konserwację, co jest naprawdę istotne w dłuższej perspektywie. Dlatego wybór silnika asynchronicznego klatkowego w przemyśle ma sens zarówno pod względem technicznym, jak i finansowym.

Pytanie 36

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Licznik przedpłatowy, taki jak przedstawiony w odpowiedzi B, jest specjalistycznym urządzeniem zaprojektowanym do umożliwienia użytkownikom płacenia za energię elektryczną przed jej zużyciem. Jest to szczególnie korzystne w kontekście budżetowania wydatków na energię, ponieważ użytkownik może kontrolować swoje wydatki na bieżąco. W liczniku tym znajduje się klawiatura numeryczna oraz wyświetlacz, co umożliwia wprowadzenie kodów doładowujących, które można nabyć w sklepach lub przez internet. Taki system zachęca do oszczędzania energii, gdyż użytkownicy są bardziej świadomi swojego zużycia. Instalacje elektryczne z licznikami przedpłatowymi są zgodne z normami branżowymi, takimi jak IEC 62053, które określają wymagania dla liczników energii elektrycznej. Wiele nowoczesnych liczników przedpłatowych oferuje również funkcje zdalnego monitorowania, co ułatwia zarządzanie zużyciem energii w czasie rzeczywistym.

Pytanie 37

Które parametry techniczne określają stycznik przedstawiony na rysunku?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedź C jest prawidłowa, ponieważ odnosi się do konkretnego modelu stycznika marki Eaton, oznaczonego jako Z-SCH230/40-31. Analizując dane techniczne, możemy zauważyć, że znamionowy prąd pracy tego stycznika wynosi 40 A, co odpowiada wymogom zastosowań w typowych instalacjach elektrycznych. Liczba styków NO (normalnie otwartych) wynosi 3, a liczba styków NC (normalnie zamkniętych) to 1, co jest zgodne z danymi przedstawionymi na zdjęciu. Takie styczniki są szeroko stosowane w automatyce budynkowej oraz w instalacjach przemysłowych, umożliwiając kontrolę nad obwodami elektrycznymi. Zastosowanie styczników o odpowiednich parametrach jest kluczowe, aby zapewnić bezpieczeństwo oraz efektywność energetyczną w różnych systemach. Warto również zaznaczyć, że przy doborze styczników należy kierować się normami IEC 60947-4-1, co zapewnia ich odpowiednie właściwości eksploatacyjne oraz bezpieczeństwo użytkowania.

Pytanie 38

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
B. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 39

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. Oba sprawne.
B. 1 - sprawny, 2 - niesprawny.
C. 1 - niesprawny, 2 - sprawny.
D. Oba niesprawne.
Stwierdzenie, że oba wyłączniki są niesprawne, jest niewłaściwe z kilku powodów. Przede wszystkim, analiza wyników pomiarów powinna opierać się na zrozumieniu zakresów prądów różnicowych, które są kluczowe dla oceny stanu technicznego wyłączników. W przypadku wyłączników EFI-2-25/003, prawidłowy zakres różnicowego prądu zadziałania wynosi od 0,5 do 1 IΔN. Użytkownicy często mylą pojęcia związane z parametrami technicznymi i mogą błędnie interpretować wartości pomiarów. Nieprawidłowe wnioski mogą się również wynikać z braku znajomości norm i standardów dotyczących testowania wyłączników różnicowoprądowych. Wiele osób zakłada, że wartości prądów, które są znacznie niższe od nominalnych, są sygnałem awarii, co jest mylące. Wyłączniki, które zadziałały przy odpowiednich wartościach, są w istocie sprawne i spełniają swoją funkcję ochronną. Kluczowe jest, aby użytkownicy mieli świadomość, że różnicowe prądy są tylko jednym z wielu parametrów, które należy brać pod uwagę przy ocenie stanu technicznego wyłączników. Wiedza na temat tego, jak prawidłowo interpretować wyniki pomiarów, jest niezbędna dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 40

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 2,3 Ω
B. 7,7 Ω
C. 4,6 Ω
D. 8,0 Ω
Wartość impedancji pętli zwarcia wynosząca 4,6 Ω jest odpowiednia dla trójfazowego obwodu elektrycznego o napięciu 230/400 V, aby zapewnić skuteczną ochronę przeciwporażeniową. Przy takiej impedancji, w przypadku zwarcia, prąd zwarciowy osiągnie wartość wystarczającą do działania wyłącznika nadprądowego typu B10, który ma prąd znamionowy 10 A. Wartość impedancji pętli zwarcia oblicza się na podstawie napięcia zasilania oraz wymaganej wartości prądu, przy której następuje wyłączenie obwodu. W praktyce oznacza to, że w przypadku uszkodzenia izolacji, wyłącznik nadprądowy zadziała w odpowiednim czasie, minimalizując ryzyko porażenia prądem elektrycznym. Zgodnie z normami PN-IEC 60364-4-41 oraz PN-EN 60947-2, odpowiednia wartość impedancji pętli zwarcia jest kluczowa dla zabezpieczenia użytkowników przed skutkami awarii. Wartości te są również zgodne z wytycznymi dotyczącymi instalacji elektrycznych w budynkach, które zalecają, aby impedancja nie przekraczała 5 Ω dla ochrony przeciwporażeniowej. Dlatego 4,6 Ω to wartość, która spełnia te wymogi, a jej stosowanie w praktyce jest powszechną praktyką w branży elektrycznej.